Merge tag 'xtensa-20180225' of git://github.com/jcmvbkbc/linux-xtensa
[cris-mirror.git] / mm / slab_common.c
blob10f127b2de7c04acb0e87ae1bc8e346babe1617b
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Slab allocator functions that are independent of the allocator strategy
5 * (C) 2012 Christoph Lameter <cl@linux.com>
6 */
7 #include <linux/slab.h>
9 #include <linux/mm.h>
10 #include <linux/poison.h>
11 #include <linux/interrupt.h>
12 #include <linux/memory.h>
13 #include <linux/compiler.h>
14 #include <linux/module.h>
15 #include <linux/cpu.h>
16 #include <linux/uaccess.h>
17 #include <linux/seq_file.h>
18 #include <linux/proc_fs.h>
19 #include <asm/cacheflush.h>
20 #include <asm/tlbflush.h>
21 #include <asm/page.h>
22 #include <linux/memcontrol.h>
24 #define CREATE_TRACE_POINTS
25 #include <trace/events/kmem.h>
27 #include "slab.h"
29 enum slab_state slab_state;
30 LIST_HEAD(slab_caches);
31 DEFINE_MUTEX(slab_mutex);
32 struct kmem_cache *kmem_cache;
34 #ifdef CONFIG_HARDENED_USERCOPY
35 bool usercopy_fallback __ro_after_init =
36 IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
37 module_param(usercopy_fallback, bool, 0400);
38 MODULE_PARM_DESC(usercopy_fallback,
39 "WARN instead of reject usercopy whitelist violations");
40 #endif
42 static LIST_HEAD(slab_caches_to_rcu_destroy);
43 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
44 static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
45 slab_caches_to_rcu_destroy_workfn);
48 * Set of flags that will prevent slab merging
50 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
51 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
52 SLAB_FAILSLAB | SLAB_KASAN)
54 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
55 SLAB_ACCOUNT)
58 * Merge control. If this is set then no merging of slab caches will occur.
60 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
62 static int __init setup_slab_nomerge(char *str)
64 slab_nomerge = true;
65 return 1;
68 #ifdef CONFIG_SLUB
69 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
70 #endif
72 __setup("slab_nomerge", setup_slab_nomerge);
75 * Determine the size of a slab object
77 unsigned int kmem_cache_size(struct kmem_cache *s)
79 return s->object_size;
81 EXPORT_SYMBOL(kmem_cache_size);
83 #ifdef CONFIG_DEBUG_VM
84 static int kmem_cache_sanity_check(const char *name, size_t size)
86 struct kmem_cache *s = NULL;
88 if (!name || in_interrupt() || size < sizeof(void *) ||
89 size > KMALLOC_MAX_SIZE) {
90 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
91 return -EINVAL;
94 list_for_each_entry(s, &slab_caches, list) {
95 char tmp;
96 int res;
99 * This happens when the module gets unloaded and doesn't
100 * destroy its slab cache and no-one else reuses the vmalloc
101 * area of the module. Print a warning.
103 res = probe_kernel_address(s->name, tmp);
104 if (res) {
105 pr_err("Slab cache with size %d has lost its name\n",
106 s->object_size);
107 continue;
111 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
112 return 0;
114 #else
115 static inline int kmem_cache_sanity_check(const char *name, size_t size)
117 return 0;
119 #endif
121 void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
123 size_t i;
125 for (i = 0; i < nr; i++) {
126 if (s)
127 kmem_cache_free(s, p[i]);
128 else
129 kfree(p[i]);
133 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
134 void **p)
136 size_t i;
138 for (i = 0; i < nr; i++) {
139 void *x = p[i] = kmem_cache_alloc(s, flags);
140 if (!x) {
141 __kmem_cache_free_bulk(s, i, p);
142 return 0;
145 return i;
148 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
150 LIST_HEAD(slab_root_caches);
152 void slab_init_memcg_params(struct kmem_cache *s)
154 s->memcg_params.root_cache = NULL;
155 RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
156 INIT_LIST_HEAD(&s->memcg_params.children);
159 static int init_memcg_params(struct kmem_cache *s,
160 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
162 struct memcg_cache_array *arr;
164 if (root_cache) {
165 s->memcg_params.root_cache = root_cache;
166 s->memcg_params.memcg = memcg;
167 INIT_LIST_HEAD(&s->memcg_params.children_node);
168 INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
169 return 0;
172 slab_init_memcg_params(s);
174 if (!memcg_nr_cache_ids)
175 return 0;
177 arr = kvzalloc(sizeof(struct memcg_cache_array) +
178 memcg_nr_cache_ids * sizeof(void *),
179 GFP_KERNEL);
180 if (!arr)
181 return -ENOMEM;
183 RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
184 return 0;
187 static void destroy_memcg_params(struct kmem_cache *s)
189 if (is_root_cache(s))
190 kvfree(rcu_access_pointer(s->memcg_params.memcg_caches));
193 static void free_memcg_params(struct rcu_head *rcu)
195 struct memcg_cache_array *old;
197 old = container_of(rcu, struct memcg_cache_array, rcu);
198 kvfree(old);
201 static int update_memcg_params(struct kmem_cache *s, int new_array_size)
203 struct memcg_cache_array *old, *new;
205 new = kvzalloc(sizeof(struct memcg_cache_array) +
206 new_array_size * sizeof(void *), GFP_KERNEL);
207 if (!new)
208 return -ENOMEM;
210 old = rcu_dereference_protected(s->memcg_params.memcg_caches,
211 lockdep_is_held(&slab_mutex));
212 if (old)
213 memcpy(new->entries, old->entries,
214 memcg_nr_cache_ids * sizeof(void *));
216 rcu_assign_pointer(s->memcg_params.memcg_caches, new);
217 if (old)
218 call_rcu(&old->rcu, free_memcg_params);
219 return 0;
222 int memcg_update_all_caches(int num_memcgs)
224 struct kmem_cache *s;
225 int ret = 0;
227 mutex_lock(&slab_mutex);
228 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
229 ret = update_memcg_params(s, num_memcgs);
231 * Instead of freeing the memory, we'll just leave the caches
232 * up to this point in an updated state.
234 if (ret)
235 break;
237 mutex_unlock(&slab_mutex);
238 return ret;
241 void memcg_link_cache(struct kmem_cache *s)
243 if (is_root_cache(s)) {
244 list_add(&s->root_caches_node, &slab_root_caches);
245 } else {
246 list_add(&s->memcg_params.children_node,
247 &s->memcg_params.root_cache->memcg_params.children);
248 list_add(&s->memcg_params.kmem_caches_node,
249 &s->memcg_params.memcg->kmem_caches);
253 static void memcg_unlink_cache(struct kmem_cache *s)
255 if (is_root_cache(s)) {
256 list_del(&s->root_caches_node);
257 } else {
258 list_del(&s->memcg_params.children_node);
259 list_del(&s->memcg_params.kmem_caches_node);
262 #else
263 static inline int init_memcg_params(struct kmem_cache *s,
264 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
266 return 0;
269 static inline void destroy_memcg_params(struct kmem_cache *s)
273 static inline void memcg_unlink_cache(struct kmem_cache *s)
276 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
279 * Figure out what the alignment of the objects will be given a set of
280 * flags, a user specified alignment and the size of the objects.
282 static unsigned long calculate_alignment(unsigned long flags,
283 unsigned long align, unsigned long size)
286 * If the user wants hardware cache aligned objects then follow that
287 * suggestion if the object is sufficiently large.
289 * The hardware cache alignment cannot override the specified
290 * alignment though. If that is greater then use it.
292 if (flags & SLAB_HWCACHE_ALIGN) {
293 unsigned long ralign;
295 ralign = cache_line_size();
296 while (size <= ralign / 2)
297 ralign /= 2;
298 align = max(align, ralign);
301 if (align < ARCH_SLAB_MINALIGN)
302 align = ARCH_SLAB_MINALIGN;
304 return ALIGN(align, sizeof(void *));
308 * Find a mergeable slab cache
310 int slab_unmergeable(struct kmem_cache *s)
312 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
313 return 1;
315 if (!is_root_cache(s))
316 return 1;
318 if (s->ctor)
319 return 1;
321 if (s->usersize)
322 return 1;
325 * We may have set a slab to be unmergeable during bootstrap.
327 if (s->refcount < 0)
328 return 1;
330 return 0;
333 struct kmem_cache *find_mergeable(size_t size, size_t align,
334 slab_flags_t flags, const char *name, void (*ctor)(void *))
336 struct kmem_cache *s;
338 if (slab_nomerge)
339 return NULL;
341 if (ctor)
342 return NULL;
344 size = ALIGN(size, sizeof(void *));
345 align = calculate_alignment(flags, align, size);
346 size = ALIGN(size, align);
347 flags = kmem_cache_flags(size, flags, name, NULL);
349 if (flags & SLAB_NEVER_MERGE)
350 return NULL;
352 list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
353 if (slab_unmergeable(s))
354 continue;
356 if (size > s->size)
357 continue;
359 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
360 continue;
362 * Check if alignment is compatible.
363 * Courtesy of Adrian Drzewiecki
365 if ((s->size & ~(align - 1)) != s->size)
366 continue;
368 if (s->size - size >= sizeof(void *))
369 continue;
371 if (IS_ENABLED(CONFIG_SLAB) && align &&
372 (align > s->align || s->align % align))
373 continue;
375 return s;
377 return NULL;
380 static struct kmem_cache *create_cache(const char *name,
381 size_t object_size, size_t size, size_t align,
382 slab_flags_t flags, size_t useroffset,
383 size_t usersize, void (*ctor)(void *),
384 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
386 struct kmem_cache *s;
387 int err;
389 if (WARN_ON(useroffset + usersize > object_size))
390 useroffset = usersize = 0;
392 err = -ENOMEM;
393 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
394 if (!s)
395 goto out;
397 s->name = name;
398 s->object_size = object_size;
399 s->size = size;
400 s->align = align;
401 s->ctor = ctor;
402 s->useroffset = useroffset;
403 s->usersize = usersize;
405 err = init_memcg_params(s, memcg, root_cache);
406 if (err)
407 goto out_free_cache;
409 err = __kmem_cache_create(s, flags);
410 if (err)
411 goto out_free_cache;
413 s->refcount = 1;
414 list_add(&s->list, &slab_caches);
415 memcg_link_cache(s);
416 out:
417 if (err)
418 return ERR_PTR(err);
419 return s;
421 out_free_cache:
422 destroy_memcg_params(s);
423 kmem_cache_free(kmem_cache, s);
424 goto out;
428 * kmem_cache_create_usercopy - Create a cache.
429 * @name: A string which is used in /proc/slabinfo to identify this cache.
430 * @size: The size of objects to be created in this cache.
431 * @align: The required alignment for the objects.
432 * @flags: SLAB flags
433 * @useroffset: Usercopy region offset
434 * @usersize: Usercopy region size
435 * @ctor: A constructor for the objects.
437 * Returns a ptr to the cache on success, NULL on failure.
438 * Cannot be called within a interrupt, but can be interrupted.
439 * The @ctor is run when new pages are allocated by the cache.
441 * The flags are
443 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
444 * to catch references to uninitialised memory.
446 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
447 * for buffer overruns.
449 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
450 * cacheline. This can be beneficial if you're counting cycles as closely
451 * as davem.
453 struct kmem_cache *
454 kmem_cache_create_usercopy(const char *name, size_t size, size_t align,
455 slab_flags_t flags, size_t useroffset, size_t usersize,
456 void (*ctor)(void *))
458 struct kmem_cache *s = NULL;
459 const char *cache_name;
460 int err;
462 get_online_cpus();
463 get_online_mems();
464 memcg_get_cache_ids();
466 mutex_lock(&slab_mutex);
468 err = kmem_cache_sanity_check(name, size);
469 if (err) {
470 goto out_unlock;
473 /* Refuse requests with allocator specific flags */
474 if (flags & ~SLAB_FLAGS_PERMITTED) {
475 err = -EINVAL;
476 goto out_unlock;
480 * Some allocators will constraint the set of valid flags to a subset
481 * of all flags. We expect them to define CACHE_CREATE_MASK in this
482 * case, and we'll just provide them with a sanitized version of the
483 * passed flags.
485 flags &= CACHE_CREATE_MASK;
487 /* Fail closed on bad usersize of useroffset values. */
488 if (WARN_ON(!usersize && useroffset) ||
489 WARN_ON(size < usersize || size - usersize < useroffset))
490 usersize = useroffset = 0;
492 if (!usersize)
493 s = __kmem_cache_alias(name, size, align, flags, ctor);
494 if (s)
495 goto out_unlock;
497 cache_name = kstrdup_const(name, GFP_KERNEL);
498 if (!cache_name) {
499 err = -ENOMEM;
500 goto out_unlock;
503 s = create_cache(cache_name, size, size,
504 calculate_alignment(flags, align, size),
505 flags, useroffset, usersize, ctor, NULL, NULL);
506 if (IS_ERR(s)) {
507 err = PTR_ERR(s);
508 kfree_const(cache_name);
511 out_unlock:
512 mutex_unlock(&slab_mutex);
514 memcg_put_cache_ids();
515 put_online_mems();
516 put_online_cpus();
518 if (err) {
519 if (flags & SLAB_PANIC)
520 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
521 name, err);
522 else {
523 pr_warn("kmem_cache_create(%s) failed with error %d\n",
524 name, err);
525 dump_stack();
527 return NULL;
529 return s;
531 EXPORT_SYMBOL(kmem_cache_create_usercopy);
533 struct kmem_cache *
534 kmem_cache_create(const char *name, size_t size, size_t align,
535 slab_flags_t flags, void (*ctor)(void *))
537 return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
538 ctor);
540 EXPORT_SYMBOL(kmem_cache_create);
542 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
544 LIST_HEAD(to_destroy);
545 struct kmem_cache *s, *s2;
548 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
549 * @slab_caches_to_rcu_destroy list. The slab pages are freed
550 * through RCU and and the associated kmem_cache are dereferenced
551 * while freeing the pages, so the kmem_caches should be freed only
552 * after the pending RCU operations are finished. As rcu_barrier()
553 * is a pretty slow operation, we batch all pending destructions
554 * asynchronously.
556 mutex_lock(&slab_mutex);
557 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
558 mutex_unlock(&slab_mutex);
560 if (list_empty(&to_destroy))
561 return;
563 rcu_barrier();
565 list_for_each_entry_safe(s, s2, &to_destroy, list) {
566 #ifdef SLAB_SUPPORTS_SYSFS
567 sysfs_slab_release(s);
568 #else
569 slab_kmem_cache_release(s);
570 #endif
574 static int shutdown_cache(struct kmem_cache *s)
576 /* free asan quarantined objects */
577 kasan_cache_shutdown(s);
579 if (__kmem_cache_shutdown(s) != 0)
580 return -EBUSY;
582 memcg_unlink_cache(s);
583 list_del(&s->list);
585 if (s->flags & SLAB_TYPESAFE_BY_RCU) {
586 list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
587 schedule_work(&slab_caches_to_rcu_destroy_work);
588 } else {
589 #ifdef SLAB_SUPPORTS_SYSFS
590 sysfs_slab_release(s);
591 #else
592 slab_kmem_cache_release(s);
593 #endif
596 return 0;
599 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
601 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
602 * @memcg: The memory cgroup the new cache is for.
603 * @root_cache: The parent of the new cache.
605 * This function attempts to create a kmem cache that will serve allocation
606 * requests going from @memcg to @root_cache. The new cache inherits properties
607 * from its parent.
609 void memcg_create_kmem_cache(struct mem_cgroup *memcg,
610 struct kmem_cache *root_cache)
612 static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
613 struct cgroup_subsys_state *css = &memcg->css;
614 struct memcg_cache_array *arr;
615 struct kmem_cache *s = NULL;
616 char *cache_name;
617 int idx;
619 get_online_cpus();
620 get_online_mems();
622 mutex_lock(&slab_mutex);
625 * The memory cgroup could have been offlined while the cache
626 * creation work was pending.
628 if (memcg->kmem_state != KMEM_ONLINE)
629 goto out_unlock;
631 idx = memcg_cache_id(memcg);
632 arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
633 lockdep_is_held(&slab_mutex));
636 * Since per-memcg caches are created asynchronously on first
637 * allocation (see memcg_kmem_get_cache()), several threads can try to
638 * create the same cache, but only one of them may succeed.
640 if (arr->entries[idx])
641 goto out_unlock;
643 cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
644 cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
645 css->serial_nr, memcg_name_buf);
646 if (!cache_name)
647 goto out_unlock;
649 s = create_cache(cache_name, root_cache->object_size,
650 root_cache->size, root_cache->align,
651 root_cache->flags & CACHE_CREATE_MASK,
652 root_cache->useroffset, root_cache->usersize,
653 root_cache->ctor, memcg, root_cache);
655 * If we could not create a memcg cache, do not complain, because
656 * that's not critical at all as we can always proceed with the root
657 * cache.
659 if (IS_ERR(s)) {
660 kfree(cache_name);
661 goto out_unlock;
665 * Since readers won't lock (see cache_from_memcg_idx()), we need a
666 * barrier here to ensure nobody will see the kmem_cache partially
667 * initialized.
669 smp_wmb();
670 arr->entries[idx] = s;
672 out_unlock:
673 mutex_unlock(&slab_mutex);
675 put_online_mems();
676 put_online_cpus();
679 static void kmemcg_deactivate_workfn(struct work_struct *work)
681 struct kmem_cache *s = container_of(work, struct kmem_cache,
682 memcg_params.deact_work);
684 get_online_cpus();
685 get_online_mems();
687 mutex_lock(&slab_mutex);
689 s->memcg_params.deact_fn(s);
691 mutex_unlock(&slab_mutex);
693 put_online_mems();
694 put_online_cpus();
696 /* done, put the ref from slab_deactivate_memcg_cache_rcu_sched() */
697 css_put(&s->memcg_params.memcg->css);
700 static void kmemcg_deactivate_rcufn(struct rcu_head *head)
702 struct kmem_cache *s = container_of(head, struct kmem_cache,
703 memcg_params.deact_rcu_head);
706 * We need to grab blocking locks. Bounce to ->deact_work. The
707 * work item shares the space with the RCU head and can't be
708 * initialized eariler.
710 INIT_WORK(&s->memcg_params.deact_work, kmemcg_deactivate_workfn);
711 queue_work(memcg_kmem_cache_wq, &s->memcg_params.deact_work);
715 * slab_deactivate_memcg_cache_rcu_sched - schedule deactivation after a
716 * sched RCU grace period
717 * @s: target kmem_cache
718 * @deact_fn: deactivation function to call
720 * Schedule @deact_fn to be invoked with online cpus, mems and slab_mutex
721 * held after a sched RCU grace period. The slab is guaranteed to stay
722 * alive until @deact_fn is finished. This is to be used from
723 * __kmemcg_cache_deactivate().
725 void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s,
726 void (*deact_fn)(struct kmem_cache *))
728 if (WARN_ON_ONCE(is_root_cache(s)) ||
729 WARN_ON_ONCE(s->memcg_params.deact_fn))
730 return;
732 /* pin memcg so that @s doesn't get destroyed in the middle */
733 css_get(&s->memcg_params.memcg->css);
735 s->memcg_params.deact_fn = deact_fn;
736 call_rcu_sched(&s->memcg_params.deact_rcu_head, kmemcg_deactivate_rcufn);
739 void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
741 int idx;
742 struct memcg_cache_array *arr;
743 struct kmem_cache *s, *c;
745 idx = memcg_cache_id(memcg);
747 get_online_cpus();
748 get_online_mems();
750 mutex_lock(&slab_mutex);
751 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
752 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
753 lockdep_is_held(&slab_mutex));
754 c = arr->entries[idx];
755 if (!c)
756 continue;
758 __kmemcg_cache_deactivate(c);
759 arr->entries[idx] = NULL;
761 mutex_unlock(&slab_mutex);
763 put_online_mems();
764 put_online_cpus();
767 void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
769 struct kmem_cache *s, *s2;
771 get_online_cpus();
772 get_online_mems();
774 mutex_lock(&slab_mutex);
775 list_for_each_entry_safe(s, s2, &memcg->kmem_caches,
776 memcg_params.kmem_caches_node) {
778 * The cgroup is about to be freed and therefore has no charges
779 * left. Hence, all its caches must be empty by now.
781 BUG_ON(shutdown_cache(s));
783 mutex_unlock(&slab_mutex);
785 put_online_mems();
786 put_online_cpus();
789 static int shutdown_memcg_caches(struct kmem_cache *s)
791 struct memcg_cache_array *arr;
792 struct kmem_cache *c, *c2;
793 LIST_HEAD(busy);
794 int i;
796 BUG_ON(!is_root_cache(s));
799 * First, shutdown active caches, i.e. caches that belong to online
800 * memory cgroups.
802 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
803 lockdep_is_held(&slab_mutex));
804 for_each_memcg_cache_index(i) {
805 c = arr->entries[i];
806 if (!c)
807 continue;
808 if (shutdown_cache(c))
810 * The cache still has objects. Move it to a temporary
811 * list so as not to try to destroy it for a second
812 * time while iterating over inactive caches below.
814 list_move(&c->memcg_params.children_node, &busy);
815 else
817 * The cache is empty and will be destroyed soon. Clear
818 * the pointer to it in the memcg_caches array so that
819 * it will never be accessed even if the root cache
820 * stays alive.
822 arr->entries[i] = NULL;
826 * Second, shutdown all caches left from memory cgroups that are now
827 * offline.
829 list_for_each_entry_safe(c, c2, &s->memcg_params.children,
830 memcg_params.children_node)
831 shutdown_cache(c);
833 list_splice(&busy, &s->memcg_params.children);
836 * A cache being destroyed must be empty. In particular, this means
837 * that all per memcg caches attached to it must be empty too.
839 if (!list_empty(&s->memcg_params.children))
840 return -EBUSY;
841 return 0;
843 #else
844 static inline int shutdown_memcg_caches(struct kmem_cache *s)
846 return 0;
848 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
850 void slab_kmem_cache_release(struct kmem_cache *s)
852 __kmem_cache_release(s);
853 destroy_memcg_params(s);
854 kfree_const(s->name);
855 kmem_cache_free(kmem_cache, s);
858 void kmem_cache_destroy(struct kmem_cache *s)
860 int err;
862 if (unlikely(!s))
863 return;
865 get_online_cpus();
866 get_online_mems();
868 mutex_lock(&slab_mutex);
870 s->refcount--;
871 if (s->refcount)
872 goto out_unlock;
874 err = shutdown_memcg_caches(s);
875 if (!err)
876 err = shutdown_cache(s);
878 if (err) {
879 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
880 s->name);
881 dump_stack();
883 out_unlock:
884 mutex_unlock(&slab_mutex);
886 put_online_mems();
887 put_online_cpus();
889 EXPORT_SYMBOL(kmem_cache_destroy);
892 * kmem_cache_shrink - Shrink a cache.
893 * @cachep: The cache to shrink.
895 * Releases as many slabs as possible for a cache.
896 * To help debugging, a zero exit status indicates all slabs were released.
898 int kmem_cache_shrink(struct kmem_cache *cachep)
900 int ret;
902 get_online_cpus();
903 get_online_mems();
904 kasan_cache_shrink(cachep);
905 ret = __kmem_cache_shrink(cachep);
906 put_online_mems();
907 put_online_cpus();
908 return ret;
910 EXPORT_SYMBOL(kmem_cache_shrink);
912 bool slab_is_available(void)
914 return slab_state >= UP;
917 #ifndef CONFIG_SLOB
918 /* Create a cache during boot when no slab services are available yet */
919 void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
920 slab_flags_t flags, size_t useroffset, size_t usersize)
922 int err;
924 s->name = name;
925 s->size = s->object_size = size;
926 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
927 s->useroffset = useroffset;
928 s->usersize = usersize;
930 slab_init_memcg_params(s);
932 err = __kmem_cache_create(s, flags);
934 if (err)
935 panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
936 name, size, err);
938 s->refcount = -1; /* Exempt from merging for now */
941 struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
942 slab_flags_t flags, size_t useroffset,
943 size_t usersize)
945 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
947 if (!s)
948 panic("Out of memory when creating slab %s\n", name);
950 create_boot_cache(s, name, size, flags, useroffset, usersize);
951 list_add(&s->list, &slab_caches);
952 memcg_link_cache(s);
953 s->refcount = 1;
954 return s;
957 struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
958 EXPORT_SYMBOL(kmalloc_caches);
960 #ifdef CONFIG_ZONE_DMA
961 struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
962 EXPORT_SYMBOL(kmalloc_dma_caches);
963 #endif
966 * Conversion table for small slabs sizes / 8 to the index in the
967 * kmalloc array. This is necessary for slabs < 192 since we have non power
968 * of two cache sizes there. The size of larger slabs can be determined using
969 * fls.
971 static s8 size_index[24] = {
972 3, /* 8 */
973 4, /* 16 */
974 5, /* 24 */
975 5, /* 32 */
976 6, /* 40 */
977 6, /* 48 */
978 6, /* 56 */
979 6, /* 64 */
980 1, /* 72 */
981 1, /* 80 */
982 1, /* 88 */
983 1, /* 96 */
984 7, /* 104 */
985 7, /* 112 */
986 7, /* 120 */
987 7, /* 128 */
988 2, /* 136 */
989 2, /* 144 */
990 2, /* 152 */
991 2, /* 160 */
992 2, /* 168 */
993 2, /* 176 */
994 2, /* 184 */
995 2 /* 192 */
998 static inline int size_index_elem(size_t bytes)
1000 return (bytes - 1) / 8;
1004 * Find the kmem_cache structure that serves a given size of
1005 * allocation
1007 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
1009 int index;
1011 if (unlikely(size > KMALLOC_MAX_SIZE)) {
1012 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
1013 return NULL;
1016 if (size <= 192) {
1017 if (!size)
1018 return ZERO_SIZE_PTR;
1020 index = size_index[size_index_elem(size)];
1021 } else
1022 index = fls(size - 1);
1024 #ifdef CONFIG_ZONE_DMA
1025 if (unlikely((flags & GFP_DMA)))
1026 return kmalloc_dma_caches[index];
1028 #endif
1029 return kmalloc_caches[index];
1033 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
1034 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
1035 * kmalloc-67108864.
1037 const struct kmalloc_info_struct kmalloc_info[] __initconst = {
1038 {NULL, 0}, {"kmalloc-96", 96},
1039 {"kmalloc-192", 192}, {"kmalloc-8", 8},
1040 {"kmalloc-16", 16}, {"kmalloc-32", 32},
1041 {"kmalloc-64", 64}, {"kmalloc-128", 128},
1042 {"kmalloc-256", 256}, {"kmalloc-512", 512},
1043 {"kmalloc-1024", 1024}, {"kmalloc-2048", 2048},
1044 {"kmalloc-4096", 4096}, {"kmalloc-8192", 8192},
1045 {"kmalloc-16384", 16384}, {"kmalloc-32768", 32768},
1046 {"kmalloc-65536", 65536}, {"kmalloc-131072", 131072},
1047 {"kmalloc-262144", 262144}, {"kmalloc-524288", 524288},
1048 {"kmalloc-1048576", 1048576}, {"kmalloc-2097152", 2097152},
1049 {"kmalloc-4194304", 4194304}, {"kmalloc-8388608", 8388608},
1050 {"kmalloc-16777216", 16777216}, {"kmalloc-33554432", 33554432},
1051 {"kmalloc-67108864", 67108864}
1055 * Patch up the size_index table if we have strange large alignment
1056 * requirements for the kmalloc array. This is only the case for
1057 * MIPS it seems. The standard arches will not generate any code here.
1059 * Largest permitted alignment is 256 bytes due to the way we
1060 * handle the index determination for the smaller caches.
1062 * Make sure that nothing crazy happens if someone starts tinkering
1063 * around with ARCH_KMALLOC_MINALIGN
1065 void __init setup_kmalloc_cache_index_table(void)
1067 int i;
1069 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
1070 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
1072 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
1073 int elem = size_index_elem(i);
1075 if (elem >= ARRAY_SIZE(size_index))
1076 break;
1077 size_index[elem] = KMALLOC_SHIFT_LOW;
1080 if (KMALLOC_MIN_SIZE >= 64) {
1082 * The 96 byte size cache is not used if the alignment
1083 * is 64 byte.
1085 for (i = 64 + 8; i <= 96; i += 8)
1086 size_index[size_index_elem(i)] = 7;
1090 if (KMALLOC_MIN_SIZE >= 128) {
1092 * The 192 byte sized cache is not used if the alignment
1093 * is 128 byte. Redirect kmalloc to use the 256 byte cache
1094 * instead.
1096 for (i = 128 + 8; i <= 192; i += 8)
1097 size_index[size_index_elem(i)] = 8;
1101 static void __init new_kmalloc_cache(int idx, slab_flags_t flags)
1103 kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
1104 kmalloc_info[idx].size, flags, 0,
1105 kmalloc_info[idx].size);
1109 * Create the kmalloc array. Some of the regular kmalloc arrays
1110 * may already have been created because they were needed to
1111 * enable allocations for slab creation.
1113 void __init create_kmalloc_caches(slab_flags_t flags)
1115 int i;
1117 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
1118 if (!kmalloc_caches[i])
1119 new_kmalloc_cache(i, flags);
1122 * Caches that are not of the two-to-the-power-of size.
1123 * These have to be created immediately after the
1124 * earlier power of two caches
1126 if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
1127 new_kmalloc_cache(1, flags);
1128 if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
1129 new_kmalloc_cache(2, flags);
1132 /* Kmalloc array is now usable */
1133 slab_state = UP;
1135 #ifdef CONFIG_ZONE_DMA
1136 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
1137 struct kmem_cache *s = kmalloc_caches[i];
1139 if (s) {
1140 int size = kmalloc_size(i);
1141 char *n = kasprintf(GFP_NOWAIT,
1142 "dma-kmalloc-%d", size);
1144 BUG_ON(!n);
1145 kmalloc_dma_caches[i] = create_kmalloc_cache(n,
1146 size, SLAB_CACHE_DMA | flags, 0, 0);
1149 #endif
1151 #endif /* !CONFIG_SLOB */
1154 * To avoid unnecessary overhead, we pass through large allocation requests
1155 * directly to the page allocator. We use __GFP_COMP, because we will need to
1156 * know the allocation order to free the pages properly in kfree.
1158 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
1160 void *ret;
1161 struct page *page;
1163 flags |= __GFP_COMP;
1164 page = alloc_pages(flags, order);
1165 ret = page ? page_address(page) : NULL;
1166 kmemleak_alloc(ret, size, 1, flags);
1167 kasan_kmalloc_large(ret, size, flags);
1168 return ret;
1170 EXPORT_SYMBOL(kmalloc_order);
1172 #ifdef CONFIG_TRACING
1173 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1175 void *ret = kmalloc_order(size, flags, order);
1176 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1177 return ret;
1179 EXPORT_SYMBOL(kmalloc_order_trace);
1180 #endif
1182 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1183 /* Randomize a generic freelist */
1184 static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1185 size_t count)
1187 size_t i;
1188 unsigned int rand;
1190 for (i = 0; i < count; i++)
1191 list[i] = i;
1193 /* Fisher-Yates shuffle */
1194 for (i = count - 1; i > 0; i--) {
1195 rand = prandom_u32_state(state);
1196 rand %= (i + 1);
1197 swap(list[i], list[rand]);
1201 /* Create a random sequence per cache */
1202 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1203 gfp_t gfp)
1205 struct rnd_state state;
1207 if (count < 2 || cachep->random_seq)
1208 return 0;
1210 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1211 if (!cachep->random_seq)
1212 return -ENOMEM;
1214 /* Get best entropy at this stage of boot */
1215 prandom_seed_state(&state, get_random_long());
1217 freelist_randomize(&state, cachep->random_seq, count);
1218 return 0;
1221 /* Destroy the per-cache random freelist sequence */
1222 void cache_random_seq_destroy(struct kmem_cache *cachep)
1224 kfree(cachep->random_seq);
1225 cachep->random_seq = NULL;
1227 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1229 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1230 #ifdef CONFIG_SLAB
1231 #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
1232 #else
1233 #define SLABINFO_RIGHTS S_IRUSR
1234 #endif
1236 static void print_slabinfo_header(struct seq_file *m)
1239 * Output format version, so at least we can change it
1240 * without _too_ many complaints.
1242 #ifdef CONFIG_DEBUG_SLAB
1243 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1244 #else
1245 seq_puts(m, "slabinfo - version: 2.1\n");
1246 #endif
1247 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1248 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1249 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1250 #ifdef CONFIG_DEBUG_SLAB
1251 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1252 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1253 #endif
1254 seq_putc(m, '\n');
1257 void *slab_start(struct seq_file *m, loff_t *pos)
1259 mutex_lock(&slab_mutex);
1260 return seq_list_start(&slab_root_caches, *pos);
1263 void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1265 return seq_list_next(p, &slab_root_caches, pos);
1268 void slab_stop(struct seq_file *m, void *p)
1270 mutex_unlock(&slab_mutex);
1273 static void
1274 memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
1276 struct kmem_cache *c;
1277 struct slabinfo sinfo;
1279 if (!is_root_cache(s))
1280 return;
1282 for_each_memcg_cache(c, s) {
1283 memset(&sinfo, 0, sizeof(sinfo));
1284 get_slabinfo(c, &sinfo);
1286 info->active_slabs += sinfo.active_slabs;
1287 info->num_slabs += sinfo.num_slabs;
1288 info->shared_avail += sinfo.shared_avail;
1289 info->active_objs += sinfo.active_objs;
1290 info->num_objs += sinfo.num_objs;
1294 static void cache_show(struct kmem_cache *s, struct seq_file *m)
1296 struct slabinfo sinfo;
1298 memset(&sinfo, 0, sizeof(sinfo));
1299 get_slabinfo(s, &sinfo);
1301 memcg_accumulate_slabinfo(s, &sinfo);
1303 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1304 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1305 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1307 seq_printf(m, " : tunables %4u %4u %4u",
1308 sinfo.limit, sinfo.batchcount, sinfo.shared);
1309 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1310 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1311 slabinfo_show_stats(m, s);
1312 seq_putc(m, '\n');
1315 static int slab_show(struct seq_file *m, void *p)
1317 struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
1319 if (p == slab_root_caches.next)
1320 print_slabinfo_header(m);
1321 cache_show(s, m);
1322 return 0;
1325 void dump_unreclaimable_slab(void)
1327 struct kmem_cache *s, *s2;
1328 struct slabinfo sinfo;
1331 * Here acquiring slab_mutex is risky since we don't prefer to get
1332 * sleep in oom path. But, without mutex hold, it may introduce a
1333 * risk of crash.
1334 * Use mutex_trylock to protect the list traverse, dump nothing
1335 * without acquiring the mutex.
1337 if (!mutex_trylock(&slab_mutex)) {
1338 pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1339 return;
1342 pr_info("Unreclaimable slab info:\n");
1343 pr_info("Name Used Total\n");
1345 list_for_each_entry_safe(s, s2, &slab_caches, list) {
1346 if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT))
1347 continue;
1349 get_slabinfo(s, &sinfo);
1351 if (sinfo.num_objs > 0)
1352 pr_info("%-17s %10luKB %10luKB\n", cache_name(s),
1353 (sinfo.active_objs * s->size) / 1024,
1354 (sinfo.num_objs * s->size) / 1024);
1356 mutex_unlock(&slab_mutex);
1359 #if defined(CONFIG_MEMCG)
1360 void *memcg_slab_start(struct seq_file *m, loff_t *pos)
1362 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1364 mutex_lock(&slab_mutex);
1365 return seq_list_start(&memcg->kmem_caches, *pos);
1368 void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
1370 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1372 return seq_list_next(p, &memcg->kmem_caches, pos);
1375 void memcg_slab_stop(struct seq_file *m, void *p)
1377 mutex_unlock(&slab_mutex);
1380 int memcg_slab_show(struct seq_file *m, void *p)
1382 struct kmem_cache *s = list_entry(p, struct kmem_cache,
1383 memcg_params.kmem_caches_node);
1384 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1386 if (p == memcg->kmem_caches.next)
1387 print_slabinfo_header(m);
1388 cache_show(s, m);
1389 return 0;
1391 #endif
1394 * slabinfo_op - iterator that generates /proc/slabinfo
1396 * Output layout:
1397 * cache-name
1398 * num-active-objs
1399 * total-objs
1400 * object size
1401 * num-active-slabs
1402 * total-slabs
1403 * num-pages-per-slab
1404 * + further values on SMP and with statistics enabled
1406 static const struct seq_operations slabinfo_op = {
1407 .start = slab_start,
1408 .next = slab_next,
1409 .stop = slab_stop,
1410 .show = slab_show,
1413 static int slabinfo_open(struct inode *inode, struct file *file)
1415 return seq_open(file, &slabinfo_op);
1418 static const struct file_operations proc_slabinfo_operations = {
1419 .open = slabinfo_open,
1420 .read = seq_read,
1421 .write = slabinfo_write,
1422 .llseek = seq_lseek,
1423 .release = seq_release,
1426 static int __init slab_proc_init(void)
1428 proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1429 &proc_slabinfo_operations);
1430 return 0;
1432 module_init(slab_proc_init);
1433 #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1435 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1436 gfp_t flags)
1438 void *ret;
1439 size_t ks = 0;
1441 if (p)
1442 ks = ksize(p);
1444 if (ks >= new_size) {
1445 kasan_krealloc((void *)p, new_size, flags);
1446 return (void *)p;
1449 ret = kmalloc_track_caller(new_size, flags);
1450 if (ret && p)
1451 memcpy(ret, p, ks);
1453 return ret;
1457 * __krealloc - like krealloc() but don't free @p.
1458 * @p: object to reallocate memory for.
1459 * @new_size: how many bytes of memory are required.
1460 * @flags: the type of memory to allocate.
1462 * This function is like krealloc() except it never frees the originally
1463 * allocated buffer. Use this if you don't want to free the buffer immediately
1464 * like, for example, with RCU.
1466 void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1468 if (unlikely(!new_size))
1469 return ZERO_SIZE_PTR;
1471 return __do_krealloc(p, new_size, flags);
1474 EXPORT_SYMBOL(__krealloc);
1477 * krealloc - reallocate memory. The contents will remain unchanged.
1478 * @p: object to reallocate memory for.
1479 * @new_size: how many bytes of memory are required.
1480 * @flags: the type of memory to allocate.
1482 * The contents of the object pointed to are preserved up to the
1483 * lesser of the new and old sizes. If @p is %NULL, krealloc()
1484 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
1485 * %NULL pointer, the object pointed to is freed.
1487 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1489 void *ret;
1491 if (unlikely(!new_size)) {
1492 kfree(p);
1493 return ZERO_SIZE_PTR;
1496 ret = __do_krealloc(p, new_size, flags);
1497 if (ret && p != ret)
1498 kfree(p);
1500 return ret;
1502 EXPORT_SYMBOL(krealloc);
1505 * kzfree - like kfree but zero memory
1506 * @p: object to free memory of
1508 * The memory of the object @p points to is zeroed before freed.
1509 * If @p is %NULL, kzfree() does nothing.
1511 * Note: this function zeroes the whole allocated buffer which can be a good
1512 * deal bigger than the requested buffer size passed to kmalloc(). So be
1513 * careful when using this function in performance sensitive code.
1515 void kzfree(const void *p)
1517 size_t ks;
1518 void *mem = (void *)p;
1520 if (unlikely(ZERO_OR_NULL_PTR(mem)))
1521 return;
1522 ks = ksize(mem);
1523 memset(mem, 0, ks);
1524 kfree(mem);
1526 EXPORT_SYMBOL(kzfree);
1528 /* Tracepoints definitions. */
1529 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1530 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1531 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1532 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1533 EXPORT_TRACEPOINT_SYMBOL(kfree);
1534 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);