3 * Helper functions for bitmap.h.
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
8 #include <linux/export.h>
9 #include <linux/thread_info.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/bitmap.h>
13 #include <linux/bitops.h>
14 #include <linux/bug.h>
15 #include <linux/kernel.h>
16 #include <linux/string.h>
17 #include <linux/uaccess.h>
22 * DOC: bitmap introduction
24 * bitmaps provide an array of bits, implemented using an an
25 * array of unsigned longs. The number of valid bits in a
26 * given bitmap does _not_ need to be an exact multiple of
29 * The possible unused bits in the last, partially used word
30 * of a bitmap are 'don't care'. The implementation makes
31 * no particular effort to keep them zero. It ensures that
32 * their value will not affect the results of any operation.
33 * The bitmap operations that return Boolean (bitmap_empty,
34 * for example) or scalar (bitmap_weight, for example) results
35 * carefully filter out these unused bits from impacting their
38 * These operations actually hold to a slightly stronger rule:
39 * if you don't input any bitmaps to these ops that have some
40 * unused bits set, then they won't output any set unused bits
43 * The byte ordering of bitmaps is more natural on little
44 * endian architectures. See the big-endian headers
45 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
46 * for the best explanations of this ordering.
49 int __bitmap_equal(const unsigned long *bitmap1
,
50 const unsigned long *bitmap2
, unsigned int bits
)
52 unsigned int k
, lim
= bits
/BITS_PER_LONG
;
53 for (k
= 0; k
< lim
; ++k
)
54 if (bitmap1
[k
] != bitmap2
[k
])
57 if (bits
% BITS_PER_LONG
)
58 if ((bitmap1
[k
] ^ bitmap2
[k
]) & BITMAP_LAST_WORD_MASK(bits
))
63 EXPORT_SYMBOL(__bitmap_equal
);
65 void __bitmap_complement(unsigned long *dst
, const unsigned long *src
, unsigned int bits
)
67 unsigned int k
, lim
= bits
/BITS_PER_LONG
;
68 for (k
= 0; k
< lim
; ++k
)
71 if (bits
% BITS_PER_LONG
)
74 EXPORT_SYMBOL(__bitmap_complement
);
77 * __bitmap_shift_right - logical right shift of the bits in a bitmap
78 * @dst : destination bitmap
79 * @src : source bitmap
80 * @shift : shift by this many bits
81 * @nbits : bitmap size, in bits
83 * Shifting right (dividing) means moving bits in the MS -> LS bit
84 * direction. Zeros are fed into the vacated MS positions and the
85 * LS bits shifted off the bottom are lost.
87 void __bitmap_shift_right(unsigned long *dst
, const unsigned long *src
,
88 unsigned shift
, unsigned nbits
)
90 unsigned k
, lim
= BITS_TO_LONGS(nbits
);
91 unsigned off
= shift
/BITS_PER_LONG
, rem
= shift
% BITS_PER_LONG
;
92 unsigned long mask
= BITMAP_LAST_WORD_MASK(nbits
);
93 for (k
= 0; off
+ k
< lim
; ++k
) {
94 unsigned long upper
, lower
;
97 * If shift is not word aligned, take lower rem bits of
98 * word above and make them the top rem bits of result.
100 if (!rem
|| off
+ k
+ 1 >= lim
)
103 upper
= src
[off
+ k
+ 1];
104 if (off
+ k
+ 1 == lim
- 1)
106 upper
<<= (BITS_PER_LONG
- rem
);
108 lower
= src
[off
+ k
];
109 if (off
+ k
== lim
- 1)
112 dst
[k
] = lower
| upper
;
115 memset(&dst
[lim
- off
], 0, off
*sizeof(unsigned long));
117 EXPORT_SYMBOL(__bitmap_shift_right
);
121 * __bitmap_shift_left - logical left shift of the bits in a bitmap
122 * @dst : destination bitmap
123 * @src : source bitmap
124 * @shift : shift by this many bits
125 * @nbits : bitmap size, in bits
127 * Shifting left (multiplying) means moving bits in the LS -> MS
128 * direction. Zeros are fed into the vacated LS bit positions
129 * and those MS bits shifted off the top are lost.
132 void __bitmap_shift_left(unsigned long *dst
, const unsigned long *src
,
133 unsigned int shift
, unsigned int nbits
)
136 unsigned int lim
= BITS_TO_LONGS(nbits
);
137 unsigned int off
= shift
/BITS_PER_LONG
, rem
= shift
% BITS_PER_LONG
;
138 for (k
= lim
- off
- 1; k
>= 0; --k
) {
139 unsigned long upper
, lower
;
142 * If shift is not word aligned, take upper rem bits of
143 * word below and make them the bottom rem bits of result.
