Merge tag 'xtensa-20180225' of git://github.com/jcmvbkbc/linux-xtensa
[cris-mirror.git] / fs / xfs / xfs_inode.c
blob604ee384a00abd6e449e2b858154313d0cc72d2d
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include <linux/log2.h>
19 #include <linux/iversion.h>
21 #include "xfs.h"
22 #include "xfs_fs.h"
23 #include "xfs_shared.h"
24 #include "xfs_format.h"
25 #include "xfs_log_format.h"
26 #include "xfs_trans_resv.h"
27 #include "xfs_sb.h"
28 #include "xfs_mount.h"
29 #include "xfs_defer.h"
30 #include "xfs_inode.h"
31 #include "xfs_da_format.h"
32 #include "xfs_da_btree.h"
33 #include "xfs_dir2.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_attr.h"
36 #include "xfs_trans_space.h"
37 #include "xfs_trans.h"
38 #include "xfs_buf_item.h"
39 #include "xfs_inode_item.h"
40 #include "xfs_ialloc.h"
41 #include "xfs_bmap.h"
42 #include "xfs_bmap_util.h"
43 #include "xfs_errortag.h"
44 #include "xfs_error.h"
45 #include "xfs_quota.h"
46 #include "xfs_filestream.h"
47 #include "xfs_cksum.h"
48 #include "xfs_trace.h"
49 #include "xfs_icache.h"
50 #include "xfs_symlink.h"
51 #include "xfs_trans_priv.h"
52 #include "xfs_log.h"
53 #include "xfs_bmap_btree.h"
54 #include "xfs_reflink.h"
55 #include "xfs_dir2_priv.h"
57 kmem_zone_t *xfs_inode_zone;
60 * Used in xfs_itruncate_extents(). This is the maximum number of extents
61 * freed from a file in a single transaction.
63 #define XFS_ITRUNC_MAX_EXTENTS 2
65 STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
66 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
67 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
70 * helper function to extract extent size hint from inode
72 xfs_extlen_t
73 xfs_get_extsz_hint(
74 struct xfs_inode *ip)
76 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
77 return ip->i_d.di_extsize;
78 if (XFS_IS_REALTIME_INODE(ip))
79 return ip->i_mount->m_sb.sb_rextsize;
80 return 0;
84 * Helper function to extract CoW extent size hint from inode.
85 * Between the extent size hint and the CoW extent size hint, we
86 * return the greater of the two. If the value is zero (automatic),
87 * use the default size.
89 xfs_extlen_t
90 xfs_get_cowextsz_hint(
91 struct xfs_inode *ip)
93 xfs_extlen_t a, b;
95 a = 0;
96 if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
97 a = ip->i_d.di_cowextsize;
98 b = xfs_get_extsz_hint(ip);
100 a = max(a, b);
101 if (a == 0)
102 return XFS_DEFAULT_COWEXTSZ_HINT;
103 return a;
107 * These two are wrapper routines around the xfs_ilock() routine used to
108 * centralize some grungy code. They are used in places that wish to lock the
109 * inode solely for reading the extents. The reason these places can't just
110 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
111 * bringing in of the extents from disk for a file in b-tree format. If the
112 * inode is in b-tree format, then we need to lock the inode exclusively until
113 * the extents are read in. Locking it exclusively all the time would limit
114 * our parallelism unnecessarily, though. What we do instead is check to see
115 * if the extents have been read in yet, and only lock the inode exclusively
116 * if they have not.
118 * The functions return a value which should be given to the corresponding
119 * xfs_iunlock() call.
121 uint
122 xfs_ilock_data_map_shared(
123 struct xfs_inode *ip)
125 uint lock_mode = XFS_ILOCK_SHARED;
127 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
128 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
129 lock_mode = XFS_ILOCK_EXCL;
130 xfs_ilock(ip, lock_mode);
131 return lock_mode;
134 uint
135 xfs_ilock_attr_map_shared(
136 struct xfs_inode *ip)
138 uint lock_mode = XFS_ILOCK_SHARED;
140 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
141 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
142 lock_mode = XFS_ILOCK_EXCL;
143 xfs_ilock(ip, lock_mode);
144 return lock_mode;
148 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
149 * multi-reader locks: i_mmap_lock and the i_lock. This routine allows
150 * various combinations of the locks to be obtained.
152 * The 3 locks should always be ordered so that the IO lock is obtained first,
153 * the mmap lock second and the ilock last in order to prevent deadlock.
155 * Basic locking order:
157 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
159 * mmap_sem locking order:
161 * i_rwsem -> page lock -> mmap_sem
162 * mmap_sem -> i_mmap_lock -> page_lock
164 * The difference in mmap_sem locking order mean that we cannot hold the
165 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
166 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
167 * in get_user_pages() to map the user pages into the kernel address space for
168 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
169 * page faults already hold the mmap_sem.
171 * Hence to serialise fully against both syscall and mmap based IO, we need to
172 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
173 * taken in places where we need to invalidate the page cache in a race
174 * free manner (e.g. truncate, hole punch and other extent manipulation
175 * functions).
177 void
178 xfs_ilock(
179 xfs_inode_t *ip,
180 uint lock_flags)
182 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
185 * You can't set both SHARED and EXCL for the same lock,
186 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
187 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
189 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
190 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
191 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
192 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
193 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
194 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
195 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
197 if (lock_flags & XFS_IOLOCK_EXCL) {
198 down_write_nested(&VFS_I(ip)->i_rwsem,
199 XFS_IOLOCK_DEP(lock_flags));
200 } else if (lock_flags & XFS_IOLOCK_SHARED) {
201 down_read_nested(&VFS_I(ip)->i_rwsem,
202 XFS_IOLOCK_DEP(lock_flags));
205 if (lock_flags & XFS_MMAPLOCK_EXCL)
206 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
207 else if (lock_flags & XFS_MMAPLOCK_SHARED)
208 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
210 if (lock_flags & XFS_ILOCK_EXCL)
211 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
212 else if (lock_flags & XFS_ILOCK_SHARED)
213 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
217 * This is just like xfs_ilock(), except that the caller
218 * is guaranteed not to sleep. It returns 1 if it gets
219 * the requested locks and 0 otherwise. If the IO lock is
220 * obtained but the inode lock cannot be, then the IO lock
221 * is dropped before returning.
223 * ip -- the inode being locked
224 * lock_flags -- this parameter indicates the inode's locks to be
225 * to be locked. See the comment for xfs_ilock() for a list
226 * of valid values.
229 xfs_ilock_nowait(
230 xfs_inode_t *ip,
231 uint lock_flags)
233 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
236 * You can't set both SHARED and EXCL for the same lock,
237 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
238 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
240 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
241 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
242 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
243 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
244 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
245 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
246 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
248 if (lock_flags & XFS_IOLOCK_EXCL) {
249 if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
250 goto out;
251 } else if (lock_flags & XFS_IOLOCK_SHARED) {
252 if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
253 goto out;
256 if (lock_flags & XFS_MMAPLOCK_EXCL) {
257 if (!mrtryupdate(&ip->i_mmaplock))
258 goto out_undo_iolock;
259 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
260 if (!mrtryaccess(&ip->i_mmaplock))
261 goto out_undo_iolock;
264 if (lock_flags & XFS_ILOCK_EXCL) {
265 if (!mrtryupdate(&ip->i_lock))
266 goto out_undo_mmaplock;
267 } else if (lock_flags & XFS_ILOCK_SHARED) {
268 if (!mrtryaccess(&ip->i_lock))
269 goto out_undo_mmaplock;
271 return 1;
273 out_undo_mmaplock:
274 if (lock_flags & XFS_MMAPLOCK_EXCL)
275 mrunlock_excl(&ip->i_mmaplock);
276 else if (lock_flags & XFS_MMAPLOCK_SHARED)
277 mrunlock_shared(&ip->i_mmaplock);
278 out_undo_iolock:
279 if (lock_flags & XFS_IOLOCK_EXCL)
280 up_write(&VFS_I(ip)->i_rwsem);
281 else if (lock_flags & XFS_IOLOCK_SHARED)
282 up_read(&VFS_I(ip)->i_rwsem);
283 out:
284 return 0;
288 * xfs_iunlock() is used to drop the inode locks acquired with
289 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
290 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
291 * that we know which locks to drop.
293 * ip -- the inode being unlocked
294 * lock_flags -- this parameter indicates the inode's locks to be
295 * to be unlocked. See the comment for xfs_ilock() for a list
296 * of valid values for this parameter.
299 void
300 xfs_iunlock(
301 xfs_inode_t *ip,
302 uint lock_flags)
305 * You can't set both SHARED and EXCL for the same lock,
306 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
307 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
309 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
310 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
311 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
312 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
313 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
314 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
315 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
316 ASSERT(lock_flags != 0);
318 if (lock_flags & XFS_IOLOCK_EXCL)
319 up_write(&VFS_I(ip)->i_rwsem);
320 else if (lock_flags & XFS_IOLOCK_SHARED)
321 up_read(&VFS_I(ip)->i_rwsem);
323 if (lock_flags & XFS_MMAPLOCK_EXCL)
324 mrunlock_excl(&ip->i_mmaplock);
325 else if (lock_flags & XFS_MMAPLOCK_SHARED)
326 mrunlock_shared(&ip->i_mmaplock);
328 if (lock_flags & XFS_ILOCK_EXCL)
329 mrunlock_excl(&ip->i_lock);
330 else if (lock_flags & XFS_ILOCK_SHARED)
331 mrunlock_shared(&ip->i_lock);
333 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
337 * give up write locks. the i/o lock cannot be held nested
338 * if it is being demoted.
340 void
341 xfs_ilock_demote(
342 xfs_inode_t *ip,
343 uint lock_flags)
345 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
346 ASSERT((lock_flags &
347 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
349 if (lock_flags & XFS_ILOCK_EXCL)
350 mrdemote(&ip->i_lock);
351 if (lock_flags & XFS_MMAPLOCK_EXCL)
352 mrdemote(&ip->i_mmaplock);
353 if (lock_flags & XFS_IOLOCK_EXCL)
354 downgrade_write(&VFS_I(ip)->i_rwsem);
356 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
359 #if defined(DEBUG) || defined(XFS_WARN)
361 xfs_isilocked(
362 xfs_inode_t *ip,
363 uint lock_flags)
365 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
366 if (!(lock_flags & XFS_ILOCK_SHARED))
367 return !!ip->i_lock.mr_writer;
368 return rwsem_is_locked(&ip->i_lock.mr_lock);
371 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
372 if (!(lock_flags & XFS_MMAPLOCK_SHARED))
373 return !!ip->i_mmaplock.mr_writer;
374 return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
377 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
378 if (!(lock_flags & XFS_IOLOCK_SHARED))
379 return !debug_locks ||
380 lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
381 return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
384 ASSERT(0);
385 return 0;
387 #endif
390 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
391 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
392 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
393 * errors and warnings.
395 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
396 static bool
397 xfs_lockdep_subclass_ok(
398 int subclass)
400 return subclass < MAX_LOCKDEP_SUBCLASSES;
402 #else
403 #define xfs_lockdep_subclass_ok(subclass) (true)
404 #endif
407 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
408 * value. This can be called for any type of inode lock combination, including
409 * parent locking. Care must be taken to ensure we don't overrun the subclass
410 * storage fields in the class mask we build.
412 static inline int
413 xfs_lock_inumorder(int lock_mode, int subclass)
415 int class = 0;
417 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
418 XFS_ILOCK_RTSUM)));
419 ASSERT(xfs_lockdep_subclass_ok(subclass));
421 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
422 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
423 class += subclass << XFS_IOLOCK_SHIFT;
426 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
427 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
428 class += subclass << XFS_MMAPLOCK_SHIFT;
431 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
432 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
433 class += subclass << XFS_ILOCK_SHIFT;
436 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
440 * The following routine will lock n inodes in exclusive mode. We assume the
441 * caller calls us with the inodes in i_ino order.
443 * We need to detect deadlock where an inode that we lock is in the AIL and we
444 * start waiting for another inode that is locked by a thread in a long running
445 * transaction (such as truncate). This can result in deadlock since the long
446 * running trans might need to wait for the inode we just locked in order to
447 * push the tail and free space in the log.
449 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
450 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
451 * lock more than one at a time, lockdep will report false positives saying we
452 * have violated locking orders.
454 static void
455 xfs_lock_inodes(
456 xfs_inode_t **ips,
457 int inodes,
458 uint lock_mode)
460 int attempts = 0, i, j, try_lock;
461 xfs_log_item_t *lp;
464 * Currently supports between 2 and 5 inodes with exclusive locking. We
465 * support an arbitrary depth of locking here, but absolute limits on
466 * inodes depend on the the type of locking and the limits placed by
467 * lockdep annotations in xfs_lock_inumorder. These are all checked by
468 * the asserts.
