Merge tag 'xtensa-20180225' of git://github.com/jcmvbkbc/linux-xtensa
[cris-mirror.git] / lib / swiotlb.c
blobc43ec227146982272c6c3a2c23762fafa2e45dd2
1 /*
2 * Dynamic DMA mapping support.
4 * This implementation is a fallback for platforms that do not support
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
17 * 08/12/11 beckyb Add highmem support
20 #include <linux/cache.h>
21 #include <linux/dma-direct.h>
22 #include <linux/mm.h>
23 #include <linux/export.h>
24 #include <linux/spinlock.h>
25 #include <linux/string.h>
26 #include <linux/swiotlb.h>
27 #include <linux/pfn.h>
28 #include <linux/types.h>
29 #include <linux/ctype.h>
30 #include <linux/highmem.h>
31 #include <linux/gfp.h>
32 #include <linux/scatterlist.h>
33 #include <linux/mem_encrypt.h>
35 #include <asm/io.h>
36 #include <asm/dma.h>
38 #include <linux/init.h>
39 #include <linux/bootmem.h>
40 #include <linux/iommu-helper.h>
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/swiotlb.h>
45 #define OFFSET(val,align) ((unsigned long) \
46 ( (val) & ( (align) - 1)))
48 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
51 * Minimum IO TLB size to bother booting with. Systems with mainly
52 * 64bit capable cards will only lightly use the swiotlb. If we can't
53 * allocate a contiguous 1MB, we're probably in trouble anyway.
55 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
57 enum swiotlb_force swiotlb_force;
60 * Used to do a quick range check in swiotlb_tbl_unmap_single and
61 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
62 * API.
64 static phys_addr_t io_tlb_start, io_tlb_end;
67 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
68 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
70 static unsigned long io_tlb_nslabs;
73 * When the IOMMU overflows we return a fallback buffer. This sets the size.
75 static unsigned long io_tlb_overflow = 32*1024;
77 static phys_addr_t io_tlb_overflow_buffer;
80 * This is a free list describing the number of free entries available from
81 * each index
83 static unsigned int *io_tlb_list;
84 static unsigned int io_tlb_index;
87 * Max segment that we can provide which (if pages are contingous) will
88 * not be bounced (unless SWIOTLB_FORCE is set).
90 unsigned int max_segment;
93 * We need to save away the original address corresponding to a mapped entry
94 * for the sync operations.
96 #define INVALID_PHYS_ADDR (~(phys_addr_t)0)
97 static phys_addr_t *io_tlb_orig_addr;
100 * Protect the above data structures in the map and unmap calls
102 static DEFINE_SPINLOCK(io_tlb_lock);
104 static int late_alloc;
106 static int __init
107 setup_io_tlb_npages(char *str)
109 if (isdigit(*str)) {
110 io_tlb_nslabs = simple_strtoul(str, &str, 0);
111 /* avoid tail segment of size < IO_TLB_SEGSIZE */
112 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
114 if (*str == ',')
115 ++str;
116 if (!strcmp(str, "force")) {
117 swiotlb_force = SWIOTLB_FORCE;
118 } else if (!strcmp(str, "noforce")) {
119 swiotlb_force = SWIOTLB_NO_FORCE;
120 io_tlb_nslabs = 1;
123 return 0;
125 early_param("swiotlb", setup_io_tlb_npages);
126 /* make io_tlb_overflow tunable too? */
128 unsigned long swiotlb_nr_tbl(void)
130 return io_tlb_nslabs;
132 EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
134 unsigned int swiotlb_max_segment(void)
136 return max_segment;
138 EXPORT_SYMBOL_GPL(swiotlb_max_segment);
140 void swiotlb_set_max_segment(unsigned int val)
142 if (swiotlb_force == SWIOTLB_FORCE)
143 max_segment = 1;
144 else
145 max_segment = rounddown(val, PAGE_SIZE);
148 /* default to 64MB */
149 #define IO_TLB_DEFAULT_SIZE (64UL<<20)
150 unsigned long swiotlb_size_or_default(void)
152 unsigned long size;
154 size = io_tlb_nslabs << IO_TLB_SHIFT;
156 return size ? size : (IO_TLB_DEFAULT_SIZE);
159 void __weak swiotlb_set_mem_attributes(void *vaddr, unsigned long size) { }
161 /* For swiotlb, clear memory encryption mask from dma addresses */
