2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include <linux/log2.h>
19 #include <linux/iversion.h>
23 #include "xfs_shared.h"
24 #include "xfs_format.h"
25 #include "xfs_log_format.h"
26 #include "xfs_trans_resv.h"
28 #include "xfs_mount.h"
29 #include "xfs_defer.h"
30 #include "xfs_inode.h"
31 #include "xfs_da_format.h"
32 #include "xfs_da_btree.h"
34 #include "xfs_attr_sf.h"
36 #include "xfs_trans_space.h"
37 #include "xfs_trans.h"
38 #include "xfs_buf_item.h"
39 #include "xfs_inode_item.h"
40 #include "xfs_ialloc.h"
42 #include "xfs_bmap_util.h"
43 #include "xfs_errortag.h"
44 #include "xfs_error.h"
45 #include "xfs_quota.h"
46 #include "xfs_filestream.h"
47 #include "xfs_cksum.h"
48 #include "xfs_trace.h"
49 #include "xfs_icache.h"
50 #include "xfs_symlink.h"
51 #include "xfs_trans_priv.h"
53 #include "xfs_bmap_btree.h"
54 #include "xfs_reflink.h"
55 #include "xfs_dir2_priv.h"
57 kmem_zone_t
*xfs_inode_zone
;
60 * Used in xfs_itruncate_extents(). This is the maximum number of extents
61 * freed from a file in a single transaction.
63 #define XFS_ITRUNC_MAX_EXTENTS 2
65 STATIC
int xfs_iflush_int(struct xfs_inode
*, struct xfs_buf
*);
66 STATIC
int xfs_iunlink(struct xfs_trans
*, struct xfs_inode
*);
67 STATIC
int xfs_iunlink_remove(struct xfs_trans
*, struct xfs_inode
*);
70 * helper function to extract extent size hint from inode
76 if ((ip
->i_d
.di_flags
& XFS_DIFLAG_EXTSIZE
) && ip
->i_d
.di_extsize
)
77 return ip
->i_d
.di_extsize
;
78 if (XFS_IS_REALTIME_INODE(ip
))
79 return ip
->i_mount
->m_sb
.sb_rextsize
;
84 * Helper function to extract CoW extent size hint from inode.
85 * Between the extent size hint and the CoW extent size hint, we
86 * return the greater of the two. If the value is zero (automatic),
87 * use the default size.
90 xfs_get_cowextsz_hint(
96 if (ip
->i_d
.di_flags2
& XFS_DIFLAG2_COWEXTSIZE
)
97 a
= ip
->i_d
.di_cowextsize
;
98 b
= xfs_get_extsz_hint(ip
);
102 return XFS_DEFAULT_COWEXTSZ_HINT
;
107 * These two are wrapper routines around the xfs_ilock() routine used to
108 * centralize some grungy code. They are used in places that wish to lock the
109 * inode solely for reading the extents. The reason these places can't just
110 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
111 * bringing in of the extents from disk for a file in b-tree format. If the
112 * inode is in b-tree format, then we need to lock the inode exclusively until
113 * the extents are read in. Locking it exclusively all the time would limit
114 * our parallelism unnecessarily, though. What we do instead is check to see
115 * if the extents have been read in yet, and only lock the inode exclusively
118 * The functions return a value which should be given to the corresponding
119 * xfs_iunlock() call.
122 xfs_ilock_data_map_shared(
123 struct xfs_inode
*ip
)
125 uint lock_mode
= XFS_ILOCK_SHARED
;
127 if (ip
->i_d
.di_format
== XFS_DINODE_FMT_BTREE
&&
128 (ip
->i_df
.if_flags
& XFS_IFEXTENTS
) == 0)
129 lock_mode
= XFS_ILOCK_EXCL
;
130 xfs_ilock(ip
, lock_mode
);
135 xfs_ilock_attr_map_shared(
136 struct xfs_inode
*ip
)
138 uint lock_mode
= XFS_ILOCK_SHARED
;
140 if (ip
->i_d
.di_aformat
== XFS_DINODE_FMT_BTREE
&&
141 (ip
->i_afp
->if_flags
& XFS_IFEXTENTS
) == 0)
142 lock_mode
= XFS_ILOCK_EXCL
;
143 xfs_ilock(ip
, lock_mode
);
148 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
149 * multi-reader locks: i_mmap_lock and the i_lock. This routine allows
150 * various combinations of the locks to be obtained.
152 * The 3 locks should always be ordered so that the IO lock is obtained first,
153 * the mmap lock second and the ilock last in order to prevent deadlock.
155 * Basic locking order:
157 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
159 * mmap_sem locking order:
161 * i_rwsem -> page lock -> mmap_sem
162 * mmap_sem -> i_mmap_lock -> page_lock
164 * The difference in mmap_sem locking order mean that we cannot hold the
165 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
166 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
167 * in get_user_pages() to map the user pages into the kernel address space for
168 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
169 * page faults already hold the mmap_sem.
171 * Hence to serialise fully against both syscall and mmap based IO, we need to
172 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
173 * taken in places where we need to invalidate the page cache in a race
174 * free manner (e.g. truncate, hole punch and other extent manipulation
182 trace_xfs_ilock(ip
, lock_flags
, _RET_IP_
);
185 * You can't set both SHARED and EXCL for the same lock,
186 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
187 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
189 ASSERT((lock_flags
& (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
)) !=
190 (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
));
191 ASSERT((lock_flags
& (XFS_MMAPLOCK_SHARED
| XFS_MMAPLOCK_EXCL
)) !=
192 (XFS_MMAPLOCK_SHARED
| XFS_MMAPLOCK_EXCL
));
193 ASSERT((lock_flags
& (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
)) !=
194 (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
));
195 ASSERT((lock_flags
& ~(XFS_LOCK_MASK
| XFS_LOCK_SUBCLASS_MASK
)) == 0);
197 if (lock_flags
& XFS_IOLOCK_EXCL
) {
198 down_write_nested(&VFS_I(ip
)->i_rwsem
,
199 XFS_IOLOCK_DEP(lock_flags
));
200 } else if (lock_flags
& XFS_IOLOCK_SHARED
) {
201 down_read_nested(&VFS_I(ip
)->i_rwsem
,
202 XFS_IOLOCK_DEP(lock_flags
));
205 if (lock_flags
& XFS_MMAPLOCK_EXCL
)
206 mrupdate_nested(&ip
->i_mmaplock
, XFS_MMAPLOCK_DEP(lock_flags
));
207 else if (lock_flags
& XFS_MMAPLOCK_SHARED
)
208 mraccess_nested(&ip
->i_mmaplock
, XFS_MMAPLOCK_DEP(lock_flags
));
210 if (lock_flags
& XFS_ILOCK_EXCL
)
211 mrupdate_nested(&ip
->i_lock
, XFS_ILOCK_DEP(lock_flags
));
212 else if (lock_flags
& XFS_ILOCK_SHARED
)
213 mraccess_nested(&ip
->i_lock
, XFS_ILOCK_DEP(lock_flags
));
217 * This is just like xfs_ilock(), except that the caller
218 * is guaranteed not to sleep. It returns 1 if it gets
219 * the requested locks and 0 otherwise. If the IO lock is
220 * obtained but the inode lock cannot be, then the IO lock
221 * is dropped before returning.
223 * ip -- the inode being locked
224 * lock_flags -- this parameter indicates the inode's locks to be
225 * to be locked. See the comment for xfs_ilock() for a list
233 trace_xfs_ilock_nowait(ip
, lock_flags
, _RET_IP_
);
236 * You can't set both SHARED and EXCL for the same lock,
237 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
238 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
240 ASSERT((lock_flags
& (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
)) !=
241 (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
));
242 ASSERT((lock_flags
& (XFS_MMAPLOCK_SHARED
| XFS_MMAPLOCK_EXCL
)) !=
243 (XFS_MMAPLOCK_SHARED
| XFS_MMAPLOCK_EXCL
));
244 ASSERT((lock_flags
& (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
)) !=
245 (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
));
246 ASSERT((lock_flags
& ~(XFS_LOCK_MASK
| XFS_LOCK_SUBCLASS_MASK
)) == 0);
248 if (lock_flags
& XFS_IOLOCK_EXCL
) {
249 if (!down_write_trylock(&VFS_I(ip
)->i_rwsem
))
251 } else if (lock_flags
& XFS_IOLOCK_SHARED
) {
252 if (!down_read_trylock(&VFS_I(ip
)->i_rwsem
))
256 if (lock_flags
& XFS_MMAPLOCK_EXCL
) {
257 if (!mrtryupdate(&ip
->i_mmaplock
))
258 goto out_undo_iolock
;
259 } else if (lock_flags
& XFS_MMAPLOCK_SHARED
) {
260 if (!mrtryaccess(&ip
->i_mmaplock
))
261 goto out_undo_iolock
;
264 if (lock_flags
& XFS_ILOCK_EXCL
) {
265 if (!mrtryupdate(&ip
->i_lock
))
266 goto out_undo_mmaplock
;
267 } else if (lock_flags
& XFS_ILOCK_SHARED
) {
268 if (!mrtryaccess(&ip
->i_lock
))
269 goto out_undo_mmaplock
;
274 if (lock_flags
& XFS_MMAPLOCK_EXCL
)
275 mrunlock_excl(&ip
->i_mmaplock
);
276 else if (lock_flags
& XFS_MMAPLOCK_SHARED
)
277 mrunlock_shared(&ip
->i_mmaplock
);
279 if (lock_flags
& XFS_IOLOCK_EXCL
)
280 up_write(&VFS_I(ip
)->i_rwsem
);
281 else if (lock_flags
& XFS_IOLOCK_SHARED
)
282 up_read(&VFS_I(ip
)->i_rwsem
);
288 * xfs_iunlock() is used to drop the inode locks acquired with
289 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
290 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
291 * that we know which locks to drop.
293 * ip -- the inode being unlocked
294 * lock_flags -- this parameter indicates the inode's locks to be
295 * to be unlocked. See the comment for xfs_ilock() for a list
296 * of valid values for this parameter.
305 * You can't set both SHARED and EXCL for the same lock,
306 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
307 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
309 ASSERT((lock_flags
& (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
)) !=
310 (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
));
311 ASSERT((lock_flags
& (XFS_MMAPLOCK_SHARED
| XFS_MMAPLOCK_EXCL
)) !=
312 (XFS_MMAPLOCK_SHARED
| XFS_MMAPLOCK_EXCL
));
313 ASSERT((lock_flags
& (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
)) !=
314 (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
));
315 ASSERT((lock_flags
& ~(XFS_LOCK_MASK
| XFS_LOCK_SUBCLASS_MASK
)) == 0);
316 ASSERT(lock_flags
!= 0);
318 if (lock_flags
& XFS_IOLOCK_EXCL
)
319 up_write(&VFS_I(ip
)->i_rwsem
);
320 else if (lock_flags
& XFS_IOLOCK_SHARED
)
321 up_read(&VFS_I(ip
)->i_rwsem
);
323 if (lock_flags
& XFS_MMAPLOCK_EXCL
)
324 mrunlock_excl(&ip
->i_mmaplock
);
325 else if (lock_flags
& XFS_MMAPLOCK_SHARED
)
326 mrunlock_shared(&ip
->i_mmaplock
);
328 if (lock_flags
& XFS_ILOCK_EXCL
)
329 mrunlock_excl(&ip
->i_lock
);
330 else if (lock_flags
& XFS_ILOCK_SHARED
)
331 mrunlock_shared(&ip
->i_lock
);
333 trace_xfs_iunlock(ip
, lock_flags
, _RET_IP_
);
337 * give up write locks. the i/o lock cannot be held nested
338 * if it is being demoted.
345 ASSERT(lock_flags
& (XFS_IOLOCK_EXCL
|XFS_MMAPLOCK_EXCL
|XFS_ILOCK_EXCL
));
347 ~(XFS_IOLOCK_EXCL
|XFS_MMAPLOCK_EXCL
|XFS_ILOCK_EXCL
)) == 0);
349 if (lock_flags
& XFS_ILOCK_EXCL
)
350 mrdemote(&ip
->i_lock
);
351 if (lock_flags
& XFS_MMAPLOCK_EXCL
)
352 mrdemote(&ip
->i_mmaplock
);
353 if (lock_flags
& XFS_IOLOCK_EXCL
)
354 downgrade_write(&VFS_I(ip
)->i_rwsem
);
356 trace_xfs_ilock_demote(ip
, lock_flags
, _RET_IP_
);
359 #if defined(DEBUG) || defined(XFS_WARN)
365 if (lock_flags
& (XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
)) {
366 if (!(lock_flags
& XFS_ILOCK_SHARED
))
367 return !!ip
->i_lock
.mr_writer
;
368 return rwsem_is_locked(&ip
->i_lock
.mr_lock
);
371 if (lock_flags
& (XFS_MMAPLOCK_EXCL
|XFS_MMAPLOCK_SHARED
)) {
372 if (!(lock_flags
& XFS_MMAPLOCK_SHARED
))
373 return !!ip
->i_mmaplock
.mr_writer
;
374 return rwsem_is_locked(&ip
->i_mmaplock
.mr_lock
);
377 if (lock_flags
& (XFS_IOLOCK_EXCL
|XFS_IOLOCK_SHARED
)) {
378 if (!(lock_flags
& XFS_IOLOCK_SHARED
))
379 return !debug_locks
||
380 lockdep_is_held_type(&VFS_I(ip
)->i_rwsem
, 0);
381 return rwsem_is_locked(&VFS_I(ip
)->i_rwsem
);
390 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
391 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
392 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
393 * errors and warnings.
395 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
397 xfs_lockdep_subclass_ok(
400 return subclass
< MAX_LOCKDEP_SUBCLASSES
;
403 #define xfs_lockdep_subclass_ok(subclass) (true)
407 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
408 * value. This can be called for any type of inode lock combination, including
409 * parent locking. Care must be taken to ensure we don't overrun the subclass
410 * storage fields in the class mask we build.