470 ASSERT(ips && inodes >= 2 && inodes <= 5);
471 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
472 XFS_ILOCK_EXCL));
473 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
474 XFS_ILOCK_SHARED)));
475 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
476 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
477 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
478 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
480 if (lock_mode & XFS_IOLOCK_EXCL) {
481 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
482 } else if (lock_mode & XFS_MMAPLOCK_EXCL)
483 ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
485 try_lock = 0;
486 i = 0;
487 again:
488 for (; i < inodes; i++) {
489 ASSERT(ips[i]);
491 if (i && (ips[i] == ips[i - 1])) /* Already locked */
492 continue;
495 * If try_lock is not set yet, make sure all locked inodes are
496 * not in the AIL. If any are, set try_lock to be used later.
498 if (!try_lock) {
499 for (j = (i - 1); j >= 0 && !try_lock; j--) {
500 lp = (xfs_log_item_t *)ips[j]->i_itemp;
501 if (lp && (lp->li_flags & XFS_LI_IN_AIL))
502 try_lock++;
507 * If any of the previous locks we have locked is in the AIL,
508 * we must TRY to get the second and subsequent locks. If
509 * we can't get any, we must release all we have
510 * and try again.
512 if (!try_lock) {
513 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
514 continue;
517 /* try_lock means we have an inode locked that is in the AIL. */
518 ASSERT(i != 0);
519 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
520 continue;
523 * Unlock all previous guys and try again. xfs_iunlock will try
524 * to push the tail if the inode is in the AIL.
526 attempts++;
527 for (j = i - 1; j >= 0; j--) {
529 * Check to see if we've already unlocked this one. Not
530 * the first one going back, and the inode ptr is the
531 * same.
533 if (j != (i - 1) && ips[j] == ips[j + 1])
534 continue;
536 xfs_iunlock(ips[j], lock_mode);
539 if ((attempts % 5) == 0) {
540 delay(1); /* Don't just spin the CPU */
542 i = 0;
543 try_lock = 0;
544 goto again;
549 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
550 * the mmaplock or the ilock, but not more than one type at a time. If we lock
551 * more than one at a time, lockdep will report false positives saying we have
552 * violated locking orders. The iolock must be double-locked separately since
553 * we use i_rwsem for that. We now support taking one lock EXCL and the other
554 * SHARED.
556 void
557 xfs_lock_two_inodes(
558 struct xfs_inode *ip0,
559 uint ip0_mode,
560 struct xfs_inode *ip1,
561 uint ip1_mode)
563 struct xfs_inode *temp;
564 uint mode_temp;
565 int attempts = 0;
566 xfs_log_item_t *lp;
568 ASSERT(hweight32(ip0_mode) == 1);
569 ASSERT(hweight32(ip1_mode) == 1);
570 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
571 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
572 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
573 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
574 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
575 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
576 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
577 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
578 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
579 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
581 ASSERT(ip0->i_ino != ip1->i_ino);
583 if (ip0->i_ino > ip1->i_ino) {
584 temp = ip0;
585 ip0 = ip1;
586 ip1 = temp;
587 mode_temp = ip0_mode;
588 ip0_mode = ip1_mode;
589 ip1_mode = mode_temp;
592 again:
593 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
596 * If the first lock we have locked is in the AIL, we must TRY to get
597 * the second lock. If we can't get it, we must release the first one
598 * and try again.
600 lp = (xfs_log_item_t *)ip0->i_itemp;
601 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
602 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
603 xfs_iunlock(ip0, ip0_mode);
604 if ((++attempts % 5) == 0)
605 delay(1); /* Don't just spin the CPU */
606 goto again;
608 } else {
609 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
613 void
614 __xfs_iflock(
615 struct xfs_inode *ip)
617 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
618 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
620 do {
621 prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
622 if (xfs_isiflocked(ip))
623 io_schedule();
624 } while (!xfs_iflock_nowait(ip));
626 finish_wait(wq, &wait.wq_entry);
629 STATIC uint
630 _xfs_dic2xflags(
631 uint16_t di_flags,
632 uint64_t di_flags2,
633 bool has_attr)
635 uint flags = 0;
637 if (di_flags & XFS_DIFLAG_ANY) {
638 if (di_flags & XFS_DIFLAG_REALTIME)
639 flags |= FS_XFLAG_REALTIME;
640 if (di_flags & XFS_DIFLAG_PREALLOC)
641 flags |= FS_XFLAG_PREALLOC;
642 if (di_flags & XFS_DIFLAG_IMMUTABLE)
643 flags |= FS_XFLAG_IMMUTABLE;
644 if (di_flags & XFS_DIFLAG_APPEND)
645 flags |= FS_XFLAG_APPEND;
646 if (di_flags & XFS_DIFLAG_SYNC)
647 flags |= FS_XFLAG_SYNC;
648 if (di_flags & XFS_DIFLAG_NOATIME)
649 flags |= FS_XFLAG_NOATIME;
650 if (di_flags & XFS_DIFLAG_NODUMP)
651 flags |= FS_XFLAG_NODUMP;
652 if (di_flags & XFS_DIFLAG_RTINHERIT)
653 flags |= FS_XFLAG_RTINHERIT;
654 if (di_flags & XFS_DIFLAG_PROJINHERIT)
655 flags |= FS_XFLAG_PROJINHERIT;
656 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
657 flags |= FS_XFLAG_NOSYMLINKS;
658 if (di_flags & XFS_DIFLAG_EXTSIZE)
659 flags |= FS_XFLAG_EXTSIZE;
660 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
661 flags |= FS_XFLAG_EXTSZINHERIT;
662 if (di_flags & XFS_DIFLAG_NODEFRAG)
663 flags |= FS_XFLAG_NODEFRAG;
664 if (di_flags & XFS_DIFLAG_FILESTREAM)
665 flags |= FS_XFLAG_FILESTREAM;
668 if (di_flags2 & XFS_DIFLAG2_ANY) {
669 if (di_flags2 & XFS_DIFLAG2_DAX)
670 flags |= FS_XFLAG_DAX;
671 if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
672 flags |= FS_XFLAG_COWEXTSIZE;
675 if (has_attr)
676 flags |= FS_XFLAG_HASATTR;
678 return flags;
681 uint
682 xfs_ip2xflags(
683 struct xfs_inode *ip)
685 struct xfs_icdinode *dic = &ip->i_d;
687 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
691 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
692 * is allowed, otherwise it has to be an exact match. If a CI match is found,
693 * ci_name->name will point to a the actual name (caller must free) or
694 * will be set to NULL if an exact match is found.
697 xfs_lookup(
698 xfs_inode_t *dp,
699 struct xfs_name *name,
700 xfs_inode_t **ipp,
701 struct xfs_name *ci_name)
703 xfs_ino_t inum;
704 int error;
706 trace_xfs_lookup(dp, name);
708 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
709 return -EIO;
711 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
712 if (error)
713 goto out_unlock;
715 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
716 if (error)
717 goto out_free_name;
719 return 0;
721 out_free_name:
722 if (ci_name)
723 kmem_free(ci_name->name);
724 out_unlock:
725 *ipp = NULL;
726 return error;
730 * Allocate an inode on disk and return a copy of its in-core version.
731 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
732 * appropriately within the inode. The uid and gid for the inode are
733 * set according to the contents of the given cred structure.
735 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
736 * has a free inode available, call xfs_iget() to obtain the in-core
737 * version of the allocated inode. Finally, fill in the inode and
738 * log its initial contents. In this case, ialloc_context would be
739 * set to NULL.
741 * If xfs_dialloc() does not have an available inode, it will replenish
742 * its supply by doing an allocation. Since we can only do one
743 * allocation within a transaction without deadlocks, we must commit
744 * the current transaction before returning the inode itself.
745 * In this case, therefore, we will set ialloc_context and return.
746 * The caller should then commit the current transaction, start a new
747 * transaction, and call xfs_ialloc() again to actually get the inode.
749 * To ensure that some other process does not grab the inode that
750 * was allocated during the first call to xfs_ialloc(), this routine
751 * also returns the [locked] bp pointing to the head of the freelist
752 * as ialloc_context. The caller should hold this buffer across
753 * the commit and pass it back into this routine on the second call.
755 * If we are allocating quota inodes, we do not have a parent inode
756 * to attach to or associate with (i.e. pip == NULL) because they
757 * are not linked into the directory structure - they are attached
758 * directly to the superblock - and so have no parent.
760 static int
761 xfs_ialloc(
762 xfs_trans_t *tp,
763 xfs_inode_t *pip,
764 umode_t mode,
765 xfs_nlink_t nlink,
766 dev_t rdev,
767 prid_t prid,
768 xfs_buf_t **ialloc_context,
769 xfs_inode_t **ipp)
771 struct xfs_mount *mp = tp->t_mountp;
772 xfs_ino_t ino;
773 xfs_inode_t *ip;
774 uint flags;
775 int error;
776 struct timespec tv;
777 struct inode *inode;
780 * Call the space management code to pick
781 * the on-disk inode to be allocated.
783 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode,
784 ialloc_context, &ino);
785 if (error)
786 return error;
787 if (*ialloc_context || ino == NULLFSINO) {
788 *ipp = NULL;
789 return 0;
791 ASSERT(*ialloc_context == NULL);
794 * Get the in-core inode with the lock held exclusively.
795 * This is because we're setting fields here we need
796 * to prevent others from looking at until we're done.
798 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
799 XFS_ILOCK_EXCL, &ip);
800 if (error)
801 return error;
802 ASSERT(ip != NULL);
803 inode = VFS_I(ip);
806 * We always convert v1 inodes to v2 now - we only support filesystems
807 * with >= v2 inode capability, so there is no reason for ever leaving
808 * an inode in v1 format.
810 if (ip->i_d.di_version == 1)
811 ip->i_d.di_version = 2;
813 inode->i_mode = mode;
814 set_nlink(inode, nlink);
815 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
816 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
817 inode->i_rdev = rdev;
818 xfs_set_projid(ip, prid);
820 if (pip && XFS_INHERIT_GID(pip)) {
821 ip->i_d.di_gid = pip->i_d.di_gid;
822 if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
823 inode->i_mode |= S_ISGID;
827 * If the group ID of the new file does not match the effective group
828 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
829 * (and only if the irix_sgid_inherit compatibility variable is set).
831 if ((irix_sgid_inherit) &&
832 (inode->i_mode & S_ISGID) &&
833 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
834 inode->i_mode &= ~S_ISGID;
836 ip->i_d.di_size = 0;
837 ip->i_d.di_nextents = 0;
838 ASSERT(ip->i_d.di_nblocks == 0);
840 tv = current_time(inode);
841 inode->i_mtime = tv;
842 inode->i_atime = tv;
843 inode->i_ctime = tv;
845 ip->i_d.di_extsize = 0;
846 ip->i_d.di_dmevmask = 0;
847 ip->i_d.di_dmstate = 0;
848 ip->i_d.di_flags = 0;
850 if (ip->i_d.di_version == 3) {
851 inode_set_iversion(inode, 1);
852 ip->i_d.di_flags2 = 0;
853 ip->i_d.di_cowextsize = 0;
854 ip->i_d.di_crtime.t_sec = (int32_t)tv.tv_sec;
855 ip->i_d.di_crtime.t_nsec = (int32_t)tv.tv_nsec;
859 flags = XFS_ILOG_CORE;
860 switch (mode & S_IFMT) {
861 case S_IFIFO:
862 case S_IFCHR:
863 case S_IFBLK:
864 case S_IFSOCK:
865 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
866 ip->i_df.if_flags = 0;
867 flags |= XFS_ILOG_DEV;
868 break;
869 case S_IFREG:
870 case S_IFDIR:
871 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
872 uint di_flags = 0;
874 if (S_ISDIR(mode)) {
875 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
876 di_flags |= XFS_DIFLAG_RTINHERIT;
877 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
878 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
879 ip->i_d.di_extsize = pip->i_d.di_extsize;
881 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
882 di_flags |= XFS_DIFLAG_PROJINHERIT;
883 } else if (S_ISREG(mode)) {
884 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
885 di_flags |= XFS_DIFLAG_REALTIME;
886 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
887 di_flags |= XFS_DIFLAG_EXTSIZE;
888 ip->i_d.di_extsize = pip->i_d.di_extsize;
891 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
892 xfs_inherit_noatime)
893 di_flags |= XFS_DIFLAG_NOATIME;
894 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
895 xfs_inherit_nodump)
896 di_flags |= XFS_DIFLAG_NODUMP;
897 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
898 xfs_inherit_sync)
899 di_flags |= XFS_DIFLAG_SYNC;
900 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
901 xfs_inherit_nosymlinks)
902 di_flags |= XFS_DIFLAG_NOSYMLINKS;
903 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
904 xfs_inherit_nodefrag)
905 di_flags |= XFS_DIFLAG_NODEFRAG;
906 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
907 di_flags |= XFS_DIFLAG_FILESTREAM;
909 ip->i_d.di_flags |= di_flags;
911 if (pip &&
912 (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) &&
913 pip->i_d.di_version == 3 &&
914 ip->i_d.di_version == 3) {
915 uint64_t di_flags2 = 0;
917 if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
918 di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
919 ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
921 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
922 di_flags2 |= XFS_DIFLAG2_DAX;
924 ip->i_d.di_flags2 |= di_flags2;
926 /* FALLTHROUGH */
927 case S_IFLNK:
928 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
929 ip->i_df.if_flags = XFS_IFEXTENTS;
930 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
931 ip->i_df.if_u1.if_root = NULL;
932 break;
933 default:
934 ASSERT(0);
937 * Attribute fork settings for new inode.