162 static dma_addr_t swiotlb_phys_to_dma(struct device *hwdev,
163 phys_addr_t address)
165 return __sme_clr(phys_to_dma(hwdev, address));
168 /* Note that this doesn't work with highmem page */
169 static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
170 volatile void *address)
172 return phys_to_dma(hwdev, virt_to_phys(address));
175 static bool no_iotlb_memory;
177 void swiotlb_print_info(void)
179 unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
180 unsigned char *vstart, *vend;
182 if (no_iotlb_memory) {
183 pr_warn("software IO TLB: No low mem\n");
184 return;
187 vstart = phys_to_virt(io_tlb_start);
188 vend = phys_to_virt(io_tlb_end);
190 printk(KERN_INFO "software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n",
191 (unsigned long long)io_tlb_start,
192 (unsigned long long)io_tlb_end,
193 bytes >> 20, vstart, vend - 1);
197 * Early SWIOTLB allocation may be too early to allow an architecture to
198 * perform the desired operations. This function allows the architecture to
199 * call SWIOTLB when the operations are possible. It needs to be called
200 * before the SWIOTLB memory is used.
202 void __init swiotlb_update_mem_attributes(void)
204 void *vaddr;
205 unsigned long bytes;
207 if (no_iotlb_memory || late_alloc)
208 return;
210 vaddr = phys_to_virt(io_tlb_start);
211 bytes = PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT);
212 swiotlb_set_mem_attributes(vaddr, bytes);
213 memset(vaddr, 0, bytes);
215 vaddr = phys_to_virt(io_tlb_overflow_buffer);
216 bytes = PAGE_ALIGN(io_tlb_overflow);
217 swiotlb_set_mem_attributes(vaddr, bytes);
218 memset(vaddr, 0, bytes);
221 int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
223 void *v_overflow_buffer;
224 unsigned long i, bytes;
226 bytes = nslabs << IO_TLB_SHIFT;
228 io_tlb_nslabs = nslabs;
229 io_tlb_start = __pa(tlb);
230 io_tlb_end = io_tlb_start + bytes;
233 * Get the overflow emergency buffer
235 v_overflow_buffer = memblock_virt_alloc_low_nopanic(
236 PAGE_ALIGN(io_tlb_overflow),
237 PAGE_SIZE);
238 if (!v_overflow_buffer)
239 return -ENOMEM;
241 io_tlb_overflow_buffer = __pa(v_overflow_buffer);
244 * Allocate and initialize the free list array. This array is used
245 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
246 * between io_tlb_start and io_tlb_end.
248 io_tlb_list = memblock_virt_alloc(
249 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)),
250 PAGE_SIZE);
251 io_tlb_orig_addr = memblock_virt_alloc(
252 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)),
253 PAGE_SIZE);
254 for (i = 0; i < io_tlb_nslabs; i++) {
255 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
256 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
258 io_tlb_index = 0;
260 if (verbose)
261 swiotlb_print_info();
263 swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
264 return 0;
268 * Statically reserve bounce buffer space and initialize bounce buffer data
269 * structures for the software IO TLB used to implement the DMA API.
271 void __init
272 swiotlb_init(int verbose)
274 size_t default_size = IO_TLB_DEFAULT_SIZE;
275 unsigned char *vstart;
276 unsigned long bytes;
278 if (!io_tlb_nslabs) {
279 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
280 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
283 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
285 /* Get IO TLB memory from the low pages */
286 vstart = memblock_virt_alloc_low_nopanic(PAGE_ALIGN(bytes), PAGE_SIZE);
287 if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose))
288 return;
290 if (io_tlb_start)
291 memblock_free_early(io_tlb_start,
292 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
293 pr_warn("Cannot allocate SWIOTLB buffer");
294 no_iotlb_memory = true;
298 * Systems with larger DMA zones (those that don't support ISA) can
299 * initialize the swiotlb later using the slab allocator if needed.