413 xfs_lock_inumorder(int lock_mode
, int subclass
)
417 ASSERT(!(lock_mode
& (XFS_ILOCK_PARENT
| XFS_ILOCK_RTBITMAP
|
419 ASSERT(xfs_lockdep_subclass_ok(subclass
));
421 if (lock_mode
& (XFS_IOLOCK_SHARED
|XFS_IOLOCK_EXCL
)) {
422 ASSERT(subclass
<= XFS_IOLOCK_MAX_SUBCLASS
);
423 class += subclass
<< XFS_IOLOCK_SHIFT
;
426 if (lock_mode
& (XFS_MMAPLOCK_SHARED
|XFS_MMAPLOCK_EXCL
)) {
427 ASSERT(subclass
<= XFS_MMAPLOCK_MAX_SUBCLASS
);
428 class += subclass
<< XFS_MMAPLOCK_SHIFT
;
431 if (lock_mode
& (XFS_ILOCK_SHARED
|XFS_ILOCK_EXCL
)) {
432 ASSERT(subclass
<= XFS_ILOCK_MAX_SUBCLASS
);
433 class += subclass
<< XFS_ILOCK_SHIFT
;
436 return (lock_mode
& ~XFS_LOCK_SUBCLASS_MASK
) | class;
440 * The following routine will lock n inodes in exclusive mode. We assume the
441 * caller calls us with the inodes in i_ino order.
443 * We need to detect deadlock where an inode that we lock is in the AIL and we
444 * start waiting for another inode that is locked by a thread in a long running
445 * transaction (such as truncate). This can result in deadlock since the long
446 * running trans might need to wait for the inode we just locked in order to
447 * push the tail and free space in the log.
449 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
450 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
451 * lock more than one at a time, lockdep will report false positives saying we
452 * have violated locking orders.
460 int attempts
= 0, i
, j
, try_lock
;
464 * Currently supports between 2 and 5 inodes with exclusive locking. We
465 * support an arbitrary depth of locking here, but absolute limits on
466 * inodes depend on the the type of locking and the limits placed by
467 * lockdep annotations in xfs_lock_inumorder. These are all checked by
470 ASSERT(ips
&& inodes
>= 2 && inodes
<= 5);
471 ASSERT(lock_mode
& (XFS_IOLOCK_EXCL
| XFS_MMAPLOCK_EXCL
|
473 ASSERT(!(lock_mode
& (XFS_IOLOCK_SHARED
| XFS_MMAPLOCK_SHARED
|
475 ASSERT(!(lock_mode
& XFS_MMAPLOCK_EXCL
) ||
476 inodes
<= XFS_MMAPLOCK_MAX_SUBCLASS
+ 1);
477 ASSERT(!(lock_mode
& XFS_ILOCK_EXCL
) ||
478 inodes
<= XFS_ILOCK_MAX_SUBCLASS
+ 1);
480 if (lock_mode
& XFS_IOLOCK_EXCL
) {
481 ASSERT(!(lock_mode
& (XFS_MMAPLOCK_EXCL
| XFS_ILOCK_EXCL
)));
482 } else if (lock_mode
& XFS_MMAPLOCK_EXCL
)
483 ASSERT(!(lock_mode
& XFS_ILOCK_EXCL
));
488 for (; i
< inodes
; i
++) {
491 if (i
&& (ips
[i
] == ips
[i
- 1])) /* Already locked */
495 * If try_lock is not set yet, make sure all locked inodes are
496 * not in the AIL. If any are, set try_lock to be used later.
499 for (j
= (i
- 1); j
>= 0 && !try_lock
; j
--) {
500 lp
= (xfs_log_item_t
*)ips
[j
]->i_itemp
;
501 if (lp
&& (lp
->li_flags
& XFS_LI_IN_AIL
))
507 * If any of the previous locks we have locked is in the AIL,
508 * we must TRY to get the second and subsequent locks. If
509 * we can't get any, we must release all we have
513 xfs_ilock(ips
[i
], xfs_lock_inumorder(lock_mode
, i
));
517 /* try_lock means we have an inode locked that is in the AIL. */
519 if (xfs_ilock_nowait(ips
[i
], xfs_lock_inumorder(lock_mode
, i
)))
523 * Unlock all previous guys and try again. xfs_iunlock will try
524 * to push the tail if the inode is in the AIL.
527 for (j
= i
- 1; j
>= 0; j
--) {
529 * Check to see if we've already unlocked this one. Not
530 * the first one going back, and the inode ptr is the
533 if (j
!= (i
- 1) && ips
[j
] == ips
[j
+ 1])
536 xfs_iunlock(ips
[j
], lock_mode
);
539 if ((attempts
% 5) == 0) {
540 delay(1); /* Don't just spin the CPU */
549 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
550 * the mmaplock or the ilock, but not more than one type at a time. If we lock
551 * more than one at a time, lockdep will report false positives saying we have
552 * violated locking orders. The iolock must be double-locked separately since
553 * we use i_rwsem for that. We now support taking one lock EXCL and the other
558 struct xfs_inode
*ip0
,
560 struct xfs_inode
*ip1
,
563 struct xfs_inode
*temp
;
568 ASSERT(hweight32(ip0_mode
) == 1);
569 ASSERT(hweight32(ip1_mode
) == 1);
570 ASSERT(!(ip0_mode
& (XFS_IOLOCK_SHARED
|XFS_IOLOCK_EXCL
)));
571 ASSERT(!(ip1_mode
& (XFS_IOLOCK_SHARED
|XFS_IOLOCK_EXCL
)));
572 ASSERT(!(ip0_mode
& (XFS_MMAPLOCK_SHARED
|XFS_MMAPLOCK_EXCL
)) ||
573 !(ip0_mode
& (XFS_ILOCK_SHARED
|XFS_ILOCK_EXCL
)));
574 ASSERT(!(ip1_mode
& (XFS_MMAPLOCK_SHARED
|XFS_MMAPLOCK_EXCL
)) ||
575 !(ip1_mode
& (XFS_ILOCK_SHARED
|XFS_ILOCK_EXCL
)));
576 ASSERT(!(ip1_mode
& (XFS_MMAPLOCK_SHARED
|XFS_MMAPLOCK_EXCL
)) ||
577 !(ip0_mode
& (XFS_ILOCK_SHARED
|XFS_ILOCK_EXCL
)));
578 ASSERT(!(ip0_mode
& (XFS_MMAPLOCK_SHARED
|XFS_MMAPLOCK_EXCL
)) ||
579 !(ip1_mode
& (XFS_ILOCK_SHARED
|XFS_ILOCK_EXCL
)));
581 ASSERT(ip0
->i_ino
!= ip1
->i_ino
);
583 if (ip0
->i_ino
> ip1
->i_ino
) {
587 mode_temp
= ip0_mode
;
589 ip1_mode
= mode_temp
;
593 xfs_ilock(ip0
, xfs_lock_inumorder(ip0_mode
, 0));
596 * If the first lock we have locked is in the AIL, we must TRY to get
597 * the second lock. If we can't get it, we must release the first one
600 lp
= (xfs_log_item_t
*)ip0
->i_itemp
;
601 if (lp
&& (lp
->li_flags
& XFS_LI_IN_AIL
)) {
602 if (!xfs_ilock_nowait(ip1
, xfs_lock_inumorder(ip1_mode
, 1))) {
603 xfs_iunlock(ip0
, ip0_mode
);
604 if ((++attempts
% 5) == 0)
605 delay(1); /* Don't just spin the CPU */
609 xfs_ilock(ip1
, xfs_lock_inumorder(ip1_mode
, 1));
615 struct xfs_inode
*ip
)
617 wait_queue_head_t
*wq
= bit_waitqueue(&ip
->i_flags
, __XFS_IFLOCK_BIT
);
618 DEFINE_WAIT_BIT(wait
, &ip
->i_flags
, __XFS_IFLOCK_BIT
);
621 prepare_to_wait_exclusive(wq
, &wait
.wq_entry
, TASK_UNINTERRUPTIBLE
);
622 if (xfs_isiflocked(ip
))
624 } while (!xfs_iflock_nowait(ip
));
626 finish_wait(wq
, &wait
.wq_entry
);
637 if (di_flags
& XFS_DIFLAG_ANY
) {
638 if (di_flags
& XFS_DIFLAG_REALTIME
)
639 flags
|= FS_XFLAG_REALTIME
;
640 if (di_flags
& XFS_DIFLAG_PREALLOC
)
641 flags
|= FS_XFLAG_PREALLOC
;
642 if (di_flags
& XFS_DIFLAG_IMMUTABLE
)
643 flags
|= FS_XFLAG_IMMUTABLE
;
644 if (di_flags
& XFS_DIFLAG_APPEND
)
645 flags
|= FS_XFLAG_APPEND
;
646 if (di_flags
& XFS_DIFLAG_SYNC
)
647 flags
|= FS_XFLAG_SYNC
;
648 if (di_flags
& XFS_DIFLAG_NOATIME
)
649 flags
|= FS_XFLAG_NOATIME
;
650 if (di_flags
& XFS_DIFLAG_NODUMP
)
651 flags
|= FS_XFLAG_NODUMP
;
652 if (di_flags
& XFS_DIFLAG_RTINHERIT
)
653 flags
|= FS_XFLAG_RTINHERIT
;
654 if (di_flags
& XFS_DIFLAG_PROJINHERIT
)
655 flags
|= FS_XFLAG_PROJINHERIT
;
656 if (di_flags
& XFS_DIFLAG_NOSYMLINKS
)
657 flags
|= FS_XFLAG_NOSYMLINKS
;
658 if (di_flags
& XFS_DIFLAG_EXTSIZE
)
659 flags
|= FS_XFLAG_EXTSIZE
;
660 if (di_flags
& XFS_DIFLAG_EXTSZINHERIT
)
661 flags
|= FS_XFLAG_EXTSZINHERIT
;
662 if (di_flags
& XFS_DIFLAG_NODEFRAG
)
663 flags
|= FS_XFLAG_NODEFRAG
;
664 if (di_flags
& XFS_DIFLAG_FILESTREAM
)
665 flags
|= FS_XFLAG_FILESTREAM
;
668 if (di_flags2
& XFS_DIFLAG2_ANY
) {
669 if (di_flags2
& XFS_DIFLAG2_DAX
)
670 flags
|= FS_XFLAG_DAX
;
671 if (di_flags2
& XFS_DIFLAG2_COWEXTSIZE
)
672 flags
|= FS_XFLAG_COWEXTSIZE
;
676 flags
|= FS_XFLAG_HASATTR
;
683 struct xfs_inode
*ip
)
685 struct xfs_icdinode
*dic
= &ip
->i_d
;
687 return _xfs_dic2xflags(dic
->di_flags
, dic
->di_flags2
, XFS_IFORK_Q(ip
));
691 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
692 * is allowed, otherwise it has to be an exact match. If a CI match is found,
693 * ci_name->name will point to a the actual name (caller must free) or
694 * will be set to NULL if an exact match is found.
699 struct xfs_name
*name
,
701 struct xfs_name
*ci_name
)
706 trace_xfs_lookup(dp
, name
);
708 if (XFS_FORCED_SHUTDOWN(dp
->i_mount
))
711 error
= xfs_dir_lookup(NULL
, dp
, name
, &inum
, ci_name
);
715 error
= xfs_iget(dp
->i_mount
, NULL
, inum
, 0, 0, ipp
);
723 kmem_free(ci_name
->name
);
730 * Allocate an inode on disk and return a copy of its in-core version.
731 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
732 * appropriately within the inode. The uid and gid for the inode are
733 * set according to the contents of the given cred structure.
735 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
736 * has a free inode available, call xfs_iget() to obtain the in-core
737 * version of the allocated inode. Finally, fill in the inode and
738 * log its initial contents. In this case, ialloc_context would be
741 * If xfs_dialloc() does not have an available inode, it will replenish
742 * its supply by doing an allocation. Since we can only do one
743 * allocation within a transaction without deadlocks, we must commit
744 * the current transaction before returning the inode itself.
745 * In this case, therefore, we will set ialloc_context and return.
746 * The caller should then commit the current transaction, start a new
747 * transaction, and call xfs_ialloc() again to actually get the inode.
749 * To ensure that some other process does not grab the inode that
750 * was allocated during the first call to xfs_ialloc(), this routine
751 * also returns the [locked] bp pointing to the head of the freelist
752 * as ialloc_context. The caller should hold this buffer across
753 * the commit and pass it back into this routine on the second call.
755 * If we are allocating quota inodes, we do not have a parent inode
756 * to attach to or associate with (i.e. pip == NULL) because they
757 * are not linked into the directory structure - they are attached
758 * directly to the superblock - and so have no parent.
768 xfs_buf_t
**ialloc_context
,
771 struct xfs_mount
*mp
= tp
->t_mountp
;
780 * Call the space management code to pick
781 * the on-disk inode to be allocated.
783 error
= xfs_dialloc(tp
, pip
? pip
->i_ino
: 0, mode
,
784 ialloc_context
, &ino
);
787 if (*ialloc_context
|| ino
== NULLFSINO
) {
791 ASSERT(*ialloc_context
== NULL
);
794 * Get the in-core inode with the lock held exclusively.
795 * This is because we're setting fields here we need
796 * to prevent others from looking at until we're done.
798 error
= xfs_iget(mp
, tp
, ino
, XFS_IGET_CREATE
,
799 XFS_ILOCK_EXCL
, &ip
);
806 * We always convert v1 inodes to v2 now - we only support filesystems
807 * with >= v2 inode capability, so there is no reason for ever leaving
808 * an inode in v1 format.
810 if (ip
->i_d
.di_version
== 1)
811 ip
->i_d
.di_version
= 2;
813 inode
->i_mode
= mode
;
814 set_nlink(inode
, nlink
);
815 ip
->i_d
.di_uid
= xfs_kuid_to_uid(current_fsuid());
816 ip
->i_d
.di_gid
= xfs_kgid_to_gid(current_fsgid());
817 inode
->i_rdev
= rdev
;
818 xfs_set_projid(ip
, prid
);
820 if (pip
&& XFS_INHERIT_GID(pip
)) {
821 ip
->i_d
.di_gid
= pip
->i_d
.di_gid
;
822 if ((VFS_I(pip
)->i_mode
& S_ISGID
) && S_ISDIR(mode
))
823 inode
->i_mode
|= S_ISGID
;
827 * If the group ID of the new file does not match the effective group
828 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
829 * (and only if the irix_sgid_inherit compatibility variable is set).