146 lower
= src
[k
- 1] >> (BITS_PER_LONG
- rem
);
149 upper
= src
[k
] << rem
;
150 dst
[k
+ off
] = lower
| upper
;
153 memset(dst
, 0, off
*sizeof(unsigned long));
155 EXPORT_SYMBOL(__bitmap_shift_left
);
157 int __bitmap_and(unsigned long *dst
, const unsigned long *bitmap1
,
158 const unsigned long *bitmap2
, unsigned int bits
)
161 unsigned int lim
= bits
/BITS_PER_LONG
;
162 unsigned long result
= 0;
164 for (k
= 0; k
< lim
; k
++)
165 result
|= (dst
[k
] = bitmap1
[k
] & bitmap2
[k
]);
166 if (bits
% BITS_PER_LONG
)
167 result
|= (dst
[k
] = bitmap1
[k
] & bitmap2
[k
] &
168 BITMAP_LAST_WORD_MASK(bits
));
171 EXPORT_SYMBOL(__bitmap_and
);
173 void __bitmap_or(unsigned long *dst
, const unsigned long *bitmap1
,
174 const unsigned long *bitmap2
, unsigned int bits
)
177 unsigned int nr
= BITS_TO_LONGS(bits
);
179 for (k
= 0; k
< nr
; k
++)
180 dst
[k
] = bitmap1
[k
] | bitmap2
[k
];
182 EXPORT_SYMBOL(__bitmap_or
);
184 void __bitmap_xor(unsigned long *dst
, const unsigned long *bitmap1
,
185 const unsigned long *bitmap2
, unsigned int bits
)
188 unsigned int nr
= BITS_TO_LONGS(bits
);
190 for (k
= 0; k
< nr
; k
++)
191 dst
[k
] = bitmap1
[k
] ^ bitmap2
[k
];
193 EXPORT_SYMBOL(__bitmap_xor
);
195 int __bitmap_andnot(unsigned long *dst
, const unsigned long *bitmap1
,
196 const unsigned long *bitmap2
, unsigned int bits
)
199 unsigned int lim
= bits
/BITS_PER_LONG
;
200 unsigned long result
= 0;
202 for (k
= 0; k
< lim
; k
++)
203 result
|= (dst
[k
] = bitmap1
[k
] & ~bitmap2
[k
]);
204 if (bits
% BITS_PER_LONG
)
205 result
|= (dst
[k
] = bitmap1
[k
] & ~bitmap2
[k
] &
206 BITMAP_LAST_WORD_MASK(bits
));
209 EXPORT_SYMBOL(__bitmap_andnot
);
211 int __bitmap_intersects(const unsigned long *bitmap1
,
212 const unsigned long *bitmap2
, unsigned int bits
)
214 unsigned int k
, lim
= bits
/BITS_PER_LONG
;
215 for (k
= 0; k
< lim
; ++k
)
216 if (bitmap1
[k
] & bitmap2
[k
])
219 if (bits
% BITS_PER_LONG
)
220 if ((bitmap1
[k
] & bitmap2
[k
]) & BITMAP_LAST_WORD_MASK(bits
))
224 EXPORT_SYMBOL(__bitmap_intersects
);
226 int __bitmap_subset(const unsigned long *bitmap1
,
227 const unsigned long *bitmap2
, unsigned int bits
)
229 unsigned int k
, lim
= bits
/BITS_PER_LONG
;
230 for (k
= 0; k
< lim
; ++k
)
231 if (bitmap1
[k
] & ~bitmap2
[k
])
234 if (bits
% BITS_PER_LONG
)
235 if ((bitmap1
[k
] & ~bitmap2
[k
]) & BITMAP_LAST_WORD_MASK(bits
))
239 EXPORT_SYMBOL(__bitmap_subset
);
241 int __bitmap_weight(const unsigned long *bitmap
, unsigned int bits
)
243 unsigned int k
, lim
= bits
/BITS_PER_LONG
;
246 for (k
= 0; k
< lim
; k
++)
247 w
+= hweight_long(bitmap
[k
]);
249 if (bits
% BITS_PER_LONG
)
250 w
+= hweight_long(bitmap
[k
] & BITMAP_LAST_WORD_MASK(bits
));
254 EXPORT_SYMBOL(__bitmap_weight
);
256 void __bitmap_set(unsigned long *map
, unsigned int start
, int len
)
258 unsigned long *p
= map
+ BIT_WORD(start
);
259 const unsigned int size
= start
+ len
;
260 int bits_to_set
= BITS_PER_LONG
- (start
% BITS_PER_LONG
);
261 unsigned long mask_to_set
= BITMAP_FIRST_WORD_MASK(start
);
263 while (len
- bits_to_set
>= 0) {
266 bits_to_set
= BITS_PER_LONG
;
271 mask_to_set
&= BITMAP_LAST_WORD_MASK(size
);
275 EXPORT_SYMBOL(__bitmap_set
);
277 void __bitmap_clear(unsigned long *map
, unsigned int start
, int len
)
279 unsigned long *p
= map
+ BIT_WORD(start
);
280 const unsigned int size
= start
+ len
;
281 int bits_to_clear
= BITS_PER_LONG
- (start
% BITS_PER_LONG
);
282 unsigned long mask_to_clear
= BITMAP_FIRST_WORD_MASK(start
);
284 while (len
- bits_to_clear
>= 0) {
285 *p
&= ~mask_to_clear
;
286 len
-= bits_to_clear
;
287 bits_to_clear
= BITS_PER_LONG
;
288 mask_to_clear
= ~0UL;
292 mask_to_clear
&= BITMAP_LAST_WORD_MASK(size
);
293 *p
&= ~mask_to_clear
;
296 EXPORT_SYMBOL(__bitmap_clear
);
299 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
300 * @map: The address to base the search on
301 * @size: The bitmap size in bits
302 * @start: The bitnumber to start searching at
303 * @nr: The number of zeroed bits we're looking for
304 * @align_mask: Alignment mask for zero area
305 * @align_offset: Alignment offset for zero area.