300 * This should be just like above, but with some error catching.
303 swiotlb_late_init_with_default_size(size_t default_size)
305 unsigned long bytes, req_nslabs = io_tlb_nslabs;
306 unsigned char *vstart = NULL;
307 unsigned int order;
308 int rc = 0;
310 if (!io_tlb_nslabs) {
311 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
312 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
316 * Get IO TLB memory from the low pages
318 order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
319 io_tlb_nslabs = SLABS_PER_PAGE << order;
320 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
322 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
323 vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
324 order);
325 if (vstart)
326 break;
327 order--;
330 if (!vstart) {
331 io_tlb_nslabs = req_nslabs;
332 return -ENOMEM;
334 if (order != get_order(bytes)) {
335 printk(KERN_WARNING "Warning: only able to allocate %ld MB "
336 "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
337 io_tlb_nslabs = SLABS_PER_PAGE << order;
339 rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs);
340 if (rc)
341 free_pages((unsigned long)vstart, order);
343 return rc;
347 swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
349 unsigned long i, bytes;
350 unsigned char *v_overflow_buffer;
352 bytes = nslabs << IO_TLB_SHIFT;
354 io_tlb_nslabs = nslabs;
355 io_tlb_start = virt_to_phys(tlb);
356 io_tlb_end = io_tlb_start + bytes;
358 swiotlb_set_mem_attributes(tlb, bytes);
359 memset(tlb, 0, bytes);
362 * Get the overflow emergency buffer
364 v_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
365 get_order(io_tlb_overflow));
366 if (!v_overflow_buffer)
367 goto cleanup2;
369 swiotlb_set_mem_attributes(v_overflow_buffer, io_tlb_overflow);
370 memset(v_overflow_buffer, 0, io_tlb_overflow);
371 io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer);
374 * Allocate and initialize the free list array. This array is used
375 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
376 * between io_tlb_start and io_tlb_end.
378 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
379 get_order(io_tlb_nslabs * sizeof(int)));
380 if (!io_tlb_list)
381 goto cleanup3;
383 io_tlb_orig_addr = (phys_addr_t *)
384 __get_free_pages(GFP_KERNEL,
385 get_order(io_tlb_nslabs *
386 sizeof(phys_addr_t)));
387 if (!io_tlb_orig_addr)
388 goto cleanup4;
390 for (i = 0; i < io_tlb_nslabs; i++) {
391 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
392 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
394 io_tlb_index = 0;
396 swiotlb_print_info();
398 late_alloc = 1;
400 swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
402 return 0;
404 cleanup4:
405 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
406 sizeof(int)));
407 io_tlb_list = NULL;
408 cleanup3:
409 free_pages((unsigned long)v_overflow_buffer,
410 get_order(io_tlb_overflow));
411 io_tlb_overflow_buffer = 0;
412 cleanup2:
413 io_tlb_end = 0;
414 io_tlb_start = 0;
415 io_tlb_nslabs = 0;
416 max_segment = 0;
417 return -ENOMEM;
420 void __init swiotlb_exit(void)
422 if (!io_tlb_orig_addr)
423 return;
425 if (late_alloc) {
426 free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer),
427 get_order(io_tlb_overflow));
428 free_pages((unsigned long)io_tlb_orig_addr,
429 get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
430 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
431 sizeof(int)));
432 free_pages((unsigned long)phys_to_virt(io_tlb_start),
433 get_order(io_tlb_nslabs << IO_TLB_SHIFT));
434 } else {
435 memblock_free_late(io_tlb_overflow_buffer,
436 PAGE_ALIGN(io_tlb_overflow));
437 memblock_free_late(__pa(io_tlb_orig_addr),
438 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
439 memblock_free_late(__pa(io_tlb_list),
440 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
441 memblock_free_late(io_tlb_start,
442 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
444 io_tlb_nslabs = 0;
445 max_segment = 0;
