Merge tag 'xtensa-20180225' of git://github.com/jcmvbkbc/linux-xtensa
[cris-mirror.git] / kernel / kprobes.c
blob102160ff5c661e475e773888bfc3267d832bd4d6
1 /*
2 * Kernel Probes (KProbes)
3 * kernel/kprobes.c
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 * Copyright (C) IBM Corporation, 2002, 2004
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation (includes suggestions from
23 * Rusty Russell).
24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 * hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 * interface to access function arguments.
28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 * exceptions notifier to be first on the priority list.
30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 * <prasanna@in.ibm.com> added function-return probes.
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
52 #include <asm/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <linux/uaccess.h>
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
61 static int kprobes_initialized;
62 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
63 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
65 /* NOTE: change this value only with kprobe_mutex held */
66 static bool kprobes_all_disarmed;
68 /* This protects kprobe_table and optimizing_list */
69 static DEFINE_MUTEX(kprobe_mutex);
70 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
71 static struct {
72 raw_spinlock_t lock ____cacheline_aligned_in_smp;
73 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
75 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
76 unsigned int __unused)
78 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
81 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
83 return &(kretprobe_table_locks[hash].lock);
86 /* Blacklist -- list of struct kprobe_blacklist_entry */
87 static LIST_HEAD(kprobe_blacklist);
89 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
91 * kprobe->ainsn.insn points to the copy of the instruction to be
92 * single-stepped. x86_64, POWER4 and above have no-exec support and
93 * stepping on the instruction on a vmalloced/kmalloced/data page
94 * is a recipe for disaster
96 struct kprobe_insn_page {
97 struct list_head list;
98 kprobe_opcode_t *insns; /* Page of instruction slots */
99 struct kprobe_insn_cache *cache;
100 int nused;
101 int ngarbage;
102 char slot_used[];
105 #define KPROBE_INSN_PAGE_SIZE(slots) \
106 (offsetof(struct kprobe_insn_page, slot_used) + \
107 (sizeof(char) * (slots)))
109 static int slots_per_page(struct kprobe_insn_cache *c)
111 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
114 enum kprobe_slot_state {
115 SLOT_CLEAN = 0,
116 SLOT_DIRTY = 1,
117 SLOT_USED = 2,
120 void __weak *alloc_insn_page(void)
122 return module_alloc(PAGE_SIZE);
125 void __weak free_insn_page(void *page)
127 module_memfree(page);
130 struct kprobe_insn_cache kprobe_insn_slots = {
131 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
132 .alloc = alloc_insn_page,
133 .free = free_insn_page,
134 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
135 .insn_size = MAX_INSN_SIZE,
136 .nr_garbage = 0,
138 static int collect_garbage_slots(struct kprobe_insn_cache *c);
141 * __get_insn_slot() - Find a slot on an executable page for an instruction.
142 * We allocate an executable page if there's no room on existing ones.
144 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
146 struct kprobe_insn_page *kip;
147 kprobe_opcode_t *slot = NULL;
149 /* Since the slot array is not protected by rcu, we need a mutex */
150 mutex_lock(&c->mutex);
151 retry:
152 rcu_read_lock();
153 list_for_each_entry_rcu(kip, &c->pages, list) {
154 if (kip->nused < slots_per_page(c)) {
155 int i;
156 for (i = 0; i < slots_per_page(c); i++) {
157 if (kip->slot_used[i] == SLOT_CLEAN) {
158 kip->slot_used[i] = SLOT_USED;
159 kip->nused++;
160 slot = kip->insns + (i * c->insn_size);
161 rcu_read_unlock();
162 goto out;
165 /* kip->nused is broken. Fix it. */
166 kip->nused = slots_per_page(c);
167 WARN_ON(1);
170 rcu_read_unlock();
172 /* If there are any garbage slots, collect it and try again. */
173 if (c->nr_garbage && collect_garbage_slots(c) == 0)
174 goto retry;
176 /* All out of space. Need to allocate a new page. */
177 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
178 if (!kip)
179 goto out;
182 * Use module_alloc so this page is within +/- 2GB of where the
183 * kernel image and loaded module images reside. This is required
184 * so x86_64 can correctly handle the %rip-relative fixups.
186 kip->insns = c->alloc();
187 if (!kip->insns) {
188 kfree(kip);
189 goto out;
191 INIT_LIST_HEAD(&kip->list);
192 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
193 kip->slot_used[0] = SLOT_USED;
194 kip->nused = 1;
195 kip->ngarbage = 0;
196 kip->cache = c;
197 list_add_rcu(&kip->list, &c->pages);
198 slot = kip->insns;
199 out:
200 mutex_unlock(&c->mutex);
201 return slot;
204 /* Return 1 if all garbages are collected, otherwise 0. */
205 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
207 kip->slot_used[idx] = SLOT_CLEAN;
208 kip->nused--;
209 if (kip->nused == 0) {
211 * Page is no longer in use. Free it unless
212 * it's the last one. We keep the last one
213 * so as not to have to set it up again the
214 * next time somebody inserts a probe.
216 if (!list_is_singular(&kip->list)) {
217 list_del_rcu(&kip->list);
218 synchronize_rcu();
219 kip->cache->free(kip->insns);
220 kfree(kip);
222 return 1;
224 return 0;
227 static int collect_garbage_slots(struct kprobe_insn_cache *c)
229 struct kprobe_insn_page *kip, *next;
231 /* Ensure no-one is interrupted on the garbages */
232 synchronize_sched();
234 list_for_each_entry_safe(kip, next, &c->pages, list) {
235 int i;
236 if (kip->ngarbage == 0)
237 continue;
238 kip->ngarbage = 0; /* we will collect all garbages */
239 for (i = 0; i < slots_per_page(c); i++) {
240 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
241 break;
244 c->nr_garbage = 0;
245 return 0;
248 void __free_insn_slot(struct kprobe_insn_cache *c,
249 kprobe_opcode_t *slot, int dirty)
251 struct kprobe_insn_page *kip;
252 long idx;
254 mutex_lock(&c->mutex);
255 rcu_read_lock();
256 list_for_each_entry_rcu(kip, &c->pages, list) {
257 idx = ((long)slot - (long)kip->insns) /
258 (c->insn_size * sizeof(kprobe_opcode_t));
259 if (idx >= 0 && idx < slots_per_page(c))
260 goto out;
262 /* Could not find this slot. */
263 WARN_ON(1);
264 kip = NULL;
265 out:
266 rcu_read_unlock();
267 /* Mark and sweep: this may sleep */
268 if (kip) {
269 /* Check double free */
270 WARN_ON(kip->slot_used[idx] != SLOT_USED);
271 if (dirty) {
272 kip->slot_used[idx] = SLOT_DIRTY;
273 kip->ngarbage++;
274 if (++c->nr_garbage > slots_per_page(c))
275 collect_garbage_slots(c);
276 } else {
277 collect_one_slot(kip, idx);
280 mutex_unlock(&c->mutex);
284 * Check given address is on the page of kprobe instruction slots.
285 * This will be used for checking whether the address on a stack
286 * is on a text area or not.
288 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
290 struct kprobe_insn_page *kip;
291 bool ret = false;
293 rcu_read_lock();
294 list_for_each_entry_rcu(kip, &c->pages, list) {
295 if (addr >= (unsigned long)kip->insns &&
296 addr < (unsigned long)kip->insns + PAGE_SIZE) {
297 ret = true;
298 break;
301 rcu_read_unlock();
303 return ret;
306 #ifdef CONFIG_OPTPROBES
307 /* For optimized_kprobe buffer */
308 struct kprobe_insn_cache kprobe_optinsn_slots = {
309 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
310 .alloc = alloc_insn_page,
311 .free = free_insn_page,
312 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
313 /* .insn_size is initialized later */
314 .nr_garbage = 0,
316 #endif
317 #endif
319 /* We have preemption disabled.. so it is safe to use __ versions */
320 static inline void set_kprobe_instance(struct kprobe *kp)
322 __this_cpu_write(kprobe_instance, kp);
325 static inline void reset_kprobe_instance(void)
327 __this_cpu_write(kprobe_instance, NULL);
331 * This routine is called either:
332 * - under the kprobe_mutex - during kprobe_[un]register()
333 * OR
334 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
336 struct kprobe *get_kprobe(void *addr)
338 struct hlist_head *head;
339 struct kprobe *p;
341 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
342 hlist_for_each_entry_rcu(p, head, hlist) {
343 if (p->addr == addr)
344 return p;
347 return NULL;
349 NOKPROBE_SYMBOL(get_kprobe);
351 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
353 /* Return true if the kprobe is an aggregator */
354 static inline int kprobe_aggrprobe(struct kprobe *p)
356 return p->pre_handler == aggr_pre_handler;
359 /* Return true(!0) if the kprobe is unused */
360 static inline int kprobe_unused(struct kprobe *p)
362 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
363 list_empty(&p->list);
367 * Keep all fields in the kprobe consistent
369 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
371 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
372 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
375 #ifdef CONFIG_OPTPROBES
376 /* NOTE: change this value only with kprobe_mutex held */
377 static bool kprobes_allow_optimization;
380 * Call all pre_handler on the list, but ignores its return value.