939 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
940 ip->i_d.di_anextents = 0;
943 * Log the new values stuffed into the inode.
945 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
946 xfs_trans_log_inode(tp, ip, flags);
948 /* now that we have an i_mode we can setup the inode structure */
949 xfs_setup_inode(ip);
951 *ipp = ip;
952 return 0;
956 * Allocates a new inode from disk and return a pointer to the
957 * incore copy. This routine will internally commit the current
958 * transaction and allocate a new one if the Space Manager needed
959 * to do an allocation to replenish the inode free-list.
961 * This routine is designed to be called from xfs_create and
962 * xfs_create_dir.
966 xfs_dir_ialloc(
967 xfs_trans_t **tpp, /* input: current transaction;
968 output: may be a new transaction. */
969 xfs_inode_t *dp, /* directory within whose allocate
970 the inode. */
971 umode_t mode,
972 xfs_nlink_t nlink,
973 dev_t rdev,
974 prid_t prid, /* project id */
975 xfs_inode_t **ipp, /* pointer to inode; it will be
976 locked. */
977 int *committed)
980 xfs_trans_t *tp;
981 xfs_inode_t *ip;
982 xfs_buf_t *ialloc_context = NULL;
983 int code;
984 void *dqinfo;
985 uint tflags;
987 tp = *tpp;
988 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
991 * xfs_ialloc will return a pointer to an incore inode if
992 * the Space Manager has an available inode on the free
993 * list. Otherwise, it will do an allocation and replenish
994 * the freelist. Since we can only do one allocation per
995 * transaction without deadlocks, we will need to commit the
996 * current transaction and start a new one. We will then
997 * need to call xfs_ialloc again to get the inode.
999 * If xfs_ialloc did an allocation to replenish the freelist,
1000 * it returns the bp containing the head of the freelist as
1001 * ialloc_context. We will hold a lock on it across the
1002 * transaction commit so that no other process can steal
1003 * the inode(s) that we've just allocated.
1005 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context,
1006 &ip);
1009 * Return an error if we were unable to allocate a new inode.
1010 * This should only happen if we run out of space on disk or
1011 * encounter a disk error.
1013 if (code) {
1014 *ipp = NULL;
1015 return code;
1017 if (!ialloc_context && !ip) {
1018 *ipp = NULL;
1019 return -ENOSPC;
1023 * If the AGI buffer is non-NULL, then we were unable to get an
1024 * inode in one operation. We need to commit the current
1025 * transaction and call xfs_ialloc() again. It is guaranteed
1026 * to succeed the second time.
1028 if (ialloc_context) {
1030 * Normally, xfs_trans_commit releases all the locks.
1031 * We call bhold to hang on to the ialloc_context across
1032 * the commit. Holding this buffer prevents any other
1033 * processes from doing any allocations in this
1034 * allocation group.
1036 xfs_trans_bhold(tp, ialloc_context);
1039 * We want the quota changes to be associated with the next
1040 * transaction, NOT this one. So, detach the dqinfo from this
1041 * and attach it to the next transaction.
1043 dqinfo = NULL;
1044 tflags = 0;
1045 if (tp->t_dqinfo) {
1046 dqinfo = (void *)tp->t_dqinfo;
1047 tp->t_dqinfo = NULL;
1048 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1049 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1052 code = xfs_trans_roll(&tp);
1053 if (committed != NULL)
1054 *committed = 1;
1057 * Re-attach the quota info that we detached from prev trx.
1059 if (dqinfo) {
1060 tp->t_dqinfo = dqinfo;
1061 tp->t_flags |= tflags;
1064 if (code) {
1065 xfs_buf_relse(ialloc_context);
1066 *tpp = tp;
1067 *ipp = NULL;
1068 return code;
1070 xfs_trans_bjoin(tp, ialloc_context);
1073 * Call ialloc again. Since we've locked out all
1074 * other allocations in this allocation group,
1075 * this call should always succeed.
1077 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1078 &ialloc_context, &ip);
1081 * If we get an error at this point, return to the caller
1082 * so that the current transaction can be aborted.
1084 if (code) {
1085 *tpp = tp;
1086 *ipp = NULL;
1087 return code;
1089 ASSERT(!ialloc_context && ip);
1091 } else {
1092 if (committed != NULL)
1093 *committed = 0;
1096 *ipp = ip;
1097 *tpp = tp;
1099 return 0;
1103 * Decrement the link count on an inode & log the change. If this causes the
1104 * link count to go to zero, move the inode to AGI unlinked list so that it can
1105 * be freed when the last active reference goes away via xfs_inactive().
1107 static int /* error */
1108 xfs_droplink(
1109 xfs_trans_t *tp,
1110 xfs_inode_t *ip)
1112 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1114 drop_nlink(VFS_I(ip));
1115 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1117 if (VFS_I(ip)->i_nlink)
1118 return 0;
1120 return xfs_iunlink(tp, ip);
1124 * Increment the link count on an inode & log the change.
1126 static int
1127 xfs_bumplink(
1128 xfs_trans_t *tp,
1129 xfs_inode_t *ip)
1131 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1133 ASSERT(ip->i_d.di_version > 1);
1134 inc_nlink(VFS_I(ip));
1135 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1136 return 0;
1140 xfs_create(
1141 xfs_inode_t *dp,
1142 struct xfs_name *name,
1143 umode_t mode,
1144 dev_t rdev,
1145 xfs_inode_t **ipp)
1147 int is_dir = S_ISDIR(mode);
1148 struct xfs_mount *mp = dp->i_mount;
1149 struct xfs_inode *ip = NULL;
1150 struct xfs_trans *tp = NULL;
1151 int error;
1152 struct xfs_defer_ops dfops;
1153 xfs_fsblock_t first_block;
1154 bool unlock_dp_on_error = false;
1155 prid_t prid;
1156 struct xfs_dquot *udqp = NULL;
1157 struct xfs_dquot *gdqp = NULL;
1158 struct xfs_dquot *pdqp = NULL;
1159 struct xfs_trans_res *tres;
1160 uint resblks;
1162 trace_xfs_create(dp, name);
1164 if (XFS_FORCED_SHUTDOWN(mp))
1165 return -EIO;
1167 prid = xfs_get_initial_prid(dp);
1170 * Make sure that we have allocated dquot(s) on disk.
1172 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1173 xfs_kgid_to_gid(current_fsgid()), prid,
1174 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1175 &udqp, &gdqp, &pdqp);
1176 if (error)
1177 return error;
1179 if (is_dir) {
1180 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1181 tres = &M_RES(mp)->tr_mkdir;
1182 } else {
1183 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1184 tres = &M_RES(mp)->tr_create;
1188 * Initially assume that the file does not exist and
1189 * reserve the resources for that case. If that is not
1190 * the case we'll drop the one we have and get a more
1191 * appropriate transaction later.
1193 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1194 if (error == -ENOSPC) {
1195 /* flush outstanding delalloc blocks and retry */
1196 xfs_flush_inodes(mp);
1197 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1199 if (error)
1200 goto out_release_inode;
1202 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1203 unlock_dp_on_error = true;
1205 xfs_defer_init(&dfops, &first_block);
1208 * Reserve disk quota and the inode.
1210 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1211 pdqp, resblks, 1, 0);
1212 if (error)
1213 goto out_trans_cancel;
1216 * A newly created regular or special file just has one directory
1217 * entry pointing to them, but a directory also the "." entry
1218 * pointing to itself.
1220 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip,
1221 NULL);
1222 if (error)
1223 goto out_trans_cancel;
1226 * Now we join the directory inode to the transaction. We do not do it
1227 * earlier because xfs_dir_ialloc might commit the previous transaction
1228 * (and release all the locks). An error from here on will result in
1229 * the transaction cancel unlocking dp so don't do it explicitly in the
1230 * error path.
1232 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1233 unlock_dp_on_error = false;
1235 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1236 &first_block, &dfops, resblks ?
1237 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1238 if (error) {
1239 ASSERT(error != -ENOSPC);
1240 goto out_trans_cancel;
1242 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1243 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1245 if (is_dir) {
1246 error = xfs_dir_init(tp, ip, dp);
1247 if (error)
1248 goto out_bmap_cancel;
1250 error = xfs_bumplink(tp, dp);
1251 if (error)
1252 goto out_bmap_cancel;
1256 * If this is a synchronous mount, make sure that the
1257 * create transaction goes to disk before returning to
1258 * the user.
1260 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1261 xfs_trans_set_sync(tp);
1264 * Attach the dquot(s) to the inodes and modify them incore.
1265 * These ids of the inode couldn't have changed since the new
1266 * inode has been locked ever since it was created.
1268 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1270 error = xfs_defer_finish(&tp, &dfops);
1271 if (error)
1272 goto out_bmap_cancel;
1274 error = xfs_trans_commit(tp);
1275 if (error)
1276 goto out_release_inode;
1278 xfs_qm_dqrele(udqp);
1279 xfs_qm_dqrele(gdqp);
1280 xfs_qm_dqrele(pdqp);
1282 *ipp = ip;
1283 return 0;
1285 out_bmap_cancel:
1286 xfs_defer_cancel(&dfops);
1287 out_trans_cancel:
1288 xfs_trans_cancel(tp);
1289 out_release_inode:
1291 * Wait until after the current transaction is aborted to finish the
1292 * setup of the inode and release the inode. This prevents recursive
1293 * transactions and deadlocks from xfs_inactive.
1295 if (ip) {
1296 xfs_finish_inode_setup(ip);
1297 IRELE(ip);
1300 xfs_qm_dqrele(udqp);
1301 xfs_qm_dqrele(gdqp);
1302 xfs_qm_dqrele(pdqp);
1304 if (unlock_dp_on_error)
1305 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1306 return error;
1310 xfs_create_tmpfile(
1311 struct xfs_inode *dp,
1312 struct dentry *dentry,
1313 umode_t mode,
1314 struct xfs_inode **ipp)
1316 struct xfs_mount *mp = dp->i_mount;
1317 struct xfs_inode *ip = NULL;
1318 struct xfs_trans *tp = NULL;
1319 int error;
1320 prid_t prid;
1321 struct xfs_dquot *udqp = NULL;
1322 struct xfs_dquot *gdqp = NULL;
1323 struct xfs_dquot *pdqp = NULL;
1324 struct xfs_trans_res *tres;
1325 uint resblks;
1327 if (XFS_FORCED_SHUTDOWN(mp))
1328 return -EIO;
1330 prid = xfs_get_initial_prid(dp);
1333 * Make sure that we have allocated dquot(s) on disk.
1335 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1336 xfs_kgid_to_gid(current_fsgid()), prid,
1337 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1338 &udqp, &gdqp, &pdqp);
1339 if (error)
1340 return error;
1342 resblks = XFS_IALLOC_SPACE_RES(mp);
1343 tres = &M_RES(mp)->tr_create_tmpfile;
1345 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1346 if (error)
1347 goto out_release_inode;
1349 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1350 pdqp, resblks, 1, 0);
1351 if (error)
1352 goto out_trans_cancel;
1354 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0, prid, &ip, NULL);
1355 if (error)
1356 goto out_trans_cancel;
1358 if (mp->m_flags & XFS_MOUNT_WSYNC)
1359 xfs_trans_set_sync(tp);
1362 * Attach the dquot(s) to the inodes and modify them incore.
1363 * These ids of the inode couldn't have changed since the new
1364 * inode has been locked ever since it was created.
1366 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1368 error = xfs_iunlink(tp, ip);
1369 if (error)
1370 goto out_trans_cancel;
1372 error = xfs_trans_commit(tp);
1373 if (error)
1374 goto out_release_inode;
1376 xfs_qm_dqrele(udqp);
1377 xfs_qm_dqrele(gdqp);
1378 xfs_qm_dqrele(pdqp);
1380 *ipp = ip;
1381 return 0;
1383 out_trans_cancel:
1384 xfs_trans_cancel(tp);
1385 out_release_inode:
1387 * Wait until after the current transaction is aborted to finish the
1388 * setup of the inode and release the inode. This prevents recursive
1389 * transactions and deadlocks from xfs_inactive.