448 int is_swiotlb_buffer(phys_addr_t paddr)
450 return paddr >= io_tlb_start && paddr < io_tlb_end;
454 * Bounce: copy the swiotlb buffer back to the original dma location
456 static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr,
457 size_t size, enum dma_data_direction dir)
459 unsigned long pfn = PFN_DOWN(orig_addr);
460 unsigned char *vaddr = phys_to_virt(tlb_addr);
462 if (PageHighMem(pfn_to_page(pfn))) {
463 /* The buffer does not have a mapping. Map it in and copy */
464 unsigned int offset = orig_addr & ~PAGE_MASK;
465 char *buffer;
466 unsigned int sz = 0;
467 unsigned long flags;
469 while (size) {
470 sz = min_t(size_t, PAGE_SIZE - offset, size);
472 local_irq_save(flags);
473 buffer = kmap_atomic(pfn_to_page(pfn));
474 if (dir == DMA_TO_DEVICE)
475 memcpy(vaddr, buffer + offset, sz);
476 else
477 memcpy(buffer + offset, vaddr, sz);
478 kunmap_atomic(buffer);
479 local_irq_restore(flags);
481 size -= sz;
482 pfn++;
483 vaddr += sz;
484 offset = 0;
486 } else if (dir == DMA_TO_DEVICE) {
487 memcpy(vaddr, phys_to_virt(orig_addr), size);
488 } else {
489 memcpy(phys_to_virt(orig_addr), vaddr, size);
493 phys_addr_t swiotlb_tbl_map_single(struct device *hwdev,
494 dma_addr_t tbl_dma_addr,
495 phys_addr_t orig_addr, size_t size,
496 enum dma_data_direction dir,
497 unsigned long attrs)
499 unsigned long flags;
500 phys_addr_t tlb_addr;
501 unsigned int nslots, stride, index, wrap;
502 int i;
503 unsigned long mask;
504 unsigned long offset_slots;
505 unsigned long max_slots;
507 if (no_iotlb_memory)
508 panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
510 if (mem_encrypt_active())
511 pr_warn_once("%s is active and system is using DMA bounce buffers\n",
512 sme_active() ? "SME" : "SEV");
514 mask = dma_get_seg_boundary(hwdev);
516 tbl_dma_addr &= mask;
518 offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
521 * Carefully handle integer overflow which can occur when mask == ~0UL.
523 max_slots = mask + 1
524 ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
525 : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
528 * For mappings greater than or equal to a page, we limit the stride
529 * (and hence alignment) to a page size.
531 nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
532 if (size >= PAGE_SIZE)
533 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
534 else
535 stride = 1;
537 BUG_ON(!nslots);
540 * Find suitable number of IO TLB entries size that will fit this
541 * request and allocate a buffer from that IO TLB pool.
543 spin_lock_irqsave(&io_tlb_lock, flags);
544 index = ALIGN(io_tlb_index, stride);
545 if (index >= io_tlb_nslabs)
546 index = 0;
547 wrap = index;
549 do {
550 while (iommu_is_span_boundary(index, nslots, offset_slots,
551 max_slots)) {
552 index += stride;
553 if (index >= io_tlb_nslabs)
554 index = 0;
555 if (index == wrap)
556 goto not_found;
560 * If we find a slot that indicates we have 'nslots' number of
561 * contiguous buffers, we allocate the buffers from that slot
562 * and mark the entries as '0' indicating unavailable.
564 if (io_tlb_list[index] >= nslots) {
565 int count = 0;
567 for (i = index; i < (int) (index + nslots); i++)
568 io_tlb_list[i] = 0;
569 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
570 io_tlb_list[i] = ++count;
571 tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT);
574 * Update the indices to avoid searching in the next
575 * round.
577 io_tlb_index = ((index + nslots) < io_tlb_nslabs
578 ? (index + nslots) : 0);
580 goto found;
582 index += stride;
583 if (index >= io_tlb_nslabs)
584 index = 0;
585 } while (index != wrap);
587 not_found:
588 spin_unlock_irqrestore(&io_tlb_lock, flags);
589 if (!(attrs & DMA_ATTR_NO_WARN) && printk_ratelimit())
590 dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes)\n", size);
591 return SWIOTLB_MAP_ERROR;
592 found:
593 spin_unlock_irqrestore(&io_tlb_lock, flags);
596 * Save away the mapping from the original address to the DMA address.