307 * The @align_mask should be one less than a power of 2; the effect is that
308 * the bit offset of all zero areas this function finds plus @align_offset
309 * is multiple of that power of 2.
311 unsigned long bitmap_find_next_zero_area_off(unsigned long *map
,
315 unsigned long align_mask
,
316 unsigned long align_offset
)
318 unsigned long index
, end
, i
;
320 index
= find_next_zero_bit(map
, size
, start
);
322 /* Align allocation */
323 index
= __ALIGN_MASK(index
+ align_offset
, align_mask
) - align_offset
;
328 i
= find_next_bit(map
, end
, index
);
335 EXPORT_SYMBOL(bitmap_find_next_zero_area_off
);
338 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
339 * second version by Paul Jackson, third by Joe Korty.
343 #define nbits_to_hold_value(val) fls(val)
344 #define BASEDEC 10 /* fancier cpuset lists input in decimal */
347 * __bitmap_parse - convert an ASCII hex string into a bitmap.
348 * @buf: pointer to buffer containing string.
349 * @buflen: buffer size in bytes. If string is smaller than this
350 * then it must be terminated with a \0.
351 * @is_user: location of buffer, 0 indicates kernel space
352 * @maskp: pointer to bitmap array that will contain result.
353 * @nmaskbits: size of bitmap, in bits.
355 * Commas group hex digits into chunks. Each chunk defines exactly 32
356 * bits of the resultant bitmask. No chunk may specify a value larger
357 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
358 * then leading 0-bits are prepended. %-EINVAL is returned for illegal
359 * characters and for grouping errors such as "1,,5", ",44", "," and "".
360 * Leading and trailing whitespace accepted, but not embedded whitespace.
362 int __bitmap_parse(const char *buf
, unsigned int buflen
,
363 int is_user
, unsigned long *maskp
,
366 int c
, old_c
, totaldigits
, ndigits
, nchunks
, nbits
;
368 const char __user __force
*ubuf
= (const char __user __force
*)buf
;
370 bitmap_zero(maskp
, nmaskbits
);
372 nchunks
= nbits
= totaldigits
= c
= 0;
375 ndigits
= totaldigits
;
377 /* Get the next chunk of the bitmap */
381 if (__get_user(c
, ubuf
++))
391 * If the last character was a space and the current
392 * character isn't '\0', we've got embedded whitespace.
393 * This is a no-no, so throw an error.
395 if (totaldigits
&& c
&& isspace(old_c
))
398 /* A '\0' or a ',' signal the end of the chunk */
399 if (c
== '\0' || c
== ',')
406 * Make sure there are at least 4 free bits in 'chunk'.
407 * If not, this hexdigit will overflow 'chunk', so
410 if (chunk
& ~((1UL << (CHUNKSZ
- 4)) - 1))
413 chunk
= (chunk
<< 4) | hex_to_bin(c
);
416 if (ndigits
== totaldigits
)
418 if (nchunks
== 0 && chunk
== 0)
421 __bitmap_shift_left(maskp
, maskp
, CHUNKSZ
, nmaskbits
);
424 nbits
+= (nchunks
== 1) ? nbits_to_hold_value(chunk
) : CHUNKSZ
;
425 if (nbits
> nmaskbits
)
427 } while (buflen
&& c
== ',');
431 EXPORT_SYMBOL(__bitmap_parse
);
434 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
436 * @ubuf: pointer to user buffer containing string.
437 * @ulen: buffer size in bytes. If string is smaller than this
438 * then it must be terminated with a \0.
439 * @maskp: pointer to bitmap array that will contain result.
440 * @nmaskbits: size of bitmap, in bits.
442 * Wrapper for __bitmap_parse(), providing it with user buffer.
