Merge tag 'xtensa-20180225' of git://github.com/jcmvbkbc/linux-xtensa
[cris-mirror.git] / net / wireless / scan.c
blobd36c3eb7b9311fc75bdaa020aa0318546efd4128
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * cfg80211 scan result handling
5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2016 Intel Deutschland GmbH
8 */
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/netdevice.h>
13 #include <linux/wireless.h>
14 #include <linux/nl80211.h>
15 #include <linux/etherdevice.h>
16 #include <net/arp.h>
17 #include <net/cfg80211.h>
18 #include <net/cfg80211-wext.h>
19 #include <net/iw_handler.h>
20 #include "core.h"
21 #include "nl80211.h"
22 #include "wext-compat.h"
23 #include "rdev-ops.h"
25 /**
26 * DOC: BSS tree/list structure
28 * At the top level, the BSS list is kept in both a list in each
29 * registered device (@bss_list) as well as an RB-tree for faster
30 * lookup. In the RB-tree, entries can be looked up using their
31 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
32 * for other BSSes.
34 * Due to the possibility of hidden SSIDs, there's a second level
35 * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
36 * The hidden_list connects all BSSes belonging to a single AP
37 * that has a hidden SSID, and connects beacon and probe response
38 * entries. For a probe response entry for a hidden SSID, the
39 * hidden_beacon_bss pointer points to the BSS struct holding the
40 * beacon's information.
42 * Reference counting is done for all these references except for
43 * the hidden_list, so that a beacon BSS struct that is otherwise
44 * not referenced has one reference for being on the bss_list and
45 * one for each probe response entry that points to it using the
46 * hidden_beacon_bss pointer. When a BSS struct that has such a
47 * pointer is get/put, the refcount update is also propagated to
48 * the referenced struct, this ensure that it cannot get removed
49 * while somebody is using the probe response version.
51 * Note that the hidden_beacon_bss pointer never changes, due to
52 * the reference counting. Therefore, no locking is needed for
53 * it.
55 * Also note that the hidden_beacon_bss pointer is only relevant
56 * if the driver uses something other than the IEs, e.g. private
57 * data stored stored in the BSS struct, since the beacon IEs are
58 * also linked into the probe response struct.
62 * Limit the number of BSS entries stored in mac80211. Each one is
63 * a bit over 4k at most, so this limits to roughly 4-5M of memory.
64 * If somebody wants to really attack this though, they'd likely
65 * use small beacons, and only one type of frame, limiting each of
66 * the entries to a much smaller size (in order to generate more
67 * entries in total, so overhead is bigger.)
69 static int bss_entries_limit = 1000;
70 module_param(bss_entries_limit, int, 0644);
71 MODULE_PARM_DESC(bss_entries_limit,
72 "limit to number of scan BSS entries (per wiphy, default 1000)");
74 #define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ)
76 static void bss_free(struct cfg80211_internal_bss *bss)
78 struct cfg80211_bss_ies *ies;
80 if (WARN_ON(atomic_read(&bss->hold)))
81 return;
83 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
84 if (ies && !bss->pub.hidden_beacon_bss)
85 kfree_rcu(ies, rcu_head);
86 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
87 if (ies)
88 kfree_rcu(ies, rcu_head);
91 * This happens when the module is removed, it doesn't
92 * really matter any more save for completeness
94 if (!list_empty(&bss->hidden_list))
95 list_del(&bss->hidden_list);
97 kfree(bss);
100 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
101 struct cfg80211_internal_bss *bss)
103 lockdep_assert_held(&rdev->bss_lock);
105 bss->refcount++;
106 if (bss->pub.hidden_beacon_bss) {
107 bss = container_of(bss->pub.hidden_beacon_bss,
108 struct cfg80211_internal_bss,
109 pub);
110 bss->refcount++;
114 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
115 struct cfg80211_internal_bss *bss)
117 lockdep_assert_held(&rdev->bss_lock);
119 if (bss->pub.hidden_beacon_bss) {
120 struct cfg80211_internal_bss *hbss;
121 hbss = container_of(bss->pub.hidden_beacon_bss,
122 struct cfg80211_internal_bss,
123 pub);
124 hbss->refcount--;
125 if (hbss->refcount == 0)
126 bss_free(hbss);
128 bss->refcount--;
129 if (bss->refcount == 0)
130 bss_free(bss);
133 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
134 struct cfg80211_internal_bss *bss)
136 lockdep_assert_held(&rdev->bss_lock);
138 if (!list_empty(&bss->hidden_list)) {
140 * don't remove the beacon entry if it has
141 * probe responses associated with it
143 if (!bss->pub.hidden_beacon_bss)
144 return false;
146 * if it's a probe response entry break its
147 * link to the other entries in the group
149 list_del_init(&bss->hidden_list);
152 list_del_init(&bss->list);
153 rb_erase(&bss->rbn, &rdev->bss_tree);
154 rdev->bss_entries--;
155 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
156 "rdev bss entries[%d]/list[empty:%d] corruption\n",
157 rdev->bss_entries, list_empty(&rdev->bss_list));
158 bss_ref_put(rdev, bss);
159 return true;
162 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
163 unsigned long expire_time)
165 struct cfg80211_internal_bss *bss, *tmp;
166 bool expired = false;
168 lockdep_assert_held(&rdev->bss_lock);
170 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
171 if (atomic_read(&bss->hold))
172 continue;
173 if (!time_after(expire_time, bss->ts))
174 continue;
176 if (__cfg80211_unlink_bss(rdev, bss))
177 expired = true;
180 if (expired)
181 rdev->bss_generation++;
184 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
186 struct cfg80211_internal_bss *bss, *oldest = NULL;
187 bool ret;
189 lockdep_assert_held(&rdev->bss_lock);
191 list_for_each_entry(bss, &rdev->bss_list, list) {
192 if (atomic_read(&bss->hold))
193 continue;
195 if (!list_empty(&bss->hidden_list) &&
196 !bss->pub.hidden_beacon_bss)
197 continue;
199 if (oldest && time_before(oldest->ts, bss->ts))
200 continue;
201 oldest = bss;
204 if (WARN_ON(!oldest))
205 return false;
208 * The callers make sure to increase rdev->bss_generation if anything
209 * gets removed (and a new entry added), so there's no need to also do
210 * it here.