381 * This must be called from arch-dep optimized caller.
383 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
385 struct kprobe *kp;
387 list_for_each_entry_rcu(kp, &p->list, list) {
388 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
389 set_kprobe_instance(kp);
390 kp->pre_handler(kp, regs);
392 reset_kprobe_instance();
395 NOKPROBE_SYMBOL(opt_pre_handler);
397 /* Free optimized instructions and optimized_kprobe */
398 static void free_aggr_kprobe(struct kprobe *p)
400 struct optimized_kprobe *op;
402 op = container_of(p, struct optimized_kprobe, kp);
403 arch_remove_optimized_kprobe(op);
404 arch_remove_kprobe(p);
405 kfree(op);
408 /* Return true(!0) if the kprobe is ready for optimization. */
409 static inline int kprobe_optready(struct kprobe *p)
411 struct optimized_kprobe *op;
413 if (kprobe_aggrprobe(p)) {
414 op = container_of(p, struct optimized_kprobe, kp);
415 return arch_prepared_optinsn(&op->optinsn);
418 return 0;
421 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
422 static inline int kprobe_disarmed(struct kprobe *p)
424 struct optimized_kprobe *op;
426 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
427 if (!kprobe_aggrprobe(p))
428 return kprobe_disabled(p);
430 op = container_of(p, struct optimized_kprobe, kp);
432 return kprobe_disabled(p) && list_empty(&op->list);
435 /* Return true(!0) if the probe is queued on (un)optimizing lists */
436 static int kprobe_queued(struct kprobe *p)
438 struct optimized_kprobe *op;
440 if (kprobe_aggrprobe(p)) {
441 op = container_of(p, struct optimized_kprobe, kp);
442 if (!list_empty(&op->list))
443 return 1;
445 return 0;
449 * Return an optimized kprobe whose optimizing code replaces
450 * instructions including addr (exclude breakpoint).
452 static struct kprobe *get_optimized_kprobe(unsigned long addr)
454 int i;
455 struct kprobe *p = NULL;
456 struct optimized_kprobe *op;
458 /* Don't check i == 0, since that is a breakpoint case. */
459 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
460 p = get_kprobe((void *)(addr - i));
462 if (p && kprobe_optready(p)) {
463 op = container_of(p, struct optimized_kprobe, kp);
464 if (arch_within_optimized_kprobe(op, addr))
465 return p;
468 return NULL;
471 /* Optimization staging list, protected by kprobe_mutex */
472 static LIST_HEAD(optimizing_list);
473 static LIST_HEAD(unoptimizing_list);
474 static LIST_HEAD(freeing_list);
476 static void kprobe_optimizer(struct work_struct *work);
477 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
478 #define OPTIMIZE_DELAY 5
481 * Optimize (replace a breakpoint with a jump) kprobes listed on
482 * optimizing_list.
484 static void do_optimize_kprobes(void)
487 * The optimization/unoptimization refers online_cpus via
488 * stop_machine() and cpu-hotplug modifies online_cpus.
489 * And same time, text_mutex will be held in cpu-hotplug and here.
490 * This combination can cause a deadlock (cpu-hotplug try to lock
491 * text_mutex but stop_machine can not be done because online_cpus
492 * has been changed)
493 * To avoid this deadlock, caller must have locked cpu hotplug
494 * for preventing cpu-hotplug outside of text_mutex locking.
496 lockdep_assert_cpus_held();
498 /* Optimization never be done when disarmed */
499 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
500 list_empty(&optimizing_list))
501 return;
503 mutex_lock(&text_mutex);
504 arch_optimize_kprobes(&optimizing_list);
505 mutex_unlock(&text_mutex);
509 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
510 * if need) kprobes listed on unoptimizing_list.
512 static void do_unoptimize_kprobes(void)
514 struct optimized_kprobe *op, *tmp;
516 /* See comment in do_optimize_kprobes() */
517 lockdep_assert_cpus_held();
519 /* Unoptimization must be done anytime */
520 if (list_empty(&unoptimizing_list))
521 return;
523 mutex_lock(&text_mutex);
524 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
525 /* Loop free_list for disarming */
526 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
527 /* Disarm probes if marked disabled */
528 if (kprobe_disabled(&op->kp))
529 arch_disarm_kprobe(&op->kp);
530 if (kprobe_unused(&op->kp)) {
532 * Remove unused probes from hash list. After waiting
533 * for synchronization, these probes are reclaimed.
534 * (reclaiming is done by do_free_cleaned_kprobes.)
536 hlist_del_rcu(&op->kp.hlist);
537 } else
538 list_del_init(&op->list);
540 mutex_unlock(&text_mutex);
543 /* Reclaim all kprobes on the free_list */
544 static void do_free_cleaned_kprobes(void)
546 struct optimized_kprobe *op, *tmp;
548 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
549 BUG_ON(!kprobe_unused(&op->kp));
550 list_del_init(&op->list);
551 free_aggr_kprobe(&op->kp);
555 /* Start optimizer after OPTIMIZE_DELAY passed */
556 static void kick_kprobe_optimizer(void)
558 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
561 /* Kprobe jump optimizer */
562 static void kprobe_optimizer(struct work_struct *work)
564 mutex_lock(&kprobe_mutex);
565 cpus_read_lock();
566 /* Lock modules while optimizing kprobes */
567 mutex_lock(&module_mutex);
570 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
571 * kprobes before waiting for quiesence period.
573 do_unoptimize_kprobes();
576 * Step 2: Wait for quiesence period to ensure all potentially
577 * preempted tasks to have normally scheduled. Because optprobe
578 * may modify multiple instructions, there is a chance that Nth
579 * instruction is preempted. In that case, such tasks can return
580 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
581 * Note that on non-preemptive kernel, this is transparently converted
582 * to synchronoze_sched() to wait for all interrupts to have completed.
584 synchronize_rcu_tasks();
586 /* Step 3: Optimize kprobes after quiesence period */
587 do_optimize_kprobes();
589 /* Step 4: Free cleaned kprobes after quiesence period */
590 do_free_cleaned_kprobes();
592 mutex_unlock(&module_mutex);
593 cpus_read_unlock();
594 mutex_unlock(&kprobe_mutex);
596 /* Step 5: Kick optimizer again if needed */
597 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
598 kick_kprobe_optimizer();
601 /* Wait for completing optimization and unoptimization */
602 void wait_for_kprobe_optimizer(void)
604 mutex_lock(&kprobe_mutex);
606 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
607 mutex_unlock(&kprobe_mutex);
609 /* this will also make optimizing_work execute immmediately */
610 flush_delayed_work(&optimizing_work);
611 /* @optimizing_work might not have been queued yet, relax */
612 cpu_relax();
614 mutex_lock(&kprobe_mutex);
617 mutex_unlock(&kprobe_mutex);
620 /* Optimize kprobe if p is ready to be optimized */
621 static void optimize_kprobe(struct kprobe *p)
623 struct optimized_kprobe *op;
625 /* Check if the kprobe is disabled or not ready for optimization. */
626 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
627 (kprobe_disabled(p) || kprobes_all_disarmed))
628 return;
630 /* Both of break_handler and post_handler are not supported. */
631 if (p->break_handler || p->post_handler)
632 return;
634 op = container_of(p, struct optimized_kprobe, kp);
636 /* Check there is no other kprobes at the optimized instructions */
637 if (arch_check_optimized_kprobe(op) < 0)
638 return;
640 /* Check if it is already optimized. */
641 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
642 return;
643 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
645 if (!list_empty(&op->list))
646 /* This is under unoptimizing. Just dequeue the probe */
647 list_del_init(&op->list);
648 else {
649 list_add(&op->list, &optimizing_list);
650 kick_kprobe_optimizer();
654 /* Short cut to direct unoptimizing */
655 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
657 lockdep_assert_cpus_held();
658 arch_unoptimize_kprobe(op);
659 if (kprobe_disabled(&op->kp))
660 arch_disarm_kprobe(&op->kp);
663 /* Unoptimize a kprobe if p is optimized */
664 static void unoptimize_kprobe(struct kprobe *p, bool force)
666 struct optimized_kprobe *op;
668 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
669 return; /* This is not an optprobe nor optimized */
671 op = container_of(p, struct optimized_kprobe, kp);
672 if (!kprobe_optimized(p)) {
673 /* Unoptimized or unoptimizing case */
674 if (force && !list_empty(&op->list)) {
676 * Only if this is unoptimizing kprobe and forced,
677 * forcibly unoptimize it. (No need to unoptimize
678 * unoptimized kprobe again :)
680 list_del_init(&op->list);
681 force_unoptimize_kprobe(op);
683 return;
686 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
687 if (!list_empty(&op->list)) {
688 /* Dequeue from the optimization queue */
689 list_del_init(&op->list);
690 return;
692 /* Optimized kprobe case */
693 if (force)
694 /* Forcibly update the code: this is a special case */
695 force_unoptimize_kprobe(op);
696 else {
697 list_add(&op->list, &unoptimizing_list);
698 kick_kprobe_optimizer();
702 /* Cancel unoptimizing for reusing */
703 static void reuse_unused_kprobe(struct kprobe *ap)
705 struct optimized_kprobe *op;
707 BUG_ON(!kprobe_unused(ap));
709 * Unused kprobe MUST be on the way of delayed unoptimizing (means
710 * there is still a relative jump) and disabled.