444 * We cannot have this as an inline function in bitmap.h because it needs
445 * linux/uaccess.h to get the access_ok() declaration and this causes
446 * cyclic dependencies.
448 int bitmap_parse_user(const char __user
*ubuf
,
449 unsigned int ulen
, unsigned long *maskp
,
452 if (!access_ok(VERIFY_READ
, ubuf
, ulen
))
454 return __bitmap_parse((const char __force
*)ubuf
,
455 ulen
, 1, maskp
, nmaskbits
);
458 EXPORT_SYMBOL(bitmap_parse_user
);
461 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
462 * @list: indicates whether the bitmap must be list
463 * @buf: page aligned buffer into which string is placed
464 * @maskp: pointer to bitmap to convert
465 * @nmaskbits: size of bitmap, in bits
467 * Output format is a comma-separated list of decimal numbers and
468 * ranges if list is specified or hex digits grouped into comma-separated
469 * sets of 8 digits/set. Returns the number of characters written to buf.
471 * It is assumed that @buf is a pointer into a PAGE_SIZE area and that
472 * sufficient storage remains at @buf to accommodate the
473 * bitmap_print_to_pagebuf() output.
475 int bitmap_print_to_pagebuf(bool list
, char *buf
, const unsigned long *maskp
,
478 ptrdiff_t len
= PTR_ALIGN(buf
+ PAGE_SIZE
- 1, PAGE_SIZE
) - buf
;
482 n
= list
? scnprintf(buf
, len
, "%*pbl\n", nmaskbits
, maskp
) :
483 scnprintf(buf
, len
, "%*pb\n", nmaskbits
, maskp
);
486 EXPORT_SYMBOL(bitmap_print_to_pagebuf
);
489 * __bitmap_parselist - convert list format ASCII string to bitmap
490 * @buf: read nul-terminated user string from this buffer
491 * @buflen: buffer size in bytes. If string is smaller than this
492 * then it must be terminated with a \0.
493 * @is_user: location of buffer, 0 indicates kernel space
494 * @maskp: write resulting mask here
495 * @nmaskbits: number of bits in mask to be written
497 * Input format is a comma-separated list of decimal numbers and
498 * ranges. Consecutively set bits are shown as two hyphen-separated
499 * decimal numbers, the smallest and largest bit numbers set in
501 * Optionally each range can be postfixed to denote that only parts of it
502 * should be set. The range will divided to groups of specific size.
503 * From each group will be used only defined amount of bits.
504 * Syntax: range:used_size/group_size
505 * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
507 * Returns: 0 on success, -errno on invalid input strings. Error values:
509 * - ``-EINVAL``: second number in range smaller than first
510 * - ``-EINVAL``: invalid character in string
511 * - ``-ERANGE``: bit number specified too large for mask
513 static int __bitmap_parselist(const char *buf
, unsigned int buflen
,
514 int is_user
, unsigned long *maskp
,
517 unsigned int a
, b
, old_a
, old_b
;
518 unsigned int group_size
, used_size
, off
;
519 int c
, old_c
, totaldigits
, ndigits
;
520 const char __user __force
*ubuf
= (const char __user __force
*)buf
;
521 int at_start
, in_range
, in_partial_range
;
525 group_size
= used_size
= 0;
526 bitmap_zero(maskp
, nmaskbits
);
530 in_partial_range
= 0;
532 ndigits
= totaldigits
;
534 /* Get the next cpu# or a range of cpu#'s */
538 if (__get_user(c
, ubuf
++))
546 /* A '\0' or a ',' signal the end of a cpu# or range */
547 if (c
== '\0' || c
== ',')
550 * whitespaces between digits are not allowed,
551 * but it's ok if whitespaces are on head or tail.
552 * when old_c is whilespace,
553 * if totaldigits == ndigits, whitespace is on head.
554 * if whitespace is on tail, it should not run here.
555 * as c was ',' or '\0',
556 * the last code line has broken the current loop.
558 if ((totaldigits
!= ndigits
) && isspace(old_c
))
574 in_partial_range
= 1;
580 if (at_start
|| in_range
)
591 b
= b
* 10 + (c
- '0');
597 if (ndigits
== totaldigits
)
599 if (in_partial_range
) {
605 used_size
= group_size
= b
- a
+ 1;
607 /* if no digit is after '-', it's wrong*/
608 if (at_start
&& in_range
)
610 if (!(a
<= b
) || !(used_size
<= group_size
))
615 off
= min(b
- a
+ 1, used_size
);
616 bitmap_set(maskp
, a
, off
);
619 } while (buflen
&& c
== ',');
623 int bitmap_parselist(const char *bp
, unsigned long *maskp
, int nmaskbits
)
625 char *nl
= strchrnul(bp
, '\n');
628 return __bitmap_parselist(bp
, len
, 0, maskp
, nmaskbits
);
630 EXPORT_SYMBOL(bitmap_parselist
);
634 * bitmap_parselist_user()
636 * @ubuf: pointer to user buffer containing string.