597 * This is needed when we sync the memory. Then we sync the buffer if
598 * needed.
600 for (i = 0; i < nslots; i++)
601 io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT);
602 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
603 (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
604 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE);
606 return tlb_addr;
610 * Allocates bounce buffer and returns its kernel virtual address.
613 static phys_addr_t
614 map_single(struct device *hwdev, phys_addr_t phys, size_t size,
615 enum dma_data_direction dir, unsigned long attrs)
617 dma_addr_t start_dma_addr;
619 if (swiotlb_force == SWIOTLB_NO_FORCE) {
620 dev_warn_ratelimited(hwdev, "Cannot do DMA to address %pa\n",
621 &phys);
622 return SWIOTLB_MAP_ERROR;
625 start_dma_addr = swiotlb_phys_to_dma(hwdev, io_tlb_start);
626 return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size,
627 dir, attrs);
631 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
633 void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
634 size_t size, enum dma_data_direction dir,
635 unsigned long attrs)
637 unsigned long flags;
638 int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
639 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
640 phys_addr_t orig_addr = io_tlb_orig_addr[index];
643 * First, sync the memory before unmapping the entry
645 if (orig_addr != INVALID_PHYS_ADDR &&
646 !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
647 ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
648 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE);
651 * Return the buffer to the free list by setting the corresponding
652 * entries to indicate the number of contiguous entries available.
653 * While returning the entries to the free list, we merge the entries
654 * with slots below and above the pool being returned.
656 spin_lock_irqsave(&io_tlb_lock, flags);
658 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
659 io_tlb_list[index + nslots] : 0);
661 * Step 1: return the slots to the free list, merging the
662 * slots with superceeding slots
664 for (i = index + nslots - 1; i >= index; i--) {
665 io_tlb_list[i] = ++count;
666 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
669 * Step 2: merge the returned slots with the preceding slots,
670 * if available (non zero)
672 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
673 io_tlb_list[i] = ++count;
675 spin_unlock_irqrestore(&io_tlb_lock, flags);
678 void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr,
679 size_t size, enum dma_data_direction dir,
680 enum dma_sync_target target)
682 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
683 phys_addr_t orig_addr = io_tlb_orig_addr[index];
685 if (orig_addr == INVALID_PHYS_ADDR)
686 return;
687 orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1);
689 switch (target) {
690 case SYNC_FOR_CPU:
691 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
692 swiotlb_bounce(orig_addr, tlb_addr,
693 size, DMA_FROM_DEVICE);
694 else
695 BUG_ON(dir != DMA_TO_DEVICE);
696 break;
697 case SYNC_FOR_DEVICE:
698 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
699 swiotlb_bounce(orig_addr, tlb_addr,
700 size, DMA_TO_DEVICE);
701 else
702 BUG_ON(dir != DMA_FROM_DEVICE);
703 break;
704 default:
705 BUG();
709 static inline bool dma_coherent_ok(struct device *dev, dma_addr_t addr,
710 size_t size)
712 u64 mask = DMA_BIT_MASK(32);
714 if (dev && dev->coherent_dma_mask)
715 mask = dev->coherent_dma_mask;
716 return addr + size - 1 <= mask;
719 static void *
720 swiotlb_alloc_buffer(struct device *dev, size_t size, dma_addr_t *dma_handle,
721 unsigned long attrs)
723 phys_addr_t phys_addr;
725 if (swiotlb_force == SWIOTLB_NO_FORCE)
726 goto out_warn;
728 phys_addr = swiotlb_tbl_map_single(dev,
729 swiotlb_phys_to_dma(dev, io_tlb_start),
730 0, size, DMA_FROM_DEVICE, 0);
731 if (phys_addr == SWIOTLB_MAP_ERROR)
732 goto out_warn;
734 *dma_handle = swiotlb_phys_to_dma(dev, phys_addr);
735 if (dma_coherent_ok(dev, *dma_handle, size))
736 goto out_unmap;
738 memset(phys_to_virt(phys_addr), 0, size);
739 return phys_to_virt(phys_addr);
741 out_unmap:
742 dev_warn(dev, "hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
743 (unsigned long long)(dev ? dev->coherent_dma_mask : 0),
744 (unsigned long long)*dma_handle);
747 * DMA_TO_DEVICE to avoid memcpy in unmap_single.