1391 if (ip) {
1392 xfs_finish_inode_setup(ip);
1393 IRELE(ip);
1396 xfs_qm_dqrele(udqp);
1397 xfs_qm_dqrele(gdqp);
1398 xfs_qm_dqrele(pdqp);
1400 return error;
1404 xfs_link(
1405 xfs_inode_t *tdp,
1406 xfs_inode_t *sip,
1407 struct xfs_name *target_name)
1409 xfs_mount_t *mp = tdp->i_mount;
1410 xfs_trans_t *tp;
1411 int error;
1412 struct xfs_defer_ops dfops;
1413 xfs_fsblock_t first_block;
1414 int resblks;
1416 trace_xfs_link(tdp, target_name);
1418 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1420 if (XFS_FORCED_SHUTDOWN(mp))
1421 return -EIO;
1423 error = xfs_qm_dqattach(sip, 0);
1424 if (error)
1425 goto std_return;
1427 error = xfs_qm_dqattach(tdp, 0);
1428 if (error)
1429 goto std_return;
1431 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1432 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1433 if (error == -ENOSPC) {
1434 resblks = 0;
1435 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1437 if (error)
1438 goto std_return;
1440 xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
1442 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1443 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1446 * If we are using project inheritance, we only allow hard link
1447 * creation in our tree when the project IDs are the same; else
1448 * the tree quota mechanism could be circumvented.
1450 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1451 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1452 error = -EXDEV;
1453 goto error_return;
1456 if (!resblks) {
1457 error = xfs_dir_canenter(tp, tdp, target_name);
1458 if (error)
1459 goto error_return;
1462 xfs_defer_init(&dfops, &first_block);
1465 * Handle initial link state of O_TMPFILE inode
1467 if (VFS_I(sip)->i_nlink == 0) {
1468 error = xfs_iunlink_remove(tp, sip);
1469 if (error)
1470 goto error_return;
1473 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1474 &first_block, &dfops, resblks);
1475 if (error)
1476 goto error_return;
1477 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1478 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1480 error = xfs_bumplink(tp, sip);
1481 if (error)
1482 goto error_return;
1485 * If this is a synchronous mount, make sure that the
1486 * link transaction goes to disk before returning to
1487 * the user.
1489 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1490 xfs_trans_set_sync(tp);
1492 error = xfs_defer_finish(&tp, &dfops);
1493 if (error) {
1494 xfs_defer_cancel(&dfops);
1495 goto error_return;
1498 return xfs_trans_commit(tp);
1500 error_return:
1501 xfs_trans_cancel(tp);
1502 std_return:
1503 return error;
1506 /* Clear the reflink flag and the cowblocks tag if possible. */
1507 static void
1508 xfs_itruncate_clear_reflink_flags(
1509 struct xfs_inode *ip)
1511 struct xfs_ifork *dfork;
1512 struct xfs_ifork *cfork;
1514 if (!xfs_is_reflink_inode(ip))
1515 return;
1516 dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1517 cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1518 if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1519 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1520 if (cfork->if_bytes == 0)
1521 xfs_inode_clear_cowblocks_tag(ip);
1525 * Free up the underlying blocks past new_size. The new size must be smaller
1526 * than the current size. This routine can be used both for the attribute and
1527 * data fork, and does not modify the inode size, which is left to the caller.
1529 * The transaction passed to this routine must have made a permanent log
1530 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1531 * given transaction and start new ones, so make sure everything involved in
1532 * the transaction is tidy before calling here. Some transaction will be
1533 * returned to the caller to be committed. The incoming transaction must
1534 * already include the inode, and both inode locks must be held exclusively.
1535 * The inode must also be "held" within the transaction. On return the inode
1536 * will be "held" within the returned transaction. This routine does NOT
1537 * require any disk space to be reserved for it within the transaction.
1539 * If we get an error, we must return with the inode locked and linked into the
1540 * current transaction. This keeps things simple for the higher level code,
1541 * because it always knows that the inode is locked and held in the transaction
1542 * that returns to it whether errors occur or not. We don't mark the inode
1543 * dirty on error so that transactions can be easily aborted if possible.
1546 xfs_itruncate_extents(
1547 struct xfs_trans **tpp,
1548 struct xfs_inode *ip,
1549 int whichfork,
1550 xfs_fsize_t new_size)
1552 struct xfs_mount *mp = ip->i_mount;
1553 struct xfs_trans *tp = *tpp;
1554 struct xfs_defer_ops dfops;
1555 xfs_fsblock_t first_block;
1556 xfs_fileoff_t first_unmap_block;
1557 xfs_fileoff_t last_block;
1558 xfs_filblks_t unmap_len;
1559 int error = 0;
1560 int done = 0;
1562 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1563 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1564 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1565 ASSERT(new_size <= XFS_ISIZE(ip));
1566 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1567 ASSERT(ip->i_itemp != NULL);
1568 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1569 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1571 trace_xfs_itruncate_extents_start(ip, new_size);
1574 * Since it is possible for space to become allocated beyond
1575 * the end of the file (in a crash where the space is allocated
1576 * but the inode size is not yet updated), simply remove any
1577 * blocks which show up between the new EOF and the maximum
1578 * possible file size. If the first block to be removed is
1579 * beyond the maximum file size (ie it is the same as last_block),
1580 * then there is nothing to do.
1582 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1583 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1584 if (first_unmap_block == last_block)
1585 return 0;
1587 ASSERT(first_unmap_block < last_block);
1588 unmap_len = last_block - first_unmap_block + 1;
1589 while (!done) {
1590 xfs_defer_init(&dfops, &first_block);
1591 error = xfs_bunmapi(tp, ip,
1592 first_unmap_block, unmap_len,
1593 xfs_bmapi_aflag(whichfork),
1594 XFS_ITRUNC_MAX_EXTENTS,
1595 &first_block, &dfops,
1596 &done);
1597 if (error)
1598 goto out_bmap_cancel;
1601 * Duplicate the transaction that has the permanent
1602 * reservation and commit the old transaction.
1604 xfs_defer_ijoin(&dfops, ip);
1605 error = xfs_defer_finish(&tp, &dfops);
1606 if (error)
1607 goto out_bmap_cancel;
1609 error = xfs_trans_roll_inode(&tp, ip);
1610 if (error)
1611 goto out;
1614 /* Remove all pending CoW reservations. */
1615 error = xfs_reflink_cancel_cow_blocks(ip, &tp, first_unmap_block,
1616 last_block, true);
1617 if (error)
1618 goto out;
1620 xfs_itruncate_clear_reflink_flags(ip);
1623 * Always re-log the inode so that our permanent transaction can keep
1624 * on rolling it forward in the log.
1626 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1628 trace_xfs_itruncate_extents_end(ip, new_size);
1630 out:
1631 *tpp = tp;
1632 return error;
1633 out_bmap_cancel:
1635 * If the bunmapi call encounters an error, return to the caller where
1636 * the transaction can be properly aborted. We just need to make sure
1637 * we're not holding any resources that we were not when we came in.
1639 xfs_defer_cancel(&dfops);
1640 goto out;
1644 xfs_release(
1645 xfs_inode_t *ip)
1647 xfs_mount_t *mp = ip->i_mount;
1648 int error;
1650 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1651 return 0;
1653 /* If this is a read-only mount, don't do this (would generate I/O) */
1654 if (mp->m_flags & XFS_MOUNT_RDONLY)
1655 return 0;
1657 if (!XFS_FORCED_SHUTDOWN(mp)) {
1658 int truncated;
1661 * If we previously truncated this file and removed old data
1662 * in the process, we want to initiate "early" writeout on
1663 * the last close. This is an attempt to combat the notorious
1664 * NULL files problem which is particularly noticeable from a
1665 * truncate down, buffered (re-)write (delalloc), followed by
1666 * a crash. What we are effectively doing here is
1667 * significantly reducing the time window where we'd otherwise
1668 * be exposed to that problem.
1670 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1671 if (truncated) {
1672 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1673 if (ip->i_delayed_blks > 0) {
1674 error = filemap_flush(VFS_I(ip)->i_mapping);
1675 if (error)
1676 return error;
1681 if (VFS_I(ip)->i_nlink == 0)
1682 return 0;
1684 if (xfs_can_free_eofblocks(ip, false)) {
1687 * Check if the inode is being opened, written and closed
1688 * frequently and we have delayed allocation blocks outstanding
1689 * (e.g. streaming writes from the NFS server), truncating the
1690 * blocks past EOF will cause fragmentation to occur.
1692 * In this case don't do the truncation, but we have to be
1693 * careful how we detect this case. Blocks beyond EOF show up as
1694 * i_delayed_blks even when the inode is clean, so we need to
1695 * truncate them away first before checking for a dirty release.
1696 * Hence on the first dirty close we will still remove the
1697 * speculative allocation, but after that we will leave it in
1698 * place.
1700 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1701 return 0;
1703 * If we can't get the iolock just skip truncating the blocks
1704 * past EOF because we could deadlock with the mmap_sem
1705 * otherwise. We'll get another chance to drop them once the
1706 * last reference to the inode is dropped, so we'll never leak
1707 * blocks permanently.
1709 if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1710 error = xfs_free_eofblocks(ip);
1711 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1712 if (error)
1713 return error;
1716 /* delalloc blocks after truncation means it really is dirty */
1717 if (ip->i_delayed_blks)
1718 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1720 return 0;
1724 * xfs_inactive_truncate
1726 * Called to perform a truncate when an inode becomes unlinked.
1728 STATIC int
1729 xfs_inactive_truncate(
1730 struct xfs_inode *ip)
1732 struct xfs_mount *mp = ip->i_mount;
1733 struct xfs_trans *tp;
1734 int error;
1736 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1737 if (error) {
1738 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1739 return error;
1742 xfs_ilock(ip, XFS_ILOCK_EXCL);
1743 xfs_trans_ijoin(tp, ip, 0);
1746 * Log the inode size first to prevent stale data exposure in the event
1747 * of a system crash before the truncate completes. See the related
1748 * comment in xfs_vn_setattr_size() for details.
1750 ip->i_d.di_size = 0;
1751 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1753 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1754 if (error)
1755 goto error_trans_cancel;
1757 ASSERT(ip->i_d.di_nextents == 0);
1759 error = xfs_trans_commit(tp);
1760 if (error)
1761 goto error_unlock;
1763 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1764 return 0;
1766 error_trans_cancel:
1767 xfs_trans_cancel(tp);
1768 error_unlock:
1769 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1770 return error;
1774 * xfs_inactive_ifree()
1776 * Perform the inode free when an inode is unlinked.
1778 STATIC int
1779 xfs_inactive_ifree(
1780 struct xfs_inode *ip)
1782 struct xfs_defer_ops dfops;
1783 xfs_fsblock_t first_block;
1784 struct xfs_mount *mp = ip->i_mount;
1785 struct xfs_trans *tp;
1786 int error;
1789 * We try to use a per-AG reservation for any block needed by the finobt
1790 * tree, but as the finobt feature predates the per-AG reservation
1791 * support a degraded file system might not have enough space for the
1792 * reservation at mount time. In that case try to dip into the reserved
1793 * pool and pray.
1795 * Send a warning if the reservation does happen to fail, as the inode
1796 * now remains allocated and sits on the unlinked list until the fs is
1797 * repaired.
1799 if (unlikely(mp->m_inotbt_nores)) {
1800 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1801 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1802 &tp);
1803 } else {
1804 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1806 if (error) {
1807 if (error == -ENOSPC) {
1808 xfs_warn_ratelimited(mp,
1809 "Failed to remove inode(s) from unlinked list. "
1810 "Please free space, unmount and run xfs_repair.");
1811 } else {
1812 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1814 return error;
1817 xfs_ilock(ip, XFS_ILOCK_EXCL);
1818 xfs_trans_ijoin(tp, ip, 0);
1820 xfs_defer_init(&dfops, &first_block);
1821 error = xfs_ifree(tp, ip, &dfops);
1822 if (error) {
1824 * If we fail to free the inode, shut down. The cancel
1825 * might do that, we need to make sure. Otherwise the
1826 * inode might be lost for a long time or forever.
1828 if (!XFS_FORCED_SHUTDOWN(mp)) {
1829 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1830 __func__, error);
1831 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1833 xfs_trans_cancel(tp);
1834 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1835 return error;
1839 * Credit the quota account(s). The inode is gone.
1841 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1844 * Just ignore errors at this point. There is nothing we can do except
1845 * to try to keep going. Make sure it's not a silent error.
1847 error = xfs_defer_finish(&tp, &dfops);
1848 if (error) {
1849 xfs_notice(mp, "%s: xfs_defer_finish returned error %d",
1850 __func__, error);
1851 xfs_defer_cancel(&dfops);
1853 error = xfs_trans_commit(tp);
1854 if (error)
1855 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1856 __func__, error);
1858 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1859 return 0;
1863 * xfs_inactive
1865 * This is called when the vnode reference count for the vnode
1866 * goes to zero. If the file has been unlinked, then it must
1867 * now be truncated. Also, we clear all of the read-ahead state
1868 * kept for the inode here since the file is now closed.
