2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
26 #include "xfs_mount.h"
27 #include "xfs_defer.h"
28 #include "xfs_da_format.h"
29 #include "xfs_da_btree.h"
30 #include "xfs_inode.h"
32 #include "xfs_ialloc.h"
33 #include "xfs_alloc.h"
34 #include "xfs_rtalloc.h"
36 #include "xfs_trans.h"
37 #include "xfs_trans_priv.h"
39 #include "xfs_error.h"
40 #include "xfs_quota.h"
41 #include "xfs_fsops.h"
42 #include "xfs_trace.h"
43 #include "xfs_icache.h"
44 #include "xfs_sysfs.h"
45 #include "xfs_rmap_btree.h"
46 #include "xfs_refcount_btree.h"
47 #include "xfs_reflink.h"
48 #include "xfs_extent_busy.h"
51 static DEFINE_MUTEX(xfs_uuid_table_mutex
);
52 static int xfs_uuid_table_size
;
53 static uuid_t
*xfs_uuid_table
;
56 xfs_uuid_table_free(void)
58 if (xfs_uuid_table_size
== 0)
60 kmem_free(xfs_uuid_table
);
61 xfs_uuid_table
= NULL
;
62 xfs_uuid_table_size
= 0;
66 * See if the UUID is unique among mounted XFS filesystems.
67 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
73 uuid_t
*uuid
= &mp
->m_sb
.sb_uuid
;
76 /* Publish UUID in struct super_block */
77 uuid_copy(&mp
->m_super
->s_uuid
, uuid
);
79 if (mp
->m_flags
& XFS_MOUNT_NOUUID
)
82 if (uuid_is_null(uuid
)) {
83 xfs_warn(mp
, "Filesystem has null UUID - can't mount");
87 mutex_lock(&xfs_uuid_table_mutex
);
88 for (i
= 0, hole
= -1; i
< xfs_uuid_table_size
; i
++) {
89 if (uuid_is_null(&xfs_uuid_table
[i
])) {
93 if (uuid_equal(uuid
, &xfs_uuid_table
[i
]))
98 xfs_uuid_table
= kmem_realloc(xfs_uuid_table
,
99 (xfs_uuid_table_size
+ 1) * sizeof(*xfs_uuid_table
),
101 hole
= xfs_uuid_table_size
++;
103 xfs_uuid_table
[hole
] = *uuid
;
104 mutex_unlock(&xfs_uuid_table_mutex
);
109 mutex_unlock(&xfs_uuid_table_mutex
);
110 xfs_warn(mp
, "Filesystem has duplicate UUID %pU - can't mount", uuid
);
116 struct xfs_mount
*mp
)
118 uuid_t
*uuid
= &mp
->m_sb
.sb_uuid
;
121 if (mp
->m_flags
& XFS_MOUNT_NOUUID
)
124 mutex_lock(&xfs_uuid_table_mutex
);
125 for (i
= 0; i
< xfs_uuid_table_size
; i
++) {
126 if (uuid_is_null(&xfs_uuid_table
[i
]))
128 if (!uuid_equal(uuid
, &xfs_uuid_table
[i
]))
130 memset(&xfs_uuid_table
[i
], 0, sizeof(uuid_t
));
133 ASSERT(i
< xfs_uuid_table_size
);
134 mutex_unlock(&xfs_uuid_table_mutex
);
140 struct rcu_head
*head
)
142 struct xfs_perag
*pag
= container_of(head
, struct xfs_perag
, rcu_head
);
144 ASSERT(atomic_read(&pag
->pag_ref
) == 0);
149 * Free up the per-ag resources associated with the mount structure.
156 struct xfs_perag
*pag
;
158 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
159 spin_lock(&mp
->m_perag_lock
);
160 pag
= radix_tree_delete(&mp
->m_perag_tree
, agno
);
161 spin_unlock(&mp
->m_perag_lock
);
163 ASSERT(atomic_read(&pag
->pag_ref
) == 0);
164 xfs_buf_hash_destroy(pag
);
165 mutex_destroy(&pag
->pag_ici_reclaim_lock
);
166 call_rcu(&pag
->rcu_head
, __xfs_free_perag
);
171 * Check size of device based on the (data/realtime) block count.
172 * Note: this check is used by the growfs code as well as mount.
175 xfs_sb_validate_fsb_count(
179 ASSERT(PAGE_SHIFT
>= sbp
->sb_blocklog
);
180 ASSERT(sbp
->sb_blocklog
>= BBSHIFT
);
182 /* Limited by ULONG_MAX of page cache index */
183 if (nblocks
>> (PAGE_SHIFT
- sbp
->sb_blocklog
) > ULONG_MAX
)
189 xfs_initialize_perag(
191 xfs_agnumber_t agcount
,
192 xfs_agnumber_t
*maxagi
)
194 xfs_agnumber_t index
;
195 xfs_agnumber_t first_initialised
= NULLAGNUMBER
;
200 * Walk the current per-ag tree so we don't try to initialise AGs
201 * that already exist (growfs case). Allocate and insert all the
202 * AGs we don't find ready for initialisation.