637 * @ulen: buffer size in bytes. If string is smaller than this
638 * then it must be terminated with a \0.
639 * @maskp: pointer to bitmap array that will contain result.
640 * @nmaskbits: size of bitmap, in bits.
642 * Wrapper for bitmap_parselist(), providing it with user buffer.
644 * We cannot have this as an inline function in bitmap.h because it needs
645 * linux/uaccess.h to get the access_ok() declaration and this causes
646 * cyclic dependencies.
648 int bitmap_parselist_user(const char __user
*ubuf
,
649 unsigned int ulen
, unsigned long *maskp
,
652 if (!access_ok(VERIFY_READ
, ubuf
, ulen
))
654 return __bitmap_parselist((const char __force
*)ubuf
,
655 ulen
, 1, maskp
, nmaskbits
);
657 EXPORT_SYMBOL(bitmap_parselist_user
);
661 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
662 * @buf: pointer to a bitmap
663 * @pos: a bit position in @buf (0 <= @pos < @nbits)
664 * @nbits: number of valid bit positions in @buf
666 * Map the bit at position @pos in @buf (of length @nbits) to the
667 * ordinal of which set bit it is. If it is not set or if @pos
668 * is not a valid bit position, map to -1.
670 * If for example, just bits 4 through 7 are set in @buf, then @pos
671 * values 4 through 7 will get mapped to 0 through 3, respectively,
672 * and other @pos values will get mapped to -1. When @pos value 7
673 * gets mapped to (returns) @ord value 3 in this example, that means
674 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
676 * The bit positions 0 through @bits are valid positions in @buf.
678 static int bitmap_pos_to_ord(const unsigned long *buf
, unsigned int pos
, unsigned int nbits
)
680 if (pos
>= nbits
|| !test_bit(pos
, buf
))
683 return __bitmap_weight(buf
, pos
);
687 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
688 * @buf: pointer to bitmap
689 * @ord: ordinal bit position (n-th set bit, n >= 0)
690 * @nbits: number of valid bit positions in @buf
692 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
693 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
694 * >= weight(buf), returns @nbits.
696 * If for example, just bits 4 through 7 are set in @buf, then @ord
697 * values 0 through 3 will get mapped to 4 through 7, respectively,
698 * and all other @ord values returns @nbits. When @ord value 3
699 * gets mapped to (returns) @pos value 7 in this example, that means
700 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
702 * The bit positions 0 through @nbits-1 are valid positions in @buf.
704 unsigned int bitmap_ord_to_pos(const unsigned long *buf
, unsigned int ord
, unsigned int nbits
)
708 for (pos
= find_first_bit(buf
, nbits
);
710 pos
= find_next_bit(buf
, nbits
, pos
+ 1))
717 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
718 * @dst: remapped result
719 * @src: subset to be remapped
720 * @old: defines domain of map
721 * @new: defines range of map
722 * @nbits: number of bits in each of these bitmaps
724 * Let @old and @new define a mapping of bit positions, such that
725 * whatever position is held by the n-th set bit in @old is mapped
726 * to the n-th set bit in @new. In the more general case, allowing
727 * for the possibility that the weight 'w' of @new is less than the
728 * weight of @old, map the position of the n-th set bit in @old to
729 * the position of the m-th set bit in @new, where m == n % w.
731 * If either of the @old and @new bitmaps are empty, or if @src and
732 * @dst point to the same location, then this routine copies @src
735 * The positions of unset bits in @old are mapped to themselves
736 * (the identify map).
738 * Apply the above specified mapping to @src, placing the result in
739 * @dst, clearing any bits previously set in @dst.
741 * For example, lets say that @old has bits 4 through 7 set, and
742 * @new has bits 12 through 15 set. This defines the mapping of bit
743 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
744 * bit positions unchanged. So if say @src comes into this routine
745 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
748 void bitmap_remap(unsigned long *dst
, const unsigned long *src
,
749 const unsigned long *old
, const unsigned long *new,
752 unsigned int oldbit
, w
;
754 if (dst
== src
) /* following doesn't handle inplace remaps */
756 bitmap_zero(dst
, nbits
);
758 w
= bitmap_weight(new, nbits
);
759 for_each_set_bit(oldbit
, src
, nbits
) {
760 int n
= bitmap_pos_to_ord(old
, oldbit
, nbits
);
763 set_bit(oldbit
, dst
); /* identity map */
765 set_bit(bitmap_ord_to_pos(new, n
% w
, nbits
), dst
);
768 EXPORT_SYMBOL(bitmap_remap
);
771 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
772 * @oldbit: bit position to be mapped
773 * @old: defines domain of map
774 * @new: defines range of map
775 * @bits: number of bits in each of these bitmaps
777 * Let @old and @new define a mapping of bit positions, such that
778 * whatever position is held by the n-th set bit in @old is mapped
779 * to the n-th set bit in @new. In the more general case, allowing
780 * for the possibility that the weight 'w' of @new is less than the
781 * weight of @old, map the position of the n-th set bit in @old to
782 * the position of the m-th set bit in @new, where m == n % w.