1870 void
1871 xfs_inactive(
1872 xfs_inode_t *ip)
1874 struct xfs_mount *mp;
1875 int error;
1876 int truncate = 0;
1879 * If the inode is already free, then there can be nothing
1880 * to clean up here.
1882 if (VFS_I(ip)->i_mode == 0) {
1883 ASSERT(ip->i_df.if_real_bytes == 0);
1884 ASSERT(ip->i_df.if_broot_bytes == 0);
1885 return;
1888 mp = ip->i_mount;
1889 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1891 /* If this is a read-only mount, don't do this (would generate I/O) */
1892 if (mp->m_flags & XFS_MOUNT_RDONLY)
1893 return;
1895 if (VFS_I(ip)->i_nlink != 0) {
1897 * force is true because we are evicting an inode from the
1898 * cache. Post-eof blocks must be freed, lest we end up with
1899 * broken free space accounting.
1901 * Note: don't bother with iolock here since lockdep complains
1902 * about acquiring it in reclaim context. We have the only
1903 * reference to the inode at this point anyways.
1905 if (xfs_can_free_eofblocks(ip, true))
1906 xfs_free_eofblocks(ip);
1908 return;
1911 if (S_ISREG(VFS_I(ip)->i_mode) &&
1912 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1913 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1914 truncate = 1;
1916 error = xfs_qm_dqattach(ip, 0);
1917 if (error)
1918 return;
1920 if (S_ISLNK(VFS_I(ip)->i_mode))
1921 error = xfs_inactive_symlink(ip);
1922 else if (truncate)
1923 error = xfs_inactive_truncate(ip);
1924 if (error)
1925 return;
1928 * If there are attributes associated with the file then blow them away
1929 * now. The code calls a routine that recursively deconstructs the
1930 * attribute fork. If also blows away the in-core attribute fork.
1932 if (XFS_IFORK_Q(ip)) {
1933 error = xfs_attr_inactive(ip);
1934 if (error)
1935 return;
1938 ASSERT(!ip->i_afp);
1939 ASSERT(ip->i_d.di_anextents == 0);
1940 ASSERT(ip->i_d.di_forkoff == 0);
1943 * Free the inode.
1945 error = xfs_inactive_ifree(ip);
1946 if (error)
1947 return;
1950 * Release the dquots held by inode, if any.
1952 xfs_qm_dqdetach(ip);
1956 * This is called when the inode's link count goes to 0 or we are creating a
1957 * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be
1958 * set to true as the link count is dropped to zero by the VFS after we've
1959 * created the file successfully, so we have to add it to the unlinked list
1960 * while the link count is non-zero.
1962 * We place the on-disk inode on a list in the AGI. It will be pulled from this
1963 * list when the inode is freed.
1965 STATIC int
1966 xfs_iunlink(
1967 struct xfs_trans *tp,
1968 struct xfs_inode *ip)
1970 xfs_mount_t *mp = tp->t_mountp;
1971 xfs_agi_t *agi;
1972 xfs_dinode_t *dip;
1973 xfs_buf_t *agibp;
1974 xfs_buf_t *ibp;
1975 xfs_agino_t agino;
1976 short bucket_index;
1977 int offset;
1978 int error;
1980 ASSERT(VFS_I(ip)->i_mode != 0);
1983 * Get the agi buffer first. It ensures lock ordering
1984 * on the list.
1986 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1987 if (error)
1988 return error;
1989 agi = XFS_BUF_TO_AGI(agibp);
1992 * Get the index into the agi hash table for the
1993 * list this inode will go on.
1995 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1996 ASSERT(agino != 0);
1997 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1998 ASSERT(agi->agi_unlinked[bucket_index]);
1999 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
2001 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
2003 * There is already another inode in the bucket we need
2004 * to add ourselves to. Add us at the front of the list.
2005 * Here we put the head pointer into our next pointer,
2006 * and then we fall through to point the head at us.
2008 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2009 0, 0);
2010 if (error)
2011 return error;
2013 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
2014 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
2015 offset = ip->i_imap.im_boffset +
2016 offsetof(xfs_dinode_t, di_next_unlinked);
2018 /* need to recalc the inode CRC if appropriate */
2019 xfs_dinode_calc_crc(mp, dip);
2021 xfs_trans_inode_buf(tp, ibp);
2022 xfs_trans_log_buf(tp, ibp, offset,
2023 (offset + sizeof(xfs_agino_t) - 1));
2024 xfs_inobp_check(mp, ibp);
2028 * Point the bucket head pointer at the inode being inserted.
2030 ASSERT(agino != 0);
2031 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
2032 offset = offsetof(xfs_agi_t, agi_unlinked) +
2033 (sizeof(xfs_agino_t) * bucket_index);
2034 xfs_trans_log_buf(tp, agibp, offset,
2035 (offset + sizeof(xfs_agino_t) - 1));
2036 return 0;
2040 * Pull the on-disk inode from the AGI unlinked list.
2042 STATIC int
2043 xfs_iunlink_remove(
2044 xfs_trans_t *tp,
2045 xfs_inode_t *ip)
2047 xfs_ino_t next_ino;
2048 xfs_mount_t *mp;
2049 xfs_agi_t *agi;
2050 xfs_dinode_t *dip;
2051 xfs_buf_t *agibp;
2052 xfs_buf_t *ibp;
2053 xfs_agnumber_t agno;
2054 xfs_agino_t agino;
2055 xfs_agino_t next_agino;
2056 xfs_buf_t *last_ibp;
2057 xfs_dinode_t *last_dip = NULL;
2058 short bucket_index;
2059 int offset, last_offset = 0;
2060 int error;
2062 mp = tp->t_mountp;
2063 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2066 * Get the agi buffer first. It ensures lock ordering
2067 * on the list.
2069 error = xfs_read_agi(mp, tp, agno, &agibp);
2070 if (error)
2071 return error;
2073 agi = XFS_BUF_TO_AGI(agibp);
2076 * Get the index into the agi hash table for the
2077 * list this inode will go on.
2079 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2080 ASSERT(agino != 0);
2081 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2082 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
2083 ASSERT(agi->agi_unlinked[bucket_index]);
2085 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2087 * We're at the head of the list. Get the inode's on-disk
2088 * buffer to see if there is anyone after us on the list.
2089 * Only modify our next pointer if it is not already NULLAGINO.
2090 * This saves us the overhead of dealing with the buffer when
2091 * there is no need to change it.
2093 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2094 0, 0);
2095 if (error) {
2096 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2097 __func__, error);
2098 return error;
2100 next_agino = be32_to_cpu(dip->di_next_unlinked);
2101 ASSERT(next_agino != 0);
2102 if (next_agino != NULLAGINO) {
2103 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2104 offset = ip->i_imap.im_boffset +
2105 offsetof(xfs_dinode_t, di_next_unlinked);
2107 /* need to recalc the inode CRC if appropriate */
2108 xfs_dinode_calc_crc(mp, dip);
2110 xfs_trans_inode_buf(tp, ibp);
2111 xfs_trans_log_buf(tp, ibp, offset,
2112 (offset + sizeof(xfs_agino_t) - 1));
2113 xfs_inobp_check(mp, ibp);
2114 } else {
2115 xfs_trans_brelse(tp, ibp);
2118 * Point the bucket head pointer at the next inode.
2120 ASSERT(next_agino != 0);
2121 ASSERT(next_agino != agino);
2122 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2123 offset = offsetof(xfs_agi_t, agi_unlinked) +
2124 (sizeof(xfs_agino_t) * bucket_index);
2125 xfs_trans_log_buf(tp, agibp, offset,
2126 (offset + sizeof(xfs_agino_t) - 1));
2127 } else {
2129 * We need to search the list for the inode being freed.
2131 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2132 last_ibp = NULL;
2133 while (next_agino != agino) {
2134 struct xfs_imap imap;
2136 if (last_ibp)
2137 xfs_trans_brelse(tp, last_ibp);
2139 imap.im_blkno = 0;
2140 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2142 error = xfs_imap(mp, tp, next_ino, &imap, 0);
2143 if (error) {
2144 xfs_warn(mp,
2145 "%s: xfs_imap returned error %d.",
2146 __func__, error);
2147 return error;
2150 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2151 &last_ibp, 0, 0);
2152 if (error) {
2153 xfs_warn(mp,
2154 "%s: xfs_imap_to_bp returned error %d.",
2155 __func__, error);
2156 return error;
2159 last_offset = imap.im_boffset;
2160 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2161 ASSERT(next_agino != NULLAGINO);
2162 ASSERT(next_agino != 0);
2166 * Now last_ibp points to the buffer previous to us on the
2167 * unlinked list. Pull us from the list.
2169 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2170 0, 0);
2171 if (error) {
2172 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2173 __func__, error);
2174 return error;
2176 next_agino = be32_to_cpu(dip->di_next_unlinked);
2177 ASSERT(next_agino != 0);
2178 ASSERT(next_agino != agino);
2179 if (next_agino != NULLAGINO) {
2180 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2181 offset = ip->i_imap.im_boffset +
2182 offsetof(xfs_dinode_t, di_next_unlinked);
2184 /* need to recalc the inode CRC if appropriate */
2185 xfs_dinode_calc_crc(mp, dip);
2187 xfs_trans_inode_buf(tp, ibp);
2188 xfs_trans_log_buf(tp, ibp, offset,
2189 (offset + sizeof(xfs_agino_t) - 1));
2190 xfs_inobp_check(mp, ibp);
2191 } else {
2192 xfs_trans_brelse(tp, ibp);
2195 * Point the previous inode on the list to the next inode.
2197 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2198 ASSERT(next_agino != 0);
2199 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2201 /* need to recalc the inode CRC if appropriate */
2202 xfs_dinode_calc_crc(mp, last_dip);
2204 xfs_trans_inode_buf(tp, last_ibp);
2205 xfs_trans_log_buf(tp, last_ibp, offset,
2206 (offset + sizeof(xfs_agino_t) - 1));
2207 xfs_inobp_check(mp, last_ibp);
2209 return 0;
2213 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2214 * inodes that are in memory - they all must be marked stale and attached to
2215 * the cluster buffer.
2217 STATIC int
2218 xfs_ifree_cluster(
2219 xfs_inode_t *free_ip,
2220 xfs_trans_t *tp,
2221 struct xfs_icluster *xic)
2223 xfs_mount_t *mp = free_ip->i_mount;
2224 int blks_per_cluster;
2225 int inodes_per_cluster;
2226 int nbufs;
2227 int i, j;
2228 int ioffset;
2229 xfs_daddr_t blkno;
2230 xfs_buf_t *bp;
2231 xfs_inode_t *ip;
2232 xfs_inode_log_item_t *iip;
2233 struct xfs_log_item *lip;
2234 struct xfs_perag *pag;
2235 xfs_ino_t inum;
2237 inum = xic->first_ino;
2238 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2239 blks_per_cluster = xfs_icluster_size_fsb(mp);
2240 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2241 nbufs = mp->m_ialloc_blks / blks_per_cluster;
2243 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
2245 * The allocation bitmap tells us which inodes of the chunk were
2246 * physically allocated. Skip the cluster if an inode falls into
2247 * a sparse region.
2249 ioffset = inum - xic->first_ino;
2250 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2251 ASSERT(do_mod(ioffset, inodes_per_cluster) == 0);
2252 continue;
2255 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2256 XFS_INO_TO_AGBNO(mp, inum));
2259 * We obtain and lock the backing buffer first in the process
2260 * here, as we have to ensure that any dirty inode that we
2261 * can't get the flush lock on is attached to the buffer.
2262 * If we scan the in-memory inodes first, then buffer IO can
2263 * complete before we get a lock on it, and hence we may fail
2264 * to mark all the active inodes on the buffer stale.
2266 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2267 mp->m_bsize * blks_per_cluster,
2268 XBF_UNMAPPED);
2270 if (!bp)
2271 return -ENOMEM;
2274 * This buffer may not have been correctly initialised as we
2275 * didn't read it from disk. That's not important because we are
2276 * only using to mark the buffer as stale in the log, and to
2277 * attach stale cached inodes on it. That means it will never be
2278 * dispatched for IO. If it is, we want to know about it, and we
2279 * want it to fail. We can acheive this by adding a write
2280 * verifier to the buffer.
2282 bp->b_ops = &xfs_inode_buf_ops;
2285 * Walk the inodes already attached to the buffer and mark them
2286 * stale. These will all have the flush locks held, so an
2287 * in-memory inode walk can't lock them. By marking them all
2288 * stale first, we will not attempt to lock them in the loop
2289 * below as the XFS_ISTALE flag will be set.