204 for (index
= 0; index
< agcount
; index
++) {
205 pag
= xfs_perag_get(mp
, index
);
211 pag
= kmem_zalloc(sizeof(*pag
), KM_MAYFAIL
);
213 goto out_unwind_new_pags
;
214 pag
->pag_agno
= index
;
216 spin_lock_init(&pag
->pag_ici_lock
);
217 mutex_init(&pag
->pag_ici_reclaim_lock
);
218 INIT_RADIX_TREE(&pag
->pag_ici_root
, GFP_ATOMIC
);
219 if (xfs_buf_hash_init(pag
))
221 init_waitqueue_head(&pag
->pagb_wait
);
223 if (radix_tree_preload(GFP_NOFS
))
224 goto out_hash_destroy
;
226 spin_lock(&mp
->m_perag_lock
);
227 if (radix_tree_insert(&mp
->m_perag_tree
, index
, pag
)) {
229 spin_unlock(&mp
->m_perag_lock
);
230 radix_tree_preload_end();
232 goto out_hash_destroy
;
234 spin_unlock(&mp
->m_perag_lock
);
235 radix_tree_preload_end();
236 /* first new pag is fully initialized */
237 if (first_initialised
== NULLAGNUMBER
)
238 first_initialised
= index
;
241 index
= xfs_set_inode_alloc(mp
, agcount
);
246 mp
->m_ag_prealloc_blocks
= xfs_prealloc_blocks(mp
);
250 xfs_buf_hash_destroy(pag
);
252 mutex_destroy(&pag
->pag_ici_reclaim_lock
);
255 /* unwind any prior newly initialized pags */
256 for (index
= first_initialised
; index
< agcount
; index
++) {
257 pag
= radix_tree_delete(&mp
->m_perag_tree
, index
);
260 xfs_buf_hash_destroy(pag
);
261 mutex_destroy(&pag
->pag_ici_reclaim_lock
);
270 * Does the initial read of the superblock.
274 struct xfs_mount
*mp
,
277 unsigned int sector_size
;
279 struct xfs_sb
*sbp
= &mp
->m_sb
;
281 int loud
= !(flags
& XFS_MFSI_QUIET
);
282 const struct xfs_buf_ops
*buf_ops
;
284 ASSERT(mp
->m_sb_bp
== NULL
);
285 ASSERT(mp
->m_ddev_targp
!= NULL
);
288 * For the initial read, we must guess at the sector
289 * size based on the block device. It's enough to
290 * get the sb_sectsize out of the superblock and
291 * then reread with the proper length.
292 * We don't verify it yet, because it may not be complete.
294 sector_size
= xfs_getsize_buftarg(mp
->m_ddev_targp
);
298 * Allocate a (locked) buffer to hold the superblock. This will be kept
299 * around at all times to optimize access to the superblock. Therefore,
300 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
304 error
= xfs_buf_read_uncached(mp
->m_ddev_targp
, XFS_SB_DADDR
,
305 BTOBB(sector_size
), XBF_NO_IOACCT
, &bp
,
309 xfs_warn(mp
, "SB validate failed with error %d.", error
);
310 /* bad CRC means corrupted metadata */
311 if (error
== -EFSBADCRC
)
312 error
= -EFSCORRUPTED
;
317 * Initialize the mount structure from the superblock.
319 xfs_sb_from_disk(sbp
, XFS_BUF_TO_SBP(bp
));
322 * If we haven't validated the superblock, do so now before we try
323 * to check the sector size and reread the superblock appropriately.
325 if (sbp
->sb_magicnum
!= XFS_SB_MAGIC
) {
327 xfs_warn(mp
, "Invalid superblock magic number");
333 * We must be able to do sector-sized and sector-aligned IO.
335 if (sector_size
> sbp
->sb_sectsize
) {
337 xfs_warn(mp
, "device supports %u byte sectors (not %u)",
338 sector_size
, sbp
->sb_sectsize
);
343 if (buf_ops
== NULL
) {
345 * Re-read the superblock so the buffer is correctly sized,
346 * and properly verified.
349 sector_size
= sbp
->sb_sectsize
;
350 buf_ops
= loud
? &xfs_sb_buf_ops
: &xfs_sb_quiet_buf_ops
;
354 xfs_reinit_percpu_counters(mp
);
356 /* no need to be quiet anymore, so reset the buf ops */
357 bp
->b_ops
= &xfs_sb_buf_ops
;
369 * Update alignment values based on mount options and sb values
372 xfs_update_alignment(xfs_mount_t
*mp
)
374 xfs_sb_t
*sbp
= &(mp
->m_sb
);
378 * If stripe unit and stripe width are not multiples
379 * of the fs blocksize turn off alignment.
381 if ((BBTOB(mp
->m_dalign
) & mp
->m_blockmask
) ||
382 (BBTOB(mp
->m_swidth
) & mp
->m_blockmask
)) {
384 "alignment check failed: sunit/swidth vs. blocksize(%d)",
389 * Convert the stripe unit and width to FSBs.