784 * The positions of unset bits in @old are mapped to themselves
785 * (the identify map).
787 * Apply the above specified mapping to bit position @oldbit, returning
788 * the new bit position.
790 * For example, lets say that @old has bits 4 through 7 set, and
791 * @new has bits 12 through 15 set. This defines the mapping of bit
792 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
793 * bit positions unchanged. So if say @oldbit is 5, then this routine
796 int bitmap_bitremap(int oldbit
, const unsigned long *old
,
797 const unsigned long *new, int bits
)
799 int w
= bitmap_weight(new, bits
);
800 int n
= bitmap_pos_to_ord(old
, oldbit
, bits
);
804 return bitmap_ord_to_pos(new, n
% w
, bits
);
806 EXPORT_SYMBOL(bitmap_bitremap
);
809 * bitmap_onto - translate one bitmap relative to another
810 * @dst: resulting translated bitmap
811 * @orig: original untranslated bitmap
812 * @relmap: bitmap relative to which translated
813 * @bits: number of bits in each of these bitmaps
815 * Set the n-th bit of @dst iff there exists some m such that the
816 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
817 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
818 * (If you understood the previous sentence the first time your
819 * read it, you're overqualified for your current job.)
821 * In other words, @orig is mapped onto (surjectively) @dst,
822 * using the map { <n, m> | the n-th bit of @relmap is the
823 * m-th set bit of @relmap }.
825 * Any set bits in @orig above bit number W, where W is the
826 * weight of (number of set bits in) @relmap are mapped nowhere.
827 * In particular, if for all bits m set in @orig, m >= W, then
828 * @dst will end up empty. In situations where the possibility
829 * of such an empty result is not desired, one way to avoid it is
830 * to use the bitmap_fold() operator, below, to first fold the
831 * @orig bitmap over itself so that all its set bits x are in the
832 * range 0 <= x < W. The bitmap_fold() operator does this by
833 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
835 * Example [1] for bitmap_onto():
836 * Let's say @relmap has bits 30-39 set, and @orig has bits
837 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine,
838 * @dst will have bits 31, 33, 35, 37 and 39 set.
840 * When bit 0 is set in @orig, it means turn on the bit in
841 * @dst corresponding to whatever is the first bit (if any)
842 * that is turned on in @relmap. Since bit 0 was off in the
843 * above example, we leave off that bit (bit 30) in @dst.
845 * When bit 1 is set in @orig (as in the above example), it
846 * means turn on the bit in @dst corresponding to whatever
847 * is the second bit that is turned on in @relmap. The second
848 * bit in @relmap that was turned on in the above example was
849 * bit 31, so we turned on bit 31 in @dst.
851 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
852 * because they were the 4th, 6th, 8th and 10th set bits
853 * set in @relmap, and the 4th, 6th, 8th and 10th bits of
854 * @orig (i.e. bits 3, 5, 7 and 9) were also set.
856 * When bit 11 is set in @orig, it means turn on the bit in
857 * @dst corresponding to whatever is the twelfth bit that is
858 * turned on in @relmap. In the above example, there were
859 * only ten bits turned on in @relmap (30..39), so that bit
860 * 11 was set in @orig had no affect on @dst.
862 * Example [2] for bitmap_fold() + bitmap_onto():
863 * Let's say @relmap has these ten bits set::
865 * 40 41 42 43 45 48 53 61 74 95
867 * (for the curious, that's 40 plus the first ten terms of the
868 * Fibonacci sequence.)
870 * Further lets say we use the following code, invoking
871 * bitmap_fold() then bitmap_onto, as suggested above to
872 * avoid the possibility of an empty @dst result::
874 * unsigned long *tmp; // a temporary bitmap's bits
876 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
877 * bitmap_onto(dst, tmp, relmap, bits);
879 * Then this table shows what various values of @dst would be, for
880 * various @orig's. I list the zero-based positions of each set bit.
881 * The tmp column shows the intermediate result, as computed by
882 * using bitmap_fold() to fold the @orig bitmap modulo ten
883 * (the weight of @relmap):
885 * =============== ============== =================
891 * 1 3 5 7 1 3 5 7 41 43 48 61
892 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
893 * 0 9 18 27 0 9 8 7 40 61 74 95
895 * 0 11 22 33 0 1 2 3 40 41 42 43
896 * 0 12 24 36 0 2 4 6 40 42 45 53
897 * 78 102 211 1 2 8 41 42 74 [#f1]_
898 * =============== ============== =================
902 * For these marked lines, if we hadn't first done bitmap_fold()
903 * into tmp, then the @dst result would have been empty.