712 op = container_of(ap, struct optimized_kprobe, kp);
713 if (unlikely(list_empty(&op->list)))
714 printk(KERN_WARNING "Warning: found a stray unused "
715 "aggrprobe@%p\n", ap->addr);
716 /* Enable the probe again */
717 ap->flags &= ~KPROBE_FLAG_DISABLED;
718 /* Optimize it again (remove from op->list) */
719 BUG_ON(!kprobe_optready(ap));
720 optimize_kprobe(ap);
723 /* Remove optimized instructions */
724 static void kill_optimized_kprobe(struct kprobe *p)
726 struct optimized_kprobe *op;
728 op = container_of(p, struct optimized_kprobe, kp);
729 if (!list_empty(&op->list))
730 /* Dequeue from the (un)optimization queue */
731 list_del_init(&op->list);
732 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
734 if (kprobe_unused(p)) {
735 /* Enqueue if it is unused */
736 list_add(&op->list, &freeing_list);
738 * Remove unused probes from the hash list. After waiting
739 * for synchronization, this probe is reclaimed.
740 * (reclaiming is done by do_free_cleaned_kprobes().)
742 hlist_del_rcu(&op->kp.hlist);
745 /* Don't touch the code, because it is already freed. */
746 arch_remove_optimized_kprobe(op);
749 static inline
750 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
752 if (!kprobe_ftrace(p))
753 arch_prepare_optimized_kprobe(op, p);
756 /* Try to prepare optimized instructions */
757 static void prepare_optimized_kprobe(struct kprobe *p)
759 struct optimized_kprobe *op;
761 op = container_of(p, struct optimized_kprobe, kp);
762 __prepare_optimized_kprobe(op, p);
765 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
766 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
768 struct optimized_kprobe *op;
770 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
771 if (!op)
772 return NULL;
774 INIT_LIST_HEAD(&op->list);
775 op->kp.addr = p->addr;
776 __prepare_optimized_kprobe(op, p);
778 return &op->kp;
781 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
784 * Prepare an optimized_kprobe and optimize it
785 * NOTE: p must be a normal registered kprobe
787 static void try_to_optimize_kprobe(struct kprobe *p)
789 struct kprobe *ap;
790 struct optimized_kprobe *op;
792 /* Impossible to optimize ftrace-based kprobe */
793 if (kprobe_ftrace(p))
794 return;
796 /* For preparing optimization, jump_label_text_reserved() is called */
797 cpus_read_lock();
798 jump_label_lock();
799 mutex_lock(&text_mutex);
801 ap = alloc_aggr_kprobe(p);
802 if (!ap)
803 goto out;
805 op = container_of(ap, struct optimized_kprobe, kp);
806 if (!arch_prepared_optinsn(&op->optinsn)) {
807 /* If failed to setup optimizing, fallback to kprobe */
808 arch_remove_optimized_kprobe(op);
809 kfree(op);
810 goto out;
813 init_aggr_kprobe(ap, p);
814 optimize_kprobe(ap); /* This just kicks optimizer thread */
816 out:
817 mutex_unlock(&text_mutex);
818 jump_label_unlock();
819 cpus_read_unlock();
822 #ifdef CONFIG_SYSCTL
823 static void optimize_all_kprobes(void)
825 struct hlist_head *head;
826 struct kprobe *p;
827 unsigned int i;
829 mutex_lock(&kprobe_mutex);
830 /* If optimization is already allowed, just return */
831 if (kprobes_allow_optimization)
832 goto out;
834 cpus_read_lock();
835 kprobes_allow_optimization = true;
836 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
837 head = &kprobe_table[i];
838 hlist_for_each_entry_rcu(p, head, hlist)
839 if (!kprobe_disabled(p))
840 optimize_kprobe(p);
842 cpus_read_unlock();
843 printk(KERN_INFO "Kprobes globally optimized\n");
844 out:
845 mutex_unlock(&kprobe_mutex);
848 static void unoptimize_all_kprobes(void)
850 struct hlist_head *head;
851 struct kprobe *p;
852 unsigned int i;
854 mutex_lock(&kprobe_mutex);
855 /* If optimization is already prohibited, just return */
856 if (!kprobes_allow_optimization) {
857 mutex_unlock(&kprobe_mutex);
858 return;
861 cpus_read_lock();
862 kprobes_allow_optimization = false;
863 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
864 head = &kprobe_table[i];
865 hlist_for_each_entry_rcu(p, head, hlist) {
866 if (!kprobe_disabled(p))
867 unoptimize_kprobe(p, false);
870 cpus_read_unlock();
871 mutex_unlock(&kprobe_mutex);
873 /* Wait for unoptimizing completion */
874 wait_for_kprobe_optimizer();
875 printk(KERN_INFO "Kprobes globally unoptimized\n");
878 static DEFINE_MUTEX(kprobe_sysctl_mutex);
879 int sysctl_kprobes_optimization;
880 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
881 void __user *buffer, size_t *length,
882 loff_t *ppos)
884 int ret;
886 mutex_lock(&kprobe_sysctl_mutex);
887 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
888 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
890 if (sysctl_kprobes_optimization)
891 optimize_all_kprobes();
892 else
893 unoptimize_all_kprobes();
894 mutex_unlock(&kprobe_sysctl_mutex);
896 return ret;
898 #endif /* CONFIG_SYSCTL */
900 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
901 static void __arm_kprobe(struct kprobe *p)
903 struct kprobe *_p;
905 /* Check collision with other optimized kprobes */
906 _p = get_optimized_kprobe((unsigned long)p->addr);
907 if (unlikely(_p))
908 /* Fallback to unoptimized kprobe */
909 unoptimize_kprobe(_p, true);
911 arch_arm_kprobe(p);
912 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
915 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
916 static void __disarm_kprobe(struct kprobe *p, bool reopt)
918 struct kprobe *_p;
920 /* Try to unoptimize */
921 unoptimize_kprobe(p, kprobes_all_disarmed);
923 if (!kprobe_queued(p)) {
924 arch_disarm_kprobe(p);
925 /* If another kprobe was blocked, optimize it. */
926 _p = get_optimized_kprobe((unsigned long)p->addr);
927 if (unlikely(_p) && reopt)
928 optimize_kprobe(_p);
930 /* TODO: reoptimize others after unoptimized this probe */
933 #else /* !CONFIG_OPTPROBES */
935 #define optimize_kprobe(p) do {} while (0)
936 #define unoptimize_kprobe(p, f) do {} while (0)
937 #define kill_optimized_kprobe(p) do {} while (0)
938 #define prepare_optimized_kprobe(p) do {} while (0)
939 #define try_to_optimize_kprobe(p) do {} while (0)
940 #define __arm_kprobe(p) arch_arm_kprobe(p)
941 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
942 #define kprobe_disarmed(p) kprobe_disabled(p)
943 #define wait_for_kprobe_optimizer() do {} while (0)
945 /* There should be no unused kprobes can be reused without optimization */
946 static void reuse_unused_kprobe(struct kprobe *ap)
948 printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
949 BUG_ON(kprobe_unused(ap));
952 static void free_aggr_kprobe(struct kprobe *p)
954 arch_remove_kprobe(p);
955 kfree(p);
958 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
960 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
962 #endif /* CONFIG_OPTPROBES */
964 #ifdef CONFIG_KPROBES_ON_FTRACE
965 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
966 .func = kprobe_ftrace_handler,
967 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
969 static int kprobe_ftrace_enabled;
971 /* Must ensure p->addr is really on ftrace */
972 static int prepare_kprobe(struct kprobe *p)
974 if (!kprobe_ftrace(p))
975 return arch_prepare_kprobe(p);
977 return arch_prepare_kprobe_ftrace(p);
980 /* Caller must lock kprobe_mutex */
981 static int arm_kprobe_ftrace(struct kprobe *p)
983 int ret = 0;
985 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
986 (unsigned long)p->addr, 0, 0);
987 if (ret) {
988 pr_debug("Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
989 return ret;
992 if (kprobe_ftrace_enabled == 0) {
993 ret = register_ftrace_function(&kprobe_ftrace_ops);
994 if (ret) {
995 pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
996 goto err_ftrace;
1000 kprobe_ftrace_enabled++;
1001 return ret;
1003 err_ftrace:
1005 * Note: Since kprobe_ftrace_ops has IPMODIFY set, and ftrace requires a
1006 * non-empty filter_hash for IPMODIFY ops, we're safe from an accidental
1007 * empty filter_hash which would undesirably trace all functions.