391 mp
->m_dalign
= XFS_BB_TO_FSBT(mp
, mp
->m_dalign
);
392 if (mp
->m_dalign
&& (sbp
->sb_agblocks
% mp
->m_dalign
)) {
394 "alignment check failed: sunit/swidth vs. agsize(%d)",
397 } else if (mp
->m_dalign
) {
398 mp
->m_swidth
= XFS_BB_TO_FSBT(mp
, mp
->m_swidth
);
401 "alignment check failed: sunit(%d) less than bsize(%d)",
402 mp
->m_dalign
, sbp
->sb_blocksize
);
408 * Update superblock with new values
411 if (xfs_sb_version_hasdalign(sbp
)) {
412 if (sbp
->sb_unit
!= mp
->m_dalign
) {
413 sbp
->sb_unit
= mp
->m_dalign
;
414 mp
->m_update_sb
= true;
416 if (sbp
->sb_width
!= mp
->m_swidth
) {
417 sbp
->sb_width
= mp
->m_swidth
;
418 mp
->m_update_sb
= true;
422 "cannot change alignment: superblock does not support data alignment");
425 } else if ((mp
->m_flags
& XFS_MOUNT_NOALIGN
) != XFS_MOUNT_NOALIGN
&&
426 xfs_sb_version_hasdalign(&mp
->m_sb
)) {
427 mp
->m_dalign
= sbp
->sb_unit
;
428 mp
->m_swidth
= sbp
->sb_width
;
435 * Set the maximum inode count for this filesystem
438 xfs_set_maxicount(xfs_mount_t
*mp
)
440 xfs_sb_t
*sbp
= &(mp
->m_sb
);
443 if (sbp
->sb_imax_pct
) {
445 * Make sure the maximum inode count is a multiple
446 * of the units we allocate inodes in.
448 icount
= sbp
->sb_dblocks
* sbp
->sb_imax_pct
;
450 do_div(icount
, mp
->m_ialloc_blks
);
451 mp
->m_maxicount
= (icount
* mp
->m_ialloc_blks
) <<
459 * Set the default minimum read and write sizes unless
460 * already specified in a mount option.
461 * We use smaller I/O sizes when the file system
462 * is being used for NFS service (wsync mount option).
465 xfs_set_rw_sizes(xfs_mount_t
*mp
)
467 xfs_sb_t
*sbp
= &(mp
->m_sb
);
468 int readio_log
, writeio_log
;
470 if (!(mp
->m_flags
& XFS_MOUNT_DFLT_IOSIZE
)) {
471 if (mp
->m_flags
& XFS_MOUNT_WSYNC
) {
472 readio_log
= XFS_WSYNC_READIO_LOG
;
473 writeio_log
= XFS_WSYNC_WRITEIO_LOG
;
475 readio_log
= XFS_READIO_LOG_LARGE
;
476 writeio_log
= XFS_WRITEIO_LOG_LARGE
;
479 readio_log
= mp
->m_readio_log
;
480 writeio_log
= mp
->m_writeio_log
;
483 if (sbp
->sb_blocklog
> readio_log
) {
484 mp
->m_readio_log
= sbp
->sb_blocklog
;
486 mp
->m_readio_log
= readio_log
;
488 mp
->m_readio_blocks
= 1 << (mp
->m_readio_log
- sbp
->sb_blocklog
);
489 if (sbp
->sb_blocklog
> writeio_log
) {
490 mp
->m_writeio_log
= sbp
->sb_blocklog
;
492 mp
->m_writeio_log
= writeio_log
;
494 mp
->m_writeio_blocks
= 1 << (mp
->m_writeio_log
- sbp
->sb_blocklog
);
498 * precalculate the low space thresholds for dynamic speculative preallocation.
501 xfs_set_low_space_thresholds(
502 struct xfs_mount
*mp
)
506 for (i
= 0; i
< XFS_LOWSP_MAX
; i
++) {
507 uint64_t space
= mp
->m_sb
.sb_dblocks
;
510 mp
->m_low_space
[i
] = space
* (i
+ 1);
516 * Set whether we're using inode alignment.
519 xfs_set_inoalignment(xfs_mount_t
*mp
)
521 if (xfs_sb_version_hasalign(&mp
->m_sb
) &&
522 mp
->m_sb
.sb_inoalignmt
>= xfs_icluster_size_fsb(mp
))
523 mp
->m_inoalign_mask
= mp
->m_sb
.sb_inoalignmt
- 1;
525 mp
->m_inoalign_mask
= 0;
527 * If we are using stripe alignment, check whether
528 * the stripe unit is a multiple of the inode alignment
530 if (mp
->m_dalign
&& mp
->m_inoalign_mask
&&
531 !(mp
->m_dalign
& mp
->m_inoalign_mask
))
532 mp
->m_sinoalign
= mp
->m_dalign
;
538 * Check that the data (and log if separate) is an ok size.
542 struct xfs_mount
*mp
)
548 d
= (xfs_daddr_t
)XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
);
549 if (XFS_BB_TO_FSB(mp
, d
) != mp
->m_sb
.sb_dblocks
) {
550 xfs_warn(mp
, "filesystem size mismatch detected");
553 error
= xfs_buf_read_uncached(mp
->m_ddev_targp
,
554 d
- XFS_FSS_TO_BB(mp
, 1),
555 XFS_FSS_TO_BB(mp
, 1), 0, &bp
, NULL
);
557 xfs_warn(mp
, "last sector read failed");
562 if (mp
->m_logdev_targp
== mp
->m_ddev_targp
)
565 d
= (xfs_daddr_t
)XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_logblocks
);
566 if (XFS_BB_TO_FSB(mp
, d
) != mp
->m_sb
.sb_logblocks
) {
567 xfs_warn(mp
, "log size mismatch detected");
570 error
= xfs_buf_read_uncached(mp
->m_logdev_targp
,
571 d
- XFS_FSB_TO_BB(mp
, 1),
572 XFS_FSB_TO_BB(mp
, 1), 0, &bp
, NULL
);
574 xfs_warn(mp
, "log device read failed");
582 * Clear the quotaflags in memory and in the superblock.