2291 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
2292 if (lip->li_type == XFS_LI_INODE) {
2293 iip = (xfs_inode_log_item_t *)lip;
2294 ASSERT(iip->ili_logged == 1);
2295 lip->li_cb = xfs_istale_done;
2296 xfs_trans_ail_copy_lsn(mp->m_ail,
2297 &iip->ili_flush_lsn,
2298 &iip->ili_item.li_lsn);
2299 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2305 * For each inode in memory attempt to add it to the inode
2306 * buffer and set it up for being staled on buffer IO
2307 * completion. This is safe as we've locked out tail pushing
2308 * and flushing by locking the buffer.
2310 * We have already marked every inode that was part of a
2311 * transaction stale above, which means there is no point in
2312 * even trying to lock them.
2314 for (i = 0; i < inodes_per_cluster; i++) {
2315 retry:
2316 rcu_read_lock();
2317 ip = radix_tree_lookup(&pag->pag_ici_root,
2318 XFS_INO_TO_AGINO(mp, (inum + i)));
2320 /* Inode not in memory, nothing to do */
2321 if (!ip) {
2322 rcu_read_unlock();
2323 continue;
2327 * because this is an RCU protected lookup, we could
2328 * find a recently freed or even reallocated inode
2329 * during the lookup. We need to check under the
2330 * i_flags_lock for a valid inode here. Skip it if it
2331 * is not valid, the wrong inode or stale.
2333 spin_lock(&ip->i_flags_lock);
2334 if (ip->i_ino != inum + i ||
2335 __xfs_iflags_test(ip, XFS_ISTALE)) {
2336 spin_unlock(&ip->i_flags_lock);
2337 rcu_read_unlock();
2338 continue;
2340 spin_unlock(&ip->i_flags_lock);
2343 * Don't try to lock/unlock the current inode, but we
2344 * _cannot_ skip the other inodes that we did not find
2345 * in the list attached to the buffer and are not
2346 * already marked stale. If we can't lock it, back off
2347 * and retry.
2349 if (ip != free_ip) {
2350 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2351 rcu_read_unlock();
2352 delay(1);
2353 goto retry;
2357 * Check the inode number again in case we're
2358 * racing with freeing in xfs_reclaim_inode().
2359 * See the comments in that function for more
2360 * information as to why the initial check is
2361 * not sufficient.
2363 if (ip->i_ino != inum + i) {
2364 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2365 rcu_read_unlock();
2366 continue;
2369 rcu_read_unlock();
2371 xfs_iflock(ip);
2372 xfs_iflags_set(ip, XFS_ISTALE);
2375 * we don't need to attach clean inodes or those only
2376 * with unlogged changes (which we throw away, anyway).
2378 iip = ip->i_itemp;
2379 if (!iip || xfs_inode_clean(ip)) {
2380 ASSERT(ip != free_ip);
2381 xfs_ifunlock(ip);
2382 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2383 continue;
2386 iip->ili_last_fields = iip->ili_fields;
2387 iip->ili_fields = 0;
2388 iip->ili_fsync_fields = 0;
2389 iip->ili_logged = 1;
2390 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2391 &iip->ili_item.li_lsn);
2393 xfs_buf_attach_iodone(bp, xfs_istale_done,
2394 &iip->ili_item);
2396 if (ip != free_ip)
2397 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2400 xfs_trans_stale_inode_buf(tp, bp);
2401 xfs_trans_binval(tp, bp);
2404 xfs_perag_put(pag);
2405 return 0;
2409 * Free any local-format buffers sitting around before we reset to
2410 * extents format.
2412 static inline void
2413 xfs_ifree_local_data(
2414 struct xfs_inode *ip,
2415 int whichfork)
2417 struct xfs_ifork *ifp;
2419 if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL)
2420 return;
2422 ifp = XFS_IFORK_PTR(ip, whichfork);
2423 xfs_idata_realloc(ip, -ifp->if_bytes, whichfork);
2427 * This is called to return an inode to the inode free list.
2428 * The inode should already be truncated to 0 length and have
2429 * no pages associated with it. This routine also assumes that
2430 * the inode is already a part of the transaction.
2432 * The on-disk copy of the inode will have been added to the list
2433 * of unlinked inodes in the AGI. We need to remove the inode from
2434 * that list atomically with respect to freeing it here.
2437 xfs_ifree(
2438 xfs_trans_t *tp,
2439 xfs_inode_t *ip,
2440 struct xfs_defer_ops *dfops)
2442 int error;
2443 struct xfs_icluster xic = { 0 };
2445 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2446 ASSERT(VFS_I(ip)->i_nlink == 0);
2447 ASSERT(ip->i_d.di_nextents == 0);
2448 ASSERT(ip->i_d.di_anextents == 0);
2449 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2450 ASSERT(ip->i_d.di_nblocks == 0);
2453 * Pull the on-disk inode from the AGI unlinked list.
2455 error = xfs_iunlink_remove(tp, ip);
2456 if (error)
2457 return error;
2459 error = xfs_difree(tp, ip->i_ino, dfops, &xic);
2460 if (error)
2461 return error;
2463 xfs_ifree_local_data(ip, XFS_DATA_FORK);
2464 xfs_ifree_local_data(ip, XFS_ATTR_FORK);
2466 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */
2467 ip->i_d.di_flags = 0;
2468 ip->i_d.di_flags2 = 0;
2469 ip->i_d.di_dmevmask = 0;
2470 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2471 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2472 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2474 * Bump the generation count so no one will be confused
2475 * by reincarnations of this inode.
2477 VFS_I(ip)->i_generation++;
2478 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2480 if (xic.deleted)
2481 error = xfs_ifree_cluster(ip, tp, &xic);
2483 return error;
2487 * This is called to unpin an inode. The caller must have the inode locked
2488 * in at least shared mode so that the buffer cannot be subsequently pinned
2489 * once someone is waiting for it to be unpinned.
2491 static void
2492 xfs_iunpin(
2493 struct xfs_inode *ip)
2495 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2497 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2499 /* Give the log a push to start the unpinning I/O */
2500 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2504 static void
2505 __xfs_iunpin_wait(
2506 struct xfs_inode *ip)
2508 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2509 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2511 xfs_iunpin(ip);
2513 do {
2514 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2515 if (xfs_ipincount(ip))
2516 io_schedule();
2517 } while (xfs_ipincount(ip));
2518 finish_wait(wq, &wait.wq_entry);
2521 void
2522 xfs_iunpin_wait(
2523 struct xfs_inode *ip)
2525 if (xfs_ipincount(ip))
2526 __xfs_iunpin_wait(ip);
2530 * Removing an inode from the namespace involves removing the directory entry
2531 * and dropping the link count on the inode. Removing the directory entry can
2532 * result in locking an AGF (directory blocks were freed) and removing a link
2533 * count can result in placing the inode on an unlinked list which results in
2534 * locking an AGI.
2536 * The big problem here is that we have an ordering constraint on AGF and AGI
2537 * locking - inode allocation locks the AGI, then can allocate a new extent for
2538 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2539 * removes the inode from the unlinked list, requiring that we lock the AGI
2540 * first, and then freeing the inode can result in an inode chunk being freed
2541 * and hence freeing disk space requiring that we lock an AGF.
2543 * Hence the ordering that is imposed by other parts of the code is AGI before
2544 * AGF. This means we cannot remove the directory entry before we drop the inode
2545 * reference count and put it on the unlinked list as this results in a lock
2546 * order of AGF then AGI, and this can deadlock against inode allocation and
2547 * freeing. Therefore we must drop the link counts before we remove the
2548 * directory entry.
2550 * This is still safe from a transactional point of view - it is not until we
2551 * get to xfs_defer_finish() that we have the possibility of multiple
2552 * transactions in this operation. Hence as long as we remove the directory
2553 * entry and drop the link count in the first transaction of the remove
2554 * operation, there are no transactional constraints on the ordering here.
2557 xfs_remove(
2558 xfs_inode_t *dp,
2559 struct xfs_name *name,
2560 xfs_inode_t *ip)
2562 xfs_mount_t *mp = dp->i_mount;
2563 xfs_trans_t *tp = NULL;
2564 int is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2565 int error = 0;
2566 struct xfs_defer_ops dfops;
2567 xfs_fsblock_t first_block;
2568 uint resblks;
2570 trace_xfs_remove(dp, name);
2572 if (XFS_FORCED_SHUTDOWN(mp))
2573 return -EIO;
2575 error = xfs_qm_dqattach(dp, 0);
2576 if (error)
2577 goto std_return;
2579 error = xfs_qm_dqattach(ip, 0);
2580 if (error)
2581 goto std_return;
2584 * We try to get the real space reservation first,
2585 * allowing for directory btree deletion(s) implying
2586 * possible bmap insert(s). If we can't get the space
2587 * reservation then we use 0 instead, and avoid the bmap
2588 * btree insert(s) in the directory code by, if the bmap
2589 * insert tries to happen, instead trimming the LAST
2590 * block from the directory.
2592 resblks = XFS_REMOVE_SPACE_RES(mp);
2593 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2594 if (error == -ENOSPC) {
2595 resblks = 0;
2596 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2597 &tp);
2599 if (error) {
2600 ASSERT(error != -ENOSPC);
2601 goto std_return;
2604 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
2606 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2607 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2610 * If we're removing a directory perform some additional validation.
2612 if (is_dir) {
2613 ASSERT(VFS_I(ip)->i_nlink >= 2);
2614 if (VFS_I(ip)->i_nlink != 2) {
2615 error = -ENOTEMPTY;
2616 goto out_trans_cancel;
2618 if (!xfs_dir_isempty(ip)) {
2619 error = -ENOTEMPTY;
2620 goto out_trans_cancel;
2623 /* Drop the link from ip's "..". */
2624 error = xfs_droplink(tp, dp);
2625 if (error)
2626 goto out_trans_cancel;
2628 /* Drop the "." link from ip to self. */
2629 error = xfs_droplink(tp, ip);
2630 if (error)
2631 goto out_trans_cancel;
2632 } else {
2634 * When removing a non-directory we need to log the parent
2635 * inode here. For a directory this is done implicitly
2636 * by the xfs_droplink call for the ".." entry.
2638 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2640 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2642 /* Drop the link from dp to ip. */
2643 error = xfs_droplink(tp, ip);
2644 if (error)
2645 goto out_trans_cancel;
2647 xfs_defer_init(&dfops, &first_block);
2648 error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2649 &first_block, &dfops, resblks);
2650 if (error) {
2651 ASSERT(error != -ENOENT);
2652 goto out_bmap_cancel;
2656 * If this is a synchronous mount, make sure that the
2657 * remove transaction goes to disk before returning to
2658 * the user.
2660 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2661 xfs_trans_set_sync(tp);
2663 error = xfs_defer_finish(&tp, &dfops);
2664 if (error)
2665 goto out_bmap_cancel;
2667 error = xfs_trans_commit(tp);
2668 if (error)
2669 goto std_return;
2671 if (is_dir && xfs_inode_is_filestream(ip))
2672 xfs_filestream_deassociate(ip);
2674 return 0;
2676 out_bmap_cancel:
2677 xfs_defer_cancel(&dfops);
2678 out_trans_cancel:
2679 xfs_trans_cancel(tp);
2680 std_return:
2681 return error;
2685 * Enter all inodes for a rename transaction into a sorted array.
2687 #define __XFS_SORT_INODES 5
2688 STATIC void
2689 xfs_sort_for_rename(
2690 struct xfs_inode *dp1, /* in: old (source) directory inode */
2691 struct xfs_inode *dp2, /* in: new (target) directory inode */
2692 struct xfs_inode *ip1, /* in: inode of old entry */
2693 struct xfs_inode *ip2, /* in: inode of new entry */
2694 struct xfs_inode *wip, /* in: whiteout inode */
2695 struct xfs_inode **i_tab,/* out: sorted array of inodes */
2696 int *num_inodes) /* in/out: inodes in array */
2698 int i, j;
2700 ASSERT(*num_inodes == __XFS_SORT_INODES);
2701 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2704 * i_tab contains a list of pointers to inodes. We initialize
2705 * the table here & we'll sort it. We will then use it to
2706 * order the acquisition of the inode locks.
2708 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2710 i = 0;
2711 i_tab[i++] = dp1;
2712 i_tab[i++] = dp2;
2713 i_tab[i++] = ip1;
2714 if (ip2)
2715 i_tab[i++] = ip2;
2716 if (wip)
2717 i_tab[i++] = wip;
2718 *num_inodes = i;
2721 * Sort the elements via bubble sort. (Remember, there are at
2722 * most 5 elements to sort, so this is adequate.)