1009 ftrace_set_filter_ip(&kprobe_ftrace_ops, (unsigned long)p->addr, 1, 0);
1010 return ret;
1013 /* Caller must lock kprobe_mutex */
1014 static int disarm_kprobe_ftrace(struct kprobe *p)
1016 int ret = 0;
1018 if (kprobe_ftrace_enabled == 1) {
1019 ret = unregister_ftrace_function(&kprobe_ftrace_ops);
1020 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1021 return ret;
1024 kprobe_ftrace_enabled--;
1026 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
1027 (unsigned long)p->addr, 1, 0);
1028 WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
1029 return ret;
1031 #else /* !CONFIG_KPROBES_ON_FTRACE */
1032 #define prepare_kprobe(p) arch_prepare_kprobe(p)
1033 #define arm_kprobe_ftrace(p) (-ENODEV)
1034 #define disarm_kprobe_ftrace(p) (-ENODEV)
1035 #endif
1037 /* Arm a kprobe with text_mutex */
1038 static int arm_kprobe(struct kprobe *kp)
1040 if (unlikely(kprobe_ftrace(kp)))
1041 return arm_kprobe_ftrace(kp);
1043 cpus_read_lock();
1044 mutex_lock(&text_mutex);
1045 __arm_kprobe(kp);
1046 mutex_unlock(&text_mutex);
1047 cpus_read_unlock();
1049 return 0;
1052 /* Disarm a kprobe with text_mutex */
1053 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1055 if (unlikely(kprobe_ftrace(kp)))
1056 return disarm_kprobe_ftrace(kp);
1058 cpus_read_lock();
1059 mutex_lock(&text_mutex);
1060 __disarm_kprobe(kp, reopt);
1061 mutex_unlock(&text_mutex);
1062 cpus_read_unlock();
1064 return 0;
1068 * Aggregate handlers for multiple kprobes support - these handlers
1069 * take care of invoking the individual kprobe handlers on p->list
1071 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1073 struct kprobe *kp;
1075 list_for_each_entry_rcu(kp, &p->list, list) {
1076 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1077 set_kprobe_instance(kp);
1078 if (kp->pre_handler(kp, regs))
1079 return 1;
1081 reset_kprobe_instance();
1083 return 0;
1085 NOKPROBE_SYMBOL(aggr_pre_handler);
1087 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1088 unsigned long flags)
1090 struct kprobe *kp;
1092 list_for_each_entry_rcu(kp, &p->list, list) {
1093 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1094 set_kprobe_instance(kp);
1095 kp->post_handler(kp, regs, flags);
1096 reset_kprobe_instance();
1100 NOKPROBE_SYMBOL(aggr_post_handler);
1102 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1103 int trapnr)
1105 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1108 * if we faulted "during" the execution of a user specified
1109 * probe handler, invoke just that probe's fault handler
1111 if (cur && cur->fault_handler) {
1112 if (cur->fault_handler(cur, regs, trapnr))
1113 return 1;
1115 return 0;
1117 NOKPROBE_SYMBOL(aggr_fault_handler);
1119 static int aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1121 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1122 int ret = 0;
1124 if (cur && cur->break_handler) {
1125 if (cur->break_handler(cur, regs))
1126 ret = 1;
1128 reset_kprobe_instance();
1129 return ret;
1131 NOKPROBE_SYMBOL(aggr_break_handler);
1133 /* Walks the list and increments nmissed count for multiprobe case */
1134 void kprobes_inc_nmissed_count(struct kprobe *p)
1136 struct kprobe *kp;
1137 if (!kprobe_aggrprobe(p)) {
1138 p->nmissed++;
1139 } else {
1140 list_for_each_entry_rcu(kp, &p->list, list)
1141 kp->nmissed++;
1143 return;
1145 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1147 void recycle_rp_inst(struct kretprobe_instance *ri,
1148 struct hlist_head *head)
1150 struct kretprobe *rp = ri->rp;
1152 /* remove rp inst off the rprobe_inst_table */
1153 hlist_del(&ri->hlist);
1154 INIT_HLIST_NODE(&ri->hlist);
1155 if (likely(rp)) {
1156 raw_spin_lock(&rp->lock);
1157 hlist_add_head(&ri->hlist, &rp->free_instances);
1158 raw_spin_unlock(&rp->lock);
1159 } else
1160 /* Unregistering */
1161 hlist_add_head(&ri->hlist, head);
1163 NOKPROBE_SYMBOL(recycle_rp_inst);
1165 void kretprobe_hash_lock(struct task_struct *tsk,
1166 struct hlist_head **head, unsigned long *flags)
1167 __acquires(hlist_lock)
1169 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1170 raw_spinlock_t *hlist_lock;
1172 *head = &kretprobe_inst_table[hash];
1173 hlist_lock = kretprobe_table_lock_ptr(hash);
1174 raw_spin_lock_irqsave(hlist_lock, *flags);
1176 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1178 static void kretprobe_table_lock(unsigned long hash,
1179 unsigned long *flags)
1180 __acquires(hlist_lock)
1182 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1183 raw_spin_lock_irqsave(hlist_lock, *flags);
1185 NOKPROBE_SYMBOL(kretprobe_table_lock);
1187 void kretprobe_hash_unlock(struct task_struct *tsk,
1188 unsigned long *flags)
1189 __releases(hlist_lock)
1191 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1192 raw_spinlock_t *hlist_lock;
1194 hlist_lock = kretprobe_table_lock_ptr(hash);
1195 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1197 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1199 static void kretprobe_table_unlock(unsigned long hash,
1200 unsigned long *flags)
1201 __releases(hlist_lock)
1203 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1204 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1206 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1209 * This function is called from finish_task_switch when task tk becomes dead,
1210 * so that we can recycle any function-return probe instances associated
1211 * with this task. These left over instances represent probed functions
1212 * that have been called but will never return.
1214 void kprobe_flush_task(struct task_struct *tk)
1216 struct kretprobe_instance *ri;
1217 struct hlist_head *head, empty_rp;
1218 struct hlist_node *tmp;
1219 unsigned long hash, flags = 0;
1221 if (unlikely(!kprobes_initialized))
1222 /* Early boot. kretprobe_table_locks not yet initialized. */
1223 return;
1225 INIT_HLIST_HEAD(&empty_rp);
1226 hash = hash_ptr(tk, KPROBE_HASH_BITS);
1227 head = &kretprobe_inst_table[hash];
1228 kretprobe_table_lock(hash, &flags);
1229 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1230 if (ri->task == tk)
1231 recycle_rp_inst(ri, &empty_rp);
1233 kretprobe_table_unlock(hash, &flags);
1234 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1235 hlist_del(&ri->hlist);
1236 kfree(ri);
1239 NOKPROBE_SYMBOL(kprobe_flush_task);
1241 static inline void free_rp_inst(struct kretprobe *rp)
1243 struct kretprobe_instance *ri;
1244 struct hlist_node *next;
1246 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1247 hlist_del(&ri->hlist);
1248 kfree(ri);
1252 static void cleanup_rp_inst(struct kretprobe *rp)
1254 unsigned long flags, hash;
1255 struct kretprobe_instance *ri;
1256 struct hlist_node *next;
1257 struct hlist_head *head;
1259 /* No race here */
1260 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1261 kretprobe_table_lock(hash, &flags);
1262 head = &kretprobe_inst_table[hash];
1263 hlist_for_each_entry_safe(ri, next, head, hlist) {
1264 if (ri->rp == rp)
1265 ri->rp = NULL;
1267 kretprobe_table_unlock(hash, &flags);
1269 free_rp_inst(rp);
1271 NOKPROBE_SYMBOL(cleanup_rp_inst);
1274 * Add the new probe to ap->list. Fail if this is the
1275 * second jprobe at the address - two jprobes can't coexist
1277 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1279 BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1281 if (p->break_handler || p->post_handler)
1282 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1284 if (p->break_handler) {
1285 if (ap->break_handler)
1286 return -EEXIST;
1287 list_add_tail_rcu(&p->list, &ap->list);
1288 ap->break_handler = aggr_break_handler;
1289 } else
1290 list_add_rcu(&p->list, &ap->list);
1291 if (p->post_handler && !ap->post_handler)
1292 ap->post_handler = aggr_post_handler;
1294 return 0;
1298 * Fill in the required fields of the "manager kprobe". Replace the
1299 * earlier kprobe in the hlist with the manager kprobe
1301 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1303 /* Copy p's insn slot to ap */
1304 copy_kprobe(p, ap);
1305 flush_insn_slot(ap);
1306 ap->addr = p->addr;
1307 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1308 ap->pre_handler = aggr_pre_handler;
1309 ap->fault_handler = aggr_fault_handler;
1310 /* We don't care the kprobe which has gone. */
1311 if (p->post_handler && !kprobe_gone(p))
1312 ap->post_handler = aggr_post_handler;
1313 if (p->break_handler && !kprobe_gone(p))
1314 ap->break_handler = aggr_break_handler;
1316 INIT_LIST_HEAD(&ap->list);
1317 INIT_HLIST_NODE(&ap->hlist);
1319 list_add_rcu(&p->list, &ap->list);
1320 hlist_replace_rcu(&p->hlist, &ap->hlist);
1324 * This is the second or subsequent kprobe at the address - handle
1325 * the intricacies
1327 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1329 int ret = 0;
1330 struct kprobe *ap = orig_p;
1332 cpus_read_lock();
1334 /* For preparing optimization, jump_label_text_reserved() is called */
1335 jump_label_lock();
1336 mutex_lock(&text_mutex);
1338 if (!kprobe_aggrprobe(orig_p)) {
1339 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1340 ap = alloc_aggr_kprobe(orig_p);
1341 if (!ap) {
1342 ret = -ENOMEM;
1343 goto out;
1345 init_aggr_kprobe(ap, orig_p);
1346 } else if (kprobe_unused(ap))
1347 /* This probe is going to die. Rescue it */
1348 reuse_unused_kprobe(ap);
1350 if (kprobe_gone(ap)) {
1352 * Attempting to insert new probe at the same location that
1353 * had a probe in the module vaddr area which already
1354 * freed. So, the instruction slot has already been
1355 * released. We need a new slot for the new probe.