748 * DMA_ATTR_SKIP_CPU_SYNC is optional.
750 swiotlb_tbl_unmap_single(dev, phys_addr, size, DMA_TO_DEVICE,
751 DMA_ATTR_SKIP_CPU_SYNC);
752 out_warn:
753 if ((attrs & DMA_ATTR_NO_WARN) && printk_ratelimit()) {
754 dev_warn(dev,
755 "swiotlb: coherent allocation failed, size=%zu\n",
756 size);
757 dump_stack();
759 return NULL;
762 void *
763 swiotlb_alloc_coherent(struct device *hwdev, size_t size,
764 dma_addr_t *dma_handle, gfp_t flags)
766 int order = get_order(size);
767 unsigned long attrs = (flags & __GFP_NOWARN) ? DMA_ATTR_NO_WARN : 0;
768 void *ret;
770 ret = (void *)__get_free_pages(flags, order);
771 if (ret) {
772 *dma_handle = swiotlb_virt_to_bus(hwdev, ret);
773 if (dma_coherent_ok(hwdev, *dma_handle, size)) {
774 memset(ret, 0, size);
775 return ret;
777 free_pages((unsigned long)ret, order);
780 return swiotlb_alloc_buffer(hwdev, size, dma_handle, attrs);
782 EXPORT_SYMBOL(swiotlb_alloc_coherent);
784 static bool swiotlb_free_buffer(struct device *dev, size_t size,
785 dma_addr_t dma_addr)
787 phys_addr_t phys_addr = dma_to_phys(dev, dma_addr);
789 WARN_ON_ONCE(irqs_disabled());
791 if (!is_swiotlb_buffer(phys_addr))
792 return false;
795 * DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single.
796 * DMA_ATTR_SKIP_CPU_SYNC is optional.
798 swiotlb_tbl_unmap_single(dev, phys_addr, size, DMA_TO_DEVICE,
799 DMA_ATTR_SKIP_CPU_SYNC);
800 return true;
803 void
804 swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
805 dma_addr_t dev_addr)
807 if (!swiotlb_free_buffer(hwdev, size, dev_addr))
808 free_pages((unsigned long)vaddr, get_order(size));
810 EXPORT_SYMBOL(swiotlb_free_coherent);
812 static void
813 swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
814 int do_panic)
816 if (swiotlb_force == SWIOTLB_NO_FORCE)
817 return;
820 * Ran out of IOMMU space for this operation. This is very bad.
821 * Unfortunately the drivers cannot handle this operation properly.
822 * unless they check for dma_mapping_error (most don't)
823 * When the mapping is small enough return a static buffer to limit
824 * the damage, or panic when the transfer is too big.
826 dev_err_ratelimited(dev, "DMA: Out of SW-IOMMU space for %zu bytes\n",
827 size);
829 if (size <= io_tlb_overflow || !do_panic)
830 return;
832 if (dir == DMA_BIDIRECTIONAL)
833 panic("DMA: Random memory could be DMA accessed\n");
834 if (dir == DMA_FROM_DEVICE)
835 panic("DMA: Random memory could be DMA written\n");
836 if (dir == DMA_TO_DEVICE)
837 panic("DMA: Random memory could be DMA read\n");
841 * Map a single buffer of the indicated size for DMA in streaming mode. The
842 * physical address to use is returned.
844 * Once the device is given the dma address, the device owns this memory until
845 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
847 dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
848 unsigned long offset, size_t size,
849 enum dma_data_direction dir,
850 unsigned long attrs)
852 phys_addr_t map, phys = page_to_phys(page) + offset;
853 dma_addr_t dev_addr = phys_to_dma(dev, phys);
855 BUG_ON(dir == DMA_NONE);
857 * If the address happens to be in the device's DMA window,
858 * we can safely return the device addr and not worry about bounce
859 * buffering it.
