Merge tag 'xtensa-20180225' of git://github.com/jcmvbkbc/linux-xtensa
[cris-mirror.git] / include / linux / ptr_ring.h
blobe6335227b84482c9598f1d73206024bf3a8c7646
1 /*
2 * Definitions for the 'struct ptr_ring' datastructure.
4 * Author:
5 * Michael S. Tsirkin <mst@redhat.com>
7 * Copyright (C) 2016 Red Hat, Inc.
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
14 * This is a limited-size FIFO maintaining pointers in FIFO order, with
15 * one CPU producing entries and another consuming entries from a FIFO.
17 * This implementation tries to minimize cache-contention when there is a
18 * single producer and a single consumer CPU.
21 #ifndef _LINUX_PTR_RING_H
22 #define _LINUX_PTR_RING_H 1
24 #ifdef __KERNEL__
25 #include <linux/spinlock.h>
26 #include <linux/cache.h>
27 #include <linux/types.h>
28 #include <linux/compiler.h>
29 #include <linux/cache.h>
30 #include <linux/slab.h>
31 #include <asm/errno.h>
32 #endif
34 struct ptr_ring {
35 int producer ____cacheline_aligned_in_smp;
36 spinlock_t producer_lock;
37 int consumer_head ____cacheline_aligned_in_smp; /* next valid entry */
38 int consumer_tail; /* next entry to invalidate */
39 spinlock_t consumer_lock;
40 /* Shared consumer/producer data */
41 /* Read-only by both the producer and the consumer */
42 int size ____cacheline_aligned_in_smp; /* max entries in queue */
43 int batch; /* number of entries to consume in a batch */
44 void **queue;
47 /* Note: callers invoking this in a loop must use a compiler barrier,
48 * for example cpu_relax().
50 * NB: this is unlike __ptr_ring_empty in that callers must hold producer_lock:
51 * see e.g. ptr_ring_full.
53 static inline bool __ptr_ring_full(struct ptr_ring *r)
55 return r->queue[r->producer];
58 static inline bool ptr_ring_full(struct ptr_ring *r)
60 bool ret;
62 spin_lock(&r->producer_lock);
63 ret = __ptr_ring_full(r);
64 spin_unlock(&r->producer_lock);
66 return ret;
69 static inline bool ptr_ring_full_irq(struct ptr_ring *r)
71 bool ret;
73 spin_lock_irq(&r->producer_lock);
74 ret = __ptr_ring_full(r);
75 spin_unlock_irq(&r->producer_lock);
77 return ret;
80 static inline bool ptr_ring_full_any(struct ptr_ring *r)
82 unsigned long flags;
83 bool ret;
85 spin_lock_irqsave(&r->producer_lock, flags);
86 ret = __ptr_ring_full(r);
87 spin_unlock_irqrestore(&r->producer_lock, flags);
89 return ret;
92 static inline bool ptr_ring_full_bh(struct ptr_ring *r)
94 bool ret;
96 spin_lock_bh(&r->producer_lock);
97 ret = __ptr_ring_full(r);
98 spin_unlock_bh(&r->producer_lock);
100 return ret;
103 /* Note: callers invoking this in a loop must use a compiler barrier,
104 * for example cpu_relax(). Callers must hold producer_lock.
105 * Callers are responsible for making sure pointer that is being queued
106 * points to a valid data.
108 static inline int __ptr_ring_produce(struct ptr_ring *r, void *ptr)
110 if (unlikely(!r->size) || r->queue[r->producer])
111 return -ENOSPC;
113 /* Make sure the pointer we are storing points to a valid data. */
114 /* Pairs with smp_read_barrier_depends in __ptr_ring_consume. */
115 smp_wmb();
117 WRITE_ONCE(r->queue[r->producer++], ptr);
118 if (unlikely(r->producer >= r->size))
119 r->producer = 0;
120 return 0;
124 * Note: resize (below) nests producer lock within consumer lock, so if you
125 * consume in interrupt or BH context, you must disable interrupts/BH when
126 * calling this.