585 xfs_mount_reset_sbqflags(
586 struct xfs_mount
*mp
)
590 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
591 if (mp
->m_sb
.sb_qflags
== 0)
593 spin_lock(&mp
->m_sb_lock
);
594 mp
->m_sb
.sb_qflags
= 0;
595 spin_unlock(&mp
->m_sb_lock
);
597 if (!xfs_fs_writable(mp
, SB_FREEZE_WRITE
))
600 return xfs_sync_sb(mp
, false);
604 xfs_default_resblks(xfs_mount_t
*mp
)
609 * We default to 5% or 8192 fsbs of space reserved, whichever is
610 * smaller. This is intended to cover concurrent allocation
611 * transactions when we initially hit enospc. These each require a 4
612 * block reservation. Hence by default we cover roughly 2000 concurrent
613 * allocation reservations.
615 resblks
= mp
->m_sb
.sb_dblocks
;
617 resblks
= min_t(uint64_t, resblks
, 8192);
622 * This function does the following on an initial mount of a file system:
623 * - reads the superblock from disk and init the mount struct
624 * - if we're a 32-bit kernel, do a size check on the superblock
625 * so we don't mount terabyte filesystems
626 * - init mount struct realtime fields
627 * - allocate inode hash table for fs
628 * - init directory manager
629 * - perform recovery and init the log manager
633 struct xfs_mount
*mp
)
635 struct xfs_sb
*sbp
= &(mp
->m_sb
);
636 struct xfs_inode
*rip
;
642 xfs_sb_mount_common(mp
, sbp
);
645 * Check for a mismatched features2 values. Older kernels read & wrote
646 * into the wrong sb offset for sb_features2 on some platforms due to
647 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
648 * which made older superblock reading/writing routines swap it as a
651 * For backwards compatibility, we make both slots equal.
653 * If we detect a mismatched field, we OR the set bits into the existing
654 * features2 field in case it has already been modified; we don't want
655 * to lose any features. We then update the bad location with the ORed
656 * value so that older kernels will see any features2 flags. The
657 * superblock writeback code ensures the new sb_features2 is copied to
658 * sb_bad_features2 before it is logged or written to disk.
660 if (xfs_sb_has_mismatched_features2(sbp
)) {
661 xfs_warn(mp
, "correcting sb_features alignment problem");
662 sbp
->sb_features2
|= sbp
->sb_bad_features2
;
663 mp
->m_update_sb
= true;
666 * Re-check for ATTR2 in case it was found in bad_features2
669 if (xfs_sb_version_hasattr2(&mp
->m_sb
) &&
670 !(mp
->m_flags
& XFS_MOUNT_NOATTR2
))
671 mp
->m_flags
|= XFS_MOUNT_ATTR2
;
674 if (xfs_sb_version_hasattr2(&mp
->m_sb
) &&
675 (mp
->m_flags
& XFS_MOUNT_NOATTR2
)) {
676 xfs_sb_version_removeattr2(&mp
->m_sb
);
677 mp
->m_update_sb
= true;
679 /* update sb_versionnum for the clearing of the morebits */
680 if (!sbp
->sb_features2
)
681 mp
->m_update_sb
= true;
684 /* always use v2 inodes by default now */
685 if (!(mp
->m_sb
.sb_versionnum
& XFS_SB_VERSION_NLINKBIT
)) {
686 mp
->m_sb
.sb_versionnum
|= XFS_SB_VERSION_NLINKBIT
;
687 mp
->m_update_sb
= true;
691 * Check if sb_agblocks is aligned at stripe boundary
692 * If sb_agblocks is NOT aligned turn off m_dalign since
693 * allocator alignment is within an ag, therefore ag has
694 * to be aligned at stripe boundary.
696 error
= xfs_update_alignment(mp
);
700 xfs_alloc_compute_maxlevels(mp
);
701 xfs_bmap_compute_maxlevels(mp
, XFS_DATA_FORK
);
702 xfs_bmap_compute_maxlevels(mp
, XFS_ATTR_FORK
);
703 xfs_ialloc_compute_maxlevels(mp
);
704 xfs_rmapbt_compute_maxlevels(mp
);
705 xfs_refcountbt_compute_maxlevels(mp
);
707 xfs_set_maxicount(mp
);
709 /* enable fail_at_unmount as default */
710 mp
->m_fail_unmount
= true;
712 error
= xfs_sysfs_init(&mp
->m_kobj
, &xfs_mp_ktype
, NULL
, mp
->m_fsname
);
716 error
= xfs_sysfs_init(&mp
->m_stats
.xs_kobj
, &xfs_stats_ktype
,
717 &mp
->m_kobj
, "stats");
719 goto out_remove_sysfs
;
721 error
= xfs_error_sysfs_init(mp
);
725 error
= xfs_errortag_init(mp
);
727 goto out_remove_error_sysfs
;
729 error
= xfs_uuid_mount(mp
);
731 goto out_remove_errortag
;
734 * Set the minimum read and write sizes
736 xfs_set_rw_sizes(mp
);
738 /* set the low space thresholds for dynamic preallocation */
739 xfs_set_low_space_thresholds(mp
);
742 * Set the inode cluster size.