831 if ((irix_sgid_inherit
) &&
832 (inode
->i_mode
& S_ISGID
) &&
833 (!in_group_p(xfs_gid_to_kgid(ip
->i_d
.di_gid
))))
834 inode
->i_mode
&= ~S_ISGID
;
837 ip
->i_d
.di_nextents
= 0;
838 ASSERT(ip
->i_d
.di_nblocks
== 0);
840 tv
= current_time(inode
);
845 ip
->i_d
.di_extsize
= 0;
846 ip
->i_d
.di_dmevmask
= 0;
847 ip
->i_d
.di_dmstate
= 0;
848 ip
->i_d
.di_flags
= 0;
850 if (ip
->i_d
.di_version
== 3) {
851 inode_set_iversion(inode
, 1);
852 ip
->i_d
.di_flags2
= 0;
853 ip
->i_d
.di_cowextsize
= 0;
854 ip
->i_d
.di_crtime
.t_sec
= (int32_t)tv
.tv_sec
;
855 ip
->i_d
.di_crtime
.t_nsec
= (int32_t)tv
.tv_nsec
;
859 flags
= XFS_ILOG_CORE
;
860 switch (mode
& S_IFMT
) {
865 ip
->i_d
.di_format
= XFS_DINODE_FMT_DEV
;
866 ip
->i_df
.if_flags
= 0;
867 flags
|= XFS_ILOG_DEV
;
871 if (pip
&& (pip
->i_d
.di_flags
& XFS_DIFLAG_ANY
)) {
875 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
876 di_flags
|= XFS_DIFLAG_RTINHERIT
;
877 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
878 di_flags
|= XFS_DIFLAG_EXTSZINHERIT
;
879 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
881 if (pip
->i_d
.di_flags
& XFS_DIFLAG_PROJINHERIT
)
882 di_flags
|= XFS_DIFLAG_PROJINHERIT
;
883 } else if (S_ISREG(mode
)) {
884 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
885 di_flags
|= XFS_DIFLAG_REALTIME
;
886 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
887 di_flags
|= XFS_DIFLAG_EXTSIZE
;
888 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
891 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOATIME
) &&
893 di_flags
|= XFS_DIFLAG_NOATIME
;
894 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODUMP
) &&
896 di_flags
|= XFS_DIFLAG_NODUMP
;
897 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_SYNC
) &&
899 di_flags
|= XFS_DIFLAG_SYNC
;
900 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOSYMLINKS
) &&
901 xfs_inherit_nosymlinks
)
902 di_flags
|= XFS_DIFLAG_NOSYMLINKS
;
903 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODEFRAG
) &&
904 xfs_inherit_nodefrag
)
905 di_flags
|= XFS_DIFLAG_NODEFRAG
;
906 if (pip
->i_d
.di_flags
& XFS_DIFLAG_FILESTREAM
)
907 di_flags
|= XFS_DIFLAG_FILESTREAM
;
909 ip
->i_d
.di_flags
|= di_flags
;
912 (pip
->i_d
.di_flags2
& XFS_DIFLAG2_ANY
) &&
913 pip
->i_d
.di_version
== 3 &&
914 ip
->i_d
.di_version
== 3) {
915 uint64_t di_flags2
= 0;
917 if (pip
->i_d
.di_flags2
& XFS_DIFLAG2_COWEXTSIZE
) {
918 di_flags2
|= XFS_DIFLAG2_COWEXTSIZE
;
919 ip
->i_d
.di_cowextsize
= pip
->i_d
.di_cowextsize
;
921 if (pip
->i_d
.di_flags2
& XFS_DIFLAG2_DAX
)
922 di_flags2
|= XFS_DIFLAG2_DAX
;
924 ip
->i_d
.di_flags2
|= di_flags2
;
928 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
929 ip
->i_df
.if_flags
= XFS_IFEXTENTS
;
930 ip
->i_df
.if_bytes
= ip
->i_df
.if_real_bytes
= 0;
931 ip
->i_df
.if_u1
.if_root
= NULL
;
937 * Attribute fork settings for new inode.
939 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
940 ip
->i_d
.di_anextents
= 0;
943 * Log the new values stuffed into the inode.
945 xfs_trans_ijoin(tp
, ip
, XFS_ILOCK_EXCL
);
946 xfs_trans_log_inode(tp
, ip
, flags
);
948 /* now that we have an i_mode we can setup the inode structure */
956 * Allocates a new inode from disk and return a pointer to the
957 * incore copy. This routine will internally commit the current
958 * transaction and allocate a new one if the Space Manager needed
959 * to do an allocation to replenish the inode free-list.
961 * This routine is designed to be called from xfs_create and
967 xfs_trans_t
**tpp
, /* input: current transaction;
968 output: may be a new transaction. */
969 xfs_inode_t
*dp
, /* directory within whose allocate
974 prid_t prid
, /* project id */
975 xfs_inode_t
**ipp
, /* pointer to inode; it will be
982 xfs_buf_t
*ialloc_context
= NULL
;
988 ASSERT(tp
->t_flags
& XFS_TRANS_PERM_LOG_RES
);
991 * xfs_ialloc will return a pointer to an incore inode if
992 * the Space Manager has an available inode on the free
993 * list. Otherwise, it will do an allocation and replenish
994 * the freelist. Since we can only do one allocation per
995 * transaction without deadlocks, we will need to commit the
996 * current transaction and start a new one. We will then
997 * need to call xfs_ialloc again to get the inode.
999 * If xfs_ialloc did an allocation to replenish the freelist,
1000 * it returns the bp containing the head of the freelist as
1001 * ialloc_context. We will hold a lock on it across the
1002 * transaction commit so that no other process can steal
1003 * the inode(s) that we've just allocated.
1005 code
= xfs_ialloc(tp
, dp
, mode
, nlink
, rdev
, prid
, &ialloc_context
,
1009 * Return an error if we were unable to allocate a new inode.
1010 * This should only happen if we run out of space on disk or
1011 * encounter a disk error.
1017 if (!ialloc_context
&& !ip
) {
1023 * If the AGI buffer is non-NULL, then we were unable to get an
1024 * inode in one operation. We need to commit the current
1025 * transaction and call xfs_ialloc() again. It is guaranteed
1026 * to succeed the second time.
1028 if (ialloc_context
) {
1030 * Normally, xfs_trans_commit releases all the locks.
1031 * We call bhold to hang on to the ialloc_context across
1032 * the commit. Holding this buffer prevents any other
1033 * processes from doing any allocations in this
1036 xfs_trans_bhold(tp
, ialloc_context
);
1039 * We want the quota changes to be associated with the next
1040 * transaction, NOT this one. So, detach the dqinfo from this
1041 * and attach it to the next transaction.
1046 dqinfo
= (void *)tp
->t_dqinfo
;
1047 tp
->t_dqinfo
= NULL
;
1048 tflags
= tp
->t_flags
& XFS_TRANS_DQ_DIRTY
;
1049 tp
->t_flags
&= ~(XFS_TRANS_DQ_DIRTY
);
1052 code
= xfs_trans_roll(&tp
);
1053 if (committed
!= NULL
)
1057 * Re-attach the quota info that we detached from prev trx.
1060 tp
->t_dqinfo
= dqinfo
;
1061 tp
->t_flags
|= tflags
;
1065 xfs_buf_relse(ialloc_context
);
1070 xfs_trans_bjoin(tp
, ialloc_context
);
1073 * Call ialloc again. Since we've locked out all
1074 * other allocations in this allocation group,
1075 * this call should always succeed.
1077 code
= xfs_ialloc(tp
, dp
, mode
, nlink
, rdev
, prid
,
1078 &ialloc_context
, &ip
);
1081 * If we get an error at this point, return to the caller
1082 * so that the current transaction can be aborted.
1089 ASSERT(!ialloc_context
&& ip
);
1092 if (committed
!= NULL
)
1103 * Decrement the link count on an inode & log the change. If this causes the
1104 * link count to go to zero, move the inode to AGI unlinked list so that it can
1105 * be freed when the last active reference goes away via xfs_inactive().
1107 static int /* error */
1112 xfs_trans_ichgtime(tp
, ip
, XFS_ICHGTIME_CHG
);
1114 drop_nlink(VFS_I(ip
));
1115 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1117 if (VFS_I(ip
)->i_nlink
)
1120 return xfs_iunlink(tp
, ip
);
1124 * Increment the link count on an inode & log the change.
1131 xfs_trans_ichgtime(tp
, ip
, XFS_ICHGTIME_CHG
);
1133 ASSERT(ip
->i_d
.di_version
> 1);
1134 inc_nlink(VFS_I(ip
));
1135 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1142 struct xfs_name
*name
,
1147 int is_dir
= S_ISDIR(mode
);
1148 struct xfs_mount
*mp
= dp
->i_mount
;
1149 struct xfs_inode
*ip
= NULL
;
1150 struct xfs_trans
*tp
= NULL
;
1152 struct xfs_defer_ops dfops
;
1153 xfs_fsblock_t first_block
;
1154 bool unlock_dp_on_error
= false;
1156 struct xfs_dquot
*udqp
= NULL
;
1157 struct xfs_dquot
*gdqp
= NULL
;
1158 struct xfs_dquot
*pdqp
= NULL
;
1159 struct xfs_trans_res
*tres
;
1162 trace_xfs_create(dp
, name
);
1164 if (XFS_FORCED_SHUTDOWN(mp
))
1167 prid
= xfs_get_initial_prid(dp
);
1170 * Make sure that we have allocated dquot(s) on disk.
1172 error
= xfs_qm_vop_dqalloc(dp
, xfs_kuid_to_uid(current_fsuid()),
1173 xfs_kgid_to_gid(current_fsgid()), prid
,
1174 XFS_QMOPT_QUOTALL
| XFS_QMOPT_INHERIT
,
1175 &udqp
, &gdqp
, &pdqp
);
1180 resblks
= XFS_MKDIR_SPACE_RES(mp
, name
->len
);
1181 tres
= &M_RES(mp
)->tr_mkdir
;
1183 resblks
= XFS_CREATE_SPACE_RES(mp
, name
->len
);
1184 tres
= &M_RES(mp
)->tr_create
;
1188 * Initially assume that the file does not exist and
1189 * reserve the resources for that case. If that is not
1190 * the case we'll drop the one we have and get a more
1191 * appropriate transaction later.
1193 error
= xfs_trans_alloc(mp
, tres
, resblks
, 0, 0, &tp
);
1194 if (error
== -ENOSPC
) {
1195 /* flush outstanding delalloc blocks and retry */
1196 xfs_flush_inodes(mp
);
1197 error
= xfs_trans_alloc(mp
, tres
, resblks
, 0, 0, &tp
);
1200 goto out_release_inode
;
1202 xfs_ilock(dp
, XFS_ILOCK_EXCL
| XFS_ILOCK_PARENT
);
1203 unlock_dp_on_error
= true;
1205 xfs_defer_init(&dfops
, &first_block
);
1208 * Reserve disk quota and the inode.
1210 error
= xfs_trans_reserve_quota(tp
, mp
, udqp
, gdqp
,
1211 pdqp
, resblks
, 1, 0);
1213 goto out_trans_cancel
;
1216 * A newly created regular or special file just has one directory
1217 * entry pointing to them, but a directory also the "." entry
1218 * pointing to itself.
1220 error
= xfs_dir_ialloc(&tp
, dp
, mode
, is_dir
? 2 : 1, rdev
, prid
, &ip
,
1223 goto out_trans_cancel
;
1226 * Now we join the directory inode to the transaction. We do not do it
1227 * earlier because xfs_dir_ialloc might commit the previous transaction
1228 * (and release all the locks). An error from here on will result in
1229 * the transaction cancel unlocking dp so don't do it explicitly in the
1232 xfs_trans_ijoin(tp
, dp
, XFS_ILOCK_EXCL
);
1233 unlock_dp_on_error
= false;
1235 error
= xfs_dir_createname(tp
, dp
, name
, ip
->i_ino
,
1236 &first_block
, &dfops
, resblks
?
1237 resblks
- XFS_IALLOC_SPACE_RES(mp
) : 0);
1239 ASSERT(error
!= -ENOSPC
);
1240 goto out_trans_cancel
;
1242 xfs_trans_ichgtime(tp
, dp
, XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
1243 xfs_trans_log_inode(tp
, dp
, XFS_ILOG_CORE
);
1246 error
= xfs_dir_init(tp
, ip
, dp
);
1248 goto out_bmap_cancel
;
1250 error
= xfs_bumplink(tp
, dp
);
1252 goto out_bmap_cancel
;
1256 * If this is a synchronous mount, make sure that the
1257 * create transaction goes to disk before returning to
1260 if (mp
->m_flags
& (XFS_MOUNT_WSYNC
|XFS_MOUNT_DIRSYNC
))
1261 xfs_trans_set_sync(tp
);
1264 * Attach the dquot(s) to the inodes and modify them incore.
1265 * These ids of the inode couldn't have changed since the new
1266 * inode has been locked ever since it was created.
1268 xfs_qm_vop_create_dqattach(tp
, ip
, udqp
, gdqp
, pdqp
);
1270 error
= xfs_defer_finish(&tp
, &dfops
);
1272 goto out_bmap_cancel
;
1274 error
= xfs_trans_commit(tp
);
1276 goto out_release_inode
;
1278 xfs_qm_dqrele(udqp
);
1279 xfs_qm_dqrele(gdqp
);
1280 xfs_qm_dqrele(pdqp
);
1286 xfs_defer_cancel(&dfops
);
1288 xfs_trans_cancel(tp
);
1291 * Wait until after the current transaction is aborted to finish the
1292 * setup of the inode and release the inode. This prevents recursive
1293 * transactions and deadlocks from xfs_inactive.
1296 xfs_finish_inode_setup(ip
);
1300 xfs_qm_dqrele(udqp
);
1301 xfs_qm_dqrele(gdqp
);
1302 xfs_qm_dqrele(pdqp
);
1304 if (unlock_dp_on_error
)
1305 xfs_iunlock(dp
, XFS_ILOCK_EXCL
);
1311 struct xfs_inode
*dp
,
1312 struct dentry
*dentry
,
1314 struct xfs_inode
**ipp
)
1316 struct xfs_mount
*mp
= dp
->i_mount
;
1317 struct xfs_inode
*ip
= NULL
;
1318 struct xfs_trans
*tp
= NULL
;
1321 struct xfs_dquot
*udqp
= NULL
;
1322 struct xfs_dquot
*gdqp
= NULL
;
1323 struct xfs_dquot
*pdqp
= NULL
;
1324 struct xfs_trans_res
*tres
;
1327 if (XFS_FORCED_SHUTDOWN(mp
))
1330 prid
= xfs_get_initial_prid(dp
);
1333 * Make sure that we have allocated dquot(s) on disk.
