2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
5 #include <linux/list.h>
6 #include <linux/init.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/sched/signal.h>
22 #include <linux/rmap.h>
23 #include <linux/string_helpers.h>
24 #include <linux/swap.h>
25 #include <linux/swapops.h>
26 #include <linux/jhash.h>
29 #include <asm/pgtable.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include <linux/userfaultfd_k.h>
37 #include <linux/page_owner.h>
40 int hugetlb_max_hstate __read_mostly
;
41 unsigned int default_hstate_idx
;
42 struct hstate hstates
[HUGE_MAX_HSTATE
];
44 * Minimum page order among possible hugepage sizes, set to a proper value
47 static unsigned int minimum_order __read_mostly
= UINT_MAX
;
49 __initdata
LIST_HEAD(huge_boot_pages
);
51 /* for command line parsing */
52 static struct hstate
* __initdata parsed_hstate
;
53 static unsigned long __initdata default_hstate_max_huge_pages
;
54 static unsigned long __initdata default_hstate_size
;
55 static bool __initdata parsed_valid_hugepagesz
= true;
58 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
59 * free_huge_pages, and surplus_huge_pages.
61 DEFINE_SPINLOCK(hugetlb_lock
);
64 * Serializes faults on the same logical page. This is used to
65 * prevent spurious OOMs when the hugepage pool is fully utilized.
67 static int num_fault_mutexes
;
68 struct mutex
*hugetlb_fault_mutex_table ____cacheline_aligned_in_smp
;
70 /* Forward declaration */
71 static int hugetlb_acct_memory(struct hstate
*h
, long delta
);
73 static inline void unlock_or_release_subpool(struct hugepage_subpool
*spool
)
75 bool free
= (spool
->count
== 0) && (spool
->used_hpages
== 0);
77 spin_unlock(&spool
->lock
);
79 /* If no pages are used, and no other handles to the subpool
80 * remain, give up any reservations mased on minimum size and
83 if (spool
->min_hpages
!= -1)
84 hugetlb_acct_memory(spool
->hstate
,
90 struct hugepage_subpool
*hugepage_new_subpool(struct hstate
*h
, long max_hpages
,
93 struct hugepage_subpool
*spool
;
95 spool
= kzalloc(sizeof(*spool
), GFP_KERNEL
);
99 spin_lock_init(&spool
->lock
);
101 spool
->max_hpages
= max_hpages
;
103 spool
->min_hpages
= min_hpages
;
105 if (min_hpages
!= -1 && hugetlb_acct_memory(h
, min_hpages
)) {
109 spool
->rsv_hpages
= min_hpages
;
114 void hugepage_put_subpool(struct hugepage_subpool
*spool
)
116 spin_lock(&spool
->lock
);
117 BUG_ON(!spool
->count
);
119 unlock_or_release_subpool(spool
);
123 * Subpool accounting for allocating and reserving pages.
124 * Return -ENOMEM if there are not enough resources to satisfy the
125 * the request. Otherwise, return the number of pages by which the
126 * global pools must be adjusted (upward). The returned value may
127 * only be different than the passed value (delta) in the case where
128 * a subpool minimum size must be manitained.
130 static long hugepage_subpool_get_pages(struct hugepage_subpool
*spool
,
138 spin_lock(&spool
->lock
);
140 if (spool
->max_hpages
!= -1) { /* maximum size accounting */
141 if ((spool
->used_hpages
+ delta
) <= spool
->max_hpages
)
142 spool
->used_hpages
+= delta
;
149 /* minimum size accounting */
150 if (spool
->min_hpages
!= -1 && spool
->rsv_hpages
) {
151 if (delta
> spool
->rsv_hpages
) {
153 * Asking for more reserves than those already taken on
154 * behalf of subpool. Return difference.
156 ret
= delta
- spool
->rsv_hpages
;
157 spool
->rsv_hpages
= 0;
159 ret
= 0; /* reserves already accounted for */
160 spool
->rsv_hpages
-= delta
;
165 spin_unlock(&spool
->lock
);
170 * Subpool accounting for freeing and unreserving pages.
171 * Return the number of global page reservations that must be dropped.
172 * The return value may only be different than the passed value (delta)
173 * in the case where a subpool minimum size must be maintained.
175 static long hugepage_subpool_put_pages(struct hugepage_subpool
*spool
,
183 spin_lock(&spool
->lock
);
185 if (spool
->max_hpages
!= -1) /* maximum size accounting */
186 spool
->used_hpages
-= delta
;
188 /* minimum size accounting */
189 if (spool
->min_hpages
!= -1 && spool
->used_hpages
< spool
->min_hpages
) {
190 if (spool
->rsv_hpages
+ delta
<= spool
->min_hpages
)
193 ret
= spool
->rsv_hpages
+ delta
- spool
->min_hpages
;
195 spool
->rsv_hpages
+= delta
;
196 if (spool
->rsv_hpages
> spool
->min_hpages
)
197 spool
->rsv_hpages
= spool
->min_hpages
;
201 * If hugetlbfs_put_super couldn't free spool due to an outstanding
202 * quota reference, free it now.
204 unlock_or_release_subpool(spool
);
209 static inline struct hugepage_subpool
*subpool_inode(struct inode
*inode
)
211 return HUGETLBFS_SB(inode
->i_sb
)->spool
;
214 static inline struct hugepage_subpool
*subpool_vma(struct vm_area_struct
*vma
)
216 return subpool_inode(file_inode(vma
->vm_file
));
220 * Region tracking -- allows tracking of reservations and instantiated pages
221 * across the pages in a mapping.
223 * The region data structures are embedded into a resv_map and protected
224 * by a resv_map's lock. The set of regions within the resv_map represent
225 * reservations for huge pages, or huge pages that have already been
226 * instantiated within the map. The from and to elements are huge page
227 * indicies into the associated mapping. from indicates the starting index
228 * of the region. to represents the first index past the end of the region.
230 * For example, a file region structure with from == 0 and to == 4 represents
231 * four huge pages in a mapping. It is important to note that the to element
232 * represents the first element past the end of the region. This is used in
233 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
235 * Interval notation of the form [from, to) will be used to indicate that
236 * the endpoint from is inclusive and to is exclusive.
239 struct list_head link
;
245 * Add the huge page range represented by [f, t) to the reserve
246 * map. In the normal case, existing regions will be expanded
247 * to accommodate the specified range. Sufficient regions should
248 * exist for expansion due to the previous call to region_chg
249 * with the same range. However, it is possible that region_del
250 * could have been called after region_chg and modifed the map
251 * in such a way that no region exists to be expanded. In this
252 * case, pull a region descriptor from the cache associated with
253 * the map and use that for the new range.
255 * Return the number of new huge pages added to the map. This
256 * number is greater than or equal to zero.
258 static long region_add(struct resv_map
*resv
, long f
, long t
)
260 struct list_head
*head
= &resv
->regions
;
261 struct file_region
*rg
, *nrg
, *trg
;
264 spin_lock(&resv
->lock
);
265 /* Locate the region we are either in or before. */
266 list_for_each_entry(rg
, head
, link
)
271 * If no region exists which can be expanded to include the
272 * specified range, the list must have been modified by an
273 * interleving call to region_del(). Pull a region descriptor
274 * from the cache and use it for this range.
276 if (&rg
->link
== head
|| t
< rg
->from
) {
277 VM_BUG_ON(resv
->region_cache_count
<= 0);
279 resv
->region_cache_count
--;
280 nrg
= list_first_entry(&resv
->region_cache
, struct file_region
,
282 list_del(&nrg
->link
);
286 list_add(&nrg
->link
, rg
->link
.prev
);
292 /* Round our left edge to the current segment if it encloses us. */
296 /* Check for and consume any regions we now overlap with. */
298 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
299 if (&rg
->link
== head
)
304 /* If this area reaches higher then extend our area to
305 * include it completely. If this is not the first area
306 * which we intend to reuse, free it. */
310 /* Decrement return value by the deleted range.
311 * Another range will span this area so that by
312 * end of routine add will be >= zero
314 add
-= (rg
->to
- rg
->from
);
320 add
+= (nrg
->from
- f
); /* Added to beginning of region */
322 add
+= t
- nrg
->to
; /* Added to end of region */
326 resv
->adds_in_progress
--;
327 spin_unlock(&resv
->lock
);
333 * Examine the existing reserve map and determine how many
334 * huge pages in the specified range [f, t) are NOT currently
335 * represented. This routine is called before a subsequent
336 * call to region_add that will actually modify the reserve
337 * map to add the specified range [f, t). region_chg does
338 * not change the number of huge pages represented by the
339 * map. However, if the existing regions in the map can not
340 * be expanded to represent the new range, a new file_region
341 * structure is added to the map as a placeholder. This is
342 * so that the subsequent region_add call will have all the
343 * regions it needs and will not fail.
345 * Upon entry, region_chg will also examine the cache of region descriptors
346 * associated with the map. If there are not enough descriptors cached, one
347 * will be allocated for the in progress add operation.
349 * Returns the number of huge pages that need to be added to the existing
350 * reservation map for the range [f, t). This number is greater or equal to
351 * zero. -ENOMEM is returned if a new file_region structure or cache entry
352 * is needed and can not be allocated.
354 static long region_chg(struct resv_map
*resv
, long f
, long t
)
356 struct list_head
*head
= &resv
->regions
;
357 struct file_region
*rg
, *nrg
= NULL
;
361 spin_lock(&resv
->lock
);
363 resv
->adds_in_progress
++;
366 * Check for sufficient descriptors in the cache to accommodate
367 * the number of in progress add operations.
369 if (resv
->adds_in_progress
> resv
->region_cache_count
) {
370 struct file_region
*trg
;
372 VM_BUG_ON(resv
->adds_in_progress
- resv
->region_cache_count
> 1);
373 /* Must drop lock to allocate a new descriptor. */
374 resv
->adds_in_progress
--;
375 spin_unlock(&resv
->lock
);
377 trg
= kmalloc(sizeof(*trg
), GFP_KERNEL
);
383 spin_lock(&resv
->lock
);
384 list_add(&trg
->link
, &resv
->region_cache
);
385 resv
->region_cache_count
++;
389 /* Locate the region we are before or in. */
390 list_for_each_entry(rg
, head
, link
)
394 /* If we are below the current region then a new region is required.
395 * Subtle, allocate a new region at the position but make it zero
396 * size such that we can guarantee to record the reservation. */
397 if (&rg
->link
== head
|| t
< rg
->from
) {
399 resv
->adds_in_progress
--;
400 spin_unlock(&resv
->lock
);
401 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
407 INIT_LIST_HEAD(&nrg
->link
);
411 list_add(&nrg
->link
, rg
->link
.prev
);
416 /* Round our left edge to the current segment if it encloses us. */
421 /* Check for and consume any regions we now overlap with. */
422 list_for_each_entry(rg
, rg
->link
.prev
, link
) {
423 if (&rg
->link
== head
)
428 /* We overlap with this area, if it extends further than
429 * us then we must extend ourselves. Account for its
430 * existing reservation. */
435 chg
-= rg
->to
- rg
->from
;
439 spin_unlock(&resv
->lock
);
440 /* We already know we raced and no longer need the new region */
444 spin_unlock(&resv
->lock
);
449 * Abort the in progress add operation. The adds_in_progress field
450 * of the resv_map keeps track of the operations in progress between
451 * calls to region_chg and region_add. Operations are sometimes
452 * aborted after the call to region_chg. In such cases, region_abort
453 * is called to decrement the adds_in_progress counter.
455 * NOTE: The range arguments [f, t) are not needed or used in this
456 * routine. They are kept to make reading the calling code easier as
457 * arguments will match the associated region_chg call.
459 static void region_abort(struct resv_map
*resv
, long f
, long t
)
461 spin_lock(&resv
->lock
);
462 VM_BUG_ON(!resv
->region_cache_count
);
463 resv
->adds_in_progress
--;
464 spin_unlock(&resv
->lock
);
468 * Delete the specified range [f, t) from the reserve map. If the
469 * t parameter is LONG_MAX, this indicates that ALL regions after f
470 * should be deleted. Locate the regions which intersect [f, t)
471 * and either trim, delete or split the existing regions.
473 * Returns the number of huge pages deleted from the reserve map.
474 * In the normal case, the return value is zero or more. In the
475 * case where a region must be split, a new region descriptor must
476 * be allocated. If the allocation fails, -ENOMEM will be returned.
477 * NOTE: If the parameter t == LONG_MAX, then we will never split
478 * a region and possibly return -ENOMEM. Callers specifying
479 * t == LONG_MAX do not need to check for -ENOMEM error.
481 static long region_del(struct resv_map
*resv
, long f
, long t
)
483 struct list_head
*head
= &resv
->regions
;
484 struct file_region
*rg
, *trg
;
485 struct file_region
*nrg
= NULL
;
489 spin_lock(&resv
->lock
);
490 list_for_each_entry_safe(rg
, trg
, head
, link
) {
492 * Skip regions before the range to be deleted. file_region
493 * ranges are normally of the form [from, to). However, there
494 * may be a "placeholder" entry in the map which is of the form
495 * (from, to) with from == to. Check for placeholder entries
496 * at the beginning of the range to be deleted.
498 if (rg
->to
<= f
&& (rg
->to
!= rg
->from
|| rg
->to
!= f
))
504 if (f
> rg
->from
&& t
< rg
->to
) { /* Must split region */
506 * Check for an entry in the cache before dropping
507 * lock and attempting allocation.
510 resv
->region_cache_count
> resv
->adds_in_progress
) {
511 nrg
= list_first_entry(&resv
->region_cache
,
514 list_del(&nrg
->link
);
515 resv
->region_cache_count
--;
519 spin_unlock(&resv
->lock
);
520 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
528 /* New entry for end of split region */
531 INIT_LIST_HEAD(&nrg
->link
);
533 /* Original entry is trimmed */
536 list_add(&nrg
->link
, &rg
->link
);
541 if (f
<= rg
->from
&& t
>= rg
->to
) { /* Remove entire region */
542 del
+= rg
->to
- rg
->from
;
548 if (f
<= rg
->from
) { /* Trim beginning of region */
551 } else { /* Trim end of region */
557 spin_unlock(&resv
->lock
);
563 * A rare out of memory error was encountered which prevented removal of
564 * the reserve map region for a page. The huge page itself was free'ed
565 * and removed from the page cache. This routine will adjust the subpool
566 * usage count, and the global reserve count if needed. By incrementing
567 * these counts, the reserve map entry which could not be deleted will
568 * appear as a "reserved" entry instead of simply dangling with incorrect
571 void hugetlb_fix_reserve_counts(struct inode
*inode
)
573 struct hugepage_subpool
*spool
= subpool_inode(inode
);
576 rsv_adjust
= hugepage_subpool_get_pages(spool
, 1);
578 struct hstate
*h
= hstate_inode(inode
);
580 hugetlb_acct_memory(h
, 1);
585 * Count and return the number of huge pages in the reserve map
586 * that intersect with the range [f, t).
588 static long region_count(struct resv_map
*resv
, long f
, long t
)
590 struct list_head
*head
= &resv
->regions
;
591 struct file_region
*rg
;
594 spin_lock(&resv
->lock
);
595 /* Locate each segment we overlap with, and count that overlap. */
596 list_for_each_entry(rg
, head
, link
) {
605 seg_from
= max(rg
->from
, f
);
606 seg_to
= min(rg
->to
, t
);
608 chg
+= seg_to
- seg_from
;
610 spin_unlock(&resv
->lock
);
616 * Convert the address within this vma to the page offset within
617 * the mapping, in pagecache page units; huge pages here.
619 static pgoff_t
vma_hugecache_offset(struct hstate
*h
,
620 struct vm_area_struct
*vma
, unsigned long address
)
622 return ((address
- vma
->vm_start
) >> huge_page_shift(h
)) +
623 (vma
->vm_pgoff
>> huge_page_order(h
));
626 pgoff_t
linear_hugepage_index(struct vm_area_struct
*vma
,
627 unsigned long address
)
629 return vma_hugecache_offset(hstate_vma(vma
), vma
, address
);
631 EXPORT_SYMBOL_GPL(linear_hugepage_index
);
634 * Return the size of the pages allocated when backing a VMA. In the majority
635 * cases this will be same size as used by the page table entries.
637 unsigned long vma_kernel_pagesize(struct vm_area_struct
*vma
)
639 struct hstate
*hstate
;
641 if (!is_vm_hugetlb_page(vma
))
644 hstate
= hstate_vma(vma
);
646 return 1UL << huge_page_shift(hstate
);
648 EXPORT_SYMBOL_GPL(vma_kernel_pagesize
);
651 * Return the page size being used by the MMU to back a VMA. In the majority
652 * of cases, the page size used by the kernel matches the MMU size. On
653 * architectures where it differs, an architecture-specific version of this
654 * function is required.
656 #ifndef vma_mmu_pagesize
657 unsigned long vma_mmu_pagesize(struct vm_area_struct
*vma
)
659 return vma_kernel_pagesize(vma
);
664 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
665 * bits of the reservation map pointer, which are always clear due to
668 #define HPAGE_RESV_OWNER (1UL << 0)
669 #define HPAGE_RESV_UNMAPPED (1UL << 1)
670 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
673 * These helpers are used to track how many pages are reserved for
674 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
675 * is guaranteed to have their future faults succeed.