743 * This may still be overridden by the file system
744 * block size if it is larger than the chosen cluster size.
746 * For v5 filesystems, scale the cluster size with the inode size to
747 * keep a constant ratio of inode per cluster buffer, but only if mkfs
748 * has set the inode alignment value appropriately for larger cluster
751 mp
->m_inode_cluster_size
= XFS_INODE_BIG_CLUSTER_SIZE
;
752 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
753 int new_size
= mp
->m_inode_cluster_size
;
755 new_size
*= mp
->m_sb
.sb_inodesize
/ XFS_DINODE_MIN_SIZE
;
756 if (mp
->m_sb
.sb_inoalignmt
>= XFS_B_TO_FSBT(mp
, new_size
))
757 mp
->m_inode_cluster_size
= new_size
;
761 * If enabled, sparse inode chunk alignment is expected to match the
762 * cluster size. Full inode chunk alignment must match the chunk size,
763 * but that is checked on sb read verification...
765 if (xfs_sb_version_hassparseinodes(&mp
->m_sb
) &&
766 mp
->m_sb
.sb_spino_align
!=
767 XFS_B_TO_FSBT(mp
, mp
->m_inode_cluster_size
)) {
769 "Sparse inode block alignment (%u) must match cluster size (%llu).",
770 mp
->m_sb
.sb_spino_align
,
771 XFS_B_TO_FSBT(mp
, mp
->m_inode_cluster_size
));
773 goto out_remove_uuid
;
777 * Set inode alignment fields
779 xfs_set_inoalignment(mp
);
782 * Check that the data (and log if separate) is an ok size.
784 error
= xfs_check_sizes(mp
);
786 goto out_remove_uuid
;
789 * Initialize realtime fields in the mount structure
791 error
= xfs_rtmount_init(mp
);
793 xfs_warn(mp
, "RT mount failed");
794 goto out_remove_uuid
;
798 * Copies the low order bits of the timestamp and the randomly
799 * set "sequence" number out of a UUID.
802 (get_unaligned_be16(&sbp
->sb_uuid
.b
[8]) << 16) |
803 get_unaligned_be16(&sbp
->sb_uuid
.b
[4]);
804 mp
->m_fixedfsid
[1] = get_unaligned_be32(&sbp
->sb_uuid
.b
[0]);
806 mp
->m_dmevmask
= 0; /* not persistent; set after each mount */
808 error
= xfs_da_mount(mp
);
810 xfs_warn(mp
, "Failed dir/attr init: %d", error
);
811 goto out_remove_uuid
;
815 * Initialize the precomputed transaction reservations values.
820 * Allocate and initialize the per-ag data.
822 spin_lock_init(&mp
->m_perag_lock
);
823 INIT_RADIX_TREE(&mp
->m_perag_tree
, GFP_ATOMIC
);
824 error
= xfs_initialize_perag(mp
, sbp
->sb_agcount
, &mp
->m_maxagi
);
826 xfs_warn(mp
, "Failed per-ag init: %d", error
);
830 if (!sbp
->sb_logblocks
) {
831 xfs_warn(mp
, "no log defined");
832 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW
, mp
);
833 error
= -EFSCORRUPTED
;
838 * Log's mount-time initialization. The first part of recovery can place
839 * some items on the AIL, to be handled when recovery is finished or
842 error
= xfs_log_mount(mp
, mp
->m_logdev_targp
,
843 XFS_FSB_TO_DADDR(mp
, sbp
->sb_logstart
),
844 XFS_FSB_TO_BB(mp
, sbp
->sb_logblocks
));
846 xfs_warn(mp
, "log mount failed");
851 * Now the log is mounted, we know if it was an unclean shutdown or
852 * not. If it was, with the first phase of recovery has completed, we
853 * have consistent AG blocks on disk. We have not recovered EFIs yet,
854 * but they are recovered transactionally in the second recovery phase
857 * Hence we can safely re-initialise incore superblock counters from
858 * the per-ag data. These may not be correct if the filesystem was not
859 * cleanly unmounted, so we need to wait for recovery to finish before
862 * If the filesystem was cleanly unmounted, then we can trust the
863 * values in the superblock to be correct and we don't need to do
866 * If we are currently making the filesystem, the initialisation will
867 * fail as the perag data is in an undefined state.
869 if (xfs_sb_version_haslazysbcount(&mp
->m_sb
) &&
870 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp
) &&
871 !mp
->m_sb
.sb_inprogress
) {
872 error
= xfs_initialize_perag_data(mp
, sbp
->sb_agcount
);
874 goto out_log_dealloc
;
878 * Get and sanity-check the root inode.
879 * Save the pointer to it in the mount structure.