861 if (dma_capable(dev, dev_addr, size) && swiotlb_force != SWIOTLB_FORCE)
862 return dev_addr;
864 trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
866 /* Oh well, have to allocate and map a bounce buffer. */
867 map = map_single(dev, phys, size, dir, attrs);
868 if (map == SWIOTLB_MAP_ERROR) {
869 swiotlb_full(dev, size, dir, 1);
870 return swiotlb_phys_to_dma(dev, io_tlb_overflow_buffer);
873 dev_addr = swiotlb_phys_to_dma(dev, map);
875 /* Ensure that the address returned is DMA'ble */
876 if (dma_capable(dev, dev_addr, size))
877 return dev_addr;
879 attrs |= DMA_ATTR_SKIP_CPU_SYNC;
880 swiotlb_tbl_unmap_single(dev, map, size, dir, attrs);
882 return swiotlb_phys_to_dma(dev, io_tlb_overflow_buffer);
886 * Unmap a single streaming mode DMA translation. The dma_addr and size must
887 * match what was provided for in a previous swiotlb_map_page call. All
888 * other usages are undefined.
890 * After this call, reads by the cpu to the buffer are guaranteed to see
891 * whatever the device wrote there.
893 static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
894 size_t size, enum dma_data_direction dir,
895 unsigned long attrs)
897 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
899 BUG_ON(dir == DMA_NONE);
901 if (is_swiotlb_buffer(paddr)) {
902 swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs);
903 return;
906 if (dir != DMA_FROM_DEVICE)
907 return;
910 * phys_to_virt doesn't work with hihgmem page but we could
911 * call dma_mark_clean() with hihgmem page here. However, we
912 * are fine since dma_mark_clean() is null on POWERPC. We can
913 * make dma_mark_clean() take a physical address if necessary.
915 dma_mark_clean(phys_to_virt(paddr), size);
918 void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
919 size_t size, enum dma_data_direction dir,
920 unsigned long attrs)
922 unmap_single(hwdev, dev_addr, size, dir, attrs);
926 * Make physical memory consistent for a single streaming mode DMA translation
927 * after a transfer.
929 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
930 * using the cpu, yet do not wish to teardown the dma mapping, you must
931 * call this function before doing so. At the next point you give the dma
932 * address back to the card, you must first perform a
933 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
935 static void
936 swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
937 size_t size, enum dma_data_direction dir,
938 enum dma_sync_target target)
940 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
942 BUG_ON(dir == DMA_NONE);
944 if (is_swiotlb_buffer(paddr)) {
945 swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
946 return;
949 if (dir != DMA_FROM_DEVICE)
950 return;
952 dma_mark_clean(phys_to_virt(paddr), size);
955 void
956 swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
957 size_t size, enum dma_data_direction dir)
959 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
962 void
963 swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
964 size_t size, enum dma_data_direction dir)
966 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
970 * Map a set of buffers described by scatterlist in streaming mode for DMA.
971 * This is the scatter-gather version of the above swiotlb_map_page
972 * interface. Here the scatter gather list elements are each tagged with the
973 * appropriate dma address and length. They are obtained via
974 * sg_dma_{address,length}(SG).
976 * NOTE: An implementation may be able to use a smaller number of
977 * DMA address/length pairs than there are SG table elements.
978 * (for example via virtual mapping capabilities)
979 * The routine returns the number of addr/length pairs actually
980 * used, at most nents.
982 * Device ownership issues as mentioned above for swiotlb_map_page are the
983 * same here.
986 swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
987 enum dma_data_direction dir, unsigned long attrs)
989 struct scatterlist *sg;
990 int i;
992 BUG_ON(dir == DMA_NONE);
994 for_each_sg(sgl, sg, nelems, i) {
995 phys_addr_t paddr = sg_phys(sg);
996 dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
998 if (swiotlb_force == SWIOTLB_FORCE ||
999 !dma_capable(hwdev, dev_addr, sg->length)) {
1000 phys_addr_t map = map_single(hwdev, sg_phys(sg),
1001 sg->length, dir, attrs);
1002 if (map == SWIOTLB_MAP_ERROR) {
1003 /* Don't panic here, we expect map_sg users
1004 to do proper error handling. */
1005 swiotlb_full(hwdev, sg->length, dir, 0);
1006 attrs |= DMA_ATTR_SKIP_CPU_SYNC;
1007 swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
1008 attrs);
1009 sg_dma_len(sgl) = 0;
1010 return 0;
1012 sg->dma_address = swiotlb_phys_to_dma(hwdev, map);
1013 } else
1014 sg->dma_address = dev_addr;
1015 sg_dma_len(sg) = sg->length;
1017 return nelems;
1021 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
1022 * concerning calls here are the same as for swiotlb_unmap_page() above.