1335 error
= xfs_qm_vop_dqalloc(dp
, xfs_kuid_to_uid(current_fsuid()),
1336 xfs_kgid_to_gid(current_fsgid()), prid
,
1337 XFS_QMOPT_QUOTALL
| XFS_QMOPT_INHERIT
,
1338 &udqp
, &gdqp
, &pdqp
);
1342 resblks
= XFS_IALLOC_SPACE_RES(mp
);
1343 tres
= &M_RES(mp
)->tr_create_tmpfile
;
1345 error
= xfs_trans_alloc(mp
, tres
, resblks
, 0, 0, &tp
);
1347 goto out_release_inode
;
1349 error
= xfs_trans_reserve_quota(tp
, mp
, udqp
, gdqp
,
1350 pdqp
, resblks
, 1, 0);
1352 goto out_trans_cancel
;
1354 error
= xfs_dir_ialloc(&tp
, dp
, mode
, 1, 0, prid
, &ip
, NULL
);
1356 goto out_trans_cancel
;
1358 if (mp
->m_flags
& XFS_MOUNT_WSYNC
)
1359 xfs_trans_set_sync(tp
);
1362 * Attach the dquot(s) to the inodes and modify them incore.
1363 * These ids of the inode couldn't have changed since the new
1364 * inode has been locked ever since it was created.
1366 xfs_qm_vop_create_dqattach(tp
, ip
, udqp
, gdqp
, pdqp
);
1368 error
= xfs_iunlink(tp
, ip
);
1370 goto out_trans_cancel
;
1372 error
= xfs_trans_commit(tp
);
1374 goto out_release_inode
;
1376 xfs_qm_dqrele(udqp
);
1377 xfs_qm_dqrele(gdqp
);
1378 xfs_qm_dqrele(pdqp
);
1384 xfs_trans_cancel(tp
);
1387 * Wait until after the current transaction is aborted to finish the
1388 * setup of the inode and release the inode. This prevents recursive
1389 * transactions and deadlocks from xfs_inactive.
1392 xfs_finish_inode_setup(ip
);
1396 xfs_qm_dqrele(udqp
);
1397 xfs_qm_dqrele(gdqp
);
1398 xfs_qm_dqrele(pdqp
);
1407 struct xfs_name
*target_name
)
1409 xfs_mount_t
*mp
= tdp
->i_mount
;
1412 struct xfs_defer_ops dfops
;
1413 xfs_fsblock_t first_block
;
1416 trace_xfs_link(tdp
, target_name
);
1418 ASSERT(!S_ISDIR(VFS_I(sip
)->i_mode
));
1420 if (XFS_FORCED_SHUTDOWN(mp
))
1423 error
= xfs_qm_dqattach(sip
, 0);
1427 error
= xfs_qm_dqattach(tdp
, 0);
1431 resblks
= XFS_LINK_SPACE_RES(mp
, target_name
->len
);
1432 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_link
, resblks
, 0, 0, &tp
);
1433 if (error
== -ENOSPC
) {
1435 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_link
, 0, 0, 0, &tp
);
1440 xfs_lock_two_inodes(sip
, XFS_ILOCK_EXCL
, tdp
, XFS_ILOCK_EXCL
);
1442 xfs_trans_ijoin(tp
, sip
, XFS_ILOCK_EXCL
);
1443 xfs_trans_ijoin(tp
, tdp
, XFS_ILOCK_EXCL
);
1446 * If we are using project inheritance, we only allow hard link
1447 * creation in our tree when the project IDs are the same; else
1448 * the tree quota mechanism could be circumvented.
1450 if (unlikely((tdp
->i_d
.di_flags
& XFS_DIFLAG_PROJINHERIT
) &&
1451 (xfs_get_projid(tdp
) != xfs_get_projid(sip
)))) {
1457 error
= xfs_dir_canenter(tp
, tdp
, target_name
);
1462 xfs_defer_init(&dfops
, &first_block
);
1465 * Handle initial link state of O_TMPFILE inode
1467 if (VFS_I(sip
)->i_nlink
== 0) {
1468 error
= xfs_iunlink_remove(tp
, sip
);
1473 error
= xfs_dir_createname(tp
, tdp
, target_name
, sip
->i_ino
,
1474 &first_block
, &dfops
, resblks
);
1477 xfs_trans_ichgtime(tp
, tdp
, XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
1478 xfs_trans_log_inode(tp
, tdp
, XFS_ILOG_CORE
);
1480 error
= xfs_bumplink(tp
, sip
);
1485 * If this is a synchronous mount, make sure that the
1486 * link transaction goes to disk before returning to
1489 if (mp
->m_flags
& (XFS_MOUNT_WSYNC
|XFS_MOUNT_DIRSYNC
))
1490 xfs_trans_set_sync(tp
);
1492 error
= xfs_defer_finish(&tp
, &dfops
);
1494 xfs_defer_cancel(&dfops
);
1498 return xfs_trans_commit(tp
);
1501 xfs_trans_cancel(tp
);
1506 /* Clear the reflink flag and the cowblocks tag if possible. */
1508 xfs_itruncate_clear_reflink_flags(
1509 struct xfs_inode
*ip
)
1511 struct xfs_ifork
*dfork
;
1512 struct xfs_ifork
*cfork
;
1514 if (!xfs_is_reflink_inode(ip
))
1516 dfork
= XFS_IFORK_PTR(ip
, XFS_DATA_FORK
);
1517 cfork
= XFS_IFORK_PTR(ip
, XFS_COW_FORK
);
1518 if (dfork
->if_bytes
== 0 && cfork
->if_bytes
== 0)
1519 ip
->i_d
.di_flags2
&= ~XFS_DIFLAG2_REFLINK
;
1520 if (cfork
->if_bytes
== 0)
1521 xfs_inode_clear_cowblocks_tag(ip
);
1525 * Free up the underlying blocks past new_size. The new size must be smaller
1526 * than the current size. This routine can be used both for the attribute and
1527 * data fork, and does not modify the inode size, which is left to the caller.
1529 * The transaction passed to this routine must have made a permanent log
1530 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1531 * given transaction and start new ones, so make sure everything involved in
1532 * the transaction is tidy before calling here. Some transaction will be
1533 * returned to the caller to be committed. The incoming transaction must
1534 * already include the inode, and both inode locks must be held exclusively.
1535 * The inode must also be "held" within the transaction. On return the inode
1536 * will be "held" within the returned transaction. This routine does NOT
1537 * require any disk space to be reserved for it within the transaction.
1539 * If we get an error, we must return with the inode locked and linked into the
1540 * current transaction. This keeps things simple for the higher level code,
1541 * because it always knows that the inode is locked and held in the transaction
1542 * that returns to it whether errors occur or not. We don't mark the inode
1543 * dirty on error so that transactions can be easily aborted if possible.
1546 xfs_itruncate_extents(
1547 struct xfs_trans
**tpp
,
1548 struct xfs_inode
*ip
,
1550 xfs_fsize_t new_size
)
1552 struct xfs_mount
*mp
= ip
->i_mount
;
1553 struct xfs_trans
*tp
= *tpp
;
1554 struct xfs_defer_ops dfops
;
1555 xfs_fsblock_t first_block
;
1556 xfs_fileoff_t first_unmap_block
;
1557 xfs_fileoff_t last_block
;
1558 xfs_filblks_t unmap_len
;
1562 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
1563 ASSERT(!atomic_read(&VFS_I(ip
)->i_count
) ||
1564 xfs_isilocked(ip
, XFS_IOLOCK_EXCL
));
1565 ASSERT(new_size
<= XFS_ISIZE(ip
));
1566 ASSERT(tp
->t_flags
& XFS_TRANS_PERM_LOG_RES
);
1567 ASSERT(ip
->i_itemp
!= NULL
);
1568 ASSERT(ip
->i_itemp
->ili_lock_flags
== 0);
1569 ASSERT(!XFS_NOT_DQATTACHED(mp
, ip
));
1571 trace_xfs_itruncate_extents_start(ip
, new_size
);
1574 * Since it is possible for space to become allocated beyond
1575 * the end of the file (in a crash where the space is allocated
1576 * but the inode size is not yet updated), simply remove any
1577 * blocks which show up between the new EOF and the maximum
1578 * possible file size. If the first block to be removed is
1579 * beyond the maximum file size (ie it is the same as last_block),
1580 * then there is nothing to do.
1582 first_unmap_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)new_size
);
1583 last_block
= XFS_B_TO_FSB(mp
, mp
->m_super
->s_maxbytes
);
1584 if (first_unmap_block
== last_block
)
1587 ASSERT(first_unmap_block
< last_block
);
1588 unmap_len
= last_block
- first_unmap_block
+ 1;
1590 xfs_defer_init(&dfops
, &first_block
);
1591 error
= xfs_bunmapi(tp
, ip
,
1592 first_unmap_block
, unmap_len
,
1593 xfs_bmapi_aflag(whichfork
),
1594 XFS_ITRUNC_MAX_EXTENTS
,
1595 &first_block
, &dfops
,
1598 goto out_bmap_cancel
;
1601 * Duplicate the transaction that has the permanent
1602 * reservation and commit the old transaction.
1604 xfs_defer_ijoin(&dfops
, ip
);
1605 error
= xfs_defer_finish(&tp
, &dfops
);
1607 goto out_bmap_cancel
;
1609 error
= xfs_trans_roll_inode(&tp
, ip
);
1614 /* Remove all pending CoW reservations. */
1615 error
= xfs_reflink_cancel_cow_blocks(ip
, &tp
, first_unmap_block
,
1620 xfs_itruncate_clear_reflink_flags(ip
);
1623 * Always re-log the inode so that our permanent transaction can keep
1624 * on rolling it forward in the log.
1626 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1628 trace_xfs_itruncate_extents_end(ip
, new_size
);
1635 * If the bunmapi call encounters an error, return to the caller where
1636 * the transaction can be properly aborted. We just need to make sure
1637 * we're not holding any resources that we were not when we came in.
1639 xfs_defer_cancel(&dfops
);
1647 xfs_mount_t
*mp
= ip
->i_mount
;
1650 if (!S_ISREG(VFS_I(ip
)->i_mode
) || (VFS_I(ip
)->i_mode
== 0))
1653 /* If this is a read-only mount, don't do this (would generate I/O) */
1654 if (mp
->m_flags
& XFS_MOUNT_RDONLY
)
1657 if (!XFS_FORCED_SHUTDOWN(mp
)) {
1661 * If we previously truncated this file and removed old data
1662 * in the process, we want to initiate "early" writeout on
1663 * the last close. This is an attempt to combat the notorious
1664 * NULL files problem which is particularly noticeable from a
1665 * truncate down, buffered (re-)write (delalloc), followed by
1666 * a crash. What we are effectively doing here is
1667 * significantly reducing the time window where we'd otherwise
1668 * be exposed to that problem.
1670 truncated
= xfs_iflags_test_and_clear(ip
, XFS_ITRUNCATED
);
1672 xfs_iflags_clear(ip
, XFS_IDIRTY_RELEASE
);
1673 if (ip
->i_delayed_blks
> 0) {
1674 error
= filemap_flush(VFS_I(ip
)->i_mapping
);
1681 if (VFS_I(ip
)->i_nlink
== 0)
1684 if (xfs_can_free_eofblocks(ip
, false)) {
1687 * Check if the inode is being opened, written and closed
1688 * frequently and we have delayed allocation blocks outstanding
1689 * (e.g. streaming writes from the NFS server), truncating the
1690 * blocks past EOF will cause fragmentation to occur.
1692 * In this case don't do the truncation, but we have to be
1693 * careful how we detect this case. Blocks beyond EOF show up as
1694 * i_delayed_blks even when the inode is clean, so we need to
1695 * truncate them away first before checking for a dirty release.
1696 * Hence on the first dirty close we will still remove the
1697 * speculative allocation, but after that we will leave it in
1700 if (xfs_iflags_test(ip
, XFS_IDIRTY_RELEASE
))
1703 * If we can't get the iolock just skip truncating the blocks
1704 * past EOF because we could deadlock with the mmap_sem
1705 * otherwise. We'll get another chance to drop them once the
1706 * last reference to the inode is dropped, so we'll never leak
1707 * blocks permanently.
1709 if (xfs_ilock_nowait(ip
, XFS_IOLOCK_EXCL
)) {
1710 error
= xfs_free_eofblocks(ip
);
1711 xfs_iunlock(ip
, XFS_IOLOCK_EXCL
);
1716 /* delalloc blocks after truncation means it really is dirty */
1717 if (ip
->i_delayed_blks
)
1718 xfs_iflags_set(ip
, XFS_IDIRTY_RELEASE
);
1724 * xfs_inactive_truncate
1726 * Called to perform a truncate when an inode becomes unlinked.
1729 xfs_inactive_truncate(
1730 struct xfs_inode
*ip
)
1732 struct xfs_mount
*mp
= ip
->i_mount
;
1733 struct xfs_trans
*tp
;
1736 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_itruncate
, 0, 0, 0, &tp
);
1738 ASSERT(XFS_FORCED_SHUTDOWN(mp
));
1742 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
1743 xfs_trans_ijoin(tp
, ip
, 0);
1746 * Log the inode size first to prevent stale data exposure in the event
1747 * of a system crash before the truncate completes. See the related
1748 * comment in xfs_vn_setattr_size() for details.
1750 ip
->i_d
.di_size
= 0;
1751 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1753 error
= xfs_itruncate_extents(&tp
, ip
, XFS_DATA_FORK
, 0);
1755 goto error_trans_cancel
;
1757 ASSERT(ip
->i_d
.di_nextents
== 0);
1759 error
= xfs_trans_commit(tp
);
1763 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1767 xfs_trans_cancel(tp
);
1769 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1774 * xfs_inactive_ifree()
1776 * Perform the inode free when an inode is unlinked.
1780 struct xfs_inode
*ip
)
1782 struct xfs_defer_ops dfops
;
1783 xfs_fsblock_t first_block
;
1784 struct xfs_mount
*mp
= ip
->i_mount
;
1785 struct xfs_trans
*tp
;
1789 * We try to use a per-AG reservation for any block needed by the finobt
1790 * tree, but as the finobt feature predates the per-AG reservation
1791 * support a degraded file system might not have enough space for the
1792 * reservation at mount time. In that case try to dip into the reserved
1795 * Send a warning if the reservation does happen to fail, as the inode
1796 * now remains allocated and sits on the unlinked list until the fs is
1799 if (unlikely(mp
->m_inotbt_nores
)) {
1800 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_ifree
,
1801 XFS_IFREE_SPACE_RES(mp
), 0, XFS_TRANS_RESERVE
,
1804 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_ifree
, 0, 0, 0, &tp
);
1807 if (error
== -ENOSPC
) {
1808 xfs_warn_ratelimited(mp
,
1809 "Failed to remove inode(s) from unlinked list. "
1810 "Please free space, unmount and run xfs_repair.");
1812 ASSERT(XFS_FORCED_SHUTDOWN(mp
));
1817 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
1818 xfs_trans_ijoin(tp
, ip
, 0);
1820 xfs_defer_init(&dfops
, &first_block
);
1821 error
= xfs_ifree(tp
, ip
, &dfops
);
1824 * If we fail to free the inode, shut down. The cancel
1825 * might do that, we need to make sure. Otherwise the
1826 * inode might be lost for a long time or forever.
1828 if (!XFS_FORCED_SHUTDOWN(mp
)) {
1829 xfs_notice(mp
, "%s: xfs_ifree returned error %d",
1831 xfs_force_shutdown(mp
, SHUTDOWN_META_IO_ERROR
);
1833 xfs_trans_cancel(tp
);
1834 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1839 * Credit the quota account(s). The inode is gone.
1841 xfs_trans_mod_dquot_byino(tp
, ip
, XFS_TRANS_DQ_ICOUNT
, -1);
1844 * Just ignore errors at this point. There is nothing we can do except
1845 * to try to keep going. Make sure it's not a silent error.
1847 error
= xfs_defer_finish(&tp
, &dfops
);
1849 xfs_notice(mp
, "%s: xfs_defer_finish returned error %d",
1851 xfs_defer_cancel(&dfops
);
1853 error
= xfs_trans_commit(tp
);
1855 xfs_notice(mp
, "%s: xfs_trans_commit returned error %d",
1858 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1865 * This is called when the vnode reference count for the vnode
1866 * goes to zero. If the file has been unlinked, then it must
1867 * now be truncated. Also, we clear all of the read-ahead state
1868 * kept for the inode here since the file is now closed.
1874 struct xfs_mount
*mp
;
1879 * If the inode is already free, then there can be nothing
1882 if (VFS_I(ip
)->i_mode
== 0) {
1883 ASSERT(ip
->i_df
.if_real_bytes
== 0);
1884 ASSERT(ip
->i_df
.if_broot_bytes
== 0);
1889 ASSERT(!xfs_iflags_test(ip
, XFS_IRECOVERY
));
1891 /* If this is a read-only mount, don't do this (would generate I/O) */
1892 if (mp
->m_flags
& XFS_MOUNT_RDONLY
)
1895 if (VFS_I(ip
)->i_nlink
!= 0) {
1897 * force is true because we are evicting an inode from the
1898 * cache. Post-eof blocks must be freed, lest we end up with
1899 * broken free space accounting.
1901 * Note: don't bother with iolock here since lockdep complains
1902 * about acquiring it in reclaim context. We have the only
1903 * reference to the inode at this point anyways.
1905 if (xfs_can_free_eofblocks(ip
, true))
1906 xfs_free_eofblocks(ip
);
1911 if (S_ISREG(VFS_I(ip
)->i_mode
) &&
1912 (ip
->i_d
.di_size
!= 0 || XFS_ISIZE(ip
) != 0 ||
1913 ip
->i_d
.di_nextents
> 0 || ip
->i_delayed_blks
> 0))
1916 error
= xfs_qm_dqattach(ip
, 0);
1920 if (S_ISLNK(VFS_I(ip
)->i_mode
))
1921 error
= xfs_inactive_symlink(ip
);
1923 error
= xfs_inactive_truncate(ip
);
1928 * If there are attributes associated with the file then blow them away
1929 * now. The code calls a routine that recursively deconstructs the
1930 * attribute fork. If also blows away the in-core attribute fork.
1932 if (XFS_IFORK_Q(ip
)) {
1933 error
= xfs_attr_inactive(ip
);
1939 ASSERT(ip
->i_d
.di_anextents
== 0);
1940 ASSERT(ip
->i_d
.di_forkoff
== 0);
1945 error
= xfs_inactive_ifree(ip
);
1950 * Release the dquots held by inode, if any.
1952 xfs_qm_dqdetach(ip
);
1956 * This is called when the inode's link count goes to 0 or we are creating a
1957 * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be
1958 * set to true as the link count is dropped to zero by the VFS after we've
1959 * created the file successfully, so we have to add it to the unlinked list
1960 * while the link count is non-zero.
1962 * We place the on-disk inode on a list in the AGI. It will be pulled from this
1963 * list when the inode is freed.
1967 struct xfs_trans
*tp
,
1968 struct xfs_inode
*ip
)
1970 xfs_mount_t
*mp
= tp
->t_mountp
;
1980 ASSERT(VFS_I(ip
)->i_mode
!= 0);
1983 * Get the agi buffer first. It ensures lock ordering
1986 error
= xfs_read_agi(mp
, tp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
), &agibp
);
1989 agi
= XFS_BUF_TO_AGI(agibp
);
1992 * Get the index into the agi hash table for the
1993 * list this inode will go on.
1995 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
1997 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
1998 ASSERT(agi
->agi_unlinked
[bucket_index
]);
1999 ASSERT(be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != agino
);
2001 if (agi
->agi_unlinked
[bucket_index
] != cpu_to_be32(NULLAGINO
)) {
2003 * There is already another inode in the bucket we need
2004 * to add ourselves to. Add us at the front of the list.
2005 * Here we put the head pointer into our next pointer,
2006 * and then we fall through to point the head at us.
2008 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &dip
, &ibp
,
2013 ASSERT(dip
->di_next_unlinked
== cpu_to_be32(NULLAGINO
));
2014 dip
->di_next_unlinked
= agi
->agi_unlinked
[bucket_index
];
2015 offset
= ip
->i_imap
.im_boffset
+
2016 offsetof(xfs_dinode_t
, di_next_unlinked
);
2018 /* need to recalc the inode CRC if appropriate */
2019 xfs_dinode_calc_crc(mp
, dip
);
2021 xfs_trans_inode_buf(tp
, ibp
);
2022 xfs_trans_log_buf(tp
, ibp
, offset
,
2023 (offset
+ sizeof(xfs_agino_t
) - 1));
2024 xfs_inobp_check(mp
, ibp
);
2028 * Point the bucket head pointer at the inode being inserted.
2031 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(agino
);
2032 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
2033 (sizeof(xfs_agino_t
) * bucket_index
);
2034 xfs_trans_log_buf(tp
, agibp
, offset
,
2035 (offset
+ sizeof(xfs_agino_t
) - 1));
2040 * Pull the on-disk inode from the AGI unlinked list.
2053 xfs_agnumber_t agno
;
2055 xfs_agino_t next_agino
;
2056 xfs_buf_t
*last_ibp
;
2057 xfs_dinode_t
*last_dip
= NULL
;
2059 int offset
, last_offset
= 0;
2063 agno
= XFS_INO_TO_AGNO(mp
, ip
->i_ino
);
2066 * Get the agi buffer first. It ensures lock ordering
2069 error
= xfs_read_agi(mp
, tp
, agno
, &agibp
);
2073 agi
= XFS_BUF_TO_AGI(agibp
);
2076 * Get the index into the agi hash table for the
2077 * list this inode will go on.
2079 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
2081 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
2082 ASSERT(agi
->agi_unlinked
[bucket_index
] != cpu_to_be32(NULLAGINO
));
2083 ASSERT(agi
->agi_unlinked
[bucket_index
]);
2085 if (be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) == agino
) {
2087 * We're at the head of the list. Get the inode's on-disk
2088 * buffer to see if there is anyone after us on the list.
2089 * Only modify our next pointer if it is not already NULLAGINO.
2090 * This saves us the overhead of dealing with the buffer when
2091 * there is no need to change it.
2093 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &dip
, &ibp
,
2096 xfs_warn(mp
, "%s: xfs_imap_to_bp returned error %d.",
2100 next_agino
= be32_to_cpu(dip
->di_next_unlinked
);
2101 ASSERT(next_agino
!= 0);
2102 if (next_agino
!= NULLAGINO
) {
2103 dip
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
2104 offset
= ip
->i_imap
.im_boffset
+
2105 offsetof(xfs_dinode_t
, di_next_unlinked
);
2107 /* need to recalc the inode CRC if appropriate */
2108 xfs_dinode_calc_crc(mp
, dip
);
2110 xfs_trans_inode_buf(tp
, ibp
);
2111 xfs_trans_log_buf(tp
, ibp
, offset
,
2112 (offset
+ sizeof(xfs_agino_t
) - 1));
2113 xfs_inobp_check(mp
, ibp
);
2115 xfs_trans_brelse(tp
, ibp
);
2118 * Point the bucket head pointer at the next inode.
2120 ASSERT(next_agino
!= 0);
2121 ASSERT(next_agino
!= agino
);
2122 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(next_agino
);
2123 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
2124 (sizeof(xfs_agino_t
) * bucket_index
);
2125 xfs_trans_log_buf(tp
, agibp
, offset
,
2126 (offset
+ sizeof(xfs_agino_t
) - 1));
2129 * We need to search the list for the inode being freed.
2131 next_agino
= be32_to_cpu(agi
->agi_unlinked
[bucket_index
]);
2133 while (next_agino
!= agino
) {
2134 struct xfs_imap imap
;
2137 xfs_trans_brelse(tp
, last_ibp
);
2140 next_ino
= XFS_AGINO_TO_INO(mp
, agno
, next_agino
);
2142 error
= xfs_imap(mp
, tp
, next_ino
, &imap
, 0);
2145 "%s: xfs_imap returned error %d.",
2150 error
= xfs_imap_to_bp(mp
, tp
, &imap
, &last_dip
,
2154 "%s: xfs_imap_to_bp returned error %d.",
2159 last_offset
= imap
.im_boffset
;
2160 next_agino
= be32_to_cpu(last_dip
->di_next_unlinked
);
2161 ASSERT(next_agino
!= NULLAGINO
);
2162 ASSERT(next_agino
!= 0);
2166 * Now last_ibp points to the buffer previous to us on the
2167 * unlinked list. Pull us from the list.
2169 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &dip
, &ibp
,
2172 xfs_warn(mp
, "%s: xfs_imap_to_bp(2) returned error %d.",
2176 next_agino
= be32_to_cpu(dip
->di_next_unlinked
);
2177 ASSERT(next_agino
!= 0);
2178 ASSERT(next_agino
!= agino
);
2179 if (next_agino
!= NULLAGINO
) {
2180 dip
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
2181 offset
= ip
->i_imap
.im_boffset
+
2182 offsetof(xfs_dinode_t
, di_next_unlinked
);
2184 /* need to recalc the inode CRC if appropriate */
2185 xfs_dinode_calc_crc(mp
, dip
);
2187 xfs_trans_inode_buf(tp
, ibp
);
2188 xfs_trans_log_buf(tp
, ibp
, offset
,
2189 (offset
+ sizeof(xfs_agino_t
) - 1));
2190 xfs_inobp_check(mp
, ibp
);
2192 xfs_trans_brelse(tp
, ibp
);
2195 * Point the previous inode on the list to the next inode.
2197 last_dip
->di_next_unlinked
= cpu_to_be32(next_agino
);
2198 ASSERT(next_agino
!= 0);
2199 offset
= last_offset
+ offsetof(xfs_dinode_t
, di_next_unlinked
);
2201 /* need to recalc the inode CRC if appropriate */
2202 xfs_dinode_calc_crc(mp
, last_dip
);
2204 xfs_trans_inode_buf(tp
, last_ibp
);
2205 xfs_trans_log_buf(tp
, last_ibp
, offset
,
2206 (offset
+ sizeof(xfs_agino_t
) - 1));
2207 xfs_inobp_check(mp
, last_ibp
);
2213 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2214 * inodes that are in memory - they all must be marked stale and attached to
2215 * the cluster buffer.
2219 xfs_inode_t
*free_ip
,
2221 struct xfs_icluster
*xic
)
2223 xfs_mount_t
*mp
= free_ip
->i_mount
;
2224 int blks_per_cluster
;
2225 int inodes_per_cluster
;
2232 xfs_inode_log_item_t
*iip
;
2233 struct xfs_log_item
*lip
;
2234 struct xfs_perag
*pag
;
2237 inum
= xic
->first_ino
;
2238 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, inum
));
2239 blks_per_cluster
= xfs_icluster_size_fsb(mp
);
2240 inodes_per_cluster
= blks_per_cluster
<< mp
->m_sb
.sb_inopblog
;
2241 nbufs
= mp
->m_ialloc_blks
/ blks_per_cluster
;
2243 for (j
= 0; j
< nbufs
; j
++, inum
+= inodes_per_cluster
) {
2245 * The allocation bitmap tells us which inodes of the chunk were
2246 * physically allocated. Skip the cluster if an inode falls into
2249 ioffset
= inum
- xic
->first_ino
;
2250 if ((xic
->alloc
& XFS_INOBT_MASK(ioffset
)) == 0) {
2251 ASSERT(do_mod(ioffset
, inodes_per_cluster
) == 0);
2255 blkno
= XFS_AGB_TO_DADDR(mp
, XFS_INO_TO_AGNO(mp
, inum
),
2256 XFS_INO_TO_AGBNO(mp
, inum
));
2259 * We obtain and lock the backing buffer first in the process
2260 * here, as we have to ensure that any dirty inode that we
2261 * can't get the flush lock on is attached to the buffer.
2262 * If we scan the in-memory inodes first, then buffer IO can
2263 * complete before we get a lock on it, and hence we may fail
2264 * to mark all the active inodes on the buffer stale.
2266 bp
= xfs_trans_get_buf(tp
, mp
->m_ddev_targp
, blkno
,
2267 mp
->m_bsize
* blks_per_cluster
,
2274 * This buffer may not have been correctly initialised as we
2275 * didn't read it from disk. That's not important because we are
2276 * only using to mark the buffer as stale in the log, and to
2277 * attach stale cached inodes on it. That means it will never be
2278 * dispatched for IO. If it is, we want to know about it, and we
2279 * want it to fail. We can acheive this by adding a write
2280 * verifier to the buffer.
2282 bp
->b_ops
= &xfs_inode_buf_ops
;
2285 * Walk the inodes already attached to the buffer and mark them
2286 * stale. These will all have the flush locks held, so an
2287 * in-memory inode walk can't lock them. By marking them all
2288 * stale first, we will not attempt to lock them in the loop
2289 * below as the XFS_ISTALE flag will be set.
2291 list_for_each_entry(lip
, &bp
->b_li_list
, li_bio_list
) {
2292 if (lip
->li_type
== XFS_LI_INODE
) {
2293 iip
= (xfs_inode_log_item_t
*)lip
;
2294 ASSERT(iip
->ili_logged
== 1);
2295 lip
->li_cb
= xfs_istale_done
;
2296 xfs_trans_ail_copy_lsn(mp
->m_ail
,
2297 &iip
->ili_flush_lsn
,
2298 &iip
->ili_item
.li_lsn
);
2299 xfs_iflags_set(iip
->ili_inode
, XFS_ISTALE
);
2305 * For each inode in memory attempt to add it to the inode
2306 * buffer and set it up for being staled on buffer IO
2307 * completion. This is safe as we've locked out tail pushing
2308 * and flushing by locking the buffer.
2310 * We have already marked every inode that was part of a
2311 * transaction stale above, which means there is no point in
2312 * even trying to lock them.
2314 for (i
= 0; i
< inodes_per_cluster
; i
++) {
2317 ip
= radix_tree_lookup(&pag
->pag_ici_root
,
2318 XFS_INO_TO_AGINO(mp
, (inum
+ i
)));
2320 /* Inode not in memory, nothing to do */
2327 * because this is an RCU protected lookup, we could
2328 * find a recently freed or even reallocated inode
2329 * during the lookup. We need to check under the
2330 * i_flags_lock for a valid inode here. Skip it if it
2331 * is not valid, the wrong inode or stale.
2333 spin_lock(&ip
->i_flags_lock
);
2334 if (ip
->i_ino
!= inum
+ i
||
2335 __xfs_iflags_test(ip
, XFS_ISTALE
)) {
2336 spin_unlock(&ip
->i_flags_lock
);
2340 spin_unlock(&ip
->i_flags_lock
);
2343 * Don't try to lock/unlock the current inode, but we
2344 * _cannot_ skip the other inodes that we did not find
2345 * in the list attached to the buffer and are not
2346 * already marked stale. If we can't lock it, back off
2349 if (ip
!= free_ip
) {
2350 if (!xfs_ilock_nowait(ip
, XFS_ILOCK_EXCL
)) {
2357 * Check the inode number again in case we're
2358 * racing with freeing in xfs_reclaim_inode().
2359 * See the comments in that function for more
2360 * information as to why the initial check is
2363 if (ip
->i_ino
!= inum
+ i
) {
2364 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2372 xfs_iflags_set(ip
, XFS_ISTALE
);
2375 * we don't need to attach clean inodes or those only
2376 * with unlogged changes (which we throw away, anyway).
2379 if (!iip
|| xfs_inode_clean(ip
)) {
2380 ASSERT(ip
!= free_ip
);
2382 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2386 iip
->ili_last_fields
= iip
->ili_fields
;
2387 iip
->ili_fields
= 0;
2388 iip
->ili_fsync_fields
= 0;
2389 iip
->ili_logged
= 1;
2390 xfs_trans_ail_copy_lsn(mp
->m_ail
, &iip
->ili_flush_lsn
,
2391 &iip
->ili_item
.li_lsn
);
2393 xfs_buf_attach_iodone(bp
, xfs_istale_done
,
2397 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2400 xfs_trans_stale_inode_buf(tp
, bp
);
2401 xfs_trans_binval(tp
, bp
);
2409 * Free any local-format buffers sitting around before we reset to
2413 xfs_ifree_local_data(
2414 struct xfs_inode
*ip
,
2417 struct xfs_ifork
*ifp
;
2419 if (XFS_IFORK_FORMAT(ip
, whichfork
) != XFS_DINODE_FMT_LOCAL
)
2422 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2423 xfs_idata_realloc(ip
, -ifp
->if_bytes
, whichfork
);
2427 * This is called to return an inode to the inode free list.
2428 * The inode should already be truncated to 0 length and have
2429 * no pages associated with it. This routine also assumes that
2430 * the inode is already a part of the transaction.
2432 * The on-disk copy of the inode will have been added to the list
2433 * of unlinked inodes in the AGI. We need to remove the inode from
2434 * that list atomically with respect to freeing it here.
2440 struct xfs_defer_ops
*dfops
)
2443 struct xfs_icluster xic
= { 0 };
2445 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
2446 ASSERT(VFS_I(ip
)->i_nlink
== 0);
2447 ASSERT(ip
->i_d
.di_nextents
== 0);
2448 ASSERT(ip
->i_d
.di_anextents
== 0);
2449 ASSERT(ip
->i_d
.di_size
== 0 || !S_ISREG(VFS_I(ip
)->i_mode
));
2450 ASSERT(ip
->i_d
.di_nblocks
== 0);
2453 * Pull the on-disk inode from the AGI unlinked list.
2455 error
= xfs_iunlink_remove(tp
, ip
);
2459 error
= xfs_difree(tp
, ip
->i_ino
, dfops
, &xic
);
2463 xfs_ifree_local_data(ip
, XFS_DATA_FORK
);
2464 xfs_ifree_local_data(ip
, XFS_ATTR_FORK
);
2466 VFS_I(ip
)->i_mode
= 0; /* mark incore inode as free */
2467 ip
->i_d
.di_flags
= 0;
2468 ip
->i_d
.di_flags2
= 0;
2469 ip
->i_d
.di_dmevmask
= 0;
2470 ip
->i_d
.di_forkoff
= 0; /* mark the attr fork not in use */
2471 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
2472 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
2474 * Bump the generation count so no one will be confused
2475 * by reincarnations of this inode.
2477 VFS_I(ip
)->i_generation
++;
2478 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
2481 error
= xfs_ifree_cluster(ip
, tp
, &xic
);
2487 * This is called to unpin an inode. The caller must have the inode locked
2488 * in at least shared mode so that the buffer cannot be subsequently pinned
2489 * once someone is waiting for it to be unpinned.
2493 struct xfs_inode
*ip
)
2495 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2497 trace_xfs_inode_unpin_nowait(ip
, _RET_IP_
);
2499 /* Give the log a push to start the unpinning I/O */
2500 xfs_log_force_lsn(ip
->i_mount
, ip
->i_itemp
->ili_last_lsn
, 0);
2506 struct xfs_inode
*ip
)
2508 wait_queue_head_t
*wq
= bit_waitqueue(&ip
->i_flags
, __XFS_IPINNED_BIT
);
2509 DEFINE_WAIT_BIT(wait
, &ip
->i_flags
, __XFS_IPINNED_BIT
);
2514 prepare_to_wait(wq
, &wait
.wq_entry
, TASK_UNINTERRUPTIBLE
);
2515 if (xfs_ipincount(ip
))
2517 } while (xfs_ipincount(ip
));
2518 finish_wait(wq
, &wait
.wq_entry
);
2523 struct xfs_inode
*ip
)
2525 if (xfs_ipincount(ip
))
2526 __xfs_iunpin_wait(ip
);
2530 * Removing an inode from the namespace involves removing the directory entry
2531 * and dropping the link count on the inode. Removing the directory entry can
2532 * result in locking an AGF (directory blocks were freed) and removing a link
2533 * count can result in placing the inode on an unlinked list which results in
2536 * The big problem here is that we have an ordering constraint on AGF and AGI
2537 * locking - inode allocation locks the AGI, then can allocate a new extent for
2538 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2539 * removes the inode from the unlinked list, requiring that we lock the AGI
2540 * first, and then freeing the inode can result in an inode chunk being freed
2541 * and hence freeing disk space requiring that we lock an AGF.
2543 * Hence the ordering that is imposed by other parts of the code is AGI before
2544 * AGF. This means we cannot remove the directory entry before we drop the inode
2545 * reference count and put it on the unlinked list as this results in a lock
2546 * order of AGF then AGI, and this can deadlock against inode allocation and
2547 * freeing. Therefore we must drop the link counts before we remove the
2550 * This is still safe from a transactional point of view - it is not until we
2551 * get to xfs_defer_finish() that we have the possibility of multiple
2552 * transactions in this operation. Hence as long as we remove the directory
2553 * entry and drop the link count in the first transaction of the remove
2554 * operation, there are no transactional constraints on the ordering here.
2559 struct xfs_name
*name
,
2562 xfs_mount_t
*mp
= dp
->i_mount
;
2563 xfs_trans_t
*tp
= NULL
;
2564 int is_dir
= S_ISDIR(VFS_I(ip
)->i_mode
);
2566 struct xfs_defer_ops dfops
;
2567 xfs_fsblock_t first_block
;
2570 trace_xfs_remove(dp
, name
);
2572 if (XFS_FORCED_SHUTDOWN(mp
))
2575 error
= xfs_qm_dqattach(dp
, 0);
2579 error
= xfs_qm_dqattach(ip
, 0);
2584 * We try to get the real space reservation first,
2585 * allowing for directory btree deletion(s) implying
2586 * possible bmap insert(s). If we can't get the space
2587 * reservation then we use 0 instead, and avoid the bmap
2588 * btree insert(s) in the directory code by, if the bmap
2589 * insert tries to happen, instead trimming the LAST
2590 * block from the directory.
2592 resblks
= XFS_REMOVE_SPACE_RES(mp
);
2593 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_remove
, resblks
, 0, 0, &tp
);
2594 if (error
== -ENOSPC
) {
2596 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_remove
, 0, 0, 0,
2600 ASSERT(error
!= -ENOSPC
);
2604 xfs_lock_two_inodes(dp
, XFS_ILOCK_EXCL
, ip
, XFS_ILOCK_EXCL
);
2606 xfs_trans_ijoin(tp
, dp
, XFS_ILOCK_EXCL
);
2607 xfs_trans_ijoin(tp
, ip
, XFS_ILOCK_EXCL
);
2610 * If we're removing a directory perform some additional validation.
2613 ASSERT(VFS_I(ip
)->i_nlink
>= 2);
2614 if (VFS_I(ip
)->i_nlink
!= 2) {
2616 goto out_trans_cancel
;
2618 if (!xfs_dir_isempty(ip
)) {
2620 goto out_trans_cancel
;
2623 /* Drop the link from ip's "..". */
2624 error
= xfs_droplink(tp
, dp
);
2626 goto out_trans_cancel
;
2628 /* Drop the "." link from ip to self. */
2629 error
= xfs_droplink(tp
, ip
);
2631 goto out_trans_cancel
;
2634 * When removing a non-directory we need to log the parent
2635 * inode here. For a directory this is done implicitly
2636 * by the xfs_droplink call for the ".." entry.
2638 xfs_trans_log_inode(tp
, dp
, XFS_ILOG_CORE
);
2640 xfs_trans_ichgtime(tp
, dp
, XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
2642 /* Drop the link from dp to ip. */
2643 error
= xfs_droplink(tp
, ip
);
2645 goto out_trans_cancel
;
2647 xfs_defer_init(&dfops
, &first_block
);
2648 error
= xfs_dir_removename(tp
, dp
, name
, ip
->i_ino
,
2649 &first_block
, &dfops
, resblks
);
2651 ASSERT(error
!= -ENOENT
);
2652 goto out_bmap_cancel
;
2656 * If this is a synchronous mount, make sure that the
2657 * remove transaction goes to disk before returning to
2660 if (mp
->m_flags
& (XFS_MOUNT_WSYNC
|XFS_MOUNT_DIRSYNC
))
2661 xfs_trans_set_sync(tp
);
2663 error
= xfs_defer_finish(&tp
, &dfops
);
2665 goto out_bmap_cancel
;
2667 error
= xfs_trans_commit(tp
);
2671 if (is_dir
&& xfs_inode_is_filestream(ip
))
2672 xfs_filestream_deassociate(ip
);
2677 xfs_defer_cancel(&dfops
);
2679 xfs_trans_cancel(tp
);
2685 * Enter all inodes for a rename transaction into a sorted array.
2687 #define __XFS_SORT_INODES 5
2689 xfs_sort_for_rename(
2690 struct xfs_inode
*dp1
, /* in: old (source) directory inode */
2691 struct xfs_inode
*dp2
, /* in: new (target) directory inode */
2692 struct xfs_inode
*ip1
, /* in: inode of old entry */
2693 struct xfs_inode
*ip2
, /* in: inode of new entry */
2694 struct xfs_inode
*wip
, /* in: whiteout inode */
2695 struct xfs_inode
**i_tab
,/* out: sorted array of inodes */
2696 int *num_inodes
) /* in/out: inodes in array */
2700 ASSERT(*num_inodes
== __XFS_SORT_INODES
);
2701 memset(i_tab
, 0, *num_inodes
* sizeof(struct xfs_inode
*));
2704 * i_tab contains a list of pointers to inodes. We initialize
2705 * the table here & we'll sort it. We will then use it to
2706 * order the acquisition of the inode locks.
2708 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2721 * Sort the elements via bubble sort. (Remember, there are at
2722 * most 5 elements to sort, so this is adequate.)
2724 for (i
= 0; i
< *num_inodes
; i
++) {
2725 for (j
= 1; j
< *num_inodes
; j
++) {
2726 if (i_tab
[j
]->i_ino
< i_tab
[j
-1]->i_ino
) {
2727 struct xfs_inode
*temp
= i_tab
[j
];
2728 i_tab
[j
] = i_tab
[j
-1];
2737 struct xfs_trans
*tp
,
2738 struct xfs_defer_ops
*dfops
)
2743 * If this is a synchronous mount, make sure that the rename transaction
2744 * goes to disk before returning to the user.
2746 if (tp
->t_mountp
->m_flags
& (XFS_MOUNT_WSYNC
|XFS_MOUNT_DIRSYNC
))
2747 xfs_trans_set_sync(tp
);
2749 error
= xfs_defer_finish(&tp
, dfops
);
2751 xfs_defer_cancel(dfops
);
2752 xfs_trans_cancel(tp
);
2756 return xfs_trans_commit(tp
);
2760 * xfs_cross_rename()
2762 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2766 struct xfs_trans
*tp
,
2767 struct xfs_inode
*dp1
,
2768 struct xfs_name
*name1
,
2769 struct xfs_inode
*ip1
,
2770 struct xfs_inode
*dp2
,
2771 struct xfs_name
*name2
,
2772 struct xfs_inode
*ip2
,
2773 struct xfs_defer_ops
*dfops
,
2774 xfs_fsblock_t
*first_block
,
2782 /* Swap inode number for dirent in first parent */
2783 error
= xfs_dir_replace(tp
, dp1
, name1
,
2785 first_block
, dfops
, spaceres
);
2787 goto out_trans_abort
;
2789 /* Swap inode number for dirent in second parent */
2790 error
= xfs_dir_replace(tp
, dp2
, name2
,
2792 first_block
, dfops
, spaceres
);
2794 goto out_trans_abort
;
2797 * If we're renaming one or more directories across different parents,
2798 * update the respective ".." entries (and link counts) to match the new
2802 dp2_flags
= XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
;
2804 if (S_ISDIR(VFS_I(ip2
)->i_mode
)) {
2805 error
= xfs_dir_replace(tp
, ip2
, &xfs_name_dotdot
,
2806 dp1
->i_ino
, first_block
,
2809 goto out_trans_abort
;
2811 /* transfer ip2 ".." reference to dp1 */
2812 if (!S_ISDIR(VFS_I(ip1
)->i_mode
)) {
2813 error
= xfs_droplink(tp
, dp2
);
2815 goto out_trans_abort
;
2816 error
= xfs_bumplink(tp
, dp1
);
2818 goto out_trans_abort
;
2822 * Although ip1 isn't changed here, userspace needs
2823 * to be warned about the change, so that applications
2824 * relying on it (like backup ones), will properly
2827 ip1_flags
|= XFS_ICHGTIME_CHG
;
2828 ip2_flags
|= XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
;
2831 if (S_ISDIR(VFS_I(ip1
)->i_mode
)) {
2832 error
= xfs_dir_replace(tp
, ip1
, &xfs_name_dotdot
,
2833 dp2
->i_ino
, first_block
,
2836 goto out_trans_abort
;
2838 /* transfer ip1 ".." reference to dp2 */
2839 if (!S_ISDIR(VFS_I(ip2
)->i_mode
)) {
2840 error
= xfs_droplink(tp
, dp1
);
2842 goto out_trans_abort
;
2843 error
= xfs_bumplink(tp
, dp2
);
2845 goto out_trans_abort
;
2849 * Although ip2 isn't changed here, userspace needs
2850 * to be warned about the change, so that applications
2851 * relying on it (like backup ones), will properly
2854 ip1_flags
|= XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
;
2855 ip2_flags
|= XFS_ICHGTIME_CHG
;
2860 xfs_trans_ichgtime(tp
, ip1
, ip1_flags
);
2861 xfs_trans_log_inode(tp
, ip1
, XFS_ILOG_CORE
);
2864 xfs_trans_ichgtime(tp
, ip2
, ip2_flags
);
2865 xfs_trans_log_inode(tp
, ip2
, XFS_ILOG_CORE
);
2868 xfs_trans_ichgtime(tp
, dp2
, dp2_flags
);
2869 xfs_trans_log_inode(tp
, dp2
, XFS_ILOG_CORE
);
2871 xfs_trans_ichgtime(tp
, dp1
, XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
2872 xfs_trans_log_inode(tp
, dp1
, XFS_ILOG_CORE
);
2873 return xfs_finish_rename(tp
, dfops
);
2876 xfs_defer_cancel(dfops
);
2877 xfs_trans_cancel(tp
);
2882 * xfs_rename_alloc_whiteout()
2884 * Return a referenced, unlinked, unlocked inode that that can be used as a
2885 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2886 * crash between allocating the inode and linking it into the rename transaction
2887 * recovery will free the inode and we won't leak it.
2890 xfs_rename_alloc_whiteout(
2891 struct xfs_inode
*dp
,
2892 struct xfs_inode
**wip
)
2894 struct xfs_inode
*tmpfile
;
2897 error
= xfs_create_tmpfile(dp
, NULL
, S_IFCHR
| WHITEOUT_MODE
, &tmpfile
);
2902 * Prepare the tmpfile inode as if it were created through the VFS.
2903 * Otherwise, the link increment paths will complain about nlink 0->1.
2904 * Drop the link count as done by d_tmpfile(), complete the inode setup
2905 * and flag it as linkable.
2907 drop_nlink(VFS_I(tmpfile
));
2908 xfs_setup_iops(tmpfile
);
2909 xfs_finish_inode_setup(tmpfile
);
2910 VFS_I(tmpfile
)->i_state
|= I_LINKABLE
;
2921 struct xfs_inode
*src_dp
,
2922 struct xfs_name
*src_name
,
2923 struct xfs_inode
*src_ip
,
2924 struct xfs_inode
*target_dp
,
2925 struct xfs_name
*target_name
,
2926 struct xfs_inode
*target_ip
,
2929 struct xfs_mount
*mp
= src_dp
->i_mount
;
2930 struct xfs_trans
*tp
;
2931 struct xfs_defer_ops dfops
;
2932 xfs_fsblock_t first_block
;
2933 struct xfs_inode
*wip
= NULL
; /* whiteout inode */
2934 struct xfs_inode
*inodes
[__XFS_SORT_INODES
];
2935 int num_inodes
= __XFS_SORT_INODES
;
2936 bool new_parent
= (src_dp
!= target_dp
);
2937 bool src_is_directory
= S_ISDIR(VFS_I(src_ip
)->i_mode
);
2941 trace_xfs_rename(src_dp
, target_dp
, src_name
, target_name
);
2943 if ((flags
& RENAME_EXCHANGE
) && !target_ip
)
2947 * If we are doing a whiteout operation, allocate the whiteout inode
2948 * we will be placing at the target and ensure the type is set
2951 if (flags
& RENAME_WHITEOUT
) {
2952 ASSERT(!(flags
& (RENAME_NOREPLACE
| RENAME_EXCHANGE
)));
2953 error
= xfs_rename_alloc_whiteout(target_dp
, &wip
);
2957 /* setup target dirent info as whiteout */
2958 src_name
->type
= XFS_DIR3_FT_CHRDEV
;
2961 xfs_sort_for_rename(src_dp
, target_dp
, src_ip
, target_ip
, wip
,
2962 inodes
, &num_inodes
);
2964 spaceres
= XFS_RENAME_SPACE_RES(mp
, target_name
->len
);
2965 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_rename
, spaceres
, 0, 0, &tp
);
2966 if (error
== -ENOSPC
) {
2968 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_rename
, 0, 0, 0,
2972 goto out_release_wip
;
2975 * Attach the dquots to the inodes
2977 error
= xfs_qm_vop_rename_dqattach(inodes
);
2979 goto out_trans_cancel
;
2982 * Lock all the participating inodes. Depending upon whether
2983 * the target_name exists in the target directory, and
2984 * whether the target directory is the same as the source
2985 * directory, we can lock from 2 to 4 inodes.
2987 xfs_lock_inodes(inodes
, num_inodes
, XFS_ILOCK_EXCL
);
2990 * Join all the inodes to the transaction. From this point on,
2991 * we can rely on either trans_commit or trans_cancel to unlock
2994 xfs_trans_ijoin(tp
, src_dp
, XFS_ILOCK_EXCL
);
2996 xfs_trans_ijoin(tp
, target_dp
, XFS_ILOCK_EXCL
);
2997 xfs_trans_ijoin(tp
, src_ip
, XFS_ILOCK_EXCL
);
2999 xfs_trans_ijoin(tp
, target_ip
, XFS_ILOCK_EXCL
);
3001 xfs_trans_ijoin(tp
, wip
, XFS_ILOCK_EXCL
);
3004 * If we are using project inheritance, we only allow renames
3005 * into our tree when the project IDs are the same; else the
3006 * tree quota mechanism would be circumvented.
3008 if (unlikely((target_dp
->i_d
.di_flags
& XFS_DIFLAG_PROJINHERIT
) &&
3009 (xfs_get_projid(target_dp
) != xfs_get_projid(src_ip
)))) {
3011 goto out_trans_cancel
;
3014 xfs_defer_init(&dfops
, &first_block
);
3016 /* RENAME_EXCHANGE is unique from here on. */
3017 if (flags
& RENAME_EXCHANGE
)
3018 return xfs_cross_rename(tp
, src_dp
, src_name
, src_ip
,
3019 target_dp
, target_name
, target_ip
,
3020 &dfops
, &first_block
, spaceres
);
3023 * Set up the target.
3025 if (target_ip
== NULL
) {
3027 * If there's no space reservation, check the entry will
3028 * fit before actually inserting it.
3031 error
= xfs_dir_canenter(tp
, target_dp
, target_name
);
3033 goto out_trans_cancel
;
3036 * If target does not exist and the rename crosses
3037 * directories, adjust the target directory link count
3038 * to account for the ".." reference from the new entry.
3040 error
= xfs_dir_createname(tp
, target_dp
, target_name
,
3041 src_ip
->i_ino
, &first_block
,
3044 goto out_bmap_cancel
;
3046 xfs_trans_ichgtime(tp
, target_dp
,
3047 XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
3049 if (new_parent
&& src_is_directory
) {
3050 error
= xfs_bumplink(tp
, target_dp
);
3052 goto out_bmap_cancel
;
3054 } else { /* target_ip != NULL */
3056 * If target exists and it's a directory, check that both
3057 * target and source are directories and that target can be
3058 * destroyed, or that neither is a directory.
3060 if (S_ISDIR(VFS_I(target_ip
)->i_mode
)) {
3062 * Make sure target dir is empty.
3064 if (!(xfs_dir_isempty(target_ip
)) ||
3065 (VFS_I(target_ip
)->i_nlink
> 2)) {
3067 goto out_trans_cancel
;
3072 * Link the source inode under the target name.
3073 * If the source inode is a directory and we are moving
3074 * it across directories, its ".." entry will be
3075 * inconsistent until we replace that down below.
3077 * In case there is already an entry with the same
3078 * name at the destination directory, remove it first.
3080 error
= xfs_dir_replace(tp
, target_dp
, target_name
,
3082 &first_block
, &dfops
, spaceres
);
3084 goto out_bmap_cancel
;
3086 xfs_trans_ichgtime(tp
, target_dp
,
3087 XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
3090 * Decrement the link count on the target since the target
3091 * dir no longer points to it.
3093 error
= xfs_droplink(tp
, target_ip
);
3095 goto out_bmap_cancel
;
3097 if (src_is_directory
) {
3099 * Drop the link from the old "." entry.
3101 error
= xfs_droplink(tp
, target_ip
);
3103 goto out_bmap_cancel
;
3105 } /* target_ip != NULL */
3108 * Remove the source.
3110 if (new_parent
&& src_is_directory
) {
3112 * Rewrite the ".." entry to point to the new
3115 error
= xfs_dir_replace(tp
, src_ip
, &xfs_name_dotdot
,
3117 &first_block
, &dfops
, spaceres
);
3118 ASSERT(error
!= -EEXIST
);
3120 goto out_bmap_cancel
;
3124 * We always want to hit the ctime on the source inode.
3126 * This isn't strictly required by the standards since the source
3127 * inode isn't really being changed, but old unix file systems did
3128 * it and some incremental backup programs won't work without it.
3130 xfs_trans_ichgtime(tp
, src_ip
, XFS_ICHGTIME_CHG
);
3131 xfs_trans_log_inode(tp
, src_ip
, XFS_ILOG_CORE
);
3134 * Adjust the link count on src_dp. This is necessary when
3135 * renaming a directory, either within one parent when
3136 * the target existed, or across two parent directories.
3138 if (src_is_directory
&& (new_parent
|| target_ip
!= NULL
)) {
3141 * Decrement link count on src_directory since the
3142 * entry that's moved no longer points to it.
3144 error
= xfs_droplink(tp
, src_dp
);
3146 goto out_bmap_cancel
;
3150 * For whiteouts, we only need to update the source dirent with the
3151 * inode number of the whiteout inode rather than removing it
3155 error
= xfs_dir_replace(tp
, src_dp
, src_name
, wip
->i_ino
,
3156 &first_block
, &dfops
, spaceres
);
3158 error
= xfs_dir_removename(tp
, src_dp
, src_name
, src_ip
->i_ino
,
3159 &first_block
, &dfops
, spaceres
);
3161 goto out_bmap_cancel
;
3164 * For whiteouts, we need to bump the link count on the whiteout inode.
3165 * This means that failures all the way up to this point leave the inode
3166 * on the unlinked list and so cleanup is a simple matter of dropping
3167 * the remaining reference to it. If we fail here after bumping the link
3168 * count, we're shutting down the filesystem so we'll never see the
3169 * intermediate state on disk.
3172 ASSERT(VFS_I(wip
)->i_nlink
== 0);
3173 error
= xfs_bumplink(tp
, wip
);
3175 goto out_bmap_cancel
;
3176 error
= xfs_iunlink_remove(tp
, wip
);
3178 goto out_bmap_cancel
;
3179 xfs_trans_log_inode(tp
, wip
, XFS_ILOG_CORE
);
3182 * Now we have a real link, clear the "I'm a tmpfile" state
3183 * flag from the inode so it doesn't accidentally get misused in
3186 VFS_I(wip
)->i_state
&= ~I_LINKABLE
;
3189 xfs_trans_ichgtime(tp
, src_dp
, XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
3190 xfs_trans_log_inode(tp
, src_dp
, XFS_ILOG_CORE
);
3192 xfs_trans_log_inode(tp
, target_dp
, XFS_ILOG_CORE
);
3194 error
= xfs_finish_rename(tp
, &dfops
);
3200 xfs_defer_cancel(&dfops
);
3202 xfs_trans_cancel(tp
);
3211 struct xfs_inode
*ip
,
3214 struct xfs_mount
*mp
= ip
->i_mount
;
3215 struct xfs_perag
*pag
;
3216 unsigned long first_index
, mask
;
3217 unsigned long inodes_per_cluster
;
3219 struct xfs_inode
**cilist
;
3220 struct xfs_inode
*cip
;
3226 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
3228 inodes_per_cluster
= mp
->m_inode_cluster_size
>> mp
->m_sb
.sb_inodelog
;
3229 cilist_size
= inodes_per_cluster
* sizeof(xfs_inode_t
*);
3230 cilist
= kmem_alloc(cilist_size
, KM_MAYFAIL
|KM_NOFS
);
3234 mask
= ~(((mp
->m_inode_cluster_size
>> mp
->m_sb
.sb_inodelog
)) - 1);
3235 first_index
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
) & mask
;
3237 /* really need a gang lookup range call here */
3238 nr_found
= radix_tree_gang_lookup(&pag
->pag_ici_root
, (void**)cilist
,
3239 first_index
, inodes_per_cluster
);
3243 for (i
= 0; i
< nr_found
; i
++) {
3249 * because this is an RCU protected lookup, we could find a
3250 * recently freed or even reallocated inode during the lookup.
3251 * We need to check under the i_flags_lock for a valid inode
3252 * here. Skip it if it is not valid or the wrong inode.
3254 spin_lock(&cip
->i_flags_lock
);
3256 __xfs_iflags_test(cip
, XFS_ISTALE
)) {
3257 spin_unlock(&cip
->i_flags_lock
);
3262 * Once we fall off the end of the cluster, no point checking
3263 * any more inodes in the list because they will also all be
3264 * outside the cluster.
3266 if ((XFS_INO_TO_AGINO(mp
, cip
->i_ino
) & mask
) != first_index
) {
3267 spin_unlock(&cip
->i_flags_lock
);
3270 spin_unlock(&cip
->i_flags_lock
);
3273 * Do an un-protected check to see if the inode is dirty and
3274 * is a candidate for flushing. These checks will be repeated
3275 * later after the appropriate locks are acquired.
3277 if (xfs_inode_clean(cip
) && xfs_ipincount(cip
) == 0)
3281 * Try to get locks. If any are unavailable or it is pinned,
3282 * then this inode cannot be flushed and is skipped.
3285 if (!xfs_ilock_nowait(cip
, XFS_ILOCK_SHARED
))
3287 if (!xfs_iflock_nowait(cip
)) {
3288 xfs_iunlock(cip
, XFS_ILOCK_SHARED
);
3291 if (xfs_ipincount(cip
)) {
3293 xfs_iunlock(cip
, XFS_ILOCK_SHARED
);
3299 * Check the inode number again, just to be certain we are not
3300 * racing with freeing in xfs_reclaim_inode(). See the comments
3301 * in that function for more information as to why the initial
3302 * check is not sufficient.
3306 xfs_iunlock(cip
, XFS_ILOCK_SHARED
);
3311 * arriving here means that this inode can be flushed. First
3312 * re-check that it's dirty before flushing.
3314 if (!xfs_inode_clean(cip
)) {
3316 error
= xfs_iflush_int(cip
, bp
);
3318 xfs_iunlock(cip
, XFS_ILOCK_SHARED
);
3319 goto cluster_corrupt_out
;
3325 xfs_iunlock(cip
, XFS_ILOCK_SHARED
);
3329 XFS_STATS_INC(mp
, xs_icluster_flushcnt
);
3330 XFS_STATS_ADD(mp
, xs_icluster_flushinode
, clcount
);
3341 cluster_corrupt_out
:
3343 * Corruption detected in the clustering loop. Invalidate the
3344 * inode buffer and shut down the filesystem.
3348 * Clean up the buffer. If it was delwri, just release it --
3349 * brelse can handle it with no problems. If not, shut down the
3350 * filesystem before releasing the buffer.
3352 bufwasdelwri
= (bp
->b_flags
& _XBF_DELWRI_Q
);
3356 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
3358 if (!bufwasdelwri
) {
3360 * Just like incore_relse: if we have b_iodone functions,
3361 * mark the buffer as an error and call them. Otherwise
3362 * mark it as stale and brelse.
3365 bp
->b_flags
&= ~XBF_DONE
;
3367 xfs_buf_ioerror(bp
, -EIO
);
3376 * Unlocks the flush lock
3378 xfs_iflush_abort(cip
, false);
3381 return -EFSCORRUPTED
;
3385 * Flush dirty inode metadata into the backing buffer.
3387 * The caller must have the inode lock and the inode flush lock held. The
3388 * inode lock will still be held upon return to the caller, and the inode
3389 * flush lock will be released after the inode has reached the disk.
3391 * The caller must write out the buffer returned in *bpp and release it.
3395 struct xfs_inode
*ip
,
3396 struct xfs_buf
**bpp
)
3398 struct xfs_mount
*mp
= ip
->i_mount
;
3399 struct xfs_buf
*bp
= NULL
;
3400 struct xfs_dinode
*dip
;
3403 XFS_STATS_INC(mp
, xs_iflush_count
);
3405 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
3406 ASSERT(xfs_isiflocked(ip
));
3407 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
3408 ip
->i_d
.di_nextents
> XFS_IFORK_MAXEXT(ip
, XFS_DATA_FORK
));
3412 xfs_iunpin_wait(ip
);
3415 * For stale inodes we cannot rely on the backing buffer remaining
3416 * stale in cache for the remaining life of the stale inode and so
3417 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3418 * inodes below. We have to check this after ensuring the inode is
3419 * unpinned so that it is safe to reclaim the stale inode after the
3422 if (xfs_iflags_test(ip
, XFS_ISTALE
)) {
3428 * This may have been unpinned because the filesystem is shutting
3429 * down forcibly. If that's the case we must not write this inode
3430 * to disk, because the log record didn't make it to disk.
3432 * We also have to remove the log item from the AIL in this case,
3433 * as we wait for an empty AIL as part of the unmount process.
3435 if (XFS_FORCED_SHUTDOWN(mp
)) {
3441 * Get the buffer containing the on-disk inode. We are doing a try-lock
3442 * operation here, so we may get an EAGAIN error. In that case, we
3443 * simply want to return with the inode still dirty.
3445 * If we get any other error, we effectively have a corruption situation
3446 * and we cannot flush the inode, so we treat it the same as failing
3449 error
= xfs_imap_to_bp(mp
, NULL
, &ip
->i_imap
, &dip
, &bp
, XBF_TRYLOCK
,
3451 if (error
== -EAGAIN
) {
3459 * First flush out the inode that xfs_iflush was called with.
3461 error
= xfs_iflush_int(ip
, bp
);
3466 * If the buffer is pinned then push on the log now so we won't
3467 * get stuck waiting in the write for too long.
3469 if (xfs_buf_ispinned(bp
))
3470 xfs_log_force(mp
, 0);
3474 * see if other inodes can be gathered into this write
3476 error
= xfs_iflush_cluster(ip
, bp
);
3478 goto cluster_corrupt_out
;
3486 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
3487 cluster_corrupt_out
:
3488 error
= -EFSCORRUPTED
;
3491 * Unlocks the flush lock
3493 xfs_iflush_abort(ip
, false);
3498 * If there are inline format data / attr forks attached to this inode,
3499 * make sure they're not corrupt.
3502 xfs_inode_verify_forks(
3503 struct xfs_inode
*ip
)
3505 struct xfs_ifork
*ifp
;
3508 fa
= xfs_ifork_verify_data(ip
, &xfs_default_ifork_ops
);
3510 ifp
= XFS_IFORK_PTR(ip
, XFS_DATA_FORK
);
3511 xfs_inode_verifier_error(ip
, -EFSCORRUPTED
, "data fork",
3512 ifp
->if_u1
.if_data
, ifp
->if_bytes
, fa
);
3516 fa
= xfs_ifork_verify_attr(ip
, &xfs_default_ifork_ops
);
3518 ifp
= XFS_IFORK_PTR(ip
, XFS_ATTR_FORK
);
3519 xfs_inode_verifier_error(ip
, -EFSCORRUPTED
, "attr fork",
3520 ifp
? ifp
->if_u1
.if_data
: NULL
,
3521 ifp
? ifp
->if_bytes
: 0, fa
);
3529 struct xfs_inode
*ip
,
3532 struct xfs_inode_log_item
*iip
= ip
->i_itemp
;
3533 struct xfs_dinode
*dip
;
3534 struct xfs_mount
*mp
= ip
->i_mount
;
3536 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
3537 ASSERT(xfs_isiflocked(ip
));
3538 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
3539 ip
->i_d
.di_nextents
> XFS_IFORK_MAXEXT(ip
, XFS_DATA_FORK
));
3540 ASSERT(iip
!= NULL
&& iip
->ili_fields
!= 0);
3541 ASSERT(ip
->i_d
.di_version
> 1);
3543 /* set *dip = inode's place in the buffer */
3544 dip
= xfs_buf_offset(bp
, ip
->i_imap
.im_boffset
);
3546 if (XFS_TEST_ERROR(dip
->di_magic
!= cpu_to_be16(XFS_DINODE_MAGIC
),
3547 mp
, XFS_ERRTAG_IFLUSH_1
)) {
3548 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
3549 "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT
,
3550 __func__
, ip
->i_ino
, be16_to_cpu(dip
->di_magic
), dip
);
3553 if (S_ISREG(VFS_I(ip
)->i_mode
)) {
3555 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3556 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
),
3557 mp
, XFS_ERRTAG_IFLUSH_3
)) {
3558 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
3559 "%s: Bad regular inode %Lu, ptr "PTR_FMT
,
3560 __func__
, ip
->i_ino
, ip
);
3563 } else if (S_ISDIR(VFS_I(ip
)->i_mode
)) {
3565 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3566 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
) &&
3567 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_LOCAL
),
3568 mp
, XFS_ERRTAG_IFLUSH_4
)) {
3569 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
3570 "%s: Bad directory inode %Lu, ptr "PTR_FMT
,
3571 __func__
, ip
->i_ino
, ip
);
3575 if (XFS_TEST_ERROR(ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
>
3576 ip
->i_d
.di_nblocks
, mp
, XFS_ERRTAG_IFLUSH_5
)) {
3577 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
3578 "%s: detected corrupt incore inode %Lu, "
3579 "total extents = %d, nblocks = %Ld, ptr "PTR_FMT
,
3580 __func__
, ip
->i_ino
,
3581 ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
,
3582 ip
->i_d
.di_nblocks
, ip
);
3585 if (XFS_TEST_ERROR(ip
->i_d
.di_forkoff
> mp
->m_sb
.sb_inodesize
,
3586 mp
, XFS_ERRTAG_IFLUSH_6
)) {
3587 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
3588 "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT
,
3589 __func__
, ip
->i_ino
, ip
->i_d
.di_forkoff
, ip
);
3594 * Inode item log recovery for v2 inodes are dependent on the
3595 * di_flushiter count for correct sequencing. We bump the flush
3596 * iteration count so we can detect flushes which postdate a log record
3597 * during recovery. This is redundant as we now log every change and
3598 * hence this can't happen but we need to still do it to ensure
3599 * backwards compatibility with old kernels that predate logging all
3602 if (ip
->i_d
.di_version
< 3)
3603 ip
->i_d
.di_flushiter
++;
3605 /* Check the inline fork data before we write out. */
3606 if (!xfs_inode_verify_forks(ip
))
3610 * Copy the dirty parts of the inode into the on-disk inode. We always
3611 * copy out the core of the inode, because if the inode is dirty at all
3614 xfs_inode_to_disk(ip
, dip
, iip
->ili_item
.li_lsn
);
3616 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3617 if (ip
->i_d
.di_flushiter
== DI_MAX_FLUSH
)
3618 ip
->i_d
.di_flushiter
= 0;
3620 xfs_iflush_fork(ip
, dip
, iip
, XFS_DATA_FORK
);
3621 if (XFS_IFORK_Q(ip
))
3622 xfs_iflush_fork(ip
, dip
, iip
, XFS_ATTR_FORK
);
3623 xfs_inobp_check(mp
, bp
);
3626 * We've recorded everything logged in the inode, so we'd like to clear
3627 * the ili_fields bits so we don't log and flush things unnecessarily.
3628 * However, we can't stop logging all this information until the data
3629 * we've copied into the disk buffer is written to disk. If we did we
3630 * might overwrite the copy of the inode in the log with all the data
3631 * after re-logging only part of it, and in the face of a crash we
3632 * wouldn't have all the data we need to recover.
3634 * What we do is move the bits to the ili_last_fields field. When
3635 * logging the inode, these bits are moved back to the ili_fields field.
3636 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3637 * know that the information those bits represent is permanently on
3638 * disk. As long as the flush completes before the inode is logged
3639 * again, then both ili_fields and ili_last_fields will be cleared.
3641 * We can play with the ili_fields bits here, because the inode lock
3642 * must be held exclusively in order to set bits there and the flush
3643 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3644 * done routine can tell whether or not to look in the AIL. Also, store
3645 * the current LSN of the inode so that we can tell whether the item has
3646 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3647 * need the AIL lock, because it is a 64 bit value that cannot be read
3650 iip
->ili_last_fields
= iip
->ili_fields
;
3651 iip
->ili_fields
= 0;
3652 iip
->ili_fsync_fields
= 0;
3653 iip
->ili_logged
= 1;
3655 xfs_trans_ail_copy_lsn(mp
->m_ail
, &iip
->ili_flush_lsn
,
3656 &iip
->ili_item
.li_lsn
);
3659 * Attach the function xfs_iflush_done to the inode's
3660 * buffer. This will remove the inode from the AIL
3661 * and unlock the inode's flush lock when the inode is
3662 * completely written to disk.
3664 xfs_buf_attach_iodone(bp
, xfs_iflush_done
, &iip
->ili_item
);
3666 /* generate the checksum. */
3667 xfs_dinode_calc_crc(mp
, dip
);
3669 ASSERT(!list_empty(&bp
->b_li_list
));
3670 ASSERT(bp
->b_iodone
!= NULL
);
3674 return -EFSCORRUPTED
;