881 error
= xfs_iget(mp
, NULL
, sbp
->sb_rootino
, 0, XFS_ILOCK_EXCL
, &rip
);
883 xfs_warn(mp
, "failed to read root inode");
884 goto out_log_dealloc
;
889 if (unlikely(!S_ISDIR(VFS_I(rip
)->i_mode
))) {
890 xfs_warn(mp
, "corrupted root inode %llu: not a directory",
891 (unsigned long long)rip
->i_ino
);
892 xfs_iunlock(rip
, XFS_ILOCK_EXCL
);
893 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW
,
895 error
= -EFSCORRUPTED
;
898 mp
->m_rootip
= rip
; /* save it */
900 xfs_iunlock(rip
, XFS_ILOCK_EXCL
);
903 * Initialize realtime inode pointers in the mount structure
905 error
= xfs_rtmount_inodes(mp
);
908 * Free up the root inode.
910 xfs_warn(mp
, "failed to read RT inodes");
915 * If this is a read-only mount defer the superblock updates until
916 * the next remount into writeable mode. Otherwise we would never
917 * perform the update e.g. for the root filesystem.
919 if (mp
->m_update_sb
&& !(mp
->m_flags
& XFS_MOUNT_RDONLY
)) {
920 error
= xfs_sync_sb(mp
, false);
922 xfs_warn(mp
, "failed to write sb changes");
928 * Initialise the XFS quota management subsystem for this mount
930 if (XFS_IS_QUOTA_RUNNING(mp
)) {
931 error
= xfs_qm_newmount(mp
, "amount
, "aflags
);
935 ASSERT(!XFS_IS_QUOTA_ON(mp
));
938 * If a file system had quotas running earlier, but decided to
939 * mount without -o uquota/pquota/gquota options, revoke the
940 * quotachecked license.
942 if (mp
->m_sb
.sb_qflags
& XFS_ALL_QUOTA_ACCT
) {
943 xfs_notice(mp
, "resetting quota flags");
944 error
= xfs_mount_reset_sbqflags(mp
);
951 * Finish recovering the file system. This part needed to be delayed
952 * until after the root and real-time bitmap inodes were consistently
955 error
= xfs_log_mount_finish(mp
);
957 xfs_warn(mp
, "log mount finish failed");
962 * Now the log is fully replayed, we can transition to full read-only
963 * mode for read-only mounts. This will sync all the metadata and clean
964 * the log so that the recovery we just performed does not have to be
965 * replayed again on the next mount.
967 * We use the same quiesce mechanism as the rw->ro remount, as they are
968 * semantically identical operations.
970 if ((mp
->m_flags
& (XFS_MOUNT_RDONLY
|XFS_MOUNT_NORECOVERY
)) ==
972 xfs_quiesce_attr(mp
);
976 * Complete the quota initialisation, post-log-replay component.
979 ASSERT(mp
->m_qflags
== 0);
980 mp
->m_qflags
= quotaflags
;
982 xfs_qm_mount_quotas(mp
);
986 * Now we are mounted, reserve a small amount of unused space for
987 * privileged transactions. This is needed so that transaction
988 * space required for critical operations can dip into this pool
989 * when at ENOSPC. This is needed for operations like create with
990 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
991 * are not allowed to use this reserved space.
993 * This may drive us straight to ENOSPC on mount, but that implies
994 * we were already there on the last unmount. Warn if this occurs.
996 if (!(mp
->m_flags
& XFS_MOUNT_RDONLY
)) {
997 resblks
= xfs_default_resblks(mp
);
998 error
= xfs_reserve_blocks(mp
, &resblks
, NULL
);
1001 "Unable to allocate reserve blocks. Continuing without reserve pool.");
1003 /* Recover any CoW blocks that never got remapped. */
1004 error
= xfs_reflink_recover_cow(mp
);
1007 "Error %d recovering leftover CoW allocations.", error
);
1008 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
1012 /* Reserve AG blocks for future btree expansion. */
1013 error
= xfs_fs_reserve_ag_blocks(mp
);
1014 if (error
&& error
!= -ENOSPC
)
1021 xfs_fs_unreserve_ag_blocks(mp
);
1023 xfs_qm_unmount_quotas(mp
);
1025 xfs_rtunmount_inodes(mp
);
1028 /* Clean out dquots that might be in memory after quotacheck. */
1031 * Cancel all delayed reclaim work and reclaim the inodes directly.
1032 * We have to do this /after/ rtunmount and qm_unmount because those
1033 * two will have scheduled delayed reclaim for the rt/quota inodes.
1035 * This is slightly different from the unmountfs call sequence
1036 * because we could be tearing down a partially set up mount. In
1037 * particular, if log_mount_finish fails we bail out without calling
1038 * qm_unmount_quotas and therefore rely on qm_unmount to release the
1041 cancel_delayed_work_sync(&mp
->m_reclaim_work
);
1042 xfs_reclaim_inodes(mp
, SYNC_WAIT
);
1044 mp
->m_flags
|= XFS_MOUNT_UNMOUNTING
;
1045 xfs_log_mount_cancel(mp
);
1047 if (mp
->m_logdev_targp
&& mp
->m_logdev_targp
!= mp
->m_ddev_targp
)
1048 xfs_wait_buftarg(mp
->m_logdev_targp
);
1049 xfs_wait_buftarg(mp
->m_ddev_targp
);
1055 xfs_uuid_unmount(mp
);
1056 out_remove_errortag
:
1057 xfs_errortag_del(mp
);
1058 out_remove_error_sysfs
:
1059 xfs_error_sysfs_del(mp
);
1061 xfs_sysfs_del(&mp
->m_stats
.xs_kobj
);
1063 xfs_sysfs_del(&mp
->m_kobj
);
1069 * This flushes out the inodes,dquots and the superblock, unmounts the
1070 * log and makes sure that incore structures are freed.