1357 ret = arch_prepare_kprobe(ap);
1358 if (ret)
1360 * Even if fail to allocate new slot, don't need to
1361 * free aggr_probe. It will be used next time, or
1362 * freed by unregister_kprobe.
1364 goto out;
1366 /* Prepare optimized instructions if possible. */
1367 prepare_optimized_kprobe(ap);
1370 * Clear gone flag to prevent allocating new slot again, and
1371 * set disabled flag because it is not armed yet.
1373 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1374 | KPROBE_FLAG_DISABLED;
1377 /* Copy ap's insn slot to p */
1378 copy_kprobe(ap, p);
1379 ret = add_new_kprobe(ap, p);
1381 out:
1382 mutex_unlock(&text_mutex);
1383 jump_label_unlock();
1384 cpus_read_unlock();
1386 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1387 ap->flags &= ~KPROBE_FLAG_DISABLED;
1388 if (!kprobes_all_disarmed) {
1389 /* Arm the breakpoint again. */
1390 ret = arm_kprobe(ap);
1391 if (ret) {
1392 ap->flags |= KPROBE_FLAG_DISABLED;
1393 list_del_rcu(&p->list);
1394 synchronize_sched();
1398 return ret;
1401 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1403 /* The __kprobes marked functions and entry code must not be probed */
1404 return addr >= (unsigned long)__kprobes_text_start &&
1405 addr < (unsigned long)__kprobes_text_end;
1408 bool within_kprobe_blacklist(unsigned long addr)
1410 struct kprobe_blacklist_entry *ent;
1412 if (arch_within_kprobe_blacklist(addr))
1413 return true;
1415 * If there exists a kprobe_blacklist, verify and
1416 * fail any probe registration in the prohibited area
1418 list_for_each_entry(ent, &kprobe_blacklist, list) {
1419 if (addr >= ent->start_addr && addr < ent->end_addr)
1420 return true;
1423 return false;
1427 * If we have a symbol_name argument, look it up and add the offset field
1428 * to it. This way, we can specify a relative address to a symbol.
1429 * This returns encoded errors if it fails to look up symbol or invalid
1430 * combination of parameters.
1432 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1433 const char *symbol_name, unsigned int offset)
1435 if ((symbol_name && addr) || (!symbol_name && !addr))
1436 goto invalid;
1438 if (symbol_name) {
1439 addr = kprobe_lookup_name(symbol_name, offset);
1440 if (!addr)
1441 return ERR_PTR(-ENOENT);
1444 addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1445 if (addr)
1446 return addr;
1448 invalid:
1449 return ERR_PTR(-EINVAL);
1452 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1454 return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1457 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1458 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1460 struct kprobe *ap, *list_p;
1462 ap = get_kprobe(p->addr);
1463 if (unlikely(!ap))
1464 return NULL;
1466 if (p != ap) {
1467 list_for_each_entry_rcu(list_p, &ap->list, list)
1468 if (list_p == p)
1469 /* kprobe p is a valid probe */
1470 goto valid;
1471 return NULL;
1473 valid:
1474 return ap;
1477 /* Return error if the kprobe is being re-registered */
1478 static inline int check_kprobe_rereg(struct kprobe *p)
1480 int ret = 0;
1482 mutex_lock(&kprobe_mutex);
1483 if (__get_valid_kprobe(p))
1484 ret = -EINVAL;
1485 mutex_unlock(&kprobe_mutex);
1487 return ret;
1490 int __weak arch_check_ftrace_location(struct kprobe *p)
1492 unsigned long ftrace_addr;
1494 ftrace_addr = ftrace_location((unsigned long)p->addr);
1495 if (ftrace_addr) {
1496 #ifdef CONFIG_KPROBES_ON_FTRACE
1497 /* Given address is not on the instruction boundary */
1498 if ((unsigned long)p->addr != ftrace_addr)
1499 return -EILSEQ;
1500 p->flags |= KPROBE_FLAG_FTRACE;
1501 #else /* !CONFIG_KPROBES_ON_FTRACE */
1502 return -EINVAL;
1503 #endif
1505 return 0;
1508 static int check_kprobe_address_safe(struct kprobe *p,
1509 struct module **probed_mod)
1511 int ret;
1513 ret = arch_check_ftrace_location(p);
1514 if (ret)
1515 return ret;
1516 jump_label_lock();
1517 preempt_disable();
1519 /* Ensure it is not in reserved area nor out of text */
1520 if (!kernel_text_address((unsigned long) p->addr) ||
1521 within_kprobe_blacklist((unsigned long) p->addr) ||
1522 jump_label_text_reserved(p->addr, p->addr)) {
1523 ret = -EINVAL;
1524 goto out;
1527 /* Check if are we probing a module */
1528 *probed_mod = __module_text_address((unsigned long) p->addr);
1529 if (*probed_mod) {
1531 * We must hold a refcount of the probed module while updating
1532 * its code to prohibit unexpected unloading.
1534 if (unlikely(!try_module_get(*probed_mod))) {
1535 ret = -ENOENT;
1536 goto out;
1540 * If the module freed .init.text, we couldn't insert
1541 * kprobes in there.
1543 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1544 (*probed_mod)->state != MODULE_STATE_COMING) {
1545 module_put(*probed_mod);
1546 *probed_mod = NULL;
1547 ret = -ENOENT;
1550 out:
1551 preempt_enable();
1552 jump_label_unlock();
1554 return ret;
1557 int register_kprobe(struct kprobe *p)
1559 int ret;
1560 struct kprobe *old_p;
1561 struct module *probed_mod;
1562 kprobe_opcode_t *addr;
1564 /* Adjust probe address from symbol */
1565 addr = kprobe_addr(p);
1566 if (IS_ERR(addr))
1567 return PTR_ERR(addr);
1568 p->addr = addr;
1570 ret = check_kprobe_rereg(p);
1571 if (ret)
1572 return ret;
1574 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1575 p->flags &= KPROBE_FLAG_DISABLED;
1576 p->nmissed = 0;
1577 INIT_LIST_HEAD(&p->list);
1579 ret = check_kprobe_address_safe(p, &probed_mod);
1580 if (ret)
1581 return ret;
1583 mutex_lock(&kprobe_mutex);
1585 old_p = get_kprobe(p->addr);
1586 if (old_p) {
1587 /* Since this may unoptimize old_p, locking text_mutex. */
1588 ret = register_aggr_kprobe(old_p, p);
1589 goto out;
1592 cpus_read_lock();
1593 /* Prevent text modification */
1594 mutex_lock(&text_mutex);
1595 ret = prepare_kprobe(p);
1596 mutex_unlock(&text_mutex);
1597 cpus_read_unlock();
1598 if (ret)
1599 goto out;
1601 INIT_HLIST_NODE(&p->hlist);
1602 hlist_add_head_rcu(&p->hlist,
1603 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1605 if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1606 ret = arm_kprobe(p);
1607 if (ret) {
1608 hlist_del_rcu(&p->hlist);
1609 synchronize_sched();
1610 goto out;
1614 /* Try to optimize kprobe */
1615 try_to_optimize_kprobe(p);
1616 out:
1617 mutex_unlock(&kprobe_mutex);
1619 if (probed_mod)
1620 module_put(probed_mod);
1622 return ret;
1624 EXPORT_SYMBOL_GPL(register_kprobe);
1626 /* Check if all probes on the aggrprobe are disabled */
1627 static int aggr_kprobe_disabled(struct kprobe *ap)
1629 struct kprobe *kp;
1631 list_for_each_entry_rcu(kp, &ap->list, list)
1632 if (!kprobe_disabled(kp))
1634 * There is an active probe on the list.
1635 * We can't disable this ap.
1637 return 0;
1639 return 1;
1642 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1643 static struct kprobe *__disable_kprobe(struct kprobe *p)
1645 struct kprobe *orig_p;
1646 int ret;
1648 /* Get an original kprobe for return */
1649 orig_p = __get_valid_kprobe(p);
1650 if (unlikely(orig_p == NULL))
1651 return ERR_PTR(-EINVAL);
1653 if (!kprobe_disabled(p)) {
1654 /* Disable probe if it is a child probe */
1655 if (p != orig_p)
1656 p->flags |= KPROBE_FLAG_DISABLED;
1658 /* Try to disarm and disable this/parent probe */
1659 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1661 * If kprobes_all_disarmed is set, orig_p
1662 * should have already been disarmed, so
1663 * skip unneed disarming process.