677 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
678 * the reserve counters are updated with the hugetlb_lock held. It is safe
679 * to reset the VMA at fork() time as it is not in use yet and there is no
680 * chance of the global counters getting corrupted as a result of the values.
682 * The private mapping reservation is represented in a subtly different
683 * manner to a shared mapping. A shared mapping has a region map associated
684 * with the underlying file, this region map represents the backing file
685 * pages which have ever had a reservation assigned which this persists even
686 * after the page is instantiated. A private mapping has a region map
687 * associated with the original mmap which is attached to all VMAs which
688 * reference it, this region map represents those offsets which have consumed
689 * reservation ie. where pages have been instantiated.
691 static unsigned long get_vma_private_data(struct vm_area_struct
*vma
)
693 return (unsigned long)vma
->vm_private_data
;
696 static void set_vma_private_data(struct vm_area_struct
*vma
,
699 vma
->vm_private_data
= (void *)value
;
702 struct resv_map
*resv_map_alloc(void)
704 struct resv_map
*resv_map
= kmalloc(sizeof(*resv_map
), GFP_KERNEL
);
705 struct file_region
*rg
= kmalloc(sizeof(*rg
), GFP_KERNEL
);
707 if (!resv_map
|| !rg
) {
713 kref_init(&resv_map
->refs
);
714 spin_lock_init(&resv_map
->lock
);
715 INIT_LIST_HEAD(&resv_map
->regions
);
717 resv_map
->adds_in_progress
= 0;
719 INIT_LIST_HEAD(&resv_map
->region_cache
);
720 list_add(&rg
->link
, &resv_map
->region_cache
);
721 resv_map
->region_cache_count
= 1;
726 void resv_map_release(struct kref
*ref
)
728 struct resv_map
*resv_map
= container_of(ref
, struct resv_map
, refs
);
729 struct list_head
*head
= &resv_map
->region_cache
;
730 struct file_region
*rg
, *trg
;
732 /* Clear out any active regions before we release the map. */
733 region_del(resv_map
, 0, LONG_MAX
);
735 /* ... and any entries left in the cache */
736 list_for_each_entry_safe(rg
, trg
, head
, link
) {
741 VM_BUG_ON(resv_map
->adds_in_progress
);
746 static inline struct resv_map
*inode_resv_map(struct inode
*inode
)
748 return inode
->i_mapping
->private_data
;
751 static struct resv_map
*vma_resv_map(struct vm_area_struct
*vma
)
753 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
754 if (vma
->vm_flags
& VM_MAYSHARE
) {
755 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
756 struct inode
*inode
= mapping
->host
;
758 return inode_resv_map(inode
);
761 return (struct resv_map
*)(get_vma_private_data(vma
) &
766 static void set_vma_resv_map(struct vm_area_struct
*vma
, struct resv_map
*map
)
768 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
769 VM_BUG_ON_VMA(vma
->vm_flags
& VM_MAYSHARE
, vma
);
771 set_vma_private_data(vma
, (get_vma_private_data(vma
) &
772 HPAGE_RESV_MASK
) | (unsigned long)map
);
775 static void set_vma_resv_flags(struct vm_area_struct
*vma
, unsigned long flags
)
777 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
778 VM_BUG_ON_VMA(vma
->vm_flags
& VM_MAYSHARE
, vma
);
780 set_vma_private_data(vma
, get_vma_private_data(vma
) | flags
);
783 static int is_vma_resv_set(struct vm_area_struct
*vma
, unsigned long flag
)
785 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
787 return (get_vma_private_data(vma
) & flag
) != 0;
790 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
791 void reset_vma_resv_huge_pages(struct vm_area_struct
*vma
)
793 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
794 if (!(vma
->vm_flags
& VM_MAYSHARE
))
795 vma
->vm_private_data
= (void *)0;
798 /* Returns true if the VMA has associated reserve pages */
799 static bool vma_has_reserves(struct vm_area_struct
*vma
, long chg
)
801 if (vma
->vm_flags
& VM_NORESERVE
) {
803 * This address is already reserved by other process(chg == 0),
804 * so, we should decrement reserved count. Without decrementing,
805 * reserve count remains after releasing inode, because this
806 * allocated page will go into page cache and is regarded as
807 * coming from reserved pool in releasing step. Currently, we
808 * don't have any other solution to deal with this situation
809 * properly, so add work-around here.
811 if (vma
->vm_flags
& VM_MAYSHARE
&& chg
== 0)
817 /* Shared mappings always use reserves */
818 if (vma
->vm_flags
& VM_MAYSHARE
) {
820 * We know VM_NORESERVE is not set. Therefore, there SHOULD
821 * be a region map for all pages. The only situation where
822 * there is no region map is if a hole was punched via
823 * fallocate. In this case, there really are no reverves to
824 * use. This situation is indicated if chg != 0.
833 * Only the process that called mmap() has reserves for
836 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
838 * Like the shared case above, a hole punch or truncate
839 * could have been performed on the private mapping.
840 * Examine the value of chg to determine if reserves
841 * actually exist or were previously consumed.
842 * Very Subtle - The value of chg comes from a previous
843 * call to vma_needs_reserves(). The reserve map for
844 * private mappings has different (opposite) semantics
845 * than that of shared mappings. vma_needs_reserves()
846 * has already taken this difference in semantics into
847 * account. Therefore, the meaning of chg is the same
848 * as in the shared case above. Code could easily be
849 * combined, but keeping it separate draws attention to
850 * subtle differences.
861 static void enqueue_huge_page(struct hstate
*h
, struct page
*page
)
863 int nid
= page_to_nid(page
);
864 list_move(&page
->lru
, &h
->hugepage_freelists
[nid
]);
865 h
->free_huge_pages
++;
866 h
->free_huge_pages_node
[nid
]++;
869 static struct page
*dequeue_huge_page_node_exact(struct hstate
*h
, int nid
)
873 list_for_each_entry(page
, &h
->hugepage_freelists
[nid
], lru
)
874 if (!PageHWPoison(page
))
877 * if 'non-isolated free hugepage' not found on the list,
878 * the allocation fails.
880 if (&h
->hugepage_freelists
[nid
] == &page
->lru
)
882 list_move(&page
->lru
, &h
->hugepage_activelist
);
883 set_page_refcounted(page
);
884 h
->free_huge_pages
--;
885 h
->free_huge_pages_node
[nid
]--;
889 static struct page
*dequeue_huge_page_nodemask(struct hstate
*h
, gfp_t gfp_mask
, int nid
,
892 unsigned int cpuset_mems_cookie
;
893 struct zonelist
*zonelist
;
898 zonelist
= node_zonelist(nid
, gfp_mask
);
901 cpuset_mems_cookie
= read_mems_allowed_begin();
902 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, gfp_zone(gfp_mask
), nmask
) {
905 if (!cpuset_zone_allowed(zone
, gfp_mask
))
908 * no need to ask again on the same node. Pool is node rather than
911 if (zone_to_nid(zone
) == node
)
913 node
= zone_to_nid(zone
);
915 page
= dequeue_huge_page_node_exact(h
, node
);
919 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie
)))
925 /* Movability of hugepages depends on migration support. */
926 static inline gfp_t
htlb_alloc_mask(struct hstate
*h
)
928 if (hugepage_migration_supported(h
))
929 return GFP_HIGHUSER_MOVABLE
;
934 static struct page
*dequeue_huge_page_vma(struct hstate
*h
,
935 struct vm_area_struct
*vma
,
936 unsigned long address
, int avoid_reserve
,
940 struct mempolicy
*mpol
;
942 nodemask_t
*nodemask
;
946 * A child process with MAP_PRIVATE mappings created by their parent
947 * have no page reserves. This check ensures that reservations are
948 * not "stolen". The child may still get SIGKILLed
950 if (!vma_has_reserves(vma
, chg
) &&
951 h
->free_huge_pages
- h
->resv_huge_pages
== 0)
954 /* If reserves cannot be used, ensure enough pages are in the pool */
955 if (avoid_reserve
&& h
->free_huge_pages
- h
->resv_huge_pages
== 0)
958 gfp_mask
= htlb_alloc_mask(h
);
959 nid
= huge_node(vma
, address
, gfp_mask
, &mpol
, &nodemask
);
960 page
= dequeue_huge_page_nodemask(h
, gfp_mask
, nid
, nodemask
);
961 if (page
&& !avoid_reserve
&& vma_has_reserves(vma
, chg
)) {
962 SetPagePrivate(page
);
963 h
->resv_huge_pages
--;
974 * common helper functions for hstate_next_node_to_{alloc|free}.
975 * We may have allocated or freed a huge page based on a different
976 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
977 * be outside of *nodes_allowed. Ensure that we use an allowed
978 * node for alloc or free.
980 static int next_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
982 nid
= next_node_in(nid
, *nodes_allowed
);
983 VM_BUG_ON(nid
>= MAX_NUMNODES
);
988 static int get_valid_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
990 if (!node_isset(nid
, *nodes_allowed
))
991 nid
= next_node_allowed(nid
, nodes_allowed
);
996 * returns the previously saved node ["this node"] from which to
997 * allocate a persistent huge page for the pool and advance the
998 * next node from which to allocate, handling wrap at end of node
1001 static int hstate_next_node_to_alloc(struct hstate
*h
,
1002 nodemask_t
*nodes_allowed
)
1006 VM_BUG_ON(!nodes_allowed
);
1008 nid
= get_valid_node_allowed(h
->next_nid_to_alloc
, nodes_allowed
);
1009 h
->next_nid_to_alloc
= next_node_allowed(nid
, nodes_allowed
);
1015 * helper for free_pool_huge_page() - return the previously saved
1016 * node ["this node"] from which to free a huge page. Advance the
1017 * next node id whether or not we find a free huge page to free so
1018 * that the next attempt to free addresses the next node.
1020 static int hstate_next_node_to_free(struct hstate
*h
, nodemask_t
*nodes_allowed
)
1024 VM_BUG_ON(!nodes_allowed
);
1026 nid
= get_valid_node_allowed(h
->next_nid_to_free
, nodes_allowed
);
1027 h
->next_nid_to_free
= next_node_allowed(nid
, nodes_allowed
);
1032 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1033 for (nr_nodes = nodes_weight(*mask); \
1035 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1038 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1039 for (nr_nodes = nodes_weight(*mask); \
1041 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1044 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1045 static void destroy_compound_gigantic_page(struct page
*page
,
1049 int nr_pages
= 1 << order
;
1050 struct page
*p
= page
+ 1;
1052 atomic_set(compound_mapcount_ptr(page
), 0);
1053 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
1054 clear_compound_head(p
);
1055 set_page_refcounted(p
);
1058 set_compound_order(page
, 0);
1059 __ClearPageHead(page
);
1062 static void free_gigantic_page(struct page
*page
, unsigned int order
)
1064 free_contig_range(page_to_pfn(page
), 1 << order
);
1067 static int __alloc_gigantic_page(unsigned long start_pfn
,
1068 unsigned long nr_pages
, gfp_t gfp_mask
)
1070 unsigned long end_pfn
= start_pfn
+ nr_pages
;
1071 return alloc_contig_range(start_pfn
, end_pfn
, MIGRATE_MOVABLE
,
1075 static bool pfn_range_valid_gigantic(struct zone
*z
,
1076 unsigned long start_pfn
, unsigned long nr_pages
)
1078 unsigned long i
, end_pfn
= start_pfn
+ nr_pages
;
1081 for (i
= start_pfn
; i
< end_pfn
; i
++) {
1085 page
= pfn_to_page(i
);
1087 if (page_zone(page
) != z
)
1090 if (PageReserved(page
))
1093 if (page_count(page
) > 0)
1103 static bool zone_spans_last_pfn(const struct zone
*zone
,
1104 unsigned long start_pfn
, unsigned long nr_pages
)
1106 unsigned long last_pfn
= start_pfn
+ nr_pages
- 1;
1107 return zone_spans_pfn(zone
, last_pfn
);
1110 static struct page
*alloc_gigantic_page(struct hstate
*h
, gfp_t gfp_mask
,
1111 int nid
, nodemask_t
*nodemask
)
1113 unsigned int order
= huge_page_order(h
);
1114 unsigned long nr_pages
= 1 << order
;
1115 unsigned long ret
, pfn
, flags
;
1116 struct zonelist
*zonelist
;
1120 zonelist
= node_zonelist(nid
, gfp_mask
);
1121 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, gfp_zone(gfp_mask
), nodemask
) {
1122 spin_lock_irqsave(&zone
->lock
, flags
);
1124 pfn
= ALIGN(zone
->zone_start_pfn
, nr_pages
);
1125 while (zone_spans_last_pfn(zone
, pfn
, nr_pages
)) {
1126 if (pfn_range_valid_gigantic(zone
, pfn
, nr_pages
)) {
1128 * We release the zone lock here because
1129 * alloc_contig_range() will also lock the zone
1130 * at some point. If there's an allocation
1131 * spinning on this lock, it may win the race
1132 * and cause alloc_contig_range() to fail...
1134 spin_unlock_irqrestore(&zone
->lock
, flags
);
1135 ret
= __alloc_gigantic_page(pfn
, nr_pages
, gfp_mask
);
1137 return pfn_to_page(pfn
);
1138 spin_lock_irqsave(&zone
->lock
, flags
);
1143 spin_unlock_irqrestore(&zone
->lock
, flags
);
1149 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
);
1150 static void prep_compound_gigantic_page(struct page
*page
, unsigned int order
);
1152 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1153 static inline bool gigantic_page_supported(void) { return false; }
1154 static struct page
*alloc_gigantic_page(struct hstate
*h
, gfp_t gfp_mask
,
1155 int nid
, nodemask_t
*nodemask
) { return NULL
; }
1156 static inline void free_gigantic_page(struct page
*page
, unsigned int order
) { }
1157 static inline void destroy_compound_gigantic_page(struct page
*page
,
1158 unsigned int order
) { }
1161 static void update_and_free_page(struct hstate
*h
, struct page
*page
)
1165 if (hstate_is_gigantic(h
) && !gigantic_page_supported())
1169 h
->nr_huge_pages_node
[page_to_nid(page
)]--;
1170 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
1171 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
|
1172 1 << PG_referenced
| 1 << PG_dirty
|
1173 1 << PG_active
| 1 << PG_private
|
1176 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page
), page
);
1177 set_compound_page_dtor(page
, NULL_COMPOUND_DTOR
);
1178 set_page_refcounted(page
);
1179 if (hstate_is_gigantic(h
)) {
1180 destroy_compound_gigantic_page(page
, huge_page_order(h
));
1181 free_gigantic_page(page
, huge_page_order(h
));
1183 __free_pages(page
, huge_page_order(h
));
1187 struct hstate
*size_to_hstate(unsigned long size
)
1191 for_each_hstate(h
) {
1192 if (huge_page_size(h
) == size
)
1199 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1200 * to hstate->hugepage_activelist.)
1202 * This function can be called for tail pages, but never returns true for them.
1204 bool page_huge_active(struct page
*page
)
1206 VM_BUG_ON_PAGE(!PageHuge(page
), page
);
1207 return PageHead(page
) && PagePrivate(&page
[1]);
1210 /* never called for tail page */
1211 static void set_page_huge_active(struct page
*page
)
1213 VM_BUG_ON_PAGE(!PageHeadHuge(page
), page
);
1214 SetPagePrivate(&page
[1]);
1217 static void clear_page_huge_active(struct page
*page
)
1219 VM_BUG_ON_PAGE(!PageHeadHuge(page
), page
);
1220 ClearPagePrivate(&page
[1]);
1224 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1227 static inline bool PageHugeTemporary(struct page
*page
)
1229 if (!PageHuge(page
))
1232 return (unsigned long)page
[2].mapping
== -1U;
1235 static inline void SetPageHugeTemporary(struct page
*page
)
1237 page
[2].mapping
= (void *)-1U;
1240 static inline void ClearPageHugeTemporary(struct page
*page
)
1242 page
[2].mapping
= NULL
;
1245 void free_huge_page(struct page
*page
)
1248 * Can't pass hstate in here because it is called from the
1249 * compound page destructor.
1251 struct hstate
*h
= page_hstate(page
);
1252 int nid
= page_to_nid(page
);
1253 struct hugepage_subpool
*spool
=
1254 (struct hugepage_subpool
*)page_private(page
);
1255 bool restore_reserve
;
1257 set_page_private(page
, 0);
1258 page
->mapping
= NULL
;
1259 VM_BUG_ON_PAGE(page_count(page
), page
);
1260 VM_BUG_ON_PAGE(page_mapcount(page
), page
);
1261 restore_reserve
= PagePrivate(page
);
1262 ClearPagePrivate(page
);
1265 * A return code of zero implies that the subpool will be under its
1266 * minimum size if the reservation is not restored after page is free.
1267 * Therefore, force restore_reserve operation.