128 static inline int ptr_ring_produce(struct ptr_ring *r, void *ptr)
130 int ret;
132 spin_lock(&r->producer_lock);
133 ret = __ptr_ring_produce(r, ptr);
134 spin_unlock(&r->producer_lock);
136 return ret;
139 static inline int ptr_ring_produce_irq(struct ptr_ring *r, void *ptr)
141 int ret;
143 spin_lock_irq(&r->producer_lock);
144 ret = __ptr_ring_produce(r, ptr);
145 spin_unlock_irq(&r->producer_lock);
147 return ret;
150 static inline int ptr_ring_produce_any(struct ptr_ring *r, void *ptr)
152 unsigned long flags;
153 int ret;
155 spin_lock_irqsave(&r->producer_lock, flags);
156 ret = __ptr_ring_produce(r, ptr);
157 spin_unlock_irqrestore(&r->producer_lock, flags);
159 return ret;
162 static inline int ptr_ring_produce_bh(struct ptr_ring *r, void *ptr)
164 int ret;
166 spin_lock_bh(&r->producer_lock);
167 ret = __ptr_ring_produce(r, ptr);
168 spin_unlock_bh(&r->producer_lock);
170 return ret;
173 static inline void *__ptr_ring_peek(struct ptr_ring *r)
175 if (likely(r->size))
176 return READ_ONCE(r->queue[r->consumer_head]);
177 return NULL;
181 * Test ring empty status without taking any locks.
183 * NB: This is only safe to call if ring is never resized.
185 * However, if some other CPU consumes ring entries at the same time, the value
186 * returned is not guaranteed to be correct.
188 * In this case - to avoid incorrectly detecting the ring
189 * as empty - the CPU consuming the ring entries is responsible
190 * for either consuming all ring entries until the ring is empty,
191 * or synchronizing with some other CPU and causing it to
192 * re-test __ptr_ring_empty and/or consume the ring enteries
193 * after the synchronization point.
195 * Note: callers invoking this in a loop must use a compiler barrier,
196 * for example cpu_relax().
198 static inline bool __ptr_ring_empty(struct ptr_ring *r)
200 if (likely(r->size))
201 return !r->queue[READ_ONCE(r->consumer_head)];
202 return true;
205 static inline bool ptr_ring_empty(struct ptr_ring *r)
207 bool ret;
209 spin_lock(&r->consumer_lock);
210 ret = __ptr_ring_empty(r);
211 spin_unlock(&r->consumer_lock);
213 return ret;
216 static inline bool ptr_ring_empty_irq(struct ptr_ring *r)
218 bool ret;
220 spin_lock_irq(&r->consumer_lock);
221 ret = __ptr_ring_empty(r);
222 spin_unlock_irq(&r->consumer_lock);
224 return ret;
227 static inline bool ptr_ring_empty_any(struct ptr_ring *r)
229 unsigned long flags;
230 bool ret;
232 spin_lock_irqsave(&r->consumer_lock, flags);
233 ret = __ptr_ring_empty(r);
234 spin_unlock_irqrestore(&r->consumer_lock, flags);
236 return ret;
239 static inline bool ptr_ring_empty_bh(struct ptr_ring *r)
241 bool ret;
243 spin_lock_bh(&r->consumer_lock);
244 ret = __ptr_ring_empty(r);
245 spin_unlock_bh(&r->consumer_lock);
247 return ret;
250 /* Must only be called after __ptr_ring_peek returned !NULL */
251 static inline void __ptr_ring_discard_one(struct ptr_ring *r)
253 /* Fundamentally, what we want to do is update consumer
254 * index and zero out the entry so producer can reuse it.
255 * Doing it naively at each consume would be as simple as:
256 * consumer = r->consumer;
257 * r->queue[consumer++] = NULL;
258 * if (unlikely(consumer >= r->size))
259 * consumer = 0;
260 * r->consumer = consumer;
261 * but that is suboptimal when the ring is full as producer is writing
262 * out new entries in the same cache line. Defer these updates until a
263 * batch of entries has been consumed.
265 /* Note: we must keep consumer_head valid at all times for __ptr_ring_empty
266 * to work correctly.
268 int consumer_head = r->consumer_head;
269 int head = consumer_head++;
271 /* Once we have processed enough entries invalidate them in
272 * the ring all at once so producer can reuse their space in the ring.