1665 if (!kprobes_all_disarmed) {
1666 ret = disarm_kprobe(orig_p, true);
1667 if (ret) {
1668 p->flags &= ~KPROBE_FLAG_DISABLED;
1669 return ERR_PTR(ret);
1672 orig_p->flags |= KPROBE_FLAG_DISABLED;
1676 return orig_p;
1680 * Unregister a kprobe without a scheduler synchronization.
1682 static int __unregister_kprobe_top(struct kprobe *p)
1684 struct kprobe *ap, *list_p;
1686 /* Disable kprobe. This will disarm it if needed. */
1687 ap = __disable_kprobe(p);
1688 if (IS_ERR(ap))
1689 return PTR_ERR(ap);
1691 if (ap == p)
1693 * This probe is an independent(and non-optimized) kprobe
1694 * (not an aggrprobe). Remove from the hash list.
1696 goto disarmed;
1698 /* Following process expects this probe is an aggrprobe */
1699 WARN_ON(!kprobe_aggrprobe(ap));
1701 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1703 * !disarmed could be happen if the probe is under delayed
1704 * unoptimizing.
1706 goto disarmed;
1707 else {
1708 /* If disabling probe has special handlers, update aggrprobe */
1709 if (p->break_handler && !kprobe_gone(p))
1710 ap->break_handler = NULL;
1711 if (p->post_handler && !kprobe_gone(p)) {
1712 list_for_each_entry_rcu(list_p, &ap->list, list) {
1713 if ((list_p != p) && (list_p->post_handler))
1714 goto noclean;
1716 ap->post_handler = NULL;
1718 noclean:
1720 * Remove from the aggrprobe: this path will do nothing in
1721 * __unregister_kprobe_bottom().
1723 list_del_rcu(&p->list);
1724 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1726 * Try to optimize this probe again, because post
1727 * handler may have been changed.
1729 optimize_kprobe(ap);
1731 return 0;
1733 disarmed:
1734 BUG_ON(!kprobe_disarmed(ap));
1735 hlist_del_rcu(&ap->hlist);
1736 return 0;
1739 static void __unregister_kprobe_bottom(struct kprobe *p)
1741 struct kprobe *ap;
1743 if (list_empty(&p->list))
1744 /* This is an independent kprobe */
1745 arch_remove_kprobe(p);
1746 else if (list_is_singular(&p->list)) {
1747 /* This is the last child of an aggrprobe */
1748 ap = list_entry(p->list.next, struct kprobe, list);
1749 list_del(&p->list);
1750 free_aggr_kprobe(ap);
1752 /* Otherwise, do nothing. */
1755 int register_kprobes(struct kprobe **kps, int num)
1757 int i, ret = 0;
1759 if (num <= 0)
1760 return -EINVAL;
1761 for (i = 0; i < num; i++) {
1762 ret = register_kprobe(kps[i]);
1763 if (ret < 0) {
1764 if (i > 0)
1765 unregister_kprobes(kps, i);
1766 break;
1769 return ret;
1771 EXPORT_SYMBOL_GPL(register_kprobes);
1773 void unregister_kprobe(struct kprobe *p)
1775 unregister_kprobes(&p, 1);
1777 EXPORT_SYMBOL_GPL(unregister_kprobe);
1779 void unregister_kprobes(struct kprobe **kps, int num)
1781 int i;
1783 if (num <= 0)
1784 return;
1785 mutex_lock(&kprobe_mutex);
1786 for (i = 0; i < num; i++)
1787 if (__unregister_kprobe_top(kps[i]) < 0)
1788 kps[i]->addr = NULL;
1789 mutex_unlock(&kprobe_mutex);
1791 synchronize_sched();
1792 for (i = 0; i < num; i++)
1793 if (kps[i]->addr)
1794 __unregister_kprobe_bottom(kps[i]);
1796 EXPORT_SYMBOL_GPL(unregister_kprobes);
1798 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1799 unsigned long val, void *data)
1801 return NOTIFY_DONE;
1803 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1805 static struct notifier_block kprobe_exceptions_nb = {
1806 .notifier_call = kprobe_exceptions_notify,
1807 .priority = 0x7fffffff /* we need to be notified first */
1810 unsigned long __weak arch_deref_entry_point(void *entry)
1812 return (unsigned long)entry;
1815 #if 0
1816 int register_jprobes(struct jprobe **jps, int num)
1818 int ret = 0, i;
1820 if (num <= 0)
1821 return -EINVAL;
1823 for (i = 0; i < num; i++) {
1824 ret = register_jprobe(jps[i]);
1826 if (ret < 0) {
1827 if (i > 0)
1828 unregister_jprobes(jps, i);
1829 break;
1833 return ret;
1835 EXPORT_SYMBOL_GPL(register_jprobes);
1837 int register_jprobe(struct jprobe *jp)
1839 unsigned long addr, offset;
1840 struct kprobe *kp = &jp->kp;
1843 * Verify probepoint as well as the jprobe handler are
1844 * valid function entry points.
1846 addr = arch_deref_entry_point(jp->entry);
1848 if (kallsyms_lookup_size_offset(addr, NULL, &offset) && offset == 0 &&
1849 kprobe_on_func_entry(kp->addr, kp->symbol_name, kp->offset)) {
1850 kp->pre_handler = setjmp_pre_handler;
1851 kp->break_handler = longjmp_break_handler;
1852 return register_kprobe(kp);
1855 return -EINVAL;
1857 EXPORT_SYMBOL_GPL(register_jprobe);
1859 void unregister_jprobe(struct jprobe *jp)
1861 unregister_jprobes(&jp, 1);
1863 EXPORT_SYMBOL_GPL(unregister_jprobe);
1865 void unregister_jprobes(struct jprobe **jps, int num)
1867 int i;
1869 if (num <= 0)
1870 return;
1871 mutex_lock(&kprobe_mutex);
1872 for (i = 0; i < num; i++)
1873 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1874 jps[i]->kp.addr = NULL;
1875 mutex_unlock(&kprobe_mutex);
1877 synchronize_sched();
1878 for (i = 0; i < num; i++) {
1879 if (jps[i]->kp.addr)
1880 __unregister_kprobe_bottom(&jps[i]->kp);
1883 EXPORT_SYMBOL_GPL(unregister_jprobes);
1884 #endif
1886 #ifdef CONFIG_KRETPROBES
1888 * This kprobe pre_handler is registered with every kretprobe. When probe
1889 * hits it will set up the return probe.
1891 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1893 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1894 unsigned long hash, flags = 0;
1895 struct kretprobe_instance *ri;
1898 * To avoid deadlocks, prohibit return probing in NMI contexts,
1899 * just skip the probe and increase the (inexact) 'nmissed'
1900 * statistical counter, so that the user is informed that
1901 * something happened:
1903 if (unlikely(in_nmi())) {
1904 rp->nmissed++;
1905 return 0;
1908 /* TODO: consider to only swap the RA after the last pre_handler fired */
1909 hash = hash_ptr(current, KPROBE_HASH_BITS);
1910 raw_spin_lock_irqsave(&rp->lock, flags);
1911 if (!hlist_empty(&rp->free_instances)) {
1912 ri = hlist_entry(rp->free_instances.first,
1913 struct kretprobe_instance, hlist);
1914 hlist_del(&ri->hlist);
1915 raw_spin_unlock_irqrestore(&rp->lock, flags);
1917 ri->rp = rp;
1918 ri->task = current;
1920 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1921 raw_spin_lock_irqsave(&rp->lock, flags);
1922 hlist_add_head(&ri->hlist, &rp->free_instances);
1923 raw_spin_unlock_irqrestore(&rp->lock, flags);
1924 return 0;
1927 arch_prepare_kretprobe(ri, regs);
1929 /* XXX(hch): why is there no hlist_move_head? */
1930 INIT_HLIST_NODE(&ri->hlist);
1931 kretprobe_table_lock(hash, &flags);
1932 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1933 kretprobe_table_unlock(hash, &flags);
1934 } else {
1935 rp->nmissed++;
1936 raw_spin_unlock_irqrestore(&rp->lock, flags);
1938 return 0;
1940 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1942 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1944 return !offset;
1947 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1949 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1951 if (IS_ERR(kp_addr))
1952 return false;
1954 if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1955 !arch_kprobe_on_func_entry(offset))
1956 return false;
1958 return true;
1961 int register_kretprobe(struct kretprobe *rp)
1963 int ret = 0;
1964 struct kretprobe_instance *inst;
1965 int i;
1966 void *addr;
1968 if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1969 return -EINVAL;