213 ret = __cfg80211_unlink_bss(rdev, oldest);
214 WARN_ON(!ret);
215 return ret;
218 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
219 bool send_message)
221 struct cfg80211_scan_request *request;
222 struct wireless_dev *wdev;
223 struct sk_buff *msg;
224 #ifdef CONFIG_CFG80211_WEXT
225 union iwreq_data wrqu;
226 #endif
228 ASSERT_RTNL();
230 if (rdev->scan_msg) {
231 nl80211_send_scan_msg(rdev, rdev->scan_msg);
232 rdev->scan_msg = NULL;
233 return;
236 request = rdev->scan_req;
237 if (!request)
238 return;
240 wdev = request->wdev;
243 * This must be before sending the other events!
244 * Otherwise, wpa_supplicant gets completely confused with
245 * wext events.
247 if (wdev->netdev)
248 cfg80211_sme_scan_done(wdev->netdev);
250 if (!request->info.aborted &&
251 request->flags & NL80211_SCAN_FLAG_FLUSH) {
252 /* flush entries from previous scans */
253 spin_lock_bh(&rdev->bss_lock);
254 __cfg80211_bss_expire(rdev, request->scan_start);
255 spin_unlock_bh(&rdev->bss_lock);
258 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
260 #ifdef CONFIG_CFG80211_WEXT
261 if (wdev->netdev && !request->info.aborted) {
262 memset(&wrqu, 0, sizeof(wrqu));
264 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
266 #endif
268 if (wdev->netdev)
269 dev_put(wdev->netdev);
271 rdev->scan_req = NULL;
272 kfree(request);
274 if (!send_message)
275 rdev->scan_msg = msg;
276 else
277 nl80211_send_scan_msg(rdev, msg);
280 void __cfg80211_scan_done(struct work_struct *wk)
282 struct cfg80211_registered_device *rdev;
284 rdev = container_of(wk, struct cfg80211_registered_device,
285 scan_done_wk);
287 rtnl_lock();
288 ___cfg80211_scan_done(rdev, true);
289 rtnl_unlock();
292 void cfg80211_scan_done(struct cfg80211_scan_request *request,
293 struct cfg80211_scan_info *info)
295 trace_cfg80211_scan_done(request, info);
296 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req);
298 request->info = *info;
299 request->notified = true;
300 queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk);
302 EXPORT_SYMBOL(cfg80211_scan_done);
304 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
305 struct cfg80211_sched_scan_request *req)
307 ASSERT_RTNL();
309 list_add_rcu(&req->list, &rdev->sched_scan_req_list);
312 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
313 struct cfg80211_sched_scan_request *req)
315 ASSERT_RTNL();
317 list_del_rcu(&req->list);
318 kfree_rcu(req, rcu_head);
321 static struct cfg80211_sched_scan_request *
322 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
324 struct cfg80211_sched_scan_request *pos;
326 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
328 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list) {
329 if (pos->reqid == reqid)
330 return pos;
332 return NULL;
336 * Determines if a scheduled scan request can be handled. When a legacy
337 * scheduled scan is running no other scheduled scan is allowed regardless
338 * whether the request is for legacy or multi-support scan. When a multi-support
339 * scheduled scan is running a request for legacy scan is not allowed. In this
340 * case a request for multi-support scan can be handled if resources are
341 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
343 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
344 bool want_multi)
346 struct cfg80211_sched_scan_request *pos;
347 int i = 0;
349 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
350 /* request id zero means legacy in progress */
351 if (!i && !pos->reqid)
352 return -EINPROGRESS;
353 i++;
356 if (i) {
357 /* no legacy allowed when multi request(s) are active */
358 if (!want_multi)
359 return -EINPROGRESS;
361 /* resource limit reached */
362 if (i == rdev->wiphy.max_sched_scan_reqs)
363 return -ENOSPC;
365 return 0;
368 void cfg80211_sched_scan_results_wk(struct work_struct *work)
370 struct cfg80211_registered_device *rdev;
371 struct cfg80211_sched_scan_request *req, *tmp;
373 rdev = container_of(work, struct cfg80211_registered_device,
374 sched_scan_res_wk);
376 rtnl_lock();
377 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
378 if (req->report_results) {
379 req->report_results = false;
380 if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
381 /* flush entries from previous scans */
382 spin_lock_bh(&rdev->bss_lock);
383 __cfg80211_bss_expire(rdev, req->scan_start);
384 spin_unlock_bh(&rdev->bss_lock);
385 req->scan_start = jiffies;
387 nl80211_send_sched_scan(req,
388 NL80211_CMD_SCHED_SCAN_RESULTS);
391 rtnl_unlock();
394 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
396 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
397 struct cfg80211_sched_scan_request *request;
399 trace_cfg80211_sched_scan_results(wiphy, reqid);
400 /* ignore if we're not scanning */
402 rcu_read_lock();
403 request = cfg80211_find_sched_scan_req(rdev, reqid);
404 if (request) {
405 request->report_results = true;
406 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
408 rcu_read_unlock();
410 EXPORT_SYMBOL(cfg80211_sched_scan_results);
412 void cfg80211_sched_scan_stopped_rtnl(struct wiphy *wiphy, u64 reqid)
414 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
416 ASSERT_RTNL();