273 * We also do this when we reach end of the ring - not mandatory
274 * but helps keep the implementation simple.
276 if (unlikely(consumer_head - r->consumer_tail >= r->batch ||
277 consumer_head >= r->size)) {
278 /* Zero out entries in the reverse order: this way we touch the
279 * cache line that producer might currently be reading the last;
280 * producer won't make progress and touch other cache lines
281 * besides the first one until we write out all entries.
283 while (likely(head >= r->consumer_tail))
284 r->queue[head--] = NULL;
285 r->consumer_tail = consumer_head;
287 if (unlikely(consumer_head >= r->size)) {
288 consumer_head = 0;
289 r->consumer_tail = 0;
291 /* matching READ_ONCE in __ptr_ring_empty for lockless tests */
292 WRITE_ONCE(r->consumer_head, consumer_head);
295 static inline void *__ptr_ring_consume(struct ptr_ring *r)
297 void *ptr;
299 ptr = __ptr_ring_peek(r);
300 if (ptr)
301 __ptr_ring_discard_one(r);
303 /* Make sure anyone accessing data through the pointer is up to date. */
304 /* Pairs with smp_wmb in __ptr_ring_produce. */
305 smp_read_barrier_depends();
306 return ptr;
309 static inline int __ptr_ring_consume_batched(struct ptr_ring *r,
310 void **array, int n)
312 void *ptr;
313 int i;
315 for (i = 0; i < n; i++) {
316 ptr = __ptr_ring_consume(r);
317 if (!ptr)
318 break;
319 array[i] = ptr;
322 return i;
326 * Note: resize (below) nests producer lock within consumer lock, so if you
327 * call this in interrupt or BH context, you must disable interrupts/BH when
328 * producing.
330 static inline void *ptr_ring_consume(struct ptr_ring *r)
332 void *ptr;
334 spin_lock(&r->consumer_lock);
335 ptr = __ptr_ring_consume(r);
336 spin_unlock(&r->consumer_lock);
338 return ptr;
341 static inline void *ptr_ring_consume_irq(struct ptr_ring *r)
343 void *ptr;
345 spin_lock_irq(&r->consumer_lock);
346 ptr = __ptr_ring_consume(r);
347 spin_unlock_irq(&r->consumer_lock);
349 return ptr;
352 static inline void *ptr_ring_consume_any(struct ptr_ring *r)
354 unsigned long flags;
355 void *ptr;
357 spin_lock_irqsave(&r->consumer_lock, flags);
358 ptr = __ptr_ring_consume(r);
359 spin_unlock_irqrestore(&r->consumer_lock, flags);
361 return ptr;
364 static inline void *ptr_ring_consume_bh(struct ptr_ring *r)
366 void *ptr;
368 spin_lock_bh(&r->consumer_lock);
369 ptr = __ptr_ring_consume(r);
370 spin_unlock_bh(&r->consumer_lock);
372 return ptr;
375 static inline int ptr_ring_consume_batched(struct ptr_ring *r,
376 void **array, int n)
378 int ret;
380 spin_lock(&r->consumer_lock);
381 ret = __ptr_ring_consume_batched(r, array, n);
382 spin_unlock(&r->consumer_lock);
384 return ret;
387 static inline int ptr_ring_consume_batched_irq(struct ptr_ring *r,
388 void **array, int n)
390 int ret;
392 spin_lock_irq(&r->consumer_lock);
393 ret = __ptr_ring_consume_batched(r, array, n);
394 spin_unlock_irq(&r->consumer_lock);
396 return ret;
399 static inline int ptr_ring_consume_batched_any(struct ptr_ring *r,
400 void **array, int n)
402 unsigned long flags;
403 int ret;
405 spin_lock_irqsave(&r->consumer_lock, flags);
406 ret = __ptr_ring_consume_batched(r, array, n);
407 spin_unlock_irqrestore(&r->consumer_lock, flags);
409 return ret;
412 static inline int ptr_ring_consume_batched_bh(struct ptr_ring *r,
413 void **array, int n)
415 int ret;
417 spin_lock_bh(&r->consumer_lock);
418 ret = __ptr_ring_consume_batched(r, array, n);
419 spin_unlock_bh(&r->consumer_lock);
421 return ret;
424 /* Cast to structure type and call a function without discarding from FIFO.