1971 if (kretprobe_blacklist_size) {
1972 addr = kprobe_addr(&rp->kp);
1973 if (IS_ERR(addr))
1974 return PTR_ERR(addr);
1976 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1977 if (kretprobe_blacklist[i].addr == addr)
1978 return -EINVAL;
1982 rp->kp.pre_handler = pre_handler_kretprobe;
1983 rp->kp.post_handler = NULL;
1984 rp->kp.fault_handler = NULL;
1985 rp->kp.break_handler = NULL;
1987 /* Pre-allocate memory for max kretprobe instances */
1988 if (rp->maxactive <= 0) {
1989 #ifdef CONFIG_PREEMPT
1990 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1991 #else
1992 rp->maxactive = num_possible_cpus();
1993 #endif
1995 raw_spin_lock_init(&rp->lock);
1996 INIT_HLIST_HEAD(&rp->free_instances);
1997 for (i = 0; i < rp->maxactive; i++) {
1998 inst = kmalloc(sizeof(struct kretprobe_instance) +
1999 rp->data_size, GFP_KERNEL);
2000 if (inst == NULL) {
2001 free_rp_inst(rp);
2002 return -ENOMEM;
2004 INIT_HLIST_NODE(&inst->hlist);
2005 hlist_add_head(&inst->hlist, &rp->free_instances);
2008 rp->nmissed = 0;
2009 /* Establish function entry probe point */
2010 ret = register_kprobe(&rp->kp);
2011 if (ret != 0)
2012 free_rp_inst(rp);
2013 return ret;
2015 EXPORT_SYMBOL_GPL(register_kretprobe);
2017 int register_kretprobes(struct kretprobe **rps, int num)
2019 int ret = 0, i;
2021 if (num <= 0)
2022 return -EINVAL;
2023 for (i = 0; i < num; i++) {
2024 ret = register_kretprobe(rps[i]);
2025 if (ret < 0) {
2026 if (i > 0)
2027 unregister_kretprobes(rps, i);
2028 break;
2031 return ret;
2033 EXPORT_SYMBOL_GPL(register_kretprobes);
2035 void unregister_kretprobe(struct kretprobe *rp)
2037 unregister_kretprobes(&rp, 1);
2039 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2041 void unregister_kretprobes(struct kretprobe **rps, int num)
2043 int i;
2045 if (num <= 0)
2046 return;
2047 mutex_lock(&kprobe_mutex);
2048 for (i = 0; i < num; i++)
2049 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2050 rps[i]->kp.addr = NULL;
2051 mutex_unlock(&kprobe_mutex);
2053 synchronize_sched();
2054 for (i = 0; i < num; i++) {
2055 if (rps[i]->kp.addr) {
2056 __unregister_kprobe_bottom(&rps[i]->kp);
2057 cleanup_rp_inst(rps[i]);
2061 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2063 #else /* CONFIG_KRETPROBES */
2064 int register_kretprobe(struct kretprobe *rp)
2066 return -ENOSYS;
2068 EXPORT_SYMBOL_GPL(register_kretprobe);
2070 int register_kretprobes(struct kretprobe **rps, int num)
2072 return -ENOSYS;
2074 EXPORT_SYMBOL_GPL(register_kretprobes);
2076 void unregister_kretprobe(struct kretprobe *rp)
2079 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2081 void unregister_kretprobes(struct kretprobe **rps, int num)
2084 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2086 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2088 return 0;
2090 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2092 #endif /* CONFIG_KRETPROBES */
2094 /* Set the kprobe gone and remove its instruction buffer. */
2095 static void kill_kprobe(struct kprobe *p)
2097 struct kprobe *kp;
2099 p->flags |= KPROBE_FLAG_GONE;
2100 if (kprobe_aggrprobe(p)) {
2102 * If this is an aggr_kprobe, we have to list all the
2103 * chained probes and mark them GONE.
2105 list_for_each_entry_rcu(kp, &p->list, list)
2106 kp->flags |= KPROBE_FLAG_GONE;
2107 p->post_handler = NULL;
2108 p->break_handler = NULL;
2109 kill_optimized_kprobe(p);
2112 * Here, we can remove insn_slot safely, because no thread calls
2113 * the original probed function (which will be freed soon) any more.
2115 arch_remove_kprobe(p);
2118 /* Disable one kprobe */
2119 int disable_kprobe(struct kprobe *kp)
2121 int ret = 0;
2122 struct kprobe *p;
2124 mutex_lock(&kprobe_mutex);
2126 /* Disable this kprobe */
2127 p = __disable_kprobe(kp);
2128 if (IS_ERR(p))
2129 ret = PTR_ERR(p);
2131 mutex_unlock(&kprobe_mutex);
2132 return ret;
2134 EXPORT_SYMBOL_GPL(disable_kprobe);
2136 /* Enable one kprobe */
2137 int enable_kprobe(struct kprobe *kp)
2139 int ret = 0;
2140 struct kprobe *p;
2142 mutex_lock(&kprobe_mutex);
2144 /* Check whether specified probe is valid. */
2145 p = __get_valid_kprobe(kp);
2146 if (unlikely(p == NULL)) {
2147 ret = -EINVAL;
2148 goto out;
2151 if (kprobe_gone(kp)) {
2152 /* This kprobe has gone, we couldn't enable it. */
2153 ret = -EINVAL;
2154 goto out;
2157 if (p != kp)
2158 kp->flags &= ~KPROBE_FLAG_DISABLED;
2160 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2161 p->flags &= ~KPROBE_FLAG_DISABLED;
2162 ret = arm_kprobe(p);
2163 if (ret)
2164 p->flags |= KPROBE_FLAG_DISABLED;
2166 out:
2167 mutex_unlock(&kprobe_mutex);
2168 return ret;
2170 EXPORT_SYMBOL_GPL(enable_kprobe);
2172 void dump_kprobe(struct kprobe *kp)
2174 printk(KERN_WARNING "Dumping kprobe:\n");
2175 printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2176 kp->symbol_name, kp->addr, kp->offset);
2178 NOKPROBE_SYMBOL(dump_kprobe);
2181 * Lookup and populate the kprobe_blacklist.
2183 * Unlike the kretprobe blacklist, we'll need to determine
2184 * the range of addresses that belong to the said functions,
2185 * since a kprobe need not necessarily be at the beginning
2186 * of a function.
2188 static int __init populate_kprobe_blacklist(unsigned long *start,
2189 unsigned long *end)
2191 unsigned long *iter;
2192 struct kprobe_blacklist_entry *ent;
2193 unsigned long entry, offset = 0, size = 0;
2195 for (iter = start; iter < end; iter++) {
2196 entry = arch_deref_entry_point((void *)*iter);
2198 if (!kernel_text_address(entry) ||
2199 !kallsyms_lookup_size_offset(entry, &size, &offset)) {
2200 pr_err("Failed to find blacklist at %p\n",
2201 (void *)entry);
2202 continue;
2205 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2206 if (!ent)
2207 return -ENOMEM;
2208 ent->start_addr = entry;
2209 ent->end_addr = entry + size;
2210 INIT_LIST_HEAD(&ent->list);
2211 list_add_tail(&ent->list, &kprobe_blacklist);
2213 return 0;
2216 /* Module notifier call back, checking kprobes on the module */
2217 static int kprobes_module_callback(struct notifier_block *nb,
2218 unsigned long val, void *data)
2220 struct module *mod = data;
2221 struct hlist_head *head;
2222 struct kprobe *p;
2223 unsigned int i;
2224 int checkcore = (val == MODULE_STATE_GOING);
2226 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2227 return NOTIFY_DONE;
2230 * When MODULE_STATE_GOING was notified, both of module .text and
2231 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2232 * notified, only .init.text section would be freed. We need to
2233 * disable kprobes which have been inserted in the sections.
2235 mutex_lock(&kprobe_mutex);
2236 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2237 head = &kprobe_table[i];
2238 hlist_for_each_entry_rcu(p, head, hlist)
2239 if (within_module_init((unsigned long)p->addr, mod) ||
2240 (checkcore &&
2241 within_module_core((unsigned long)p->addr, mod))) {
2243 * The vaddr this probe is installed will soon
2244 * be vfreed buy not synced to disk. Hence,
2245 * disarming the breakpoint isn't needed.
2247 * Note, this will also move any optimized probes
2248 * that are pending to be removed from their
2249 * corresponding lists to the freeing_list and
2250 * will not be touched by the delayed
2251 * kprobe_optimizer work handler.