1024 void
1025 swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
1026 int nelems, enum dma_data_direction dir,
1027 unsigned long attrs)
1029 struct scatterlist *sg;
1030 int i;
1032 BUG_ON(dir == DMA_NONE);
1034 for_each_sg(sgl, sg, nelems, i)
1035 unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir,
1036 attrs);
1040 * Make physical memory consistent for a set of streaming mode DMA translations
1041 * after a transfer.
1043 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
1044 * and usage.
1046 static void
1047 swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
1048 int nelems, enum dma_data_direction dir,
1049 enum dma_sync_target target)
1051 struct scatterlist *sg;
1052 int i;
1054 for_each_sg(sgl, sg, nelems, i)
1055 swiotlb_sync_single(hwdev, sg->dma_address,
1056 sg_dma_len(sg), dir, target);
1059 void
1060 swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
1061 int nelems, enum dma_data_direction dir)
1063 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
1066 void
1067 swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
1068 int nelems, enum dma_data_direction dir)
1070 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
1074 swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
1076 return (dma_addr == swiotlb_phys_to_dma(hwdev, io_tlb_overflow_buffer));
1080 * Return whether the given device DMA address mask can be supported
1081 * properly. For example, if your device can only drive the low 24-bits
1082 * during bus mastering, then you would pass 0x00ffffff as the mask to
1083 * this function.
1086 swiotlb_dma_supported(struct device *hwdev, u64 mask)
1088 return swiotlb_phys_to_dma(hwdev, io_tlb_end - 1) <= mask;
1091 #ifdef CONFIG_DMA_DIRECT_OPS
1092 void *swiotlb_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
1093 gfp_t gfp, unsigned long attrs)
1095 void *vaddr;
1097 /* temporary workaround: */
1098 if (gfp & __GFP_NOWARN)
1099 attrs |= DMA_ATTR_NO_WARN;
1102 * Don't print a warning when the first allocation attempt fails.
1103 * swiotlb_alloc_coherent() will print a warning when the DMA memory
1104 * allocation ultimately failed.
1106 gfp |= __GFP_NOWARN;
1108 vaddr = dma_direct_alloc(dev, size, dma_handle, gfp, attrs);
1109 if (!vaddr)
1110 vaddr = swiotlb_alloc_buffer(dev, size, dma_handle, attrs);
1111 return vaddr;
1114 void swiotlb_free(struct device *dev, size_t size, void *vaddr,
1115 dma_addr_t dma_addr, unsigned long attrs)
1117 if (!swiotlb_free_buffer(dev, size, dma_addr))
1118 dma_direct_free(dev, size, vaddr, dma_addr, attrs);
1121 const struct dma_map_ops swiotlb_dma_ops = {
1122 .mapping_error = swiotlb_dma_mapping_error,
1123 .alloc = swiotlb_alloc,
1124 .free = swiotlb_free,
1125 .sync_single_for_cpu = swiotlb_sync_single_for_cpu,
1126 .sync_single_for_device = swiotlb_sync_single_for_device,
1127 .sync_sg_for_cpu = swiotlb_sync_sg_for_cpu,
1128 .sync_sg_for_device = swiotlb_sync_sg_for_device,
1129 .map_sg = swiotlb_map_sg_attrs,
1130 .unmap_sg = swiotlb_unmap_sg_attrs,
1131 .map_page = swiotlb_map_page,
1132 .unmap_page = swiotlb_unmap_page,
1133 .dma_supported = swiotlb_dma_supported,
1135 #endif /* CONFIG_DMA_DIRECT_OPS */