425 * Function must return a value.
426 * Callers must take consumer_lock.
428 #define __PTR_RING_PEEK_CALL(r, f) ((f)(__ptr_ring_peek(r)))
430 #define PTR_RING_PEEK_CALL(r, f) ({ \
431 typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
433 spin_lock(&(r)->consumer_lock); \
434 __PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
435 spin_unlock(&(r)->consumer_lock); \
436 __PTR_RING_PEEK_CALL_v; \
439 #define PTR_RING_PEEK_CALL_IRQ(r, f) ({ \
440 typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
442 spin_lock_irq(&(r)->consumer_lock); \
443 __PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
444 spin_unlock_irq(&(r)->consumer_lock); \
445 __PTR_RING_PEEK_CALL_v; \
448 #define PTR_RING_PEEK_CALL_BH(r, f) ({ \
449 typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
451 spin_lock_bh(&(r)->consumer_lock); \
452 __PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
453 spin_unlock_bh(&(r)->consumer_lock); \
454 __PTR_RING_PEEK_CALL_v; \
457 #define PTR_RING_PEEK_CALL_ANY(r, f) ({ \
458 typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
459 unsigned long __PTR_RING_PEEK_CALL_f;\
461 spin_lock_irqsave(&(r)->consumer_lock, __PTR_RING_PEEK_CALL_f); \
462 __PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
463 spin_unlock_irqrestore(&(r)->consumer_lock, __PTR_RING_PEEK_CALL_f); \
464 __PTR_RING_PEEK_CALL_v; \
467 /* Not all gfp_t flags (besides GFP_KERNEL) are allowed. See
468 * documentation for vmalloc for which of them are legal.
470 static inline void **__ptr_ring_init_queue_alloc(unsigned int size, gfp_t gfp)
472 if (size > KMALLOC_MAX_SIZE / sizeof(void *))
473 return NULL;
474 return kvmalloc_array(size, sizeof(void *), gfp | __GFP_ZERO);
477 static inline void __ptr_ring_set_size(struct ptr_ring *r, int size)
479 r->size = size;
480 r->batch = SMP_CACHE_BYTES * 2 / sizeof(*(r->queue));
481 /* We need to set batch at least to 1 to make logic
482 * in __ptr_ring_discard_one work correctly.
483 * Batching too much (because ring is small) would cause a lot of
484 * burstiness. Needs tuning, for now disable batching.
486 if (r->batch > r->size / 2 || !r->batch)
487 r->batch = 1;
490 static inline int ptr_ring_init(struct ptr_ring *r, int size, gfp_t gfp)
492 r->queue = __ptr_ring_init_queue_alloc(size, gfp);
493 if (!r->queue)
494 return -ENOMEM;
496 __ptr_ring_set_size(r, size);
497 r->producer = r->consumer_head = r->consumer_tail = 0;
498 spin_lock_init(&r->producer_lock);
499 spin_lock_init(&r->consumer_lock);
501 return 0;
505 * Return entries into ring. Destroy entries that don't fit.
507 * Note: this is expected to be a rare slow path operation.
509 * Note: producer lock is nested within consumer lock, so if you
510 * resize you must make sure all uses nest correctly.
511 * In particular if you consume ring in interrupt or BH context, you must
512 * disable interrupts/BH when doing so.
514 static inline void ptr_ring_unconsume(struct ptr_ring *r, void **batch, int n,
515 void (*destroy)(void *))
517 unsigned long flags;
518 int head;
520 spin_lock_irqsave(&r->consumer_lock, flags);
521 spin_lock(&r->producer_lock);
523 if (!r->size)
524 goto done;
527 * Clean out buffered entries (for simplicity). This way following code
528 * can test entries for NULL and if not assume they are valid.
530 head = r->consumer_head - 1;
531 while (likely(head >= r->consumer_tail))
532 r->queue[head--] = NULL;
533 r->consumer_tail = r->consumer_head;
536 * Go over entries in batch, start moving head back and copy entries.