1074 struct xfs_mount
*mp
)
1079 cancel_delayed_work_sync(&mp
->m_eofblocks_work
);
1080 cancel_delayed_work_sync(&mp
->m_cowblocks_work
);
1082 xfs_fs_unreserve_ag_blocks(mp
);
1083 xfs_qm_unmount_quotas(mp
);
1084 xfs_rtunmount_inodes(mp
);
1085 IRELE(mp
->m_rootip
);
1088 * We can potentially deadlock here if we have an inode cluster
1089 * that has been freed has its buffer still pinned in memory because
1090 * the transaction is still sitting in a iclog. The stale inodes
1091 * on that buffer will have their flush locks held until the
1092 * transaction hits the disk and the callbacks run. the inode
1093 * flush takes the flush lock unconditionally and with nothing to
1094 * push out the iclog we will never get that unlocked. hence we
1095 * need to force the log first.
1097 xfs_log_force(mp
, XFS_LOG_SYNC
);
1100 * Wait for all busy extents to be freed, including completion of
1101 * any discard operation.
1103 xfs_extent_busy_wait_all(mp
);
1104 flush_workqueue(xfs_discard_wq
);
1107 * We now need to tell the world we are unmounting. This will allow
1108 * us to detect that the filesystem is going away and we should error
1109 * out anything that we have been retrying in the background. This will
1110 * prevent neverending retries in AIL pushing from hanging the unmount.
1112 mp
->m_flags
|= XFS_MOUNT_UNMOUNTING
;
1115 * Flush all pending changes from the AIL.
1117 xfs_ail_push_all_sync(mp
->m_ail
);
1120 * And reclaim all inodes. At this point there should be no dirty
1121 * inodes and none should be pinned or locked, but use synchronous
1122 * reclaim just to be sure. We can stop background inode reclaim
1123 * here as well if it is still running.
1125 cancel_delayed_work_sync(&mp
->m_reclaim_work
);
1126 xfs_reclaim_inodes(mp
, SYNC_WAIT
);
1131 * Unreserve any blocks we have so that when we unmount we don't account
1132 * the reserved free space as used. This is really only necessary for
1133 * lazy superblock counting because it trusts the incore superblock
1134 * counters to be absolutely correct on clean unmount.
1136 * We don't bother correcting this elsewhere for lazy superblock
1137 * counting because on mount of an unclean filesystem we reconstruct the
1138 * correct counter value and this is irrelevant.
1140 * For non-lazy counter filesystems, this doesn't matter at all because
1141 * we only every apply deltas to the superblock and hence the incore
1142 * value does not matter....
1145 error
= xfs_reserve_blocks(mp
, &resblks
, NULL
);
1147 xfs_warn(mp
, "Unable to free reserved block pool. "
1148 "Freespace may not be correct on next mount.");
1150 error
= xfs_log_sbcount(mp
);
1152 xfs_warn(mp
, "Unable to update superblock counters. "
1153 "Freespace may not be correct on next mount.");
1156 xfs_log_unmount(mp
);
1158 xfs_uuid_unmount(mp
);
1161 xfs_errortag_clearall(mp
);
1165 xfs_errortag_del(mp
);
1166 xfs_error_sysfs_del(mp
);
1167 xfs_sysfs_del(&mp
->m_stats
.xs_kobj
);
1168 xfs_sysfs_del(&mp
->m_kobj
);
1172 * Determine whether modifications can proceed. The caller specifies the minimum
1173 * freeze level for which modifications should not be allowed. This allows
1174 * certain operations to proceed while the freeze sequence is in progress, if
1179 struct xfs_mount
*mp
,
1182 ASSERT(level
> SB_UNFROZEN
);
1183 if ((mp
->m_super
->s_writers
.frozen
>= level
) ||
1184 XFS_FORCED_SHUTDOWN(mp
) || (mp
->m_flags
& XFS_MOUNT_RDONLY
))
1193 * Sync the superblock counters to disk.
1195 * Note this code can be called during the process of freezing, so we use the
1196 * transaction allocator that does not block when the transaction subsystem is
1197 * in its frozen state.
1200 xfs_log_sbcount(xfs_mount_t
*mp
)
1202 /* allow this to proceed during the freeze sequence... */
1203 if (!xfs_fs_writable(mp
, SB_FREEZE_COMPLETE
))
1207 * we don't need to do this if we are updating the superblock
1208 * counters on every modification.
1210 if (!xfs_sb_version_haslazysbcount(&mp
->m_sb
))
1213 return xfs_sync_sb(mp
, true);
1217 * Deltas for the inode count are +/-64, hence we use a large batch size
1218 * of 128 so we don't need to take the counter lock on every update.