905 * If either of @orig or @relmap is empty (no set bits), then @dst
906 * will be returned empty.
908 * If (as explained above) the only set bits in @orig are in positions
909 * m where m >= W, (where W is the weight of @relmap) then @dst will
910 * once again be returned empty.
912 * All bits in @dst not set by the above rule are cleared.
914 void bitmap_onto(unsigned long *dst
, const unsigned long *orig
,
915 const unsigned long *relmap
, unsigned int bits
)
917 unsigned int n
, m
; /* same meaning as in above comment */
919 if (dst
== orig
) /* following doesn't handle inplace mappings */
921 bitmap_zero(dst
, bits
);
924 * The following code is a more efficient, but less
925 * obvious, equivalent to the loop:
926 * for (m = 0; m < bitmap_weight(relmap, bits); m++) {
927 * n = bitmap_ord_to_pos(orig, m, bits);
928 * if (test_bit(m, orig))
934 for_each_set_bit(n
, relmap
, bits
) {
935 /* m == bitmap_pos_to_ord(relmap, n, bits) */
936 if (test_bit(m
, orig
))
941 EXPORT_SYMBOL(bitmap_onto
);
944 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
945 * @dst: resulting smaller bitmap
946 * @orig: original larger bitmap
947 * @sz: specified size
948 * @nbits: number of bits in each of these bitmaps
950 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
951 * Clear all other bits in @dst. See further the comment and
952 * Example [2] for bitmap_onto() for why and how to use this.
954 void bitmap_fold(unsigned long *dst
, const unsigned long *orig
,
955 unsigned int sz
, unsigned int nbits
)
959 if (dst
== orig
) /* following doesn't handle inplace mappings */
961 bitmap_zero(dst
, nbits
);
963 for_each_set_bit(oldbit
, orig
, nbits
)
964 set_bit(oldbit
% sz
, dst
);
966 EXPORT_SYMBOL(bitmap_fold
);
969 * Common code for bitmap_*_region() routines.
970 * bitmap: array of unsigned longs corresponding to the bitmap
971 * pos: the beginning of the region
972 * order: region size (log base 2 of number of bits)
973 * reg_op: operation(s) to perform on that region of bitmap
975 * Can set, verify and/or release a region of bits in a bitmap,
976 * depending on which combination of REG_OP_* flag bits is set.
978 * A region of a bitmap is a sequence of bits in the bitmap, of
979 * some size '1 << order' (a power of two), aligned to that same
980 * '1 << order' power of two.
982 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
983 * Returns 0 in all other cases and reg_ops.
987 REG_OP_ISFREE
, /* true if region is all zero bits */
988 REG_OP_ALLOC
, /* set all bits in region */
989 REG_OP_RELEASE
, /* clear all bits in region */
992 static int __reg_op(unsigned long *bitmap
, unsigned int pos
, int order
, int reg_op
)
994 int nbits_reg
; /* number of bits in region */
995 int index
; /* index first long of region in bitmap */
996 int offset
; /* bit offset region in bitmap[index] */
997 int nlongs_reg
; /* num longs spanned by region in bitmap */
998 int nbitsinlong
; /* num bits of region in each spanned long */
999 unsigned long mask
; /* bitmask for one long of region */
1000 int i
; /* scans bitmap by longs */
1001 int ret
= 0; /* return value */
1004 * Either nlongs_reg == 1 (for small orders that fit in one long)
1005 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1007 nbits_reg
= 1 << order
;
1008 index
= pos
/ BITS_PER_LONG
;
1009 offset
= pos
- (index
* BITS_PER_LONG
);
1010 nlongs_reg
= BITS_TO_LONGS(nbits_reg
);
1011 nbitsinlong
= min(nbits_reg
, BITS_PER_LONG
);
1014 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1015 * overflows if nbitsinlong == BITS_PER_LONG.
1017 mask
= (1UL << (nbitsinlong
- 1));
1023 for (i
= 0; i
< nlongs_reg
; i
++) {
1024 if (bitmap
[index
+ i
] & mask
)
1027 ret
= 1; /* all bits in region free (zero) */
1031 for (i
= 0; i
< nlongs_reg
; i
++)
1032 bitmap
[index
+ i
] |= mask
;
1035 case REG_OP_RELEASE
:
1036 for (i
= 0; i
< nlongs_reg
; i
++)
1037 bitmap
[index
+ i
] &= ~mask
;
1045 * bitmap_find_free_region - find a contiguous aligned mem region
1046 * @bitmap: array of unsigned longs corresponding to the bitmap
1047 * @bits: number of bits in the bitmap
1048 * @order: region size (log base 2 of number of bits) to find
1050 * Find a region of free (zero) bits in a @bitmap of @bits bits and
1051 * allocate them (set them to one). Only consider regions of length
1052 * a power (@order) of two, aligned to that power of two, which
1053 * makes the search algorithm much faster.