2724 for (i = 0; i < *num_inodes; i++) {
2725 for (j = 1; j < *num_inodes; j++) {
2726 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2727 struct xfs_inode *temp = i_tab[j];
2728 i_tab[j] = i_tab[j-1];
2729 i_tab[j-1] = temp;
2735 static int
2736 xfs_finish_rename(
2737 struct xfs_trans *tp,
2738 struct xfs_defer_ops *dfops)
2740 int error;
2743 * If this is a synchronous mount, make sure that the rename transaction
2744 * goes to disk before returning to the user.
2746 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2747 xfs_trans_set_sync(tp);
2749 error = xfs_defer_finish(&tp, dfops);
2750 if (error) {
2751 xfs_defer_cancel(dfops);
2752 xfs_trans_cancel(tp);
2753 return error;
2756 return xfs_trans_commit(tp);
2760 * xfs_cross_rename()
2762 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2764 STATIC int
2765 xfs_cross_rename(
2766 struct xfs_trans *tp,
2767 struct xfs_inode *dp1,
2768 struct xfs_name *name1,
2769 struct xfs_inode *ip1,
2770 struct xfs_inode *dp2,
2771 struct xfs_name *name2,
2772 struct xfs_inode *ip2,
2773 struct xfs_defer_ops *dfops,
2774 xfs_fsblock_t *first_block,
2775 int spaceres)
2777 int error = 0;
2778 int ip1_flags = 0;
2779 int ip2_flags = 0;
2780 int dp2_flags = 0;
2782 /* Swap inode number for dirent in first parent */
2783 error = xfs_dir_replace(tp, dp1, name1,
2784 ip2->i_ino,
2785 first_block, dfops, spaceres);
2786 if (error)
2787 goto out_trans_abort;
2789 /* Swap inode number for dirent in second parent */
2790 error = xfs_dir_replace(tp, dp2, name2,
2791 ip1->i_ino,
2792 first_block, dfops, spaceres);
2793 if (error)
2794 goto out_trans_abort;
2797 * If we're renaming one or more directories across different parents,
2798 * update the respective ".." entries (and link counts) to match the new
2799 * parents.
2801 if (dp1 != dp2) {
2802 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2804 if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2805 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2806 dp1->i_ino, first_block,
2807 dfops, spaceres);
2808 if (error)
2809 goto out_trans_abort;
2811 /* transfer ip2 ".." reference to dp1 */
2812 if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2813 error = xfs_droplink(tp, dp2);
2814 if (error)
2815 goto out_trans_abort;
2816 error = xfs_bumplink(tp, dp1);
2817 if (error)
2818 goto out_trans_abort;
2822 * Although ip1 isn't changed here, userspace needs
2823 * to be warned about the change, so that applications
2824 * relying on it (like backup ones), will properly
2825 * notify the change
2827 ip1_flags |= XFS_ICHGTIME_CHG;
2828 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2831 if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2832 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2833 dp2->i_ino, first_block,
2834 dfops, spaceres);
2835 if (error)
2836 goto out_trans_abort;
2838 /* transfer ip1 ".." reference to dp2 */
2839 if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2840 error = xfs_droplink(tp, dp1);
2841 if (error)
2842 goto out_trans_abort;
2843 error = xfs_bumplink(tp, dp2);
2844 if (error)
2845 goto out_trans_abort;
2849 * Although ip2 isn't changed here, userspace needs
2850 * to be warned about the change, so that applications
2851 * relying on it (like backup ones), will properly
2852 * notify the change
2854 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2855 ip2_flags |= XFS_ICHGTIME_CHG;
2859 if (ip1_flags) {
2860 xfs_trans_ichgtime(tp, ip1, ip1_flags);
2861 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2863 if (ip2_flags) {
2864 xfs_trans_ichgtime(tp, ip2, ip2_flags);
2865 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2867 if (dp2_flags) {
2868 xfs_trans_ichgtime(tp, dp2, dp2_flags);
2869 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2871 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2872 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2873 return xfs_finish_rename(tp, dfops);
2875 out_trans_abort:
2876 xfs_defer_cancel(dfops);
2877 xfs_trans_cancel(tp);
2878 return error;
2882 * xfs_rename_alloc_whiteout()
2884 * Return a referenced, unlinked, unlocked inode that that can be used as a
2885 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2886 * crash between allocating the inode and linking it into the rename transaction
2887 * recovery will free the inode and we won't leak it.
2889 static int
2890 xfs_rename_alloc_whiteout(
2891 struct xfs_inode *dp,
2892 struct xfs_inode **wip)
2894 struct xfs_inode *tmpfile;
2895 int error;
2897 error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile);
2898 if (error)
2899 return error;
2902 * Prepare the tmpfile inode as if it were created through the VFS.
2903 * Otherwise, the link increment paths will complain about nlink 0->1.
2904 * Drop the link count as done by d_tmpfile(), complete the inode setup
2905 * and flag it as linkable.
2907 drop_nlink(VFS_I(tmpfile));
2908 xfs_setup_iops(tmpfile);
2909 xfs_finish_inode_setup(tmpfile);
2910 VFS_I(tmpfile)->i_state |= I_LINKABLE;
2912 *wip = tmpfile;
2913 return 0;
2917 * xfs_rename
2920 xfs_rename(
2921 struct xfs_inode *src_dp,
2922 struct xfs_name *src_name,
2923 struct xfs_inode *src_ip,
2924 struct xfs_inode *target_dp,
2925 struct xfs_name *target_name,
2926 struct xfs_inode *target_ip,
2927 unsigned int flags)
2929 struct xfs_mount *mp = src_dp->i_mount;
2930 struct xfs_trans *tp;
2931 struct xfs_defer_ops dfops;
2932 xfs_fsblock_t first_block;
2933 struct xfs_inode *wip = NULL; /* whiteout inode */
2934 struct xfs_inode *inodes[__XFS_SORT_INODES];
2935 int num_inodes = __XFS_SORT_INODES;
2936 bool new_parent = (src_dp != target_dp);
2937 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2938 int spaceres;
2939 int error;
2941 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2943 if ((flags & RENAME_EXCHANGE) && !target_ip)
2944 return -EINVAL;
2947 * If we are doing a whiteout operation, allocate the whiteout inode
2948 * we will be placing at the target and ensure the type is set
2949 * appropriately.
2951 if (flags & RENAME_WHITEOUT) {
2952 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2953 error = xfs_rename_alloc_whiteout(target_dp, &wip);
2954 if (error)
2955 return error;
2957 /* setup target dirent info as whiteout */
2958 src_name->type = XFS_DIR3_FT_CHRDEV;
2961 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2962 inodes, &num_inodes);
2964 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2965 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2966 if (error == -ENOSPC) {
2967 spaceres = 0;
2968 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2969 &tp);
2971 if (error)
2972 goto out_release_wip;
2975 * Attach the dquots to the inodes
2977 error = xfs_qm_vop_rename_dqattach(inodes);
2978 if (error)
2979 goto out_trans_cancel;
2982 * Lock all the participating inodes. Depending upon whether
2983 * the target_name exists in the target directory, and
2984 * whether the target directory is the same as the source
2985 * directory, we can lock from 2 to 4 inodes.
2987 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2990 * Join all the inodes to the transaction. From this point on,
2991 * we can rely on either trans_commit or trans_cancel to unlock
2992 * them.
2994 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2995 if (new_parent)
2996 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2997 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2998 if (target_ip)
2999 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3000 if (wip)
3001 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3004 * If we are using project inheritance, we only allow renames
3005 * into our tree when the project IDs are the same; else the
3006 * tree quota mechanism would be circumvented.
3008 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
3009 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
3010 error = -EXDEV;
3011 goto out_trans_cancel;
3014 xfs_defer_init(&dfops, &first_block);
3016 /* RENAME_EXCHANGE is unique from here on. */
3017 if (flags & RENAME_EXCHANGE)
3018 return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3019 target_dp, target_name, target_ip,
3020 &dfops, &first_block, spaceres);
3023 * Set up the target.
3025 if (target_ip == NULL) {
3027 * If there's no space reservation, check the entry will
3028 * fit before actually inserting it.
3030 if (!spaceres) {
3031 error = xfs_dir_canenter(tp, target_dp, target_name);
3032 if (error)
3033 goto out_trans_cancel;
3036 * If target does not exist and the rename crosses
3037 * directories, adjust the target directory link count
3038 * to account for the ".." reference from the new entry.
3040 error = xfs_dir_createname(tp, target_dp, target_name,
3041 src_ip->i_ino, &first_block,
3042 &dfops, spaceres);
3043 if (error)
3044 goto out_bmap_cancel;
3046 xfs_trans_ichgtime(tp, target_dp,
3047 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3049 if (new_parent && src_is_directory) {
3050 error = xfs_bumplink(tp, target_dp);
3051 if (error)
3052 goto out_bmap_cancel;
3054 } else { /* target_ip != NULL */
3056 * If target exists and it's a directory, check that both
3057 * target and source are directories and that target can be
3058 * destroyed, or that neither is a directory.
3060 if (S_ISDIR(VFS_I(target_ip)->i_mode)) {
3062 * Make sure target dir is empty.
3064 if (!(xfs_dir_isempty(target_ip)) ||
3065 (VFS_I(target_ip)->i_nlink > 2)) {
3066 error = -EEXIST;
3067 goto out_trans_cancel;
3072 * Link the source inode under the target name.
3073 * If the source inode is a directory and we are moving
3074 * it across directories, its ".." entry will be
3075 * inconsistent until we replace that down below.
3077 * In case there is already an entry with the same
3078 * name at the destination directory, remove it first.
3080 error = xfs_dir_replace(tp, target_dp, target_name,
3081 src_ip->i_ino,
3082 &first_block, &dfops, spaceres);
3083 if (error)
3084 goto out_bmap_cancel;
3086 xfs_trans_ichgtime(tp, target_dp,
3087 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3090 * Decrement the link count on the target since the target
3091 * dir no longer points to it.
3093 error = xfs_droplink(tp, target_ip);
3094 if (error)
3095 goto out_bmap_cancel;
3097 if (src_is_directory) {
3099 * Drop the link from the old "." entry.
3101 error = xfs_droplink(tp, target_ip);
3102 if (error)
3103 goto out_bmap_cancel;
3105 } /* target_ip != NULL */
3108 * Remove the source.
3110 if (new_parent && src_is_directory) {
3112 * Rewrite the ".." entry to point to the new
3113 * directory.
3115 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3116 target_dp->i_ino,
3117 &first_block, &dfops, spaceres);
3118 ASSERT(error != -EEXIST);
3119 if (error)
3120 goto out_bmap_cancel;
3124 * We always want to hit the ctime on the source inode.
3126 * This isn't strictly required by the standards since the source
3127 * inode isn't really being changed, but old unix file systems did
3128 * it and some incremental backup programs won't work without it.
3130 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3131 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3134 * Adjust the link count on src_dp. This is necessary when
3135 * renaming a directory, either within one parent when
3136 * the target existed, or across two parent directories.
3138 if (src_is_directory && (new_parent || target_ip != NULL)) {
3141 * Decrement link count on src_directory since the
3142 * entry that's moved no longer points to it.
3144 error = xfs_droplink(tp, src_dp);
3145 if (error)
3146 goto out_bmap_cancel;
3150 * For whiteouts, we only need to update the source dirent with the
3151 * inode number of the whiteout inode rather than removing it
3152 * altogether.
3154 if (wip) {
3155 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3156 &first_block, &dfops, spaceres);
3157 } else
3158 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3159 &first_block, &dfops, spaceres);
3160 if (error)
3161 goto out_bmap_cancel;
3164 * For whiteouts, we need to bump the link count on the whiteout inode.
3165 * This means that failures all the way up to this point leave the inode
3166 * on the unlinked list and so cleanup is a simple matter of dropping
3167 * the remaining reference to it. If we fail here after bumping the link
3168 * count, we're shutting down the filesystem so we'll never see the
3169 * intermediate state on disk.
3171 if (wip) {
3172 ASSERT(VFS_I(wip)->i_nlink == 0);
3173 error = xfs_bumplink(tp, wip);
3174 if (error)
3175 goto out_bmap_cancel;
3176 error = xfs_iunlink_remove(tp, wip);
3177 if (error)
3178 goto out_bmap_cancel;
3179 xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3182 * Now we have a real link, clear the "I'm a tmpfile" state
3183 * flag from the inode so it doesn't accidentally get misused in
3184 * future.