1220 #define XFS_ICOUNT_BATCH 128
1223 struct xfs_mount
*mp
,
1226 percpu_counter_add_batch(&mp
->m_icount
, delta
, XFS_ICOUNT_BATCH
);
1227 if (__percpu_counter_compare(&mp
->m_icount
, 0, XFS_ICOUNT_BATCH
) < 0) {
1229 percpu_counter_add(&mp
->m_icount
, -delta
);
1237 struct xfs_mount
*mp
,
1240 percpu_counter_add(&mp
->m_ifree
, delta
);
1241 if (percpu_counter_compare(&mp
->m_ifree
, 0) < 0) {
1243 percpu_counter_add(&mp
->m_ifree
, -delta
);
1250 * Deltas for the block count can vary from 1 to very large, but lock contention
1251 * only occurs on frequent small block count updates such as in the delayed
1252 * allocation path for buffered writes (page a time updates). Hence we set
1253 * a large batch count (1024) to minimise global counter updates except when
1254 * we get near to ENOSPC and we have to be very accurate with our updates.
1256 #define XFS_FDBLOCKS_BATCH 1024
1259 struct xfs_mount
*mp
,
1269 * If the reserve pool is depleted, put blocks back into it
1270 * first. Most of the time the pool is full.
1272 if (likely(mp
->m_resblks
== mp
->m_resblks_avail
)) {
1273 percpu_counter_add(&mp
->m_fdblocks
, delta
);
1277 spin_lock(&mp
->m_sb_lock
);
1278 res_used
= (long long)(mp
->m_resblks
- mp
->m_resblks_avail
);
1280 if (res_used
> delta
) {
1281 mp
->m_resblks_avail
+= delta
;
1284 mp
->m_resblks_avail
= mp
->m_resblks
;
1285 percpu_counter_add(&mp
->m_fdblocks
, delta
);
1287 spin_unlock(&mp
->m_sb_lock
);
1292 * Taking blocks away, need to be more accurate the closer we
1295 * If the counter has a value of less than 2 * max batch size,
1296 * then make everything serialise as we are real close to
1299 if (__percpu_counter_compare(&mp
->m_fdblocks
, 2 * XFS_FDBLOCKS_BATCH
,
1300 XFS_FDBLOCKS_BATCH
) < 0)
1303 batch
= XFS_FDBLOCKS_BATCH
;
1305 percpu_counter_add_batch(&mp
->m_fdblocks
, delta
, batch
);
1306 if (__percpu_counter_compare(&mp
->m_fdblocks
, mp
->m_alloc_set_aside
,
1307 XFS_FDBLOCKS_BATCH
) >= 0) {
1313 * lock up the sb for dipping into reserves before releasing the space
1314 * that took us to ENOSPC.
1316 spin_lock(&mp
->m_sb_lock
);
1317 percpu_counter_add(&mp
->m_fdblocks
, -delta
);
1319 goto fdblocks_enospc
;
1321 lcounter
= (long long)mp
->m_resblks_avail
+ delta
;
1322 if (lcounter
>= 0) {
1323 mp
->m_resblks_avail
= lcounter
;
1324 spin_unlock(&mp
->m_sb_lock
);
1327 printk_once(KERN_WARNING
1328 "Filesystem \"%s\": reserve blocks depleted! "
1329 "Consider increasing reserve pool size.",
1332 spin_unlock(&mp
->m_sb_lock
);
1338 struct xfs_mount
*mp
,
1344 spin_lock(&mp
->m_sb_lock
);
1345 lcounter
= mp
->m_sb
.sb_frextents
+ delta
;
1349 mp
->m_sb
.sb_frextents
= lcounter
;
1350 spin_unlock(&mp
->m_sb_lock
);
1355 * xfs_getsb() is called to obtain the buffer for the superblock.
1356 * The buffer is returned locked and read in from disk.
1357 * The buffer should be released with a call to xfs_brelse().
1359 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1360 * the superblock buffer if it can be locked without sleeping.
1361 * If it can't then we'll return NULL.
1365 struct xfs_mount
*mp
,
1368 struct xfs_buf
*bp
= mp
->m_sb_bp
;
1370 if (!xfs_buf_trylock(bp
)) {
1371 if (flags
& XBF_TRYLOCK
)
1377 ASSERT(bp
->b_flags
& XBF_DONE
);
1382 * Used to free the superblock along various error paths.
1386 struct xfs_mount
*mp
)
1388 struct xfs_buf
*bp
= mp
->m_sb_bp
;
1396 * If the underlying (data/log/rt) device is readonly, there are some
1397 * operations that cannot proceed.
1400 xfs_dev_is_read_only(
1401 struct xfs_mount
*mp
,
1404 if (xfs_readonly_buftarg(mp
->m_ddev_targp
) ||
1405 xfs_readonly_buftarg(mp
->m_logdev_targp
) ||
1406 (mp
->m_rtdev_targp
&& xfs_readonly_buftarg(mp
->m_rtdev_targp
))) {
1407 xfs_notice(mp
, "%s required on read-only device.", message
);
1408 xfs_notice(mp
, "write access unavailable, cannot proceed.");