1055 * Return the bit offset in bitmap of the allocated region,
1056 * or -errno on failure.
1058 int bitmap_find_free_region(unsigned long *bitmap
, unsigned int bits
, int order
)
1060 unsigned int pos
, end
; /* scans bitmap by regions of size order */
1062 for (pos
= 0 ; (end
= pos
+ (1U << order
)) <= bits
; pos
= end
) {
1063 if (!__reg_op(bitmap
, pos
, order
, REG_OP_ISFREE
))
1065 __reg_op(bitmap
, pos
, order
, REG_OP_ALLOC
);
1070 EXPORT_SYMBOL(bitmap_find_free_region
);
1073 * bitmap_release_region - release allocated bitmap region
1074 * @bitmap: array of unsigned longs corresponding to the bitmap
1075 * @pos: beginning of bit region to release
1076 * @order: region size (log base 2 of number of bits) to release
1078 * This is the complement to __bitmap_find_free_region() and releases
1079 * the found region (by clearing it in the bitmap).
1083 void bitmap_release_region(unsigned long *bitmap
, unsigned int pos
, int order
)
1085 __reg_op(bitmap
, pos
, order
, REG_OP_RELEASE
);
1087 EXPORT_SYMBOL(bitmap_release_region
);
1090 * bitmap_allocate_region - allocate bitmap region
1091 * @bitmap: array of unsigned longs corresponding to the bitmap
1092 * @pos: beginning of bit region to allocate
1093 * @order: region size (log base 2 of number of bits) to allocate
1095 * Allocate (set bits in) a specified region of a bitmap.
1097 * Return 0 on success, or %-EBUSY if specified region wasn't
1098 * free (not all bits were zero).
1100 int bitmap_allocate_region(unsigned long *bitmap
, unsigned int pos
, int order
)
1102 if (!__reg_op(bitmap
, pos
, order
, REG_OP_ISFREE
))
1104 return __reg_op(bitmap
, pos
, order
, REG_OP_ALLOC
);
1106 EXPORT_SYMBOL(bitmap_allocate_region
);
1109 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1110 * @dst: destination buffer
1111 * @src: bitmap to copy
1112 * @nbits: number of bits in the bitmap
1114 * Require nbits % BITS_PER_LONG == 0.
1117 void bitmap_copy_le(unsigned long *dst
, const unsigned long *src
, unsigned int nbits
)
1121 for (i
= 0; i
< nbits
/BITS_PER_LONG
; i
++) {
1122 if (BITS_PER_LONG
== 64)
1123 dst
[i
] = cpu_to_le64(src
[i
]);
1125 dst
[i
] = cpu_to_le32(src
[i
]);
1128 EXPORT_SYMBOL(bitmap_copy_le
);
1131 #if BITS_PER_LONG == 64
1133 * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
1134 * @bitmap: array of unsigned longs, the destination bitmap
1135 * @buf: array of u32 (in host byte order), the source bitmap
1136 * @nbits: number of bits in @bitmap
1138 void bitmap_from_arr32(unsigned long *bitmap
, const u32
*buf
,
1141 unsigned int i
, halfwords
;
1146 halfwords
= DIV_ROUND_UP(nbits
, 32);
1147 for (i
= 0; i
< halfwords
; i
++) {
1148 bitmap
[i
/2] = (unsigned long) buf
[i
];
1149 if (++i
< halfwords
)
1150 bitmap
[i
/2] |= ((unsigned long) buf
[i
]) << 32;
1153 /* Clear tail bits in last word beyond nbits. */
1154 if (nbits
% BITS_PER_LONG
)
1155 bitmap
[(halfwords
- 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits
);
1157 EXPORT_SYMBOL(bitmap_from_arr32
);
1160 * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
1161 * @buf: array of u32 (in host byte order), the dest bitmap
1162 * @bitmap: array of unsigned longs, the source bitmap
1163 * @nbits: number of bits in @bitmap
1165 void bitmap_to_arr32(u32
*buf
, const unsigned long *bitmap
, unsigned int nbits
)
1167 unsigned int i
, halfwords
;
1172 halfwords
= DIV_ROUND_UP(nbits
, 32);
1173 for (i
= 0; i
< halfwords
; i
++) {
1174 buf
[i
] = (u32
) (bitmap
[i
/2] & UINT_MAX
);
1175 if (++i
< halfwords
)
1176 buf
[i
] = (u32
) (bitmap
[i
/2] >> 32);
1179 /* Clear tail bits in last element of array beyond nbits. */
1180 if (nbits
% BITS_PER_LONG
)
1181 buf
[halfwords
- 1] &= (u32
) (UINT_MAX
>> ((-nbits
) & 31));
1183 EXPORT_SYMBOL(bitmap_to_arr32
);