3186 VFS_I(wip)->i_state &= ~I_LINKABLE;
3189 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3190 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3191 if (new_parent)
3192 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3194 error = xfs_finish_rename(tp, &dfops);
3195 if (wip)
3196 IRELE(wip);
3197 return error;
3199 out_bmap_cancel:
3200 xfs_defer_cancel(&dfops);
3201 out_trans_cancel:
3202 xfs_trans_cancel(tp);
3203 out_release_wip:
3204 if (wip)
3205 IRELE(wip);
3206 return error;
3209 STATIC int
3210 xfs_iflush_cluster(
3211 struct xfs_inode *ip,
3212 struct xfs_buf *bp)
3214 struct xfs_mount *mp = ip->i_mount;
3215 struct xfs_perag *pag;
3216 unsigned long first_index, mask;
3217 unsigned long inodes_per_cluster;
3218 int cilist_size;
3219 struct xfs_inode **cilist;
3220 struct xfs_inode *cip;
3221 int nr_found;
3222 int clcount = 0;
3223 int bufwasdelwri;
3224 int i;
3226 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3228 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
3229 cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3230 cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
3231 if (!cilist)
3232 goto out_put;
3234 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
3235 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3236 rcu_read_lock();
3237 /* really need a gang lookup range call here */
3238 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
3239 first_index, inodes_per_cluster);
3240 if (nr_found == 0)
3241 goto out_free;
3243 for (i = 0; i < nr_found; i++) {
3244 cip = cilist[i];
3245 if (cip == ip)
3246 continue;
3249 * because this is an RCU protected lookup, we could find a
3250 * recently freed or even reallocated inode during the lookup.
3251 * We need to check under the i_flags_lock for a valid inode
3252 * here. Skip it if it is not valid or the wrong inode.
3254 spin_lock(&cip->i_flags_lock);
3255 if (!cip->i_ino ||
3256 __xfs_iflags_test(cip, XFS_ISTALE)) {
3257 spin_unlock(&cip->i_flags_lock);
3258 continue;
3262 * Once we fall off the end of the cluster, no point checking
3263 * any more inodes in the list because they will also all be
3264 * outside the cluster.
3266 if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
3267 spin_unlock(&cip->i_flags_lock);
3268 break;
3270 spin_unlock(&cip->i_flags_lock);
3273 * Do an un-protected check to see if the inode is dirty and
3274 * is a candidate for flushing. These checks will be repeated
3275 * later after the appropriate locks are acquired.
3277 if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
3278 continue;
3281 * Try to get locks. If any are unavailable or it is pinned,
3282 * then this inode cannot be flushed and is skipped.
3285 if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
3286 continue;
3287 if (!xfs_iflock_nowait(cip)) {
3288 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3289 continue;
3291 if (xfs_ipincount(cip)) {
3292 xfs_ifunlock(cip);
3293 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3294 continue;
3299 * Check the inode number again, just to be certain we are not
3300 * racing with freeing in xfs_reclaim_inode(). See the comments
3301 * in that function for more information as to why the initial
3302 * check is not sufficient.
3304 if (!cip->i_ino) {
3305 xfs_ifunlock(cip);
3306 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3307 continue;
3311 * arriving here means that this inode can be flushed. First
3312 * re-check that it's dirty before flushing.
3314 if (!xfs_inode_clean(cip)) {
3315 int error;
3316 error = xfs_iflush_int(cip, bp);
3317 if (error) {
3318 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3319 goto cluster_corrupt_out;
3321 clcount++;
3322 } else {
3323 xfs_ifunlock(cip);
3325 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3328 if (clcount) {
3329 XFS_STATS_INC(mp, xs_icluster_flushcnt);
3330 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3333 out_free:
3334 rcu_read_unlock();
3335 kmem_free(cilist);
3336 out_put:
3337 xfs_perag_put(pag);
3338 return 0;
3341 cluster_corrupt_out:
3343 * Corruption detected in the clustering loop. Invalidate the
3344 * inode buffer and shut down the filesystem.
3346 rcu_read_unlock();
3348 * Clean up the buffer. If it was delwri, just release it --
3349 * brelse can handle it with no problems. If not, shut down the
3350 * filesystem before releasing the buffer.
3352 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
3353 if (bufwasdelwri)
3354 xfs_buf_relse(bp);
3356 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3358 if (!bufwasdelwri) {
3360 * Just like incore_relse: if we have b_iodone functions,
3361 * mark the buffer as an error and call them. Otherwise
3362 * mark it as stale and brelse.
3364 if (bp->b_iodone) {
3365 bp->b_flags &= ~XBF_DONE;
3366 xfs_buf_stale(bp);
3367 xfs_buf_ioerror(bp, -EIO);
3368 xfs_buf_ioend(bp);
3369 } else {
3370 xfs_buf_stale(bp);
3371 xfs_buf_relse(bp);
3376 * Unlocks the flush lock
3378 xfs_iflush_abort(cip, false);
3379 kmem_free(cilist);
3380 xfs_perag_put(pag);
3381 return -EFSCORRUPTED;
3385 * Flush dirty inode metadata into the backing buffer.
3387 * The caller must have the inode lock and the inode flush lock held. The
3388 * inode lock will still be held upon return to the caller, and the inode
3389 * flush lock will be released after the inode has reached the disk.
3391 * The caller must write out the buffer returned in *bpp and release it.
3394 xfs_iflush(
3395 struct xfs_inode *ip,
3396 struct xfs_buf **bpp)
3398 struct xfs_mount *mp = ip->i_mount;
3399 struct xfs_buf *bp = NULL;
3400 struct xfs_dinode *dip;
3401 int error;
3403 XFS_STATS_INC(mp, xs_iflush_count);
3405 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3406 ASSERT(xfs_isiflocked(ip));
3407 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3408 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3410 *bpp = NULL;
3412 xfs_iunpin_wait(ip);
3415 * For stale inodes we cannot rely on the backing buffer remaining
3416 * stale in cache for the remaining life of the stale inode and so
3417 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3418 * inodes below. We have to check this after ensuring the inode is
3419 * unpinned so that it is safe to reclaim the stale inode after the
3420 * flush call.
3422 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3423 xfs_ifunlock(ip);
3424 return 0;
3428 * This may have been unpinned because the filesystem is shutting
3429 * down forcibly. If that's the case we must not write this inode
3430 * to disk, because the log record didn't make it to disk.
3432 * We also have to remove the log item from the AIL in this case,
3433 * as we wait for an empty AIL as part of the unmount process.
3435 if (XFS_FORCED_SHUTDOWN(mp)) {
3436 error = -EIO;
3437 goto abort_out;
3441 * Get the buffer containing the on-disk inode. We are doing a try-lock
3442 * operation here, so we may get an EAGAIN error. In that case, we
3443 * simply want to return with the inode still dirty.
3445 * If we get any other error, we effectively have a corruption situation
3446 * and we cannot flush the inode, so we treat it the same as failing
3447 * xfs_iflush_int().
3449 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3451 if (error == -EAGAIN) {
3452 xfs_ifunlock(ip);
3453 return error;
3455 if (error)
3456 goto corrupt_out;
3459 * First flush out the inode that xfs_iflush was called with.
3461 error = xfs_iflush_int(ip, bp);
3462 if (error)
3463 goto corrupt_out;
3466 * If the buffer is pinned then push on the log now so we won't
3467 * get stuck waiting in the write for too long.
3469 if (xfs_buf_ispinned(bp))
3470 xfs_log_force(mp, 0);
3473 * inode clustering:
3474 * see if other inodes can be gathered into this write
3476 error = xfs_iflush_cluster(ip, bp);
3477 if (error)
3478 goto cluster_corrupt_out;
3480 *bpp = bp;
3481 return 0;
3483 corrupt_out:
3484 if (bp)
3485 xfs_buf_relse(bp);
3486 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3487 cluster_corrupt_out:
3488 error = -EFSCORRUPTED;
3489 abort_out:
3491 * Unlocks the flush lock
3493 xfs_iflush_abort(ip, false);
3494 return error;
3498 * If there are inline format data / attr forks attached to this inode,
3499 * make sure they're not corrupt.
3501 bool
3502 xfs_inode_verify_forks(
3503 struct xfs_inode *ip)
3505 struct xfs_ifork *ifp;
3506 xfs_failaddr_t fa;
3508 fa = xfs_ifork_verify_data(ip, &xfs_default_ifork_ops);
3509 if (fa) {
3510 ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
3511 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork",
3512 ifp->if_u1.if_data, ifp->if_bytes, fa);
3513 return false;
3516 fa = xfs_ifork_verify_attr(ip, &xfs_default_ifork_ops);
3517 if (fa) {
3518 ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK);
3519 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork",
3520 ifp ? ifp->if_u1.if_data : NULL,
3521 ifp ? ifp->if_bytes : 0, fa);
3522 return false;
3524 return true;
3527 STATIC int
3528 xfs_iflush_int(
3529 struct xfs_inode *ip,
3530 struct xfs_buf *bp)
3532 struct xfs_inode_log_item *iip = ip->i_itemp;
3533 struct xfs_dinode *dip;
3534 struct xfs_mount *mp = ip->i_mount;
3536 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3537 ASSERT(xfs_isiflocked(ip));
3538 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3539 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3540 ASSERT(iip != NULL && iip->ili_fields != 0);
3541 ASSERT(ip->i_d.di_version > 1);
3543 /* set *dip = inode's place in the buffer */
3544 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3546 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3547 mp, XFS_ERRTAG_IFLUSH_1)) {
3548 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3549 "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
3550 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3551 goto corrupt_out;
3553 if (S_ISREG(VFS_I(ip)->i_mode)) {
3554 if (XFS_TEST_ERROR(
3555 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3556 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3557 mp, XFS_ERRTAG_IFLUSH_3)) {
3558 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3559 "%s: Bad regular inode %Lu, ptr "PTR_FMT,
3560 __func__, ip->i_ino, ip);
3561 goto corrupt_out;
3563 } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3564 if (XFS_TEST_ERROR(
3565 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3566 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3567 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3568 mp, XFS_ERRTAG_IFLUSH_4)) {
3569 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3570 "%s: Bad directory inode %Lu, ptr "PTR_FMT,
3571 __func__, ip->i_ino, ip);
3572 goto corrupt_out;
3575 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3576 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3577 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3578 "%s: detected corrupt incore inode %Lu, "
3579 "total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
3580 __func__, ip->i_ino,
3581 ip->i_d.di_nextents + ip->i_d.di_anextents,
3582 ip->i_d.di_nblocks, ip);
3583 goto corrupt_out;
3585 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3586 mp, XFS_ERRTAG_IFLUSH_6)) {
3587 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3588 "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
3589 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3590 goto corrupt_out;
3594 * Inode item log recovery for v2 inodes are dependent on the
3595 * di_flushiter count for correct sequencing. We bump the flush
3596 * iteration count so we can detect flushes which postdate a log record
3597 * during recovery. This is redundant as we now log every change and
3598 * hence this can't happen but we need to still do it to ensure
3599 * backwards compatibility with old kernels that predate logging all
3600 * inode changes.
3602 if (ip->i_d.di_version < 3)
3603 ip->i_d.di_flushiter++;
3605 /* Check the inline fork data before we write out. */
3606 if (!xfs_inode_verify_forks(ip))
3607 goto corrupt_out;
3610 * Copy the dirty parts of the inode into the on-disk inode. We always
3611 * copy out the core of the inode, because if the inode is dirty at all
3612 * the core must be.
3614 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3616 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3617 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3618 ip->i_d.di_flushiter = 0;
3620 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3621 if (XFS_IFORK_Q(ip))
3622 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3623 xfs_inobp_check(mp, bp);
3626 * We've recorded everything logged in the inode, so we'd like to clear
3627 * the ili_fields bits so we don't log and flush things unnecessarily.
3628 * However, we can't stop logging all this information until the data
3629 * we've copied into the disk buffer is written to disk. If we did we
3630 * might overwrite the copy of the inode in the log with all the data
3631 * after re-logging only part of it, and in the face of a crash we
3632 * wouldn't have all the data we need to recover.
3634 * What we do is move the bits to the ili_last_fields field. When
3635 * logging the inode, these bits are moved back to the ili_fields field.
3636 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3637 * know that the information those bits represent is permanently on
3638 * disk. As long as the flush completes before the inode is logged
3639 * again, then both ili_fields and ili_last_fields will be cleared.
3641 * We can play with the ili_fields bits here, because the inode lock
3642 * must be held exclusively in order to set bits there and the flush
3643 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3644 * done routine can tell whether or not to look in the AIL. Also, store
3645 * the current LSN of the inode so that we can tell whether the item has
3646 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3647 * need the AIL lock, because it is a 64 bit value that cannot be read
3648 * atomically.
3650 iip->ili_last_fields = iip->ili_fields;
3651 iip->ili_fields = 0;
3652 iip->ili_fsync_fields = 0;
3653 iip->ili_logged = 1;
3655 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3656 &iip->ili_item.li_lsn);
3659 * Attach the function xfs_iflush_done to the inode's
3660 * buffer. This will remove the inode from the AIL
3661 * and unlock the inode's flush lock when the inode is
3662 * completely written to disk.
3664 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3666 /* generate the checksum. */
3667 xfs_dinode_calc_crc(mp, dip);
3669 ASSERT(!list_empty(&bp->b_li_list));
3670 ASSERT(bp->b_iodone != NULL);
3671 return 0;
3673 corrupt_out:
3674 return -EFSCORRUPTED;