537 * Stop when we run into previously unconsumed entries.
539 while (n) {
540 head = r->consumer_head - 1;
541 if (head < 0)
542 head = r->size - 1;
543 if (r->queue[head]) {
544 /* This batch entry will have to be destroyed. */
545 goto done;
547 r->queue[head] = batch[--n];
548 r->consumer_tail = head;
549 /* matching READ_ONCE in __ptr_ring_empty for lockless tests */
550 WRITE_ONCE(r->consumer_head, head);
553 done:
554 /* Destroy all entries left in the batch. */
555 while (n)
556 destroy(batch[--n]);
557 spin_unlock(&r->producer_lock);
558 spin_unlock_irqrestore(&r->consumer_lock, flags);
561 static inline void **__ptr_ring_swap_queue(struct ptr_ring *r, void **queue,
562 int size, gfp_t gfp,
563 void (*destroy)(void *))
565 int producer = 0;
566 void **old;
567 void *ptr;
569 while ((ptr = __ptr_ring_consume(r)))
570 if (producer < size)
571 queue[producer++] = ptr;
572 else if (destroy)
573 destroy(ptr);
575 __ptr_ring_set_size(r, size);
576 r->producer = producer;
577 r->consumer_head = 0;
578 r->consumer_tail = 0;
579 old = r->queue;
580 r->queue = queue;
582 return old;
586 * Note: producer lock is nested within consumer lock, so if you
587 * resize you must make sure all uses nest correctly.
588 * In particular if you consume ring in interrupt or BH context, you must
589 * disable interrupts/BH when doing so.
591 static inline int ptr_ring_resize(struct ptr_ring *r, int size, gfp_t gfp,
592 void (*destroy)(void *))
594 unsigned long flags;
595 void **queue = __ptr_ring_init_queue_alloc(size, gfp);
596 void **old;
598 if (!queue)
599 return -ENOMEM;
601 spin_lock_irqsave(&(r)->consumer_lock, flags);
602 spin_lock(&(r)->producer_lock);
604 old = __ptr_ring_swap_queue(r, queue, size, gfp, destroy);
606 spin_unlock(&(r)->producer_lock);
607 spin_unlock_irqrestore(&(r)->consumer_lock, flags);
609 kvfree(old);
611 return 0;
615 * Note: producer lock is nested within consumer lock, so if you
616 * resize you must make sure all uses nest correctly.
617 * In particular if you consume ring in interrupt or BH context, you must
618 * disable interrupts/BH when doing so.
620 static inline int ptr_ring_resize_multiple(struct ptr_ring **rings,
621 unsigned int nrings,
622 int size,
623 gfp_t gfp, void (*destroy)(void *))
625 unsigned long flags;
626 void ***queues;
627 int i;
629 queues = kmalloc_array(nrings, sizeof(*queues), gfp);
630 if (!queues)
631 goto noqueues;
633 for (i = 0; i < nrings; ++i) {
634 queues[i] = __ptr_ring_init_queue_alloc(size, gfp);
635 if (!queues[i])
636 goto nomem;
639 for (i = 0; i < nrings; ++i) {
640 spin_lock_irqsave(&(rings[i])->consumer_lock, flags);
641 spin_lock(&(rings[i])->producer_lock);
642 queues[i] = __ptr_ring_swap_queue(rings[i], queues[i],
643 size, gfp, destroy);
644 spin_unlock(&(rings[i])->producer_lock);
645 spin_unlock_irqrestore(&(rings[i])->consumer_lock, flags);
648 for (i = 0; i < nrings; ++i)
649 kvfree(queues[i]);
651 kfree(queues);
653 return 0;
655 nomem:
656 while (--i >= 0)
657 kvfree(queues[i]);
659 kfree(queues);
661 noqueues:
662 return -ENOMEM;
665 static inline void ptr_ring_cleanup(struct ptr_ring *r, void (*destroy)(void *))
667 void *ptr;
669 if (destroy)
670 while ((ptr = ptr_ring_consume(r)))
671 destroy(ptr);
672 kvfree(r->queue);
675 #endif /* _LINUX_PTR_RING_H */