2253 kill_kprobe(p);
2256 mutex_unlock(&kprobe_mutex);
2257 return NOTIFY_DONE;
2260 static struct notifier_block kprobe_module_nb = {
2261 .notifier_call = kprobes_module_callback,
2262 .priority = 0
2265 /* Markers of _kprobe_blacklist section */
2266 extern unsigned long __start_kprobe_blacklist[];
2267 extern unsigned long __stop_kprobe_blacklist[];
2269 static int __init init_kprobes(void)
2271 int i, err = 0;
2273 /* FIXME allocate the probe table, currently defined statically */
2274 /* initialize all list heads */
2275 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2276 INIT_HLIST_HEAD(&kprobe_table[i]);
2277 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2278 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2281 err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2282 __stop_kprobe_blacklist);
2283 if (err) {
2284 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2285 pr_err("Please take care of using kprobes.\n");
2288 if (kretprobe_blacklist_size) {
2289 /* lookup the function address from its name */
2290 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2291 kretprobe_blacklist[i].addr =
2292 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2293 if (!kretprobe_blacklist[i].addr)
2294 printk("kretprobe: lookup failed: %s\n",
2295 kretprobe_blacklist[i].name);
2299 #if defined(CONFIG_OPTPROBES)
2300 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2301 /* Init kprobe_optinsn_slots */
2302 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2303 #endif
2304 /* By default, kprobes can be optimized */
2305 kprobes_allow_optimization = true;
2306 #endif
2308 /* By default, kprobes are armed */
2309 kprobes_all_disarmed = false;
2311 err = arch_init_kprobes();
2312 if (!err)
2313 err = register_die_notifier(&kprobe_exceptions_nb);
2314 if (!err)
2315 err = register_module_notifier(&kprobe_module_nb);
2317 kprobes_initialized = (err == 0);
2319 if (!err)
2320 init_test_probes();
2321 return err;
2324 #ifdef CONFIG_DEBUG_FS
2325 static void report_probe(struct seq_file *pi, struct kprobe *p,
2326 const char *sym, int offset, char *modname, struct kprobe *pp)
2328 char *kprobe_type;
2330 if (p->pre_handler == pre_handler_kretprobe)
2331 kprobe_type = "r";
2332 else if (p->pre_handler == setjmp_pre_handler)
2333 kprobe_type = "j";
2334 else
2335 kprobe_type = "k";
2337 if (sym)
2338 seq_printf(pi, "%p %s %s+0x%x %s ",
2339 p->addr, kprobe_type, sym, offset,
2340 (modname ? modname : " "));
2341 else
2342 seq_printf(pi, "%p %s %p ",
2343 p->addr, kprobe_type, p->addr);
2345 if (!pp)
2346 pp = p;
2347 seq_printf(pi, "%s%s%s%s\n",
2348 (kprobe_gone(p) ? "[GONE]" : ""),
2349 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2350 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2351 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2354 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2356 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2359 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2361 (*pos)++;
2362 if (*pos >= KPROBE_TABLE_SIZE)
2363 return NULL;
2364 return pos;
2367 static void kprobe_seq_stop(struct seq_file *f, void *v)
2369 /* Nothing to do */
2372 static int show_kprobe_addr(struct seq_file *pi, void *v)
2374 struct hlist_head *head;
2375 struct kprobe *p, *kp;
2376 const char *sym = NULL;
2377 unsigned int i = *(loff_t *) v;
2378 unsigned long offset = 0;
2379 char *modname, namebuf[KSYM_NAME_LEN];
2381 head = &kprobe_table[i];
2382 preempt_disable();
2383 hlist_for_each_entry_rcu(p, head, hlist) {
2384 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2385 &offset, &modname, namebuf);
2386 if (kprobe_aggrprobe(p)) {
2387 list_for_each_entry_rcu(kp, &p->list, list)
2388 report_probe(pi, kp, sym, offset, modname, p);
2389 } else
2390 report_probe(pi, p, sym, offset, modname, NULL);
2392 preempt_enable();
2393 return 0;
2396 static const struct seq_operations kprobes_seq_ops = {
2397 .start = kprobe_seq_start,
2398 .next = kprobe_seq_next,
2399 .stop = kprobe_seq_stop,
2400 .show = show_kprobe_addr
2403 static int kprobes_open(struct inode *inode, struct file *filp)
2405 return seq_open(filp, &kprobes_seq_ops);
2408 static const struct file_operations debugfs_kprobes_operations = {
2409 .open = kprobes_open,
2410 .read = seq_read,
2411 .llseek = seq_lseek,
2412 .release = seq_release,
2415 /* kprobes/blacklist -- shows which functions can not be probed */
2416 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2418 return seq_list_start(&kprobe_blacklist, *pos);
2421 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2423 return seq_list_next(v, &kprobe_blacklist, pos);
2426 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2428 struct kprobe_blacklist_entry *ent =
2429 list_entry(v, struct kprobe_blacklist_entry, list);
2431 seq_printf(m, "0x%p-0x%p\t%ps\n", (void *)ent->start_addr,
2432 (void *)ent->end_addr, (void *)ent->start_addr);
2433 return 0;
2436 static const struct seq_operations kprobe_blacklist_seq_ops = {
2437 .start = kprobe_blacklist_seq_start,
2438 .next = kprobe_blacklist_seq_next,
2439 .stop = kprobe_seq_stop, /* Reuse void function */
2440 .show = kprobe_blacklist_seq_show,
2443 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2445 return seq_open(filp, &kprobe_blacklist_seq_ops);
2448 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2449 .open = kprobe_blacklist_open,
2450 .read = seq_read,
2451 .llseek = seq_lseek,
2452 .release = seq_release,
2455 static int arm_all_kprobes(void)
2457 struct hlist_head *head;
2458 struct kprobe *p;
2459 unsigned int i, total = 0, errors = 0;
2460 int err, ret = 0;
2462 mutex_lock(&kprobe_mutex);
2464 /* If kprobes are armed, just return */
2465 if (!kprobes_all_disarmed)
2466 goto already_enabled;
2469 * optimize_kprobe() called by arm_kprobe() checks
2470 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2471 * arm_kprobe.
2473 kprobes_all_disarmed = false;
2474 /* Arming kprobes doesn't optimize kprobe itself */
2475 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2476 head = &kprobe_table[i];
2477 /* Arm all kprobes on a best-effort basis */
2478 hlist_for_each_entry_rcu(p, head, hlist) {
2479 if (!kprobe_disabled(p)) {
2480 err = arm_kprobe(p);
2481 if (err) {
2482 errors++;
2483 ret = err;
2485 total++;
2490 if (errors)
2491 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2492 errors, total);
2493 else
2494 pr_info("Kprobes globally enabled\n");
2496 already_enabled:
2497 mutex_unlock(&kprobe_mutex);
2498 return ret;
2501 static int disarm_all_kprobes(void)
2503 struct hlist_head *head;
2504 struct kprobe *p;
2505 unsigned int i, total = 0, errors = 0;
2506 int err, ret = 0;
2508 mutex_lock(&kprobe_mutex);
2510 /* If kprobes are already disarmed, just return */
2511 if (kprobes_all_disarmed) {
2512 mutex_unlock(&kprobe_mutex);
2513 return 0;
2516 kprobes_all_disarmed = true;
2518 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2519 head = &kprobe_table[i];
2520 /* Disarm all kprobes on a best-effort basis */
2521 hlist_for_each_entry_rcu(p, head, hlist) {
2522 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2523 err = disarm_kprobe(p, false);
2524 if (err) {
2525 errors++;
2526 ret = err;
2528 total++;
2533 if (errors)
2534 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2535 errors, total);
2536 else
2537 pr_info("Kprobes globally disabled\n");
2539 mutex_unlock(&kprobe_mutex);
2541 /* Wait for disarming all kprobes by optimizer */
2542 wait_for_kprobe_optimizer();
2544 return ret;
2548 * XXX: The debugfs bool file interface doesn't allow for callbacks
2549 * when the bool state is switched. We can reuse that facility when
2550 * available
2552 static ssize_t read_enabled_file_bool(struct file *file,
2553 char __user *user_buf, size_t count, loff_t *ppos)
2555 char buf[3];
2557 if (!kprobes_all_disarmed)
2558 buf[0] = '1';
2559 else
2560 buf[0] = '0';
2561 buf[1] = '\n';
2562 buf[2] = 0x00;
2563 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2566 static ssize_t write_enabled_file_bool(struct file *file,
2567 const char __user *user_buf, size_t count, loff_t *ppos)
2569 char buf[32];
2570 size_t buf_size;
2571 int ret = 0;
2573 buf_size = min(count, (sizeof(buf)-1));
2574 if (copy_from_user(buf, user_buf, buf_size))
2575 return -EFAULT;
2577 buf[buf_size] = '\0';
2578 switch (buf[0]) {
2579 case 'y':
2580 case 'Y':
2581 case '1':
2582 ret = arm_all_kprobes();
2583 break;
2584 case 'n':
2585 case 'N':
2586 case '0':
2587 ret = disarm_all_kprobes();
2588 break;
2589 default:
2590 return -EINVAL;
2593 if (ret)
2594 return ret;
2596 return count;
2599 static const struct file_operations fops_kp = {
2600 .read = read_enabled_file_bool,
2601 .write = write_enabled_file_bool,
2602 .llseek = default_llseek,
2605 static int __init debugfs_kprobe_init(void)
2607 struct dentry *dir, *file;
2608 unsigned int value = 1;
2610 dir = debugfs_create_dir("kprobes", NULL);
2611 if (!dir)
2612 return -ENOMEM;
2614 file = debugfs_create_file("list", 0444, dir, NULL,
2615 &debugfs_kprobes_operations);
2616 if (!file)
2617 goto error;
2619 file = debugfs_create_file("enabled", 0600, dir,
2620 &value, &fops_kp);
2621 if (!file)
2622 goto error;
2624 file = debugfs_create_file("blacklist", 0444, dir, NULL,
2625 &debugfs_kprobe_blacklist_ops);
2626 if (!file)
2627 goto error;
2629 return 0;
2631 error:
2632 debugfs_remove(dir);
2633 return -ENOMEM;
2636 late_initcall(debugfs_kprobe_init);
2637 #endif /* CONFIG_DEBUG_FS */
2639 module_init(init_kprobes);
2641 /* defined in arch/.../kernel/kprobes.c */
2642 EXPORT_SYMBOL_GPL(jprobe_return);