1269 if (hugepage_subpool_put_pages(spool
, 1) == 0)
1270 restore_reserve
= true;
1272 spin_lock(&hugetlb_lock
);
1273 clear_page_huge_active(page
);
1274 hugetlb_cgroup_uncharge_page(hstate_index(h
),
1275 pages_per_huge_page(h
), page
);
1276 if (restore_reserve
)
1277 h
->resv_huge_pages
++;
1279 if (PageHugeTemporary(page
)) {
1280 list_del(&page
->lru
);
1281 ClearPageHugeTemporary(page
);
1282 update_and_free_page(h
, page
);
1283 } else if (h
->surplus_huge_pages_node
[nid
]) {
1284 /* remove the page from active list */
1285 list_del(&page
->lru
);
1286 update_and_free_page(h
, page
);
1287 h
->surplus_huge_pages
--;
1288 h
->surplus_huge_pages_node
[nid
]--;
1290 arch_clear_hugepage_flags(page
);
1291 enqueue_huge_page(h
, page
);
1293 spin_unlock(&hugetlb_lock
);
1296 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
)
1298 INIT_LIST_HEAD(&page
->lru
);
1299 set_compound_page_dtor(page
, HUGETLB_PAGE_DTOR
);
1300 spin_lock(&hugetlb_lock
);
1301 set_hugetlb_cgroup(page
, NULL
);
1303 h
->nr_huge_pages_node
[nid
]++;
1304 spin_unlock(&hugetlb_lock
);
1307 static void prep_compound_gigantic_page(struct page
*page
, unsigned int order
)
1310 int nr_pages
= 1 << order
;
1311 struct page
*p
= page
+ 1;
1313 /* we rely on prep_new_huge_page to set the destructor */
1314 set_compound_order(page
, order
);
1315 __ClearPageReserved(page
);
1316 __SetPageHead(page
);
1317 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
1319 * For gigantic hugepages allocated through bootmem at
1320 * boot, it's safer to be consistent with the not-gigantic
1321 * hugepages and clear the PG_reserved bit from all tail pages
1322 * too. Otherwse drivers using get_user_pages() to access tail
1323 * pages may get the reference counting wrong if they see
1324 * PG_reserved set on a tail page (despite the head page not
1325 * having PG_reserved set). Enforcing this consistency between
1326 * head and tail pages allows drivers to optimize away a check
1327 * on the head page when they need know if put_page() is needed
1328 * after get_user_pages().
1330 __ClearPageReserved(p
);
1331 set_page_count(p
, 0);
1332 set_compound_head(p
, page
);
1334 atomic_set(compound_mapcount_ptr(page
), -1);
1338 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1339 * transparent huge pages. See the PageTransHuge() documentation for more
1342 int PageHuge(struct page
*page
)
1344 if (!PageCompound(page
))
1347 page
= compound_head(page
);
1348 return page
[1].compound_dtor
== HUGETLB_PAGE_DTOR
;
1350 EXPORT_SYMBOL_GPL(PageHuge
);
1353 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1354 * normal or transparent huge pages.
1356 int PageHeadHuge(struct page
*page_head
)
1358 if (!PageHead(page_head
))
1361 return get_compound_page_dtor(page_head
) == free_huge_page
;
1364 pgoff_t
__basepage_index(struct page
*page
)
1366 struct page
*page_head
= compound_head(page
);
1367 pgoff_t index
= page_index(page_head
);
1368 unsigned long compound_idx
;
1370 if (!PageHuge(page_head
))
1371 return page_index(page
);
1373 if (compound_order(page_head
) >= MAX_ORDER
)
1374 compound_idx
= page_to_pfn(page
) - page_to_pfn(page_head
);
1376 compound_idx
= page
- page_head
;
1378 return (index
<< compound_order(page_head
)) + compound_idx
;
1381 static struct page
*alloc_buddy_huge_page(struct hstate
*h
,
1382 gfp_t gfp_mask
, int nid
, nodemask_t
*nmask
)
1384 int order
= huge_page_order(h
);
1387 gfp_mask
|= __GFP_COMP
|__GFP_RETRY_MAYFAIL
|__GFP_NOWARN
;
1388 if (nid
== NUMA_NO_NODE
)
1389 nid
= numa_mem_id();
1390 page
= __alloc_pages_nodemask(gfp_mask
, order
, nid
, nmask
);
1392 __count_vm_event(HTLB_BUDDY_PGALLOC
);
1394 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
1400 * Common helper to allocate a fresh hugetlb page. All specific allocators
1401 * should use this function to get new hugetlb pages
1403 static struct page
*alloc_fresh_huge_page(struct hstate
*h
,
1404 gfp_t gfp_mask
, int nid
, nodemask_t
*nmask
)
1408 if (hstate_is_gigantic(h
))
1409 page
= alloc_gigantic_page(h
, gfp_mask
, nid
, nmask
);
1411 page
= alloc_buddy_huge_page(h
, gfp_mask
,
1416 if (hstate_is_gigantic(h
))
1417 prep_compound_gigantic_page(page
, huge_page_order(h
));
1418 prep_new_huge_page(h
, page
, page_to_nid(page
));
1424 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1427 static int alloc_pool_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
)
1431 gfp_t gfp_mask
= htlb_alloc_mask(h
) | __GFP_THISNODE
;
1433 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
1434 page
= alloc_fresh_huge_page(h
, gfp_mask
, node
, nodes_allowed
);
1442 put_page(page
); /* free it into the hugepage allocator */
1448 * Free huge page from pool from next node to free.
1449 * Attempt to keep persistent huge pages more or less
1450 * balanced over allowed nodes.
1451 * Called with hugetlb_lock locked.
1453 static int free_pool_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
,
1459 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
1461 * If we're returning unused surplus pages, only examine
1462 * nodes with surplus pages.
1464 if ((!acct_surplus
|| h
->surplus_huge_pages_node
[node
]) &&
1465 !list_empty(&h
->hugepage_freelists
[node
])) {
1467 list_entry(h
->hugepage_freelists
[node
].next
,
1469 list_del(&page
->lru
);
1470 h
->free_huge_pages
--;
1471 h
->free_huge_pages_node
[node
]--;
1473 h
->surplus_huge_pages
--;
1474 h
->surplus_huge_pages_node
[node
]--;
1476 update_and_free_page(h
, page
);
1486 * Dissolve a given free hugepage into free buddy pages. This function does
1487 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1488 * number of free hugepages would be reduced below the number of reserved
1491 int dissolve_free_huge_page(struct page
*page
)
1495 spin_lock(&hugetlb_lock
);
1496 if (PageHuge(page
) && !page_count(page
)) {
1497 struct page
*head
= compound_head(page
);
1498 struct hstate
*h
= page_hstate(head
);
1499 int nid
= page_to_nid(head
);
1500 if (h
->free_huge_pages
- h
->resv_huge_pages
== 0) {
1505 * Move PageHWPoison flag from head page to the raw error page,
1506 * which makes any subpages rather than the error page reusable.
1508 if (PageHWPoison(head
) && page
!= head
) {
1509 SetPageHWPoison(page
);
1510 ClearPageHWPoison(head
);
1512 list_del(&head
->lru
);
1513 h
->free_huge_pages
--;
1514 h
->free_huge_pages_node
[nid
]--;
1515 h
->max_huge_pages
--;
1516 update_and_free_page(h
, head
);
1519 spin_unlock(&hugetlb_lock
);
1524 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1525 * make specified memory blocks removable from the system.
1526 * Note that this will dissolve a free gigantic hugepage completely, if any
1527 * part of it lies within the given range.
1528 * Also note that if dissolve_free_huge_page() returns with an error, all
1529 * free hugepages that were dissolved before that error are lost.
1531 int dissolve_free_huge_pages(unsigned long start_pfn
, unsigned long end_pfn
)
1537 if (!hugepages_supported())
1540 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= 1 << minimum_order
) {
1541 page
= pfn_to_page(pfn
);
1542 if (PageHuge(page
) && !page_count(page
)) {
1543 rc
= dissolve_free_huge_page(page
);
1553 * Allocates a fresh surplus page from the page allocator.
1555 static struct page
*alloc_surplus_huge_page(struct hstate
*h
, gfp_t gfp_mask
,
1556 int nid
, nodemask_t
*nmask
)
1558 struct page
*page
= NULL
;
1560 if (hstate_is_gigantic(h
))
1563 spin_lock(&hugetlb_lock
);
1564 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
)
1566 spin_unlock(&hugetlb_lock
);
1568 page
= alloc_fresh_huge_page(h
, gfp_mask
, nid
, nmask
);
1572 spin_lock(&hugetlb_lock
);
1574 * We could have raced with the pool size change.
1575 * Double check that and simply deallocate the new page
1576 * if we would end up overcommiting the surpluses. Abuse
1577 * temporary page to workaround the nasty free_huge_page
1580 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
) {
1581 SetPageHugeTemporary(page
);
1585 h
->surplus_huge_pages
++;
1586 h
->nr_huge_pages_node
[page_to_nid(page
)]++;
1590 spin_unlock(&hugetlb_lock
);
1595 static struct page
*alloc_migrate_huge_page(struct hstate
*h
, gfp_t gfp_mask
,
1596 int nid
, nodemask_t
*nmask
)
1600 if (hstate_is_gigantic(h
))
1603 page
= alloc_fresh_huge_page(h
, gfp_mask
, nid
, nmask
);
1608 * We do not account these pages as surplus because they are only
1609 * temporary and will be released properly on the last reference
1611 SetPageHugeTemporary(page
);
1617 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1620 struct page
*alloc_buddy_huge_page_with_mpol(struct hstate
*h
,
1621 struct vm_area_struct
*vma
, unsigned long addr
)
1624 struct mempolicy
*mpol
;
1625 gfp_t gfp_mask
= htlb_alloc_mask(h
);
1627 nodemask_t
*nodemask
;
1629 nid
= huge_node(vma
, addr
, gfp_mask
, &mpol
, &nodemask
);
1630 page
= alloc_surplus_huge_page(h
, gfp_mask
, nid
, nodemask
);
1631 mpol_cond_put(mpol
);
1636 /* page migration callback function */
1637 struct page
*alloc_huge_page_node(struct hstate
*h
, int nid
)
1639 gfp_t gfp_mask
= htlb_alloc_mask(h
);
1640 struct page
*page
= NULL
;
1642 if (nid
!= NUMA_NO_NODE
)
1643 gfp_mask
|= __GFP_THISNODE
;
1645 spin_lock(&hugetlb_lock
);
1646 if (h
->free_huge_pages
- h
->resv_huge_pages
> 0)
1647 page
= dequeue_huge_page_nodemask(h
, gfp_mask
, nid
, NULL
);
1648 spin_unlock(&hugetlb_lock
);
1651 page
= alloc_migrate_huge_page(h
, gfp_mask
, nid
, NULL
);
1656 /* page migration callback function */
1657 struct page
*alloc_huge_page_nodemask(struct hstate
*h
, int preferred_nid
,
1660 gfp_t gfp_mask
= htlb_alloc_mask(h
);
1662 spin_lock(&hugetlb_lock
);
1663 if (h
->free_huge_pages
- h
->resv_huge_pages
> 0) {
1666 page
= dequeue_huge_page_nodemask(h
, gfp_mask
, preferred_nid
, nmask
);
1668 spin_unlock(&hugetlb_lock
);
1672 spin_unlock(&hugetlb_lock
);
1674 return alloc_migrate_huge_page(h
, gfp_mask
, preferred_nid
, nmask
);
1677 /* mempolicy aware migration callback */
1678 struct page
*alloc_huge_page_vma(struct hstate
*h
, struct vm_area_struct
*vma
,
1679 unsigned long address
)
1681 struct mempolicy
*mpol
;
1682 nodemask_t
*nodemask
;
1687 gfp_mask
= htlb_alloc_mask(h
);
1688 node
= huge_node(vma
, address
, gfp_mask
, &mpol
, &nodemask
);
1689 page
= alloc_huge_page_nodemask(h
, node
, nodemask
);
1690 mpol_cond_put(mpol
);
1696 * Increase the hugetlb pool such that it can accommodate a reservation
1699 static int gather_surplus_pages(struct hstate
*h
, int delta
)
1701 struct list_head surplus_list
;
1702 struct page
*page
, *tmp
;
1704 int needed
, allocated
;
1705 bool alloc_ok
= true;
1707 needed
= (h
->resv_huge_pages
+ delta
) - h
->free_huge_pages
;
1709 h
->resv_huge_pages
+= delta
;
1714 INIT_LIST_HEAD(&surplus_list
);
1718 spin_unlock(&hugetlb_lock
);
1719 for (i
= 0; i
< needed
; i
++) {
1720 page
= alloc_surplus_huge_page(h
, htlb_alloc_mask(h
),
1721 NUMA_NO_NODE
, NULL
);
1726 list_add(&page
->lru
, &surplus_list
);
1732 * After retaking hugetlb_lock, we need to recalculate 'needed'
1733 * because either resv_huge_pages or free_huge_pages may have changed.
1735 spin_lock(&hugetlb_lock
);
1736 needed
= (h
->resv_huge_pages
+ delta
) -
1737 (h
->free_huge_pages
+ allocated
);
1742 * We were not able to allocate enough pages to
1743 * satisfy the entire reservation so we free what
1744 * we've allocated so far.
1749 * The surplus_list now contains _at_least_ the number of extra pages
1750 * needed to accommodate the reservation. Add the appropriate number
1751 * of pages to the hugetlb pool and free the extras back to the buddy
1752 * allocator. Commit the entire reservation here to prevent another
1753 * process from stealing the pages as they are added to the pool but
1754 * before they are reserved.
1756 needed
+= allocated
;
1757 h
->resv_huge_pages
+= delta
;
1760 /* Free the needed pages to the hugetlb pool */
1761 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
1765 * This page is now managed by the hugetlb allocator and has
1766 * no users -- drop the buddy allocator's reference.
1768 put_page_testzero(page
);
1769 VM_BUG_ON_PAGE(page_count(page
), page
);
1770 enqueue_huge_page(h
, page
);
1773 spin_unlock(&hugetlb_lock
);
1775 /* Free unnecessary surplus pages to the buddy allocator */
1776 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
)
1778 spin_lock(&hugetlb_lock
);
1784 * This routine has two main purposes:
1785 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1786 * in unused_resv_pages. This corresponds to the prior adjustments made
1787 * to the associated reservation map.
1788 * 2) Free any unused surplus pages that may have been allocated to satisfy
1789 * the reservation. As many as unused_resv_pages may be freed.
1791 * Called with hugetlb_lock held. However, the lock could be dropped (and
1792 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1793 * we must make sure nobody else can claim pages we are in the process of
1794 * freeing. Do this by ensuring resv_huge_page always is greater than the
1795 * number of huge pages we plan to free when dropping the lock.
1797 static void return_unused_surplus_pages(struct hstate
*h
,
1798 unsigned long unused_resv_pages
)
1800 unsigned long nr_pages
;
1802 /* Cannot return gigantic pages currently */
1803 if (hstate_is_gigantic(h
))
1807 * Part (or even all) of the reservation could have been backed
1808 * by pre-allocated pages. Only free surplus pages.
1810 nr_pages
= min(unused_resv_pages
, h
->surplus_huge_pages
);
1813 * We want to release as many surplus pages as possible, spread
1814 * evenly across all nodes with memory. Iterate across these nodes
1815 * until we can no longer free unreserved surplus pages. This occurs
1816 * when the nodes with surplus pages have no free pages.
1817 * free_pool_huge_page() will balance the the freed pages across the
1818 * on-line nodes with memory and will handle the hstate accounting.
1820 * Note that we decrement resv_huge_pages as we free the pages. If
1821 * we drop the lock, resv_huge_pages will still be sufficiently large
1822 * to cover subsequent pages we may free.
1824 while (nr_pages
--) {
1825 h
->resv_huge_pages
--;
1826 unused_resv_pages
--;
1827 if (!free_pool_huge_page(h
, &node_states
[N_MEMORY
], 1))
1829 cond_resched_lock(&hugetlb_lock
);
1833 /* Fully uncommit the reservation */
1834 h
->resv_huge_pages
-= unused_resv_pages
;
1839 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1840 * are used by the huge page allocation routines to manage reservations.
1842 * vma_needs_reservation is called to determine if the huge page at addr
1843 * within the vma has an associated reservation. If a reservation is
1844 * needed, the value 1 is returned. The caller is then responsible for
1845 * managing the global reservation and subpool usage counts. After
1846 * the huge page has been allocated, vma_commit_reservation is called
1847 * to add the page to the reservation map. If the page allocation fails,
1848 * the reservation must be ended instead of committed. vma_end_reservation
1849 * is called in such cases.
1851 * In the normal case, vma_commit_reservation returns the same value
1852 * as the preceding vma_needs_reservation call. The only time this
1853 * is not the case is if a reserve map was changed between calls. It
1854 * is the responsibility of the caller to notice the difference and
1855 * take appropriate action.
1857 * vma_add_reservation is used in error paths where a reservation must
1858 * be restored when a newly allocated huge page must be freed. It is
1859 * to be called after calling vma_needs_reservation to determine if a
1860 * reservation exists.
1862 enum vma_resv_mode
{
1868 static long __vma_reservation_common(struct hstate
*h
,
1869 struct vm_area_struct
*vma
, unsigned long addr
,
1870 enum vma_resv_mode mode
)
1872 struct resv_map
*resv
;
1876 resv
= vma_resv_map(vma
);
1880 idx
= vma_hugecache_offset(h
, vma
, addr
);
1882 case VMA_NEEDS_RESV
:
1883 ret
= region_chg(resv
, idx
, idx
+ 1);
1885 case VMA_COMMIT_RESV
:
1886 ret
= region_add(resv
, idx
, idx
+ 1);
1889 region_abort(resv
, idx
, idx
+ 1);
1893 if (vma
->vm_flags
& VM_MAYSHARE
)
1894 ret
= region_add(resv
, idx
, idx
+ 1);
1896 region_abort(resv
, idx
, idx
+ 1);
1897 ret
= region_del(resv
, idx
, idx
+ 1);
1904 if (vma
->vm_flags
& VM_MAYSHARE
)
1906 else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) && ret
>= 0) {
1908 * In most cases, reserves always exist for private mappings.
1909 * However, a file associated with mapping could have been
1910 * hole punched or truncated after reserves were consumed.
1911 * As subsequent fault on such a range will not use reserves.
1912 * Subtle - The reserve map for private mappings has the
1913 * opposite meaning than that of shared mappings. If NO
1914 * entry is in the reserve map, it means a reservation exists.
1915 * If an entry exists in the reserve map, it means the
1916 * reservation has already been consumed. As a result, the
1917 * return value of this routine is the opposite of the
1918 * value returned from reserve map manipulation routines above.
1926 return ret
< 0 ? ret
: 0;
1929 static long vma_needs_reservation(struct hstate
*h
,
1930 struct vm_area_struct
*vma
, unsigned long addr
)
1932 return __vma_reservation_common(h
, vma
, addr
, VMA_NEEDS_RESV
);
1935 static long vma_commit_reservation(struct hstate
*h
,
1936 struct vm_area_struct
*vma
, unsigned long addr
)
1938 return __vma_reservation_common(h
, vma
, addr
, VMA_COMMIT_RESV
);
1941 static void vma_end_reservation(struct hstate
*h
,
1942 struct vm_area_struct
*vma
, unsigned long addr
)
1944 (void)__vma_reservation_common(h
, vma
, addr
, VMA_END_RESV
);
1947 static long vma_add_reservation(struct hstate
*h
,
1948 struct vm_area_struct
*vma
, unsigned long addr
)
1950 return __vma_reservation_common(h
, vma
, addr
, VMA_ADD_RESV
);
1954 * This routine is called to restore a reservation on error paths. In the
1955 * specific error paths, a huge page was allocated (via alloc_huge_page)
1956 * and is about to be freed. If a reservation for the page existed,
1957 * alloc_huge_page would have consumed the reservation and set PagePrivate
1958 * in the newly allocated page. When the page is freed via free_huge_page,
1959 * the global reservation count will be incremented if PagePrivate is set.
1960 * However, free_huge_page can not adjust the reserve map. Adjust the
1961 * reserve map here to be consistent with global reserve count adjustments
1962 * to be made by free_huge_page.
1964 static void restore_reserve_on_error(struct hstate
*h
,
1965 struct vm_area_struct
*vma
, unsigned long address
,
1968 if (unlikely(PagePrivate(page
))) {
1969 long rc
= vma_needs_reservation(h
, vma
, address
);
1971 if (unlikely(rc
< 0)) {
1973 * Rare out of memory condition in reserve map
1974 * manipulation. Clear PagePrivate so that
1975 * global reserve count will not be incremented
1976 * by free_huge_page. This will make it appear
1977 * as though the reservation for this page was
1978 * consumed. This may prevent the task from
1979 * faulting in the page at a later time. This
1980 * is better than inconsistent global huge page
1981 * accounting of reserve counts.
1983 ClearPagePrivate(page
);
1985 rc
= vma_add_reservation(h
, vma
, address
);
1986 if (unlikely(rc
< 0))
1988 * See above comment about rare out of
1991 ClearPagePrivate(page
);
1993 vma_end_reservation(h
, vma
, address
);
1997 struct page
*alloc_huge_page(struct vm_area_struct
*vma
,
1998 unsigned long addr
, int avoid_reserve
)
2000 struct hugepage_subpool
*spool
= subpool_vma(vma
);
2001 struct hstate
*h
= hstate_vma(vma
);
2003 long map_chg
, map_commit
;
2006 struct hugetlb_cgroup
*h_cg
;
2008 idx
= hstate_index(h
);
2010 * Examine the region/reserve map to determine if the process
2011 * has a reservation for the page to be allocated. A return
2012 * code of zero indicates a reservation exists (no change).
2014 map_chg
= gbl_chg
= vma_needs_reservation(h
, vma
, addr
);
2016 return ERR_PTR(-ENOMEM
);
2019 * Processes that did not create the mapping will have no
2020 * reserves as indicated by the region/reserve map. Check
2021 * that the allocation will not exceed the subpool limit.
2022 * Allocations for MAP_NORESERVE mappings also need to be
2023 * checked against any subpool limit.
2025 if (map_chg
|| avoid_reserve
) {
2026 gbl_chg
= hugepage_subpool_get_pages(spool
, 1);
2028 vma_end_reservation(h
, vma
, addr
);
2029 return ERR_PTR(-ENOSPC
);
2033 * Even though there was no reservation in the region/reserve
2034 * map, there could be reservations associated with the
2035 * subpool that can be used. This would be indicated if the
2036 * return value of hugepage_subpool_get_pages() is zero.
2037 * However, if avoid_reserve is specified we still avoid even
2038 * the subpool reservations.
2044 ret
= hugetlb_cgroup_charge_cgroup(idx
, pages_per_huge_page(h
), &h_cg
);
2046 goto out_subpool_put
;
2048 spin_lock(&hugetlb_lock
);
2050 * glb_chg is passed to indicate whether or not a page must be taken
2051 * from the global free pool (global change). gbl_chg == 0 indicates
2052 * a reservation exists for the allocation.
2054 page
= dequeue_huge_page_vma(h
, vma
, addr
, avoid_reserve
, gbl_chg
);
2056 spin_unlock(&hugetlb_lock
);
2057 page
= alloc_buddy_huge_page_with_mpol(h
, vma
, addr
);
2059 goto out_uncharge_cgroup
;
2060 if (!avoid_reserve
&& vma_has_reserves(vma
, gbl_chg
)) {
2061 SetPagePrivate(page
);
2062 h
->resv_huge_pages
--;
2064 spin_lock(&hugetlb_lock
);
2065 list_move(&page
->lru
, &h
->hugepage_activelist
);
2068 hugetlb_cgroup_commit_charge(idx
, pages_per_huge_page(h
), h_cg
, page
);
2069 spin_unlock(&hugetlb_lock
);
2071 set_page_private(page
, (unsigned long)spool
);
2073 map_commit
= vma_commit_reservation(h
, vma
, addr
);
2074 if (unlikely(map_chg
> map_commit
)) {
2076 * The page was added to the reservation map between
2077 * vma_needs_reservation and vma_commit_reservation.
2078 * This indicates a race with hugetlb_reserve_pages.
2079 * Adjust for the subpool count incremented above AND
2080 * in hugetlb_reserve_pages for the same page. Also,
2081 * the reservation count added in hugetlb_reserve_pages
2082 * no longer applies.
2086 rsv_adjust
= hugepage_subpool_put_pages(spool
, 1);
2087 hugetlb_acct_memory(h
, -rsv_adjust
);
2091 out_uncharge_cgroup
:
2092 hugetlb_cgroup_uncharge_cgroup(idx
, pages_per_huge_page(h
), h_cg
);
2094 if (map_chg
|| avoid_reserve
)
2095 hugepage_subpool_put_pages(spool
, 1);
2096 vma_end_reservation(h
, vma
, addr
);
2097 return ERR_PTR(-ENOSPC
);
2100 int alloc_bootmem_huge_page(struct hstate
*h
)
2101 __attribute__ ((weak
, alias("__alloc_bootmem_huge_page")));
2102 int __alloc_bootmem_huge_page(struct hstate
*h
)
2104 struct huge_bootmem_page
*m
;
2107 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, &node_states
[N_MEMORY
]) {
2110 addr
= memblock_virt_alloc_try_nid_nopanic(
2111 huge_page_size(h
), huge_page_size(h
),
2112 0, BOOTMEM_ALLOC_ACCESSIBLE
, node
);
2115 * Use the beginning of the huge page to store the
2116 * huge_bootmem_page struct (until gather_bootmem
2117 * puts them into the mem_map).
2126 BUG_ON(!IS_ALIGNED(virt_to_phys(m
), huge_page_size(h
)));
2127 /* Put them into a private list first because mem_map is not up yet */
2128 list_add(&m
->list
, &huge_boot_pages
);
2133 static void __init
prep_compound_huge_page(struct page
*page
,
2136 if (unlikely(order
> (MAX_ORDER
- 1)))
2137 prep_compound_gigantic_page(page
, order
);
2139 prep_compound_page(page
, order
);
2142 /* Put bootmem huge pages into the standard lists after mem_map is up */
2143 static void __init
gather_bootmem_prealloc(void)
2145 struct huge_bootmem_page
*m
;
2147 list_for_each_entry(m
, &huge_boot_pages
, list
) {
2148 struct hstate
*h
= m
->hstate
;
2151 #ifdef CONFIG_HIGHMEM
2152 page
= pfn_to_page(m
->phys
>> PAGE_SHIFT
);
2153 memblock_free_late(__pa(m
),
2154 sizeof(struct huge_bootmem_page
));
2156 page
= virt_to_page(m
);
2158 WARN_ON(page_count(page
) != 1);
2159 prep_compound_huge_page(page
, h
->order
);
2160 WARN_ON(PageReserved(page
));
2161 prep_new_huge_page(h
, page
, page_to_nid(page
));
2162 put_page(page
); /* free it into the hugepage allocator */
2165 * If we had gigantic hugepages allocated at boot time, we need
2166 * to restore the 'stolen' pages to totalram_pages in order to
2167 * fix confusing memory reports from free(1) and another
2168 * side-effects, like CommitLimit going negative.
2170 if (hstate_is_gigantic(h
))
2171 adjust_managed_page_count(page
, 1 << h
->order
);
2175 static void __init
hugetlb_hstate_alloc_pages(struct hstate
*h
)
2179 for (i
= 0; i
< h
->max_huge_pages
; ++i
) {
2180 if (hstate_is_gigantic(h
)) {
2181 if (!alloc_bootmem_huge_page(h
))
2183 } else if (!alloc_pool_huge_page(h
,
2184 &node_states
[N_MEMORY
]))
2188 if (i
< h
->max_huge_pages
) {
2191 string_get_size(huge_page_size(h
), 1, STRING_UNITS_2
, buf
, 32);
2192 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2193 h
->max_huge_pages
, buf
, i
);
2194 h
->max_huge_pages
= i
;
2198 static void __init
hugetlb_init_hstates(void)
2202 for_each_hstate(h
) {
2203 if (minimum_order
> huge_page_order(h
))
2204 minimum_order
= huge_page_order(h
);
2206 /* oversize hugepages were init'ed in early boot */
2207 if (!hstate_is_gigantic(h
))
2208 hugetlb_hstate_alloc_pages(h
);
2210 VM_BUG_ON(minimum_order
== UINT_MAX
);
2213 static void __init
report_hugepages(void)
2217 for_each_hstate(h
) {
2220 string_get_size(huge_page_size(h
), 1, STRING_UNITS_2
, buf
, 32);
2221 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2222 buf
, h
->free_huge_pages
);
2226 #ifdef CONFIG_HIGHMEM
2227 static void try_to_free_low(struct hstate
*h
, unsigned long count
,
2228 nodemask_t
*nodes_allowed
)
2232 if (hstate_is_gigantic(h
))
2235 for_each_node_mask(i
, *nodes_allowed
) {
2236 struct page
*page
, *next
;
2237 struct list_head
*freel
= &h
->hugepage_freelists
[i
];
2238 list_for_each_entry_safe(page
, next
, freel
, lru
) {
2239 if (count
>= h
->nr_huge_pages
)
2241 if (PageHighMem(page
))
2243 list_del(&page
->lru
);
2244 update_and_free_page(h
, page
);
2245 h
->free_huge_pages
--;
2246 h
->free_huge_pages_node
[page_to_nid(page
)]--;
2251 static inline void try_to_free_low(struct hstate
*h
, unsigned long count
,
2252 nodemask_t
*nodes_allowed
)
2258 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2259 * balanced by operating on them in a round-robin fashion.
2260 * Returns 1 if an adjustment was made.
2262 static int adjust_pool_surplus(struct hstate
*h
, nodemask_t
*nodes_allowed
,
2267 VM_BUG_ON(delta
!= -1 && delta
!= 1);
2270 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
2271 if (h
->surplus_huge_pages_node
[node
])
2275 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
2276 if (h
->surplus_huge_pages_node
[node
] <
2277 h
->nr_huge_pages_node
[node
])
2284 h
->surplus_huge_pages
+= delta
;
2285 h
->surplus_huge_pages_node
[node
] += delta
;
2289 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2290 static unsigned long set_max_huge_pages(struct hstate
*h
, unsigned long count
,
2291 nodemask_t
*nodes_allowed
)
2293 unsigned long min_count
, ret
;
2295 if (hstate_is_gigantic(h
) && !gigantic_page_supported())
2296 return h
->max_huge_pages
;
2299 * Increase the pool size
2300 * First take pages out of surplus state. Then make up the
2301 * remaining difference by allocating fresh huge pages.
2303 * We might race with alloc_surplus_huge_page() here and be unable
2304 * to convert a surplus huge page to a normal huge page. That is
2305 * not critical, though, it just means the overall size of the
2306 * pool might be one hugepage larger than it needs to be, but
2307 * within all the constraints specified by the sysctls.
2309 spin_lock(&hugetlb_lock
);
2310 while (h
->surplus_huge_pages
&& count
> persistent_huge_pages(h
)) {
2311 if (!adjust_pool_surplus(h
, nodes_allowed
, -1))
2315 while (count
> persistent_huge_pages(h
)) {
2317 * If this allocation races such that we no longer need the
2318 * page, free_huge_page will handle it by freeing the page
2319 * and reducing the surplus.
2321 spin_unlock(&hugetlb_lock
);
2323 /* yield cpu to avoid soft lockup */
2326 ret
= alloc_pool_huge_page(h
, nodes_allowed
);
2327 spin_lock(&hugetlb_lock
);
2331 /* Bail for signals. Probably ctrl-c from user */
2332 if (signal_pending(current
))
2337 * Decrease the pool size
2338 * First return free pages to the buddy allocator (being careful
2339 * to keep enough around to satisfy reservations). Then place
2340 * pages into surplus state as needed so the pool will shrink
2341 * to the desired size as pages become free.
2343 * By placing pages into the surplus state independent of the
2344 * overcommit value, we are allowing the surplus pool size to
2345 * exceed overcommit. There are few sane options here. Since
2346 * alloc_surplus_huge_page() is checking the global counter,
2347 * though, we'll note that we're not allowed to exceed surplus
2348 * and won't grow the pool anywhere else. Not until one of the
2349 * sysctls are changed, or the surplus pages go out of use.
2351 min_count
= h
->resv_huge_pages
+ h
->nr_huge_pages
- h
->free_huge_pages
;
2352 min_count
= max(count
, min_count
);
2353 try_to_free_low(h
, min_count
, nodes_allowed
);
2354 while (min_count
< persistent_huge_pages(h
)) {
2355 if (!free_pool_huge_page(h
, nodes_allowed
, 0))
2357 cond_resched_lock(&hugetlb_lock
);
2359 while (count
< persistent_huge_pages(h
)) {
2360 if (!adjust_pool_surplus(h
, nodes_allowed
, 1))
2364 ret
= persistent_huge_pages(h
);
2365 spin_unlock(&hugetlb_lock
);
2369 #define HSTATE_ATTR_RO(_name) \
2370 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2372 #define HSTATE_ATTR(_name) \
2373 static struct kobj_attribute _name##_attr = \
2374 __ATTR(_name, 0644, _name##_show, _name##_store)
2376 static struct kobject
*hugepages_kobj
;
2377 static struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
2379 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
);
2381 static struct hstate
*kobj_to_hstate(struct kobject
*kobj
, int *nidp
)
2385 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
2386 if (hstate_kobjs
[i
] == kobj
) {
2388 *nidp
= NUMA_NO_NODE
;
2392 return kobj_to_node_hstate(kobj
, nidp
);
2395 static ssize_t
nr_hugepages_show_common(struct kobject
*kobj
,
2396 struct kobj_attribute
*attr
, char *buf
)
2399 unsigned long nr_huge_pages
;
2402 h
= kobj_to_hstate(kobj
, &nid
);
2403 if (nid
== NUMA_NO_NODE
)
2404 nr_huge_pages
= h
->nr_huge_pages
;
2406 nr_huge_pages
= h
->nr_huge_pages_node
[nid
];
2408 return sprintf(buf
, "%lu\n", nr_huge_pages
);
2411 static ssize_t
__nr_hugepages_store_common(bool obey_mempolicy
,
2412 struct hstate
*h
, int nid
,
2413 unsigned long count
, size_t len
)
2416 NODEMASK_ALLOC(nodemask_t
, nodes_allowed
, GFP_KERNEL
| __GFP_NORETRY
);
2418 if (hstate_is_gigantic(h
) && !gigantic_page_supported()) {
2423 if (nid
== NUMA_NO_NODE
) {
2425 * global hstate attribute
2427 if (!(obey_mempolicy
&&
2428 init_nodemask_of_mempolicy(nodes_allowed
))) {
2429 NODEMASK_FREE(nodes_allowed
);
2430 nodes_allowed
= &node_states
[N_MEMORY
];
2432 } else if (nodes_allowed
) {
2434 * per node hstate attribute: adjust count to global,
2435 * but restrict alloc/free to the specified node.
2437 count
+= h
->nr_huge_pages
- h
->nr_huge_pages_node
[nid
];
2438 init_nodemask_of_node(nodes_allowed
, nid
);
2440 nodes_allowed
= &node_states
[N_MEMORY
];
2442 h
->max_huge_pages
= set_max_huge_pages(h
, count
, nodes_allowed
);
2444 if (nodes_allowed
!= &node_states
[N_MEMORY
])
2445 NODEMASK_FREE(nodes_allowed
);
2449 NODEMASK_FREE(nodes_allowed
);
2453 static ssize_t
nr_hugepages_store_common(bool obey_mempolicy
,
2454 struct kobject
*kobj
, const char *buf
,
2458 unsigned long count
;
2462 err
= kstrtoul(buf
, 10, &count
);
2466 h
= kobj_to_hstate(kobj
, &nid
);
2467 return __nr_hugepages_store_common(obey_mempolicy
, h
, nid
, count
, len
);
2470 static ssize_t
nr_hugepages_show(struct kobject
*kobj
,
2471 struct kobj_attribute
*attr
, char *buf
)
2473 return nr_hugepages_show_common(kobj
, attr
, buf
);
2476 static ssize_t
nr_hugepages_store(struct kobject
*kobj
,
2477 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
2479 return nr_hugepages_store_common(false, kobj
, buf
, len
);
2481 HSTATE_ATTR(nr_hugepages
);
2486 * hstate attribute for optionally mempolicy-based constraint on persistent
2487 * huge page alloc/free.
2489 static ssize_t
nr_hugepages_mempolicy_show(struct kobject
*kobj
,
2490 struct kobj_attribute
*attr
, char *buf
)
2492 return nr_hugepages_show_common(kobj
, attr
, buf
);
2495 static ssize_t
nr_hugepages_mempolicy_store(struct kobject
*kobj
,
2496 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
2498 return nr_hugepages_store_common(true, kobj
, buf
, len
);
2500 HSTATE_ATTR(nr_hugepages_mempolicy
);
2504 static ssize_t
nr_overcommit_hugepages_show(struct kobject
*kobj
,
2505 struct kobj_attribute
*attr
, char *buf
)
2507 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
2508 return sprintf(buf
, "%lu\n", h
->nr_overcommit_huge_pages
);
2511 static ssize_t
nr_overcommit_hugepages_store(struct kobject
*kobj
,
2512 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
2515 unsigned long input
;
2516 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
2518 if (hstate_is_gigantic(h
))
2521 err
= kstrtoul(buf
, 10, &input
);
2525 spin_lock(&hugetlb_lock
);
2526 h
->nr_overcommit_huge_pages
= input
;
2527 spin_unlock(&hugetlb_lock
);
2531 HSTATE_ATTR(nr_overcommit_hugepages
);
2533 static ssize_t
free_hugepages_show(struct kobject
*kobj
,
2534 struct kobj_attribute
*attr
, char *buf
)
2537 unsigned long free_huge_pages
;
2540 h
= kobj_to_hstate(kobj
, &nid
);
2541 if (nid
== NUMA_NO_NODE
)
2542 free_huge_pages
= h
->free_huge_pages
;
2544 free_huge_pages
= h
->free_huge_pages_node
[nid
];
2546 return sprintf(buf
, "%lu\n", free_huge_pages
);
2548 HSTATE_ATTR_RO(free_hugepages
);
2550 static ssize_t
resv_hugepages_show(struct kobject
*kobj
,
2551 struct kobj_attribute
*attr
, char *buf
)
2553 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
2554 return sprintf(buf
, "%lu\n", h
->resv_huge_pages
);
2556 HSTATE_ATTR_RO(resv_hugepages
);
2558 static ssize_t
surplus_hugepages_show(struct kobject
*kobj
,
2559 struct kobj_attribute
*attr
, char *buf
)
2562 unsigned long surplus_huge_pages
;
2565 h
= kobj_to_hstate(kobj
, &nid
);
2566 if (nid
== NUMA_NO_NODE
)
2567 surplus_huge_pages
= h
->surplus_huge_pages
;
2569 surplus_huge_pages
= h
->surplus_huge_pages_node
[nid
];
2571 return sprintf(buf
, "%lu\n", surplus_huge_pages
);
2573 HSTATE_ATTR_RO(surplus_hugepages
);
2575 static struct attribute
*hstate_attrs
[] = {
2576 &nr_hugepages_attr
.attr
,
2577 &nr_overcommit_hugepages_attr
.attr
,
2578 &free_hugepages_attr
.attr
,
2579 &resv_hugepages_attr
.attr
,
2580 &surplus_hugepages_attr
.attr
,
2582 &nr_hugepages_mempolicy_attr
.attr
,
2587 static const struct attribute_group hstate_attr_group
= {
2588 .attrs
= hstate_attrs
,
2591 static int hugetlb_sysfs_add_hstate(struct hstate
*h
, struct kobject
*parent
,
2592 struct kobject
**hstate_kobjs
,
2593 const struct attribute_group
*hstate_attr_group
)
2596 int hi
= hstate_index(h
);
2598 hstate_kobjs
[hi
] = kobject_create_and_add(h
->name
, parent
);
2599 if (!hstate_kobjs
[hi
])
2602 retval
= sysfs_create_group(hstate_kobjs
[hi
], hstate_attr_group
);
2604 kobject_put(hstate_kobjs
[hi
]);
2609 static void __init
hugetlb_sysfs_init(void)
2614 hugepages_kobj
= kobject_create_and_add("hugepages", mm_kobj
);
2615 if (!hugepages_kobj
)
2618 for_each_hstate(h
) {
2619 err
= hugetlb_sysfs_add_hstate(h
, hugepages_kobj
,
2620 hstate_kobjs
, &hstate_attr_group
);
2622 pr_err("Hugetlb: Unable to add hstate %s", h
->name
);
2629 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2630 * with node devices in node_devices[] using a parallel array. The array
2631 * index of a node device or _hstate == node id.
2632 * This is here to avoid any static dependency of the node device driver, in
2633 * the base kernel, on the hugetlb module.
2635 struct node_hstate
{
2636 struct kobject
*hugepages_kobj
;
2637 struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
2639 static struct node_hstate node_hstates
[MAX_NUMNODES
];
2642 * A subset of global hstate attributes for node devices
2644 static struct attribute
*per_node_hstate_attrs
[] = {
2645 &nr_hugepages_attr
.attr
,
2646 &free_hugepages_attr
.attr
,
2647 &surplus_hugepages_attr
.attr
,
2651 static const struct attribute_group per_node_hstate_attr_group
= {
2652 .attrs
= per_node_hstate_attrs
,
2656 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2657 * Returns node id via non-NULL nidp.
2659 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
2663 for (nid
= 0; nid
< nr_node_ids
; nid
++) {
2664 struct node_hstate
*nhs
= &node_hstates
[nid
];
2666 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
2667 if (nhs
->hstate_kobjs
[i
] == kobj
) {
2679 * Unregister hstate attributes from a single node device.
2680 * No-op if no hstate attributes attached.
2682 static void hugetlb_unregister_node(struct node
*node
)
2685 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
2687 if (!nhs
->hugepages_kobj
)
2688 return; /* no hstate attributes */
2690 for_each_hstate(h
) {
2691 int idx
= hstate_index(h
);
2692 if (nhs
->hstate_kobjs
[idx
]) {
2693 kobject_put(nhs
->hstate_kobjs
[idx
]);
2694 nhs
->hstate_kobjs
[idx
] = NULL
;
2698 kobject_put(nhs
->hugepages_kobj
);
2699 nhs
->hugepages_kobj
= NULL
;
2704 * Register hstate attributes for a single node device.
2705 * No-op if attributes already registered.
2707 static void hugetlb_register_node(struct node
*node
)
2710 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
2713 if (nhs
->hugepages_kobj
)
2714 return; /* already allocated */
2716 nhs
->hugepages_kobj
= kobject_create_and_add("hugepages",
2718 if (!nhs
->hugepages_kobj
)
2721 for_each_hstate(h
) {
2722 err
= hugetlb_sysfs_add_hstate(h
, nhs
->hugepages_kobj
,
2724 &per_node_hstate_attr_group
);
2726 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2727 h
->name
, node
->dev
.id
);
2728 hugetlb_unregister_node(node
);
2735 * hugetlb init time: register hstate attributes for all registered node
2736 * devices of nodes that have memory. All on-line nodes should have
2737 * registered their associated device by this time.
2739 static void __init
hugetlb_register_all_nodes(void)
2743 for_each_node_state(nid
, N_MEMORY
) {
2744 struct node
*node
= node_devices
[nid
];
2745 if (node
->dev
.id
== nid
)
2746 hugetlb_register_node(node
);
2750 * Let the node device driver know we're here so it can
2751 * [un]register hstate attributes on node hotplug.
2753 register_hugetlbfs_with_node(hugetlb_register_node
,
2754 hugetlb_unregister_node
);
2756 #else /* !CONFIG_NUMA */
2758 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
2766 static void hugetlb_register_all_nodes(void) { }
2770 static int __init
hugetlb_init(void)
2774 if (!hugepages_supported())
2777 if (!size_to_hstate(default_hstate_size
)) {
2778 if (default_hstate_size
!= 0) {
2779 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2780 default_hstate_size
, HPAGE_SIZE
);
2783 default_hstate_size
= HPAGE_SIZE
;
2784 if (!size_to_hstate(default_hstate_size
))
2785 hugetlb_add_hstate(HUGETLB_PAGE_ORDER
);
2787 default_hstate_idx
= hstate_index(size_to_hstate(default_hstate_size
));
2788 if (default_hstate_max_huge_pages
) {
2789 if (!default_hstate
.max_huge_pages
)
2790 default_hstate
.max_huge_pages
= default_hstate_max_huge_pages
;
2793 hugetlb_init_hstates();
2794 gather_bootmem_prealloc();
2797 hugetlb_sysfs_init();
2798 hugetlb_register_all_nodes();
2799 hugetlb_cgroup_file_init();
2802 num_fault_mutexes
= roundup_pow_of_two(8 * num_possible_cpus());
2804 num_fault_mutexes
= 1;
2806 hugetlb_fault_mutex_table
=
2807 kmalloc(sizeof(struct mutex
) * num_fault_mutexes
, GFP_KERNEL
);
2808 BUG_ON(!hugetlb_fault_mutex_table
);
2810 for (i
= 0; i
< num_fault_mutexes
; i
++)
2811 mutex_init(&hugetlb_fault_mutex_table
[i
]);
2814 subsys_initcall(hugetlb_init
);
2816 /* Should be called on processing a hugepagesz=... option */
2817 void __init
hugetlb_bad_size(void)
2819 parsed_valid_hugepagesz
= false;
2822 void __init
hugetlb_add_hstate(unsigned int order
)
2827 if (size_to_hstate(PAGE_SIZE
<< order
)) {
2828 pr_warn("hugepagesz= specified twice, ignoring\n");
2831 BUG_ON(hugetlb_max_hstate
>= HUGE_MAX_HSTATE
);
2833 h
= &hstates
[hugetlb_max_hstate
++];
2835 h
->mask
= ~((1ULL << (order
+ PAGE_SHIFT
)) - 1);
2836 h
->nr_huge_pages
= 0;
2837 h
->free_huge_pages
= 0;
2838 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
2839 INIT_LIST_HEAD(&h
->hugepage_freelists
[i
]);
2840 INIT_LIST_HEAD(&h
->hugepage_activelist
);
2841 h
->next_nid_to_alloc
= first_memory_node
;
2842 h
->next_nid_to_free
= first_memory_node
;
2843 snprintf(h
->name
, HSTATE_NAME_LEN
, "hugepages-%lukB",
2844 huge_page_size(h
)/1024);
2849 static int __init
hugetlb_nrpages_setup(char *s
)
2852 static unsigned long *last_mhp
;
2854 if (!parsed_valid_hugepagesz
) {
2855 pr_warn("hugepages = %s preceded by "
2856 "an unsupported hugepagesz, ignoring\n", s
);
2857 parsed_valid_hugepagesz
= true;
2861 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2862 * so this hugepages= parameter goes to the "default hstate".
2864 else if (!hugetlb_max_hstate
)
2865 mhp
= &default_hstate_max_huge_pages
;
2867 mhp
= &parsed_hstate
->max_huge_pages
;
2869 if (mhp
== last_mhp
) {
2870 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2874 if (sscanf(s
, "%lu", mhp
) <= 0)
2878 * Global state is always initialized later in hugetlb_init.
2879 * But we need to allocate >= MAX_ORDER hstates here early to still
2880 * use the bootmem allocator.
2882 if (hugetlb_max_hstate
&& parsed_hstate
->order
>= MAX_ORDER
)
2883 hugetlb_hstate_alloc_pages(parsed_hstate
);
2889 __setup("hugepages=", hugetlb_nrpages_setup
);
2891 static int __init
hugetlb_default_setup(char *s
)
2893 default_hstate_size
= memparse(s
, &s
);
2896 __setup("default_hugepagesz=", hugetlb_default_setup
);
2898 static unsigned int cpuset_mems_nr(unsigned int *array
)
2901 unsigned int nr
= 0;
2903 for_each_node_mask(node
, cpuset_current_mems_allowed
)
2909 #ifdef CONFIG_SYSCTL
2910 static int hugetlb_sysctl_handler_common(bool obey_mempolicy
,
2911 struct ctl_table
*table
, int write
,
2912 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2914 struct hstate
*h
= &default_hstate
;
2915 unsigned long tmp
= h
->max_huge_pages
;
2918 if (!hugepages_supported())
2922 table
->maxlen
= sizeof(unsigned long);
2923 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
2928 ret
= __nr_hugepages_store_common(obey_mempolicy
, h
,
2929 NUMA_NO_NODE
, tmp
, *length
);
2934 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
2935 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2938 return hugetlb_sysctl_handler_common(false, table
, write
,
2939 buffer
, length
, ppos
);
2943 int hugetlb_mempolicy_sysctl_handler(struct ctl_table
*table
, int write
,
2944 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2946 return hugetlb_sysctl_handler_common(true, table
, write
,
2947 buffer
, length
, ppos
);
2949 #endif /* CONFIG_NUMA */
2951 int hugetlb_overcommit_handler(struct ctl_table
*table
, int write
,
2952 void __user
*buffer
,
2953 size_t *length
, loff_t
*ppos
)
2955 struct hstate
*h
= &default_hstate
;
2959 if (!hugepages_supported())
2962 tmp
= h
->nr_overcommit_huge_pages
;
2964 if (write
&& hstate_is_gigantic(h
))
2968 table
->maxlen
= sizeof(unsigned long);
2969 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
2974 spin_lock(&hugetlb_lock
);
2975 h
->nr_overcommit_huge_pages
= tmp
;
2976 spin_unlock(&hugetlb_lock
);
2982 #endif /* CONFIG_SYSCTL */
2984 void hugetlb_report_meminfo(struct seq_file
*m
)
2987 unsigned long total
= 0;
2989 if (!hugepages_supported())
2992 for_each_hstate(h
) {
2993 unsigned long count
= h
->nr_huge_pages
;
2995 total
+= (PAGE_SIZE
<< huge_page_order(h
)) * count
;
2997 if (h
== &default_hstate
)
2999 "HugePages_Total: %5lu\n"
3000 "HugePages_Free: %5lu\n"
3001 "HugePages_Rsvd: %5lu\n"
3002 "HugePages_Surp: %5lu\n"
3003 "Hugepagesize: %8lu kB\n",
3007 h
->surplus_huge_pages
,
3008 (PAGE_SIZE
<< huge_page_order(h
)) / 1024);
3011 seq_printf(m
, "Hugetlb: %8lu kB\n", total
/ 1024);
3014 int hugetlb_report_node_meminfo(int nid
, char *buf
)
3016 struct hstate
*h
= &default_hstate
;
3017 if (!hugepages_supported())
3020 "Node %d HugePages_Total: %5u\n"
3021 "Node %d HugePages_Free: %5u\n"
3022 "Node %d HugePages_Surp: %5u\n",
3023 nid
, h
->nr_huge_pages_node
[nid
],
3024 nid
, h
->free_huge_pages_node
[nid
],
3025 nid
, h
->surplus_huge_pages_node
[nid
]);
3028 void hugetlb_show_meminfo(void)
3033 if (!hugepages_supported())
3036 for_each_node_state(nid
, N_MEMORY
)
3038 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3040 h
->nr_huge_pages_node
[nid
],
3041 h
->free_huge_pages_node
[nid
],
3042 h
->surplus_huge_pages_node
[nid
],
3043 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
3046 void hugetlb_report_usage(struct seq_file
*m
, struct mm_struct
*mm
)
3048 seq_printf(m
, "HugetlbPages:\t%8lu kB\n",
3049 atomic_long_read(&mm
->hugetlb_usage
) << (PAGE_SHIFT
- 10));
3052 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3053 unsigned long hugetlb_total_pages(void)
3056 unsigned long nr_total_pages
= 0;
3059 nr_total_pages
+= h
->nr_huge_pages
* pages_per_huge_page(h
);
3060 return nr_total_pages
;
3063 static int hugetlb_acct_memory(struct hstate
*h
, long delta
)
3067 spin_lock(&hugetlb_lock
);
3069 * When cpuset is configured, it breaks the strict hugetlb page
3070 * reservation as the accounting is done on a global variable. Such
3071 * reservation is completely rubbish in the presence of cpuset because
3072 * the reservation is not checked against page availability for the
3073 * current cpuset. Application can still potentially OOM'ed by kernel
3074 * with lack of free htlb page in cpuset that the task is in.
3075 * Attempt to enforce strict accounting with cpuset is almost
3076 * impossible (or too ugly) because cpuset is too fluid that
3077 * task or memory node can be dynamically moved between cpusets.
3079 * The change of semantics for shared hugetlb mapping with cpuset is
3080 * undesirable. However, in order to preserve some of the semantics,
3081 * we fall back to check against current free page availability as
3082 * a best attempt and hopefully to minimize the impact of changing
3083 * semantics that cpuset has.
3086 if (gather_surplus_pages(h
, delta
) < 0)
3089 if (delta
> cpuset_mems_nr(h
->free_huge_pages_node
)) {
3090 return_unused_surplus_pages(h
, delta
);
3097 return_unused_surplus_pages(h
, (unsigned long) -delta
);
3100 spin_unlock(&hugetlb_lock
);
3104 static void hugetlb_vm_op_open(struct vm_area_struct
*vma
)
3106 struct resv_map
*resv
= vma_resv_map(vma
);
3109 * This new VMA should share its siblings reservation map if present.
3110 * The VMA will only ever have a valid reservation map pointer where
3111 * it is being copied for another still existing VMA. As that VMA
3112 * has a reference to the reservation map it cannot disappear until
3113 * after this open call completes. It is therefore safe to take a
3114 * new reference here without additional locking.
3116 if (resv
&& is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
3117 kref_get(&resv
->refs
);
3120 static void hugetlb_vm_op_close(struct vm_area_struct
*vma
)
3122 struct hstate
*h
= hstate_vma(vma
);
3123 struct resv_map
*resv
= vma_resv_map(vma
);
3124 struct hugepage_subpool
*spool
= subpool_vma(vma
);
3125 unsigned long reserve
, start
, end
;
3128 if (!resv
|| !is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
3131 start
= vma_hugecache_offset(h
, vma
, vma
->vm_start
);
3132 end
= vma_hugecache_offset(h
, vma
, vma
->vm_end
);
3134 reserve
= (end
- start
) - region_count(resv
, start
, end
);
3136 kref_put(&resv
->refs
, resv_map_release
);
3140 * Decrement reserve counts. The global reserve count may be
3141 * adjusted if the subpool has a minimum size.
3143 gbl_reserve
= hugepage_subpool_put_pages(spool
, reserve
);
3144 hugetlb_acct_memory(h
, -gbl_reserve
);
3148 static int hugetlb_vm_op_split(struct vm_area_struct
*vma
, unsigned long addr
)
3150 if (addr
& ~(huge_page_mask(hstate_vma(vma
))))
3156 * We cannot handle pagefaults against hugetlb pages at all. They cause
3157 * handle_mm_fault() to try to instantiate regular-sized pages in the
3158 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3161 static int hugetlb_vm_op_fault(struct vm_fault
*vmf
)
3167 const struct vm_operations_struct hugetlb_vm_ops
= {
3168 .fault
= hugetlb_vm_op_fault
,
3169 .open
= hugetlb_vm_op_open
,
3170 .close
= hugetlb_vm_op_close
,
3171 .split
= hugetlb_vm_op_split
,
3174 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
3180 entry
= huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page
,
3181 vma
->vm_page_prot
)));
3183 entry
= huge_pte_wrprotect(mk_huge_pte(page
,
3184 vma
->vm_page_prot
));
3186 entry
= pte_mkyoung(entry
);
3187 entry
= pte_mkhuge(entry
);
3188 entry
= arch_make_huge_pte(entry
, vma
, page
, writable
);
3193 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
3194 unsigned long address
, pte_t
*ptep
)
3198 entry
= huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep
)));
3199 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
, 1))
3200 update_mmu_cache(vma
, address
, ptep
);
3203 bool is_hugetlb_entry_migration(pte_t pte
)
3207 if (huge_pte_none(pte
) || pte_present(pte
))
3209 swp
= pte_to_swp_entry(pte
);
3210 if (non_swap_entry(swp
) && is_migration_entry(swp
))
3216 static int is_hugetlb_entry_hwpoisoned(pte_t pte
)
3220 if (huge_pte_none(pte
) || pte_present(pte
))
3222 swp
= pte_to_swp_entry(pte
);
3223 if (non_swap_entry(swp
) && is_hwpoison_entry(swp
))
3229 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
3230 struct vm_area_struct
*vma
)
3232 pte_t
*src_pte
, *dst_pte
, entry
;
3233 struct page
*ptepage
;
3236 struct hstate
*h
= hstate_vma(vma
);
3237 unsigned long sz
= huge_page_size(h
);
3238 unsigned long mmun_start
; /* For mmu_notifiers */
3239 unsigned long mmun_end
; /* For mmu_notifiers */
3242 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
3244 mmun_start
= vma
->vm_start
;
3245 mmun_end
= vma
->vm_end
;
3247 mmu_notifier_invalidate_range_start(src
, mmun_start
, mmun_end
);
3249 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= sz
) {
3250 spinlock_t
*src_ptl
, *dst_ptl
;
3251 src_pte
= huge_pte_offset(src
, addr
, sz
);
3254 dst_pte
= huge_pte_alloc(dst
, addr
, sz
);
3260 /* If the pagetables are shared don't copy or take references */
3261 if (dst_pte
== src_pte
)
3264 dst_ptl
= huge_pte_lock(h
, dst
, dst_pte
);
3265 src_ptl
= huge_pte_lockptr(h
, src
, src_pte
);
3266 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
3267 entry
= huge_ptep_get(src_pte
);
3268 if (huge_pte_none(entry
)) { /* skip none entry */
3270 } else if (unlikely(is_hugetlb_entry_migration(entry
) ||
3271 is_hugetlb_entry_hwpoisoned(entry
))) {
3272 swp_entry_t swp_entry
= pte_to_swp_entry(entry
);
3274 if (is_write_migration_entry(swp_entry
) && cow
) {
3276 * COW mappings require pages in both
3277 * parent and child to be set to read.
3279 make_migration_entry_read(&swp_entry
);
3280 entry
= swp_entry_to_pte(swp_entry
);
3281 set_huge_swap_pte_at(src
, addr
, src_pte
,
3284 set_huge_swap_pte_at(dst
, addr
, dst_pte
, entry
, sz
);
3288 * No need to notify as we are downgrading page
3289 * table protection not changing it to point
3292 * See Documentation/vm/mmu_notifier.txt
3294 huge_ptep_set_wrprotect(src
, addr
, src_pte
);
3296 entry
= huge_ptep_get(src_pte
);
3297 ptepage
= pte_page(entry
);
3299 page_dup_rmap(ptepage
, true);
3300 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
3301 hugetlb_count_add(pages_per_huge_page(h
), dst
);
3303 spin_unlock(src_ptl
);
3304 spin_unlock(dst_ptl
);
3308 mmu_notifier_invalidate_range_end(src
, mmun_start
, mmun_end
);
3313 void __unmap_hugepage_range(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
3314 unsigned long start
, unsigned long end
,
3315 struct page
*ref_page
)
3317 struct mm_struct
*mm
= vma
->vm_mm
;
3318 unsigned long address
;
3323 struct hstate
*h
= hstate_vma(vma
);
3324 unsigned long sz
= huge_page_size(h
);
3325 const unsigned long mmun_start
= start
; /* For mmu_notifiers */
3326 const unsigned long mmun_end
= end
; /* For mmu_notifiers */
3328 WARN_ON(!is_vm_hugetlb_page(vma
));
3329 BUG_ON(start
& ~huge_page_mask(h
));
3330 BUG_ON(end
& ~huge_page_mask(h
));
3333 * This is a hugetlb vma, all the pte entries should point
3336 tlb_remove_check_page_size_change(tlb
, sz
);
3337 tlb_start_vma(tlb
, vma
);
3338 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
3340 for (; address
< end
; address
+= sz
) {
3341 ptep
= huge_pte_offset(mm
, address
, sz
);
3345 ptl
= huge_pte_lock(h
, mm
, ptep
);
3346 if (huge_pmd_unshare(mm
, &address
, ptep
)) {
3351 pte
= huge_ptep_get(ptep
);
3352 if (huge_pte_none(pte
)) {
3358 * Migrating hugepage or HWPoisoned hugepage is already
3359 * unmapped and its refcount is dropped, so just clear pte here.
3361 if (unlikely(!pte_present(pte
))) {
3362 huge_pte_clear(mm
, address
, ptep
, sz
);
3367 page
= pte_page(pte
);
3369 * If a reference page is supplied, it is because a specific
3370 * page is being unmapped, not a range. Ensure the page we
3371 * are about to unmap is the actual page of interest.
3374 if (page
!= ref_page
) {
3379 * Mark the VMA as having unmapped its page so that
3380 * future faults in this VMA will fail rather than
3381 * looking like data was lost
3383 set_vma_resv_flags(vma
, HPAGE_RESV_UNMAPPED
);
3386 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
3387 tlb_remove_huge_tlb_entry(h
, tlb
, ptep
, address
);
3388 if (huge_pte_dirty(pte
))
3389 set_page_dirty(page
);
3391 hugetlb_count_sub(pages_per_huge_page(h
), mm
);
3392 page_remove_rmap(page
, true);
3395 tlb_remove_page_size(tlb
, page
, huge_page_size(h
));
3397 * Bail out after unmapping reference page if supplied
3402 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
3403 tlb_end_vma(tlb
, vma
);
3406 void __unmap_hugepage_range_final(struct mmu_gather
*tlb
,
3407 struct vm_area_struct
*vma
, unsigned long start
,
3408 unsigned long end
, struct page
*ref_page
)
3410 __unmap_hugepage_range(tlb
, vma
, start
, end
, ref_page
);
3413 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3414 * test will fail on a vma being torn down, and not grab a page table
3415 * on its way out. We're lucky that the flag has such an appropriate
3416 * name, and can in fact be safely cleared here. We could clear it
3417 * before the __unmap_hugepage_range above, but all that's necessary
3418 * is to clear it before releasing the i_mmap_rwsem. This works
3419 * because in the context this is called, the VMA is about to be
3420 * destroyed and the i_mmap_rwsem is held.
3422 vma
->vm_flags
&= ~VM_MAYSHARE
;
3425 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
3426 unsigned long end
, struct page
*ref_page
)
3428 struct mm_struct
*mm
;
3429 struct mmu_gather tlb
;
3433 tlb_gather_mmu(&tlb
, mm
, start
, end
);
3434 __unmap_hugepage_range(&tlb
, vma
, start
, end
, ref_page
);
3435 tlb_finish_mmu(&tlb
, start
, end
);
3439 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3440 * mappping it owns the reserve page for. The intention is to unmap the page
3441 * from other VMAs and let the children be SIGKILLed if they are faulting the
3444 static void unmap_ref_private(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3445 struct page
*page
, unsigned long address
)
3447 struct hstate
*h
= hstate_vma(vma
);
3448 struct vm_area_struct
*iter_vma
;
3449 struct address_space
*mapping
;
3453 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3454 * from page cache lookup which is in HPAGE_SIZE units.
3456 address
= address
& huge_page_mask(h
);
3457 pgoff
= ((address
- vma
->vm_start
) >> PAGE_SHIFT
) +
3459 mapping
= vma
->vm_file
->f_mapping
;
3462 * Take the mapping lock for the duration of the table walk. As
3463 * this mapping should be shared between all the VMAs,
3464 * __unmap_hugepage_range() is called as the lock is already held
3466 i_mmap_lock_write(mapping
);
3467 vma_interval_tree_foreach(iter_vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
3468 /* Do not unmap the current VMA */
3469 if (iter_vma
== vma
)
3473 * Shared VMAs have their own reserves and do not affect
3474 * MAP_PRIVATE accounting but it is possible that a shared
3475 * VMA is using the same page so check and skip such VMAs.
3477 if (iter_vma
->vm_flags
& VM_MAYSHARE
)
3481 * Unmap the page from other VMAs without their own reserves.
3482 * They get marked to be SIGKILLed if they fault in these
3483 * areas. This is because a future no-page fault on this VMA
3484 * could insert a zeroed page instead of the data existing
3485 * from the time of fork. This would look like data corruption
3487 if (!is_vma_resv_set(iter_vma
, HPAGE_RESV_OWNER
))
3488 unmap_hugepage_range(iter_vma
, address
,
3489 address
+ huge_page_size(h
), page
);
3491 i_mmap_unlock_write(mapping
);
3495 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3496 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3497 * cannot race with other handlers or page migration.
3498 * Keep the pte_same checks anyway to make transition from the mutex easier.
3500 static int hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3501 unsigned long address
, pte_t
*ptep
,
3502 struct page
*pagecache_page
, spinlock_t
*ptl
)
3505 struct hstate
*h
= hstate_vma(vma
);
3506 struct page
*old_page
, *new_page
;
3507 int ret
= 0, outside_reserve
= 0;
3508 unsigned long mmun_start
; /* For mmu_notifiers */
3509 unsigned long mmun_end
; /* For mmu_notifiers */
3511 pte
= huge_ptep_get(ptep
);
3512 old_page
= pte_page(pte
);
3515 /* If no-one else is actually using this page, avoid the copy
3516 * and just make the page writable */
3517 if (page_mapcount(old_page
) == 1 && PageAnon(old_page
)) {
3518 page_move_anon_rmap(old_page
, vma
);
3519 set_huge_ptep_writable(vma
, address
, ptep
);
3524 * If the process that created a MAP_PRIVATE mapping is about to
3525 * perform a COW due to a shared page count, attempt to satisfy
3526 * the allocation without using the existing reserves. The pagecache
3527 * page is used to determine if the reserve at this address was
3528 * consumed or not. If reserves were used, a partial faulted mapping
3529 * at the time of fork() could consume its reserves on COW instead
3530 * of the full address range.
3532 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) &&
3533 old_page
!= pagecache_page
)
3534 outside_reserve
= 1;
3539 * Drop page table lock as buddy allocator may be called. It will
3540 * be acquired again before returning to the caller, as expected.
3543 new_page
= alloc_huge_page(vma
, address
, outside_reserve
);
3545 if (IS_ERR(new_page
)) {
3547 * If a process owning a MAP_PRIVATE mapping fails to COW,
3548 * it is due to references held by a child and an insufficient
3549 * huge page pool. To guarantee the original mappers
3550 * reliability, unmap the page from child processes. The child
3551 * may get SIGKILLed if it later faults.
3553 if (outside_reserve
) {
3555 BUG_ON(huge_pte_none(pte
));
3556 unmap_ref_private(mm
, vma
, old_page
, address
);
3557 BUG_ON(huge_pte_none(pte
));
3559 ptep
= huge_pte_offset(mm
, address
& huge_page_mask(h
),
3562 pte_same(huge_ptep_get(ptep
), pte
)))
3563 goto retry_avoidcopy
;
3565 * race occurs while re-acquiring page table
3566 * lock, and our job is done.
3571 ret
= (PTR_ERR(new_page
) == -ENOMEM
) ?
3572 VM_FAULT_OOM
: VM_FAULT_SIGBUS
;
3573 goto out_release_old
;
3577 * When the original hugepage is shared one, it does not have
3578 * anon_vma prepared.
3580 if (unlikely(anon_vma_prepare(vma
))) {
3582 goto out_release_all
;
3585 copy_user_huge_page(new_page
, old_page
, address
, vma
,
3586 pages_per_huge_page(h
));
3587 __SetPageUptodate(new_page
);
3588 set_page_huge_active(new_page
);
3590 mmun_start
= address
& huge_page_mask(h
);
3591 mmun_end
= mmun_start
+ huge_page_size(h
);
3592 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
3595 * Retake the page table lock to check for racing updates
3596 * before the page tables are altered
3599 ptep
= huge_pte_offset(mm
, address
& huge_page_mask(h
),
3601 if (likely(ptep
&& pte_same(huge_ptep_get(ptep
), pte
))) {
3602 ClearPagePrivate(new_page
);
3605 huge_ptep_clear_flush(vma
, address
, ptep
);
3606 mmu_notifier_invalidate_range(mm
, mmun_start
, mmun_end
);
3607 set_huge_pte_at(mm
, address
, ptep
,
3608 make_huge_pte(vma
, new_page
, 1));
3609 page_remove_rmap(old_page
, true);
3610 hugepage_add_new_anon_rmap(new_page
, vma
, address
);
3611 /* Make the old page be freed below */
3612 new_page
= old_page
;
3615 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
3617 restore_reserve_on_error(h
, vma
, address
, new_page
);
3622 spin_lock(ptl
); /* Caller expects lock to be held */
3626 /* Return the pagecache page at a given address within a VMA */
3627 static struct page
*hugetlbfs_pagecache_page(struct hstate
*h
,
3628 struct vm_area_struct
*vma
, unsigned long address
)
3630 struct address_space
*mapping
;
3633 mapping
= vma
->vm_file
->f_mapping
;
3634 idx
= vma_hugecache_offset(h
, vma
, address
);
3636 return find_lock_page(mapping
, idx
);
3640 * Return whether there is a pagecache page to back given address within VMA.
3641 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3643 static bool hugetlbfs_pagecache_present(struct hstate
*h
,
3644 struct vm_area_struct
*vma
, unsigned long address
)
3646 struct address_space
*mapping
;
3650 mapping
= vma
->vm_file
->f_mapping
;
3651 idx
= vma_hugecache_offset(h
, vma
, address
);
3653 page
= find_get_page(mapping
, idx
);
3656 return page
!= NULL
;
3659 int huge_add_to_page_cache(struct page
*page
, struct address_space
*mapping
,
3662 struct inode
*inode
= mapping
->host
;
3663 struct hstate
*h
= hstate_inode(inode
);
3664 int err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
3668 ClearPagePrivate(page
);
3670 spin_lock(&inode
->i_lock
);
3671 inode
->i_blocks
+= blocks_per_huge_page(h
);
3672 spin_unlock(&inode
->i_lock
);
3676 static int hugetlb_no_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3677 struct address_space
*mapping
, pgoff_t idx
,
3678 unsigned long address
, pte_t
*ptep
, unsigned int flags
)
3680 struct hstate
*h
= hstate_vma(vma
);
3681 int ret
= VM_FAULT_SIGBUS
;
3689 * Currently, we are forced to kill the process in the event the
3690 * original mapper has unmapped pages from the child due to a failed
3691 * COW. Warn that such a situation has occurred as it may not be obvious
3693 if (is_vma_resv_set(vma
, HPAGE_RESV_UNMAPPED
)) {
3694 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3700 * Use page lock to guard against racing truncation
3701 * before we get page_table_lock.
3704 page
= find_lock_page(mapping
, idx
);
3706 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
3711 * Check for page in userfault range
3713 if (userfaultfd_missing(vma
)) {
3715 struct vm_fault vmf
= {
3720 * Hard to debug if it ends up being
3721 * used by a callee that assumes
3722 * something about the other
3723 * uninitialized fields... same as in
3729 * hugetlb_fault_mutex must be dropped before
3730 * handling userfault. Reacquire after handling
3731 * fault to make calling code simpler.
3733 hash
= hugetlb_fault_mutex_hash(h
, mm
, vma
, mapping
,
3735 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
3736 ret
= handle_userfault(&vmf
, VM_UFFD_MISSING
);
3737 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
3741 page
= alloc_huge_page(vma
, address
, 0);
3743 ret
= PTR_ERR(page
);
3747 ret
= VM_FAULT_SIGBUS
;
3750 clear_huge_page(page
, address
, pages_per_huge_page(h
));
3751 __SetPageUptodate(page
);
3752 set_page_huge_active(page
);
3754 if (vma
->vm_flags
& VM_MAYSHARE
) {
3755 int err
= huge_add_to_page_cache(page
, mapping
, idx
);
3764 if (unlikely(anon_vma_prepare(vma
))) {
3766 goto backout_unlocked
;
3772 * If memory error occurs between mmap() and fault, some process
3773 * don't have hwpoisoned swap entry for errored virtual address.
3774 * So we need to block hugepage fault by PG_hwpoison bit check.
3776 if (unlikely(PageHWPoison(page
))) {
3777 ret
= VM_FAULT_HWPOISON
|
3778 VM_FAULT_SET_HINDEX(hstate_index(h
));
3779 goto backout_unlocked
;
3784 * If we are going to COW a private mapping later, we examine the
3785 * pending reservations for this page now. This will ensure that
3786 * any allocations necessary to record that reservation occur outside
3789 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
3790 if (vma_needs_reservation(h
, vma
, address
) < 0) {
3792 goto backout_unlocked
;
3794 /* Just decrements count, does not deallocate */
3795 vma_end_reservation(h
, vma
, address
);
3798 ptl
= huge_pte_lock(h
, mm
, ptep
);
3799 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
3804 if (!huge_pte_none(huge_ptep_get(ptep
)))
3808 ClearPagePrivate(page
);
3809 hugepage_add_new_anon_rmap(page
, vma
, address
);
3811 page_dup_rmap(page
, true);
3812 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
3813 && (vma
->vm_flags
& VM_SHARED
)));
3814 set_huge_pte_at(mm
, address
, ptep
, new_pte
);
3816 hugetlb_count_add(pages_per_huge_page(h
), mm
);
3817 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
3818 /* Optimization, do the COW without a second fault */
3819 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, page
, ptl
);
3831 restore_reserve_on_error(h
, vma
, address
, page
);
3837 u32
hugetlb_fault_mutex_hash(struct hstate
*h
, struct mm_struct
*mm
,
3838 struct vm_area_struct
*vma
,
3839 struct address_space
*mapping
,
3840 pgoff_t idx
, unsigned long address
)
3842 unsigned long key
[2];
3845 if (vma
->vm_flags
& VM_SHARED
) {
3846 key
[0] = (unsigned long) mapping
;
3849 key
[0] = (unsigned long) mm
;
3850 key
[1] = address
>> huge_page_shift(h
);
3853 hash
= jhash2((u32
*)&key
, sizeof(key
)/sizeof(u32
), 0);
3855 return hash
& (num_fault_mutexes
- 1);
3859 * For uniprocesor systems we always use a single mutex, so just
3860 * return 0 and avoid the hashing overhead.
3862 u32
hugetlb_fault_mutex_hash(struct hstate
*h
, struct mm_struct
*mm
,
3863 struct vm_area_struct
*vma
,
3864 struct address_space
*mapping
,
3865 pgoff_t idx
, unsigned long address
)
3871 int hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3872 unsigned long address
, unsigned int flags
)
3879 struct page
*page
= NULL
;
3880 struct page
*pagecache_page
= NULL
;
3881 struct hstate
*h
= hstate_vma(vma
);
3882 struct address_space
*mapping
;
3883 int need_wait_lock
= 0;
3885 address
&= huge_page_mask(h
);
3887 ptep
= huge_pte_offset(mm
, address
, huge_page_size(h
));
3889 entry
= huge_ptep_get(ptep
);
3890 if (unlikely(is_hugetlb_entry_migration(entry
))) {
3891 migration_entry_wait_huge(vma
, mm
, ptep
);
3893 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry
)))
3894 return VM_FAULT_HWPOISON_LARGE
|
3895 VM_FAULT_SET_HINDEX(hstate_index(h
));
3897 ptep
= huge_pte_alloc(mm
, address
, huge_page_size(h
));
3899 return VM_FAULT_OOM
;
3902 mapping
= vma
->vm_file
->f_mapping
;
3903 idx
= vma_hugecache_offset(h
, vma
, address
);
3906 * Serialize hugepage allocation and instantiation, so that we don't
3907 * get spurious allocation failures if two CPUs race to instantiate
3908 * the same page in the page cache.
3910 hash
= hugetlb_fault_mutex_hash(h
, mm
, vma
, mapping
, idx
, address
);
3911 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
3913 entry
= huge_ptep_get(ptep
);
3914 if (huge_pte_none(entry
)) {
3915 ret
= hugetlb_no_page(mm
, vma
, mapping
, idx
, address
, ptep
, flags
);
3922 * entry could be a migration/hwpoison entry at this point, so this
3923 * check prevents the kernel from going below assuming that we have
3924 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3925 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3928 if (!pte_present(entry
))
3932 * If we are going to COW the mapping later, we examine the pending
3933 * reservations for this page now. This will ensure that any
3934 * allocations necessary to record that reservation occur outside the
3935 * spinlock. For private mappings, we also lookup the pagecache
3936 * page now as it is used to determine if a reservation has been
3939 if ((flags
& FAULT_FLAG_WRITE
) && !huge_pte_write(entry
)) {
3940 if (vma_needs_reservation(h
, vma
, address
) < 0) {
3944 /* Just decrements count, does not deallocate */
3945 vma_end_reservation(h
, vma
, address
);
3947 if (!(vma
->vm_flags
& VM_MAYSHARE
))
3948 pagecache_page
= hugetlbfs_pagecache_page(h
,
3952 ptl
= huge_pte_lock(h
, mm
, ptep
);
3954 /* Check for a racing update before calling hugetlb_cow */
3955 if (unlikely(!pte_same(entry
, huge_ptep_get(ptep
))))
3959 * hugetlb_cow() requires page locks of pte_page(entry) and
3960 * pagecache_page, so here we need take the former one
3961 * when page != pagecache_page or !pagecache_page.
3963 page
= pte_page(entry
);
3964 if (page
!= pagecache_page
)
3965 if (!trylock_page(page
)) {
3972 if (flags
& FAULT_FLAG_WRITE
) {
3973 if (!huge_pte_write(entry
)) {
3974 ret
= hugetlb_cow(mm
, vma
, address
, ptep
,
3975 pagecache_page
, ptl
);
3978 entry
= huge_pte_mkdirty(entry
);
3980 entry
= pte_mkyoung(entry
);
3981 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
,
3982 flags
& FAULT_FLAG_WRITE
))
3983 update_mmu_cache(vma
, address
, ptep
);
3985 if (page
!= pagecache_page
)
3991 if (pagecache_page
) {
3992 unlock_page(pagecache_page
);
3993 put_page(pagecache_page
);
3996 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
3998 * Generally it's safe to hold refcount during waiting page lock. But
3999 * here we just wait to defer the next page fault to avoid busy loop and
4000 * the page is not used after unlocked before returning from the current
4001 * page fault. So we are safe from accessing freed page, even if we wait
4002 * here without taking refcount.
4005 wait_on_page_locked(page
);
4010 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4011 * modifications for huge pages.
4013 int hugetlb_mcopy_atomic_pte(struct mm_struct
*dst_mm
,
4015 struct vm_area_struct
*dst_vma
,
4016 unsigned long dst_addr
,
4017 unsigned long src_addr
,
4018 struct page
**pagep
)
4020 struct address_space
*mapping
;
4023 int vm_shared
= dst_vma
->vm_flags
& VM_SHARED
;
4024 struct hstate
*h
= hstate_vma(dst_vma
);
4032 page
= alloc_huge_page(dst_vma
, dst_addr
, 0);
4036 ret
= copy_huge_page_from_user(page
,
4037 (const void __user
*) src_addr
,
4038 pages_per_huge_page(h
), false);
4040 /* fallback to copy_from_user outside mmap_sem */
4041 if (unlikely(ret
)) {
4044 /* don't free the page */
4053 * The memory barrier inside __SetPageUptodate makes sure that
4054 * preceding stores to the page contents become visible before
4055 * the set_pte_at() write.
4057 __SetPageUptodate(page
);
4058 set_page_huge_active(page
);
4060 mapping
= dst_vma
->vm_file
->f_mapping
;
4061 idx
= vma_hugecache_offset(h
, dst_vma
, dst_addr
);
4064 * If shared, add to page cache
4067 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
4070 goto out_release_nounlock
;
4073 * Serialization between remove_inode_hugepages() and
4074 * huge_add_to_page_cache() below happens through the
4075 * hugetlb_fault_mutex_table that here must be hold by
4078 ret
= huge_add_to_page_cache(page
, mapping
, idx
);
4080 goto out_release_nounlock
;
4083 ptl
= huge_pte_lockptr(h
, dst_mm
, dst_pte
);
4087 * Recheck the i_size after holding PT lock to make sure not
4088 * to leave any page mapped (as page_mapped()) beyond the end
4089 * of the i_size (remove_inode_hugepages() is strict about
4090 * enforcing that). If we bail out here, we'll also leave a
4091 * page in the radix tree in the vm_shared case beyond the end
4092 * of the i_size, but remove_inode_hugepages() will take care
4093 * of it as soon as we drop the hugetlb_fault_mutex_table.
4095 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
4098 goto out_release_unlock
;
4101 if (!huge_pte_none(huge_ptep_get(dst_pte
)))
4102 goto out_release_unlock
;
4105 page_dup_rmap(page
, true);
4107 ClearPagePrivate(page
);
4108 hugepage_add_new_anon_rmap(page
, dst_vma
, dst_addr
);
4111 _dst_pte
= make_huge_pte(dst_vma
, page
, dst_vma
->vm_flags
& VM_WRITE
);
4112 if (dst_vma
->vm_flags
& VM_WRITE
)
4113 _dst_pte
= huge_pte_mkdirty(_dst_pte
);
4114 _dst_pte
= pte_mkyoung(_dst_pte
);
4116 set_huge_pte_at(dst_mm
, dst_addr
, dst_pte
, _dst_pte
);
4118 (void)huge_ptep_set_access_flags(dst_vma
, dst_addr
, dst_pte
, _dst_pte
,
4119 dst_vma
->vm_flags
& VM_WRITE
);
4120 hugetlb_count_add(pages_per_huge_page(h
), dst_mm
);
4122 /* No need to invalidate - it was non-present before */
4123 update_mmu_cache(dst_vma
, dst_addr
, dst_pte
);
4135 out_release_nounlock
:
4140 long follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
4141 struct page
**pages
, struct vm_area_struct
**vmas
,
4142 unsigned long *position
, unsigned long *nr_pages
,
4143 long i
, unsigned int flags
, int *nonblocking
)
4145 unsigned long pfn_offset
;
4146 unsigned long vaddr
= *position
;
4147 unsigned long remainder
= *nr_pages
;
4148 struct hstate
*h
= hstate_vma(vma
);
4151 while (vaddr
< vma
->vm_end
&& remainder
) {
4153 spinlock_t
*ptl
= NULL
;
4158 * If we have a pending SIGKILL, don't keep faulting pages and
4159 * potentially allocating memory.
4161 if (unlikely(fatal_signal_pending(current
))) {
4167 * Some archs (sparc64, sh*) have multiple pte_ts to
4168 * each hugepage. We have to make sure we get the
4169 * first, for the page indexing below to work.
4171 * Note that page table lock is not held when pte is null.
4173 pte
= huge_pte_offset(mm
, vaddr
& huge_page_mask(h
),
4176 ptl
= huge_pte_lock(h
, mm
, pte
);
4177 absent
= !pte
|| huge_pte_none(huge_ptep_get(pte
));
4180 * When coredumping, it suits get_dump_page if we just return
4181 * an error where there's an empty slot with no huge pagecache
4182 * to back it. This way, we avoid allocating a hugepage, and
4183 * the sparse dumpfile avoids allocating disk blocks, but its
4184 * huge holes still show up with zeroes where they need to be.
4186 if (absent
&& (flags
& FOLL_DUMP
) &&
4187 !hugetlbfs_pagecache_present(h
, vma
, vaddr
)) {
4195 * We need call hugetlb_fault for both hugepages under migration
4196 * (in which case hugetlb_fault waits for the migration,) and
4197 * hwpoisoned hugepages (in which case we need to prevent the
4198 * caller from accessing to them.) In order to do this, we use
4199 * here is_swap_pte instead of is_hugetlb_entry_migration and
4200 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4201 * both cases, and because we can't follow correct pages
4202 * directly from any kind of swap entries.
4204 if (absent
|| is_swap_pte(huge_ptep_get(pte
)) ||
4205 ((flags
& FOLL_WRITE
) &&
4206 !huge_pte_write(huge_ptep_get(pte
)))) {
4208 unsigned int fault_flags
= 0;
4212 if (flags
& FOLL_WRITE
)
4213 fault_flags
|= FAULT_FLAG_WRITE
;
4215 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
;
4216 if (flags
& FOLL_NOWAIT
)
4217 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
|
4218 FAULT_FLAG_RETRY_NOWAIT
;
4219 if (flags
& FOLL_TRIED
) {
4220 VM_WARN_ON_ONCE(fault_flags
&
4221 FAULT_FLAG_ALLOW_RETRY
);
4222 fault_flags
|= FAULT_FLAG_TRIED
;
4224 ret
= hugetlb_fault(mm
, vma
, vaddr
, fault_flags
);
4225 if (ret
& VM_FAULT_ERROR
) {
4226 err
= vm_fault_to_errno(ret
, flags
);
4230 if (ret
& VM_FAULT_RETRY
) {
4235 * VM_FAULT_RETRY must not return an
4236 * error, it will return zero
4239 * No need to update "position" as the
4240 * caller will not check it after
4241 * *nr_pages is set to 0.
4248 pfn_offset
= (vaddr
& ~huge_page_mask(h
)) >> PAGE_SHIFT
;
4249 page
= pte_page(huge_ptep_get(pte
));
4252 pages
[i
] = mem_map_offset(page
, pfn_offset
);
4263 if (vaddr
< vma
->vm_end
&& remainder
&&
4264 pfn_offset
< pages_per_huge_page(h
)) {
4266 * We use pfn_offset to avoid touching the pageframes
4267 * of this compound page.
4273 *nr_pages
= remainder
;
4275 * setting position is actually required only if remainder is
4276 * not zero but it's faster not to add a "if (remainder)"
4284 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4286 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4289 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4292 unsigned long hugetlb_change_protection(struct vm_area_struct
*vma
,
4293 unsigned long address
, unsigned long end
, pgprot_t newprot
)
4295 struct mm_struct
*mm
= vma
->vm_mm
;
4296 unsigned long start
= address
;
4299 struct hstate
*h
= hstate_vma(vma
);
4300 unsigned long pages
= 0;
4302 BUG_ON(address
>= end
);
4303 flush_cache_range(vma
, address
, end
);
4305 mmu_notifier_invalidate_range_start(mm
, start
, end
);
4306 i_mmap_lock_write(vma
->vm_file
->f_mapping
);
4307 for (; address
< end
; address
+= huge_page_size(h
)) {
4309 ptep
= huge_pte_offset(mm
, address
, huge_page_size(h
));
4312 ptl
= huge_pte_lock(h
, mm
, ptep
);
4313 if (huge_pmd_unshare(mm
, &address
, ptep
)) {
4318 pte
= huge_ptep_get(ptep
);
4319 if (unlikely(is_hugetlb_entry_hwpoisoned(pte
))) {
4323 if (unlikely(is_hugetlb_entry_migration(pte
))) {
4324 swp_entry_t entry
= pte_to_swp_entry(pte
);
4326 if (is_write_migration_entry(entry
)) {
4329 make_migration_entry_read(&entry
);
4330 newpte
= swp_entry_to_pte(entry
);
4331 set_huge_swap_pte_at(mm
, address
, ptep
,
4332 newpte
, huge_page_size(h
));
4338 if (!huge_pte_none(pte
)) {
4339 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
4340 pte
= pte_mkhuge(huge_pte_modify(pte
, newprot
));
4341 pte
= arch_make_huge_pte(pte
, vma
, NULL
, 0);
4342 set_huge_pte_at(mm
, address
, ptep
, pte
);
4348 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4349 * may have cleared our pud entry and done put_page on the page table:
4350 * once we release i_mmap_rwsem, another task can do the final put_page
4351 * and that page table be reused and filled with junk.
4353 flush_hugetlb_tlb_range(vma
, start
, end
);
4355 * No need to call mmu_notifier_invalidate_range() we are downgrading
4356 * page table protection not changing it to point to a new page.
4358 * See Documentation/vm/mmu_notifier.txt
4360 i_mmap_unlock_write(vma
->vm_file
->f_mapping
);
4361 mmu_notifier_invalidate_range_end(mm
, start
, end
);
4363 return pages
<< h
->order
;
4366 int hugetlb_reserve_pages(struct inode
*inode
,
4368 struct vm_area_struct
*vma
,
4369 vm_flags_t vm_flags
)
4372 struct hstate
*h
= hstate_inode(inode
);
4373 struct hugepage_subpool
*spool
= subpool_inode(inode
);
4374 struct resv_map
*resv_map
;
4378 * Only apply hugepage reservation if asked. At fault time, an
4379 * attempt will be made for VM_NORESERVE to allocate a page
4380 * without using reserves
4382 if (vm_flags
& VM_NORESERVE
)
4386 * Shared mappings base their reservation on the number of pages that
4387 * are already allocated on behalf of the file. Private mappings need
4388 * to reserve the full area even if read-only as mprotect() may be
4389 * called to make the mapping read-write. Assume !vma is a shm mapping
4391 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
) {
4392 resv_map
= inode_resv_map(inode
);
4394 chg
= region_chg(resv_map
, from
, to
);
4397 resv_map
= resv_map_alloc();
4403 set_vma_resv_map(vma
, resv_map
);
4404 set_vma_resv_flags(vma
, HPAGE_RESV_OWNER
);
4413 * There must be enough pages in the subpool for the mapping. If
4414 * the subpool has a minimum size, there may be some global
4415 * reservations already in place (gbl_reserve).
4417 gbl_reserve
= hugepage_subpool_get_pages(spool
, chg
);
4418 if (gbl_reserve
< 0) {
4424 * Check enough hugepages are available for the reservation.
4425 * Hand the pages back to the subpool if there are not
4427 ret
= hugetlb_acct_memory(h
, gbl_reserve
);
4429 /* put back original number of pages, chg */
4430 (void)hugepage_subpool_put_pages(spool
, chg
);
4435 * Account for the reservations made. Shared mappings record regions
4436 * that have reservations as they are shared by multiple VMAs.
4437 * When the last VMA disappears, the region map says how much
4438 * the reservation was and the page cache tells how much of
4439 * the reservation was consumed. Private mappings are per-VMA and
4440 * only the consumed reservations are tracked. When the VMA
4441 * disappears, the original reservation is the VMA size and the
4442 * consumed reservations are stored in the map. Hence, nothing
4443 * else has to be done for private mappings here
4445 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
) {
4446 long add
= region_add(resv_map
, from
, to
);
4448 if (unlikely(chg
> add
)) {
4450 * pages in this range were added to the reserve
4451 * map between region_chg and region_add. This
4452 * indicates a race with alloc_huge_page. Adjust
4453 * the subpool and reserve counts modified above
4454 * based on the difference.
4458 rsv_adjust
= hugepage_subpool_put_pages(spool
,
4460 hugetlb_acct_memory(h
, -rsv_adjust
);
4465 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
)
4466 /* Don't call region_abort if region_chg failed */
4468 region_abort(resv_map
, from
, to
);
4469 if (vma
&& is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
4470 kref_put(&resv_map
->refs
, resv_map_release
);
4474 long hugetlb_unreserve_pages(struct inode
*inode
, long start
, long end
,
4477 struct hstate
*h
= hstate_inode(inode
);
4478 struct resv_map
*resv_map
= inode_resv_map(inode
);
4480 struct hugepage_subpool
*spool
= subpool_inode(inode
);
4484 chg
= region_del(resv_map
, start
, end
);
4486 * region_del() can fail in the rare case where a region
4487 * must be split and another region descriptor can not be
4488 * allocated. If end == LONG_MAX, it will not fail.
4494 spin_lock(&inode
->i_lock
);
4495 inode
->i_blocks
-= (blocks_per_huge_page(h
) * freed
);
4496 spin_unlock(&inode
->i_lock
);
4499 * If the subpool has a minimum size, the number of global
4500 * reservations to be released may be adjusted.
4502 gbl_reserve
= hugepage_subpool_put_pages(spool
, (chg
- freed
));
4503 hugetlb_acct_memory(h
, -gbl_reserve
);
4508 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4509 static unsigned long page_table_shareable(struct vm_area_struct
*svma
,
4510 struct vm_area_struct
*vma
,
4511 unsigned long addr
, pgoff_t idx
)
4513 unsigned long saddr
= ((idx
- svma
->vm_pgoff
) << PAGE_SHIFT
) +
4515 unsigned long sbase
= saddr
& PUD_MASK
;
4516 unsigned long s_end
= sbase
+ PUD_SIZE
;
4518 /* Allow segments to share if only one is marked locked */
4519 unsigned long vm_flags
= vma
->vm_flags
& VM_LOCKED_CLEAR_MASK
;
4520 unsigned long svm_flags
= svma
->vm_flags
& VM_LOCKED_CLEAR_MASK
;
4523 * match the virtual addresses, permission and the alignment of the
4526 if (pmd_index(addr
) != pmd_index(saddr
) ||
4527 vm_flags
!= svm_flags
||
4528 sbase
< svma
->vm_start
|| svma
->vm_end
< s_end
)
4534 static bool vma_shareable(struct vm_area_struct
*vma
, unsigned long addr
)
4536 unsigned long base
= addr
& PUD_MASK
;
4537 unsigned long end
= base
+ PUD_SIZE
;
4540 * check on proper vm_flags and page table alignment
4542 if (vma
->vm_flags
& VM_MAYSHARE
&&
4543 vma
->vm_start
<= base
&& end
<= vma
->vm_end
)
4549 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4550 * and returns the corresponding pte. While this is not necessary for the
4551 * !shared pmd case because we can allocate the pmd later as well, it makes the
4552 * code much cleaner. pmd allocation is essential for the shared case because
4553 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4554 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4555 * bad pmd for sharing.
4557 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
4559 struct vm_area_struct
*vma
= find_vma(mm
, addr
);
4560 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
4561 pgoff_t idx
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) +
4563 struct vm_area_struct
*svma
;
4564 unsigned long saddr
;
4569 if (!vma_shareable(vma
, addr
))
4570 return (pte_t
*)pmd_alloc(mm
, pud
, addr
);
4572 i_mmap_lock_write(mapping
);
4573 vma_interval_tree_foreach(svma
, &mapping
->i_mmap
, idx
, idx
) {
4577 saddr
= page_table_shareable(svma
, vma
, addr
, idx
);
4579 spte
= huge_pte_offset(svma
->vm_mm
, saddr
,
4580 vma_mmu_pagesize(svma
));
4582 get_page(virt_to_page(spte
));
4591 ptl
= huge_pte_lock(hstate_vma(vma
), mm
, spte
);
4592 if (pud_none(*pud
)) {
4593 pud_populate(mm
, pud
,
4594 (pmd_t
*)((unsigned long)spte
& PAGE_MASK
));
4597 put_page(virt_to_page(spte
));
4601 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
4602 i_mmap_unlock_write(mapping
);
4607 * unmap huge page backed by shared pte.
4609 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4610 * indicated by page_count > 1, unmap is achieved by clearing pud and
4611 * decrementing the ref count. If count == 1, the pte page is not shared.
4613 * called with page table lock held.
4615 * returns: 1 successfully unmapped a shared pte page
4616 * 0 the underlying pte page is not shared, or it is the last user
4618 int huge_pmd_unshare(struct mm_struct
*mm
, unsigned long *addr
, pte_t
*ptep
)
4620 pgd_t
*pgd
= pgd_offset(mm
, *addr
);
4621 p4d_t
*p4d
= p4d_offset(pgd
, *addr
);
4622 pud_t
*pud
= pud_offset(p4d
, *addr
);
4624 BUG_ON(page_count(virt_to_page(ptep
)) == 0);
4625 if (page_count(virt_to_page(ptep
)) == 1)
4629 put_page(virt_to_page(ptep
));
4631 *addr
= ALIGN(*addr
, HPAGE_SIZE
* PTRS_PER_PTE
) - HPAGE_SIZE
;
4634 #define want_pmd_share() (1)
4635 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4636 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
4641 int huge_pmd_unshare(struct mm_struct
*mm
, unsigned long *addr
, pte_t
*ptep
)
4645 #define want_pmd_share() (0)
4646 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4648 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4649 pte_t
*huge_pte_alloc(struct mm_struct
*mm
,
4650 unsigned long addr
, unsigned long sz
)
4657 pgd
= pgd_offset(mm
, addr
);
4658 p4d
= p4d_alloc(mm
, pgd
, addr
);
4661 pud
= pud_alloc(mm
, p4d
, addr
);
4663 if (sz
== PUD_SIZE
) {
4666 BUG_ON(sz
!= PMD_SIZE
);
4667 if (want_pmd_share() && pud_none(*pud
))
4668 pte
= huge_pmd_share(mm
, addr
, pud
);
4670 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
4673 BUG_ON(pte
&& pte_present(*pte
) && !pte_huge(*pte
));
4679 * huge_pte_offset() - Walk the page table to resolve the hugepage
4680 * entry at address @addr
4682 * Return: Pointer to page table or swap entry (PUD or PMD) for
4683 * address @addr, or NULL if a p*d_none() entry is encountered and the
4684 * size @sz doesn't match the hugepage size at this level of the page
4687 pte_t
*huge_pte_offset(struct mm_struct
*mm
,
4688 unsigned long addr
, unsigned long sz
)
4695 pgd
= pgd_offset(mm
, addr
);
4696 if (!pgd_present(*pgd
))
4698 p4d
= p4d_offset(pgd
, addr
);
4699 if (!p4d_present(*p4d
))
4702 pud
= pud_offset(p4d
, addr
);
4703 if (sz
!= PUD_SIZE
&& pud_none(*pud
))
4705 /* hugepage or swap? */
4706 if (pud_huge(*pud
) || !pud_present(*pud
))
4707 return (pte_t
*)pud
;
4709 pmd
= pmd_offset(pud
, addr
);
4710 if (sz
!= PMD_SIZE
&& pmd_none(*pmd
))
4712 /* hugepage or swap? */
4713 if (pmd_huge(*pmd
) || !pmd_present(*pmd
))
4714 return (pte_t
*)pmd
;
4719 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4722 * These functions are overwritable if your architecture needs its own
4725 struct page
* __weak
4726 follow_huge_addr(struct mm_struct
*mm
, unsigned long address
,
4729 return ERR_PTR(-EINVAL
);
4732 struct page
* __weak
4733 follow_huge_pd(struct vm_area_struct
*vma
,
4734 unsigned long address
, hugepd_t hpd
, int flags
, int pdshift
)
4736 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4740 struct page
* __weak
4741 follow_huge_pmd(struct mm_struct
*mm
, unsigned long address
,
4742 pmd_t
*pmd
, int flags
)
4744 struct page
*page
= NULL
;
4748 ptl
= pmd_lockptr(mm
, pmd
);
4751 * make sure that the address range covered by this pmd is not
4752 * unmapped from other threads.
4754 if (!pmd_huge(*pmd
))
4756 pte
= huge_ptep_get((pte_t
*)pmd
);
4757 if (pte_present(pte
)) {
4758 page
= pmd_page(*pmd
) + ((address
& ~PMD_MASK
) >> PAGE_SHIFT
);
4759 if (flags
& FOLL_GET
)
4762 if (is_hugetlb_entry_migration(pte
)) {
4764 __migration_entry_wait(mm
, (pte_t
*)pmd
, ptl
);
4768 * hwpoisoned entry is treated as no_page_table in
4769 * follow_page_mask().
4777 struct page
* __weak
4778 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
4779 pud_t
*pud
, int flags
)
4781 if (flags
& FOLL_GET
)
4784 return pte_page(*(pte_t
*)pud
) + ((address
& ~PUD_MASK
) >> PAGE_SHIFT
);
4787 struct page
* __weak
4788 follow_huge_pgd(struct mm_struct
*mm
, unsigned long address
, pgd_t
*pgd
, int flags
)
4790 if (flags
& FOLL_GET
)
4793 return pte_page(*(pte_t
*)pgd
) + ((address
& ~PGDIR_MASK
) >> PAGE_SHIFT
);
4796 bool isolate_huge_page(struct page
*page
, struct list_head
*list
)
4800 VM_BUG_ON_PAGE(!PageHead(page
), page
);
4801 spin_lock(&hugetlb_lock
);
4802 if (!page_huge_active(page
) || !get_page_unless_zero(page
)) {
4806 clear_page_huge_active(page
);
4807 list_move_tail(&page
->lru
, list
);
4809 spin_unlock(&hugetlb_lock
);
4813 void putback_active_hugepage(struct page
*page
)
4815 VM_BUG_ON_PAGE(!PageHead(page
), page
);
4816 spin_lock(&hugetlb_lock
);
4817 set_page_huge_active(page
);
4818 list_move_tail(&page
->lru
, &(page_hstate(page
))->hugepage_activelist
);
4819 spin_unlock(&hugetlb_lock
);
4823 void move_hugetlb_state(struct page
*oldpage
, struct page
*newpage
, int reason
)
4825 struct hstate
*h
= page_hstate(oldpage
);
4827 hugetlb_cgroup_migrate(oldpage
, newpage
);
4828 set_page_owner_migrate_reason(newpage
, reason
);
4831 * transfer temporary state of the new huge page. This is
4832 * reverse to other transitions because the newpage is going to
4833 * be final while the old one will be freed so it takes over
4834 * the temporary status.
4836 * Also note that we have to transfer the per-node surplus state
4837 * here as well otherwise the global surplus count will not match
4840 if (PageHugeTemporary(newpage
)) {
4841 int old_nid
= page_to_nid(oldpage
);
4842 int new_nid
= page_to_nid(newpage
);
4844 SetPageHugeTemporary(oldpage
);
4845 ClearPageHugeTemporary(newpage
);
4847 spin_lock(&hugetlb_lock
);
4848 if (h
->surplus_huge_pages_node
[old_nid
]) {
4849 h
->surplus_huge_pages_node
[old_nid
]--;
4850 h
->surplus_huge_pages_node
[new_nid
]++;
4852 spin_unlock(&hugetlb_lock
);