418 trace_cfg80211_sched_scan_stopped(wiphy, reqid);
420 __cfg80211_stop_sched_scan(rdev, reqid, true);
422 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_rtnl);
424 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
426 rtnl_lock();
427 cfg80211_sched_scan_stopped_rtnl(wiphy, reqid);
428 rtnl_unlock();
430 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
432 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
433 struct cfg80211_sched_scan_request *req,
434 bool driver_initiated)
436 ASSERT_RTNL();
438 if (!driver_initiated) {
439 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
440 if (err)
441 return err;
444 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
446 cfg80211_del_sched_scan_req(rdev, req);
448 return 0;
451 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
452 u64 reqid, bool driver_initiated)
454 struct cfg80211_sched_scan_request *sched_scan_req;
456 ASSERT_RTNL();
458 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
459 if (!sched_scan_req)
460 return -ENOENT;
462 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
463 driver_initiated);
466 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
467 unsigned long age_secs)
469 struct cfg80211_internal_bss *bss;
470 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
472 spin_lock_bh(&rdev->bss_lock);
473 list_for_each_entry(bss, &rdev->bss_list, list)
474 bss->ts -= age_jiffies;
475 spin_unlock_bh(&rdev->bss_lock);
478 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
480 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
483 const u8 *cfg80211_find_ie_match(u8 eid, const u8 *ies, int len,
484 const u8 *match, int match_len,
485 int match_offset)
487 /* match_offset can't be smaller than 2, unless match_len is
488 * zero, in which case match_offset must be zero as well.
490 if (WARN_ON((match_len && match_offset < 2) ||
491 (!match_len && match_offset)))
492 return NULL;
494 while (len >= 2 && len >= ies[1] + 2) {
495 if ((ies[0] == eid) &&
496 (ies[1] + 2 >= match_offset + match_len) &&
497 !memcmp(ies + match_offset, match, match_len))
498 return ies;
500 len -= ies[1] + 2;
501 ies += ies[1] + 2;
504 return NULL;
506 EXPORT_SYMBOL(cfg80211_find_ie_match);
508 const u8 *cfg80211_find_vendor_ie(unsigned int oui, int oui_type,
509 const u8 *ies, int len)
511 const u8 *ie;
512 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
513 int match_len = (oui_type < 0) ? 3 : sizeof(match);
515 if (WARN_ON(oui_type > 0xff))
516 return NULL;
518 ie = cfg80211_find_ie_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
519 match, match_len, 2);
521 if (ie && (ie[1] < 4))
522 return NULL;
524 return ie;
526 EXPORT_SYMBOL(cfg80211_find_vendor_ie);
528 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
529 const u8 *ssid, size_t ssid_len)
531 const struct cfg80211_bss_ies *ies;
532 const u8 *ssidie;
534 if (bssid && !ether_addr_equal(a->bssid, bssid))
535 return false;
537 if (!ssid)
538 return true;
540 ies = rcu_access_pointer(a->ies);
541 if (!ies)
542 return false;
543 ssidie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
544 if (!ssidie)
545 return false;
546 if (ssidie[1] != ssid_len)
547 return false;
548 return memcmp(ssidie + 2, ssid, ssid_len) == 0;
552 * enum bss_compare_mode - BSS compare mode
553 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
554 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
555 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
557 enum bss_compare_mode {
558 BSS_CMP_REGULAR,
559 BSS_CMP_HIDE_ZLEN,
560 BSS_CMP_HIDE_NUL,
563 static int cmp_bss(struct cfg80211_bss *a,
564 struct cfg80211_bss *b,
565 enum bss_compare_mode mode)
567 const struct cfg80211_bss_ies *a_ies, *b_ies;
568 const u8 *ie1 = NULL;
569 const u8 *ie2 = NULL;
570 int i, r;
572 if (a->channel != b->channel)
573 return b->channel->center_freq - a->channel->center_freq;
575 a_ies = rcu_access_pointer(a->ies);
576 if (!a_ies)
577 return -1;
578 b_ies = rcu_access_pointer(b->ies);
579 if (!b_ies)
580 return 1;
582 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
583 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
584 a_ies->data, a_ies->len);
585 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
586 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
587 b_ies->data, b_ies->len);
588 if (ie1 && ie2) {
589 int mesh_id_cmp;
591 if (ie1[1] == ie2[1])
592 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
593 else
594 mesh_id_cmp = ie2[1] - ie1[1];
596 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
597 a_ies->data, a_ies->len);
598 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
599 b_ies->data, b_ies->len);
600 if (ie1 && ie2) {
601 if (mesh_id_cmp)
602 return mesh_id_cmp;
603 if (ie1[1] != ie2[1])
604 return ie2[1] - ie1[1];
605 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
609 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
610 if (r)
611 return r;
613 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
614 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
616 if (!ie1 && !ie2)
617 return 0;
620 * Note that with "hide_ssid", the function returns a match if
621 * the already-present BSS ("b") is a hidden SSID beacon for
622 * the new BSS ("a").
625 /* sort missing IE before (left of) present IE */
626 if (!ie1)
627 return -1;
628 if (!ie2)
629 return 1;
631 switch (mode) {
632 case BSS_CMP_HIDE_ZLEN:
634 * In ZLEN mode we assume the BSS entry we're
635 * looking for has a zero-length SSID. So if
636 * the one we're looking at right now has that,
637 * return 0. Otherwise, return the difference
638 * in length, but since we're looking for the
639 * 0-length it's really equivalent to returning
640 * the length of the one we're looking at.
642 * No content comparison is needed as we assume
643 * the content length is zero.
645 return ie2[1];
646 case BSS_CMP_REGULAR:
647 default:
648 /* sort by length first, then by contents */
649 if (ie1[1] != ie2[1])
650 return ie2[1] - ie1[1];
651 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
652 case BSS_CMP_HIDE_NUL:
653 if (ie1[1] != ie2[1])
654 return ie2[1] - ie1[1];
655 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
656 for (i = 0; i < ie2[1]; i++)
657 if (ie2[i + 2])
658 return -1;
659 return 0;
663 static bool cfg80211_bss_type_match(u16 capability,
664 enum nl80211_band band,
665 enum ieee80211_bss_type bss_type)
667 bool ret = true;
668 u16 mask, val;
670 if (bss_type == IEEE80211_BSS_TYPE_ANY)
671 return ret;
673 if (band == NL80211_BAND_60GHZ) {
674 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
675 switch (bss_type) {
676 case IEEE80211_BSS_TYPE_ESS:
677 val = WLAN_CAPABILITY_DMG_TYPE_AP;
678 break;
679 case IEEE80211_BSS_TYPE_PBSS:
680 val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
681 break;
682 case IEEE80211_BSS_TYPE_IBSS:
683 val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
684 break;
685 default:
686 return false;
688 } else {
689 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
690 switch (bss_type) {
691 case IEEE80211_BSS_TYPE_ESS:
692 val = WLAN_CAPABILITY_ESS;
693 break;
694 case IEEE80211_BSS_TYPE_IBSS:
695 val = WLAN_CAPABILITY_IBSS;
696 break;
697 case IEEE80211_BSS_TYPE_MBSS:
698 val = 0;
699 break;
700 default:
701 return false;
705 ret = ((capability & mask) == val);
706 return ret;
709 /* Returned bss is reference counted and must be cleaned up appropriately. */
710 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
711 struct ieee80211_channel *channel,
712 const u8 *bssid,
713 const u8 *ssid, size_t ssid_len,
714 enum ieee80211_bss_type bss_type,
715 enum ieee80211_privacy privacy)
717 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
718 struct cfg80211_internal_bss *bss, *res = NULL;
719 unsigned long now = jiffies;
720 int bss_privacy;
722 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
723 privacy);
725 spin_lock_bh(&rdev->bss_lock);
727 list_for_each_entry(bss, &rdev->bss_list, list) {
728 if (!cfg80211_bss_type_match(bss->pub.capability,
729 bss->pub.channel->band, bss_type))
730 continue;
732 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
733 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
734 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
735 continue;
736 if (channel && bss->pub.channel != channel)
737 continue;
738 if (!is_valid_ether_addr(bss->pub.bssid))
739 continue;
740 /* Don't get expired BSS structs */
741 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
742 !atomic_read(&bss->hold))
743 continue;
744 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
745 res = bss;
746 bss_ref_get(rdev, res);
747 break;
751 spin_unlock_bh(&rdev->bss_lock);
752 if (!res)
753 return NULL;
754 trace_cfg80211_return_bss(&res->pub);
755 return &res->pub;
757 EXPORT_SYMBOL(cfg80211_get_bss);
759 static void rb_insert_bss(struct cfg80211_registered_device *rdev,
760 struct cfg80211_internal_bss *bss)
762 struct rb_node **p = &rdev->bss_tree.rb_node;
763 struct rb_node *parent = NULL;
764 struct cfg80211_internal_bss *tbss;
765 int cmp;
767 while (*p) {
768 parent = *p;
769 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
771 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
773 if (WARN_ON(!cmp)) {
774 /* will sort of leak this BSS */
775 return;
778 if (cmp < 0)
779 p = &(*p)->rb_left;
780 else
781 p = &(*p)->rb_right;
784 rb_link_node(&bss->rbn, parent, p);
785 rb_insert_color(&bss->rbn, &rdev->bss_tree);
788 static struct cfg80211_internal_bss *
789 rb_find_bss(struct cfg80211_registered_device *rdev,
790 struct cfg80211_internal_bss *res,
791 enum bss_compare_mode mode)
793 struct rb_node *n = rdev->bss_tree.rb_node;
794 struct cfg80211_internal_bss *bss;
795 int r;
797 while (n) {
798 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
799 r = cmp_bss(&res->pub, &bss->pub, mode);
801 if (r == 0)
802 return bss;
803 else if (r < 0)
804 n = n->rb_left;
805 else
806 n = n->rb_right;
809 return NULL;
812 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
813 struct cfg80211_internal_bss *new)
815 const struct cfg80211_bss_ies *ies;
816 struct cfg80211_internal_bss *bss;
817 const u8 *ie;
818 int i, ssidlen;
819 u8 fold = 0;
820 u32 n_entries = 0;
822 ies = rcu_access_pointer(new->pub.beacon_ies);
823 if (WARN_ON(!ies))
824 return false;
826 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
827 if (!ie) {
828 /* nothing to do */
829 return true;
832 ssidlen = ie[1];
833 for (i = 0; i < ssidlen; i++)
834 fold |= ie[2 + i];
836 if (fold) {
837 /* not a hidden SSID */
838 return true;
841 /* This is the bad part ... */
843 list_for_each_entry(bss, &rdev->bss_list, list) {
845 * we're iterating all the entries anyway, so take the
846 * opportunity to validate the list length accounting
848 n_entries++;
850 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
851 continue;
852 if (bss->pub.channel != new->pub.channel)
853 continue;
854 if (bss->pub.scan_width != new->pub.scan_width)
855 continue;
856 if (rcu_access_pointer(bss->pub.beacon_ies))
857 continue;
858 ies = rcu_access_pointer(bss->pub.ies);
859 if (!ies)
860 continue;
861 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
862 if (!ie)
863 continue;
864 if (ssidlen && ie[1] != ssidlen)
865 continue;
866 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
867 continue;
868 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
869 list_del(&bss->hidden_list);
870 /* combine them */
871 list_add(&bss->hidden_list, &new->hidden_list);
872 bss->pub.hidden_beacon_bss = &new->pub;
873 new->refcount += bss->refcount;
874 rcu_assign_pointer(bss->pub.beacon_ies,
875 new->pub.beacon_ies);
878 WARN_ONCE(n_entries != rdev->bss_entries,
879 "rdev bss entries[%d]/list[len:%d] corruption\n",
880 rdev->bss_entries, n_entries);
882 return true;
885 /* Returned bss is reference counted and must be cleaned up appropriately. */
886 static struct cfg80211_internal_bss *
887 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
888 struct cfg80211_internal_bss *tmp,
889 bool signal_valid)
891 struct cfg80211_internal_bss *found = NULL;
893 if (WARN_ON(!tmp->pub.channel))
894 return NULL;
896 tmp->ts = jiffies;
898 spin_lock_bh(&rdev->bss_lock);
900 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
901 spin_unlock_bh(&rdev->bss_lock);
902 return NULL;
905 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
907 if (found) {
908 /* Update IEs */
909 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
910 const struct cfg80211_bss_ies *old;
912 old = rcu_access_pointer(found->pub.proberesp_ies);
914 rcu_assign_pointer(found->pub.proberesp_ies,
915 tmp->pub.proberesp_ies);
916 /* Override possible earlier Beacon frame IEs */
917 rcu_assign_pointer(found->pub.ies,
918 tmp->pub.proberesp_ies);
919 if (old)
920 kfree_rcu((struct cfg80211_bss_ies *)old,
921 rcu_head);
922 } else if (rcu_access_pointer(tmp->pub.beacon_ies)) {
923 const struct cfg80211_bss_ies *old;
924 struct cfg80211_internal_bss *bss;
926 if (found->pub.hidden_beacon_bss &&
927 !list_empty(&found->hidden_list)) {
928 const struct cfg80211_bss_ies *f;
931 * The found BSS struct is one of the probe
932 * response members of a group, but we're
933 * receiving a beacon (beacon_ies in the tmp
934 * bss is used). This can only mean that the
935 * AP changed its beacon from not having an
936 * SSID to showing it, which is confusing so
937 * drop this information.
940 f = rcu_access_pointer(tmp->pub.beacon_ies);
941 kfree_rcu((struct cfg80211_bss_ies *)f,
942 rcu_head);
943 goto drop;
946 old = rcu_access_pointer(found->pub.beacon_ies);
948 rcu_assign_pointer(found->pub.beacon_ies,
949 tmp->pub.beacon_ies);
951 /* Override IEs if they were from a beacon before */
952 if (old == rcu_access_pointer(found->pub.ies))
953 rcu_assign_pointer(found->pub.ies,
954 tmp->pub.beacon_ies);
956 /* Assign beacon IEs to all sub entries */
957 list_for_each_entry(bss, &found->hidden_list,
958 hidden_list) {
959 const struct cfg80211_bss_ies *ies;
961 ies = rcu_access_pointer(bss->pub.beacon_ies);
962 WARN_ON(ies != old);
964 rcu_assign_pointer(bss->pub.beacon_ies,
965 tmp->pub.beacon_ies);
968 if (old)
969 kfree_rcu((struct cfg80211_bss_ies *)old,
970 rcu_head);
973 found->pub.beacon_interval = tmp->pub.beacon_interval;
975 * don't update the signal if beacon was heard on
976 * adjacent channel.
978 if (signal_valid)
979 found->pub.signal = tmp->pub.signal;
980 found->pub.capability = tmp->pub.capability;
981 found->ts = tmp->ts;
982 found->ts_boottime = tmp->ts_boottime;
983 found->parent_tsf = tmp->parent_tsf;
984 found->pub.chains = tmp->pub.chains;
985 memcpy(found->pub.chain_signal, tmp->pub.chain_signal,
986 IEEE80211_MAX_CHAINS);
987 ether_addr_copy(found->parent_bssid, tmp->parent_bssid);
988 } else {
989 struct cfg80211_internal_bss *new;
990 struct cfg80211_internal_bss *hidden;
991 struct cfg80211_bss_ies *ies;
994 * create a copy -- the "res" variable that is passed in
995 * is allocated on the stack since it's not needed in the
996 * more common case of an update
998 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
999 GFP_ATOMIC);
1000 if (!new) {
1001 ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1002 if (ies)
1003 kfree_rcu(ies, rcu_head);
1004 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1005 if (ies)
1006 kfree_rcu(ies, rcu_head);
1007 goto drop;
1009 memcpy(new, tmp, sizeof(*new));
1010 new->refcount = 1;
1011 INIT_LIST_HEAD(&new->hidden_list);
1013 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1014 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1015 if (!hidden)
1016 hidden = rb_find_bss(rdev, tmp,
1017 BSS_CMP_HIDE_NUL);
1018 if (hidden) {
1019 new->pub.hidden_beacon_bss = &hidden->pub;
1020 list_add(&new->hidden_list,
1021 &hidden->hidden_list);
1022 hidden->refcount++;
1023 rcu_assign_pointer(new->pub.beacon_ies,
1024 hidden->pub.beacon_ies);
1026 } else {
1028 * Ok so we found a beacon, and don't have an entry. If
1029 * it's a beacon with hidden SSID, we might be in for an
1030 * expensive search for any probe responses that should
1031 * be grouped with this beacon for updates ...
1033 if (!cfg80211_combine_bsses(rdev, new)) {
1034 kfree(new);
1035 goto drop;
1039 if (rdev->bss_entries >= bss_entries_limit &&
1040 !cfg80211_bss_expire_oldest(rdev)) {
1041 kfree(new);
1042 goto drop;
1045 list_add_tail(&new->list, &rdev->bss_list);
1046 rdev->bss_entries++;
1047 rb_insert_bss(rdev, new);
1048 found = new;
1051 rdev->bss_generation++;
1052 bss_ref_get(rdev, found);
1053 spin_unlock_bh(&rdev->bss_lock);
1055 return found;
1056 drop:
1057 spin_unlock_bh(&rdev->bss_lock);
1058 return NULL;
1061 static struct ieee80211_channel *
1062 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1063 struct ieee80211_channel *channel)
1065 const u8 *tmp;
1066 u32 freq;
1067 int channel_number = -1;
1069 tmp = cfg80211_find_ie(WLAN_EID_DS_PARAMS, ie, ielen);
1070 if (tmp && tmp[1] == 1) {
1071 channel_number = tmp[2];
1072 } else {
1073 tmp = cfg80211_find_ie(WLAN_EID_HT_OPERATION, ie, ielen);
1074 if (tmp && tmp[1] >= sizeof(struct ieee80211_ht_operation)) {
1075 struct ieee80211_ht_operation *htop = (void *)(tmp + 2);
1077 channel_number = htop->primary_chan;
1081 if (channel_number < 0)
1082 return channel;
1084 freq = ieee80211_channel_to_frequency(channel_number, channel->band);
1085 channel = ieee80211_get_channel(wiphy, freq);
1086 if (!channel)
1087 return NULL;
1088 if (channel->flags & IEEE80211_CHAN_DISABLED)
1089 return NULL;
1090 return channel;
1093 /* Returned bss is reference counted and must be cleaned up appropriately. */
1094 struct cfg80211_bss *
1095 cfg80211_inform_bss_data(struct wiphy *wiphy,
1096 struct cfg80211_inform_bss *data,
1097 enum cfg80211_bss_frame_type ftype,
1098 const u8 *bssid, u64 tsf, u16 capability,
1099 u16 beacon_interval, const u8 *ie, size_t ielen,
1100 gfp_t gfp)
1102 struct cfg80211_bss_ies *ies;
1103 struct ieee80211_channel *channel;
1104 struct cfg80211_internal_bss tmp = {}, *res;
1105 int bss_type;
1106 bool signal_valid;
1108 if (WARN_ON(!wiphy))
1109 return NULL;
1111 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1112 (data->signal < 0 || data->signal > 100)))
1113 return NULL;
1115 channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan);
1116 if (!channel)
1117 return NULL;
1119 memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
1120 tmp.pub.channel = channel;
1121 tmp.pub.scan_width = data->scan_width;
1122 tmp.pub.signal = data->signal;
1123 tmp.pub.beacon_interval = beacon_interval;
1124 tmp.pub.capability = capability;
1125 tmp.ts_boottime = data->boottime_ns;
1128 * If we do not know here whether the IEs are from a Beacon or Probe
1129 * Response frame, we need to pick one of the options and only use it
1130 * with the driver that does not provide the full Beacon/Probe Response
1131 * frame. Use Beacon frame pointer to avoid indicating that this should
1132 * override the IEs pointer should we have received an earlier
1133 * indication of Probe Response data.
1135 ies = kzalloc(sizeof(*ies) + ielen, gfp);
1136 if (!ies)
1137 return NULL;
1138 ies->len = ielen;
1139 ies->tsf = tsf;
1140 ies->from_beacon = false;
1141 memcpy(ies->data, ie, ielen);
1143 switch (ftype) {
1144 case CFG80211_BSS_FTYPE_BEACON:
1145 ies->from_beacon = true;
1146 /* fall through to assign */
1147 case CFG80211_BSS_FTYPE_UNKNOWN:
1148 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
1149 break;
1150 case CFG80211_BSS_FTYPE_PRESP:
1151 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
1152 break;
1154 rcu_assign_pointer(tmp.pub.ies, ies);
1156 signal_valid = abs(data->chan->center_freq - channel->center_freq) <=
1157 wiphy->max_adj_channel_rssi_comp;
1158 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid);
1159 if (!res)
1160 return NULL;
1162 if (channel->band == NL80211_BAND_60GHZ) {
1163 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
1164 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
1165 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
1166 regulatory_hint_found_beacon(wiphy, channel, gfp);
1167 } else {
1168 if (res->pub.capability & WLAN_CAPABILITY_ESS)
1169 regulatory_hint_found_beacon(wiphy, channel, gfp);
1172 trace_cfg80211_return_bss(&res->pub);
1173 /* cfg80211_bss_update gives us a referenced result */
1174 return &res->pub;
1176 EXPORT_SYMBOL(cfg80211_inform_bss_data);
1178 /* cfg80211_inform_bss_width_frame helper */
1179 struct cfg80211_bss *
1180 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
1181 struct cfg80211_inform_bss *data,
1182 struct ieee80211_mgmt *mgmt, size_t len,
1183 gfp_t gfp)
1186 struct cfg80211_internal_bss tmp = {}, *res;
1187 struct cfg80211_bss_ies *ies;
1188 struct ieee80211_channel *channel;
1189 bool signal_valid;
1190 size_t ielen = len - offsetof(struct ieee80211_mgmt,
1191 u.probe_resp.variable);
1192 int bss_type;
1194 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
1195 offsetof(struct ieee80211_mgmt, u.beacon.variable));
1197 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
1199 if (WARN_ON(!mgmt))
1200 return NULL;
1202 if (WARN_ON(!wiphy))
1203 return NULL;
1205 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1206 (data->signal < 0 || data->signal > 100)))
1207 return NULL;
1209 if (WARN_ON(len < offsetof(struct ieee80211_mgmt, u.probe_resp.variable)))
1210 return NULL;
1212 channel = cfg80211_get_bss_channel(wiphy, mgmt->u.beacon.variable,
1213 ielen, data->chan);
1214 if (!channel)
1215 return NULL;
1217 ies = kzalloc(sizeof(*ies) + ielen, gfp);
1218 if (!ies)
1219 return NULL;
1220 ies->len = ielen;
1221 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
1222 ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
1223 memcpy(ies->data, mgmt->u.probe_resp.variable, ielen);
1225 if (ieee80211_is_probe_resp(mgmt->frame_control))
1226 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
1227 else
1228 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
1229 rcu_assign_pointer(tmp.pub.ies, ies);
1231 memcpy(tmp.pub.bssid, mgmt->bssid, ETH_ALEN);
1232 tmp.pub.channel = channel;
1233 tmp.pub.scan_width = data->scan_width;
1234 tmp.pub.signal = data->signal;
1235 tmp.pub.beacon_interval = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
1236 tmp.pub.capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
1237 tmp.ts_boottime = data->boottime_ns;
1238 tmp.parent_tsf = data->parent_tsf;
1239 tmp.pub.chains = data->chains;
1240 memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
1241 ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
1243 signal_valid = abs(data->chan->center_freq - channel->center_freq) <=
1244 wiphy->max_adj_channel_rssi_comp;
1245 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid);
1246 if (!res)
1247 return NULL;
1249 if (channel->band == NL80211_BAND_60GHZ) {
1250 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
1251 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
1252 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
1253 regulatory_hint_found_beacon(wiphy, channel, gfp);
1254 } else {
1255 if (res->pub.capability & WLAN_CAPABILITY_ESS)
1256 regulatory_hint_found_beacon(wiphy, channel, gfp);
1259 trace_cfg80211_return_bss(&res->pub);
1260 /* cfg80211_bss_update gives us a referenced result */
1261 return &res->pub;
1263 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
1265 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
1267 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1268 struct cfg80211_internal_bss *bss;
1270 if (!pub)
1271 return;
1273 bss = container_of(pub, struct cfg80211_internal_bss, pub);
1275 spin_lock_bh(&rdev->bss_lock);
1276 bss_ref_get(rdev, bss);
1277 spin_unlock_bh(&rdev->bss_lock);
1279 EXPORT_SYMBOL(cfg80211_ref_bss);
1281 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
1283 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1284 struct cfg80211_internal_bss *bss;
1286 if (!pub)
1287 return;
1289 bss = container_of(pub, struct cfg80211_internal_bss, pub);
1291 spin_lock_bh(&rdev->bss_lock);
1292 bss_ref_put(rdev, bss);
1293 spin_unlock_bh(&rdev->bss_lock);
1295 EXPORT_SYMBOL(cfg80211_put_bss);
1297 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
1299 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1300 struct cfg80211_internal_bss *bss;
1302 if (WARN_ON(!pub))
1303 return;
1305 bss = container_of(pub, struct cfg80211_internal_bss, pub);
1307 spin_lock_bh(&rdev->bss_lock);
1308 if (!list_empty(&bss->list)) {
1309 if (__cfg80211_unlink_bss(rdev, bss))
1310 rdev->bss_generation++;
1312 spin_unlock_bh(&rdev->bss_lock);
1314 EXPORT_SYMBOL(cfg80211_unlink_bss);
1316 #ifdef CONFIG_CFG80211_WEXT
1317 static struct cfg80211_registered_device *
1318 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
1320 struct cfg80211_registered_device *rdev;
1321 struct net_device *dev;
1323 ASSERT_RTNL();
1325 dev = dev_get_by_index(net, ifindex);
1326 if (!dev)
1327 return ERR_PTR(-ENODEV);
1328 if (dev->ieee80211_ptr)
1329 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
1330 else
1331 rdev = ERR_PTR(-ENODEV);
1332 dev_put(dev);
1333 return rdev;
1336 int cfg80211_wext_siwscan(struct net_device *dev,
1337 struct iw_request_info *info,
1338 union iwreq_data *wrqu, char *extra)
1340 struct cfg80211_registered_device *rdev;
1341 struct wiphy *wiphy;
1342 struct iw_scan_req *wreq = NULL;
1343 struct cfg80211_scan_request *creq = NULL;
1344 int i, err, n_channels = 0;
1345 enum nl80211_band band;
1347 if (!netif_running(dev))
1348 return -ENETDOWN;
1350 if (wrqu->data.length == sizeof(struct iw_scan_req))
1351 wreq = (struct iw_scan_req *)extra;
1353 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
1355 if (IS_ERR(rdev))
1356 return PTR_ERR(rdev);
1358 if (rdev->scan_req || rdev->scan_msg) {
1359 err = -EBUSY;
1360 goto out;
1363 wiphy = &rdev->wiphy;
1365 /* Determine number of channels, needed to allocate creq */
1366 if (wreq && wreq->num_channels)
1367 n_channels = wreq->num_channels;
1368 else
1369 n_channels = ieee80211_get_num_supported_channels(wiphy);
1371 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
1372 n_channels * sizeof(void *),
1373 GFP_ATOMIC);
1374 if (!creq) {
1375 err = -ENOMEM;
1376 goto out;
1379 creq->wiphy = wiphy;
1380 creq->wdev = dev->ieee80211_ptr;
1381 /* SSIDs come after channels */
1382 creq->ssids = (void *)&creq->channels[n_channels];
1383 creq->n_channels = n_channels;
1384 creq->n_ssids = 1;
1385 creq->scan_start = jiffies;
1387 /* translate "Scan on frequencies" request */
1388 i = 0;
1389 for (band = 0; band < NUM_NL80211_BANDS; band++) {
1390 int j;
1392 if (!wiphy->bands[band])
1393 continue;
1395 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
1396 /* ignore disabled channels */
1397 if (wiphy->bands[band]->channels[j].flags &
1398 IEEE80211_CHAN_DISABLED)
1399 continue;
1401 /* If we have a wireless request structure and the
1402 * wireless request specifies frequencies, then search
1403 * for the matching hardware channel.
1405 if (wreq && wreq->num_channels) {
1406 int k;
1407 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
1408 for (k = 0; k < wreq->num_channels; k++) {
1409 struct iw_freq *freq =
1410 &wreq->channel_list[k];
1411 int wext_freq =
1412 cfg80211_wext_freq(freq);
1414 if (wext_freq == wiphy_freq)
1415 goto wext_freq_found;
1417 goto wext_freq_not_found;
1420 wext_freq_found:
1421 creq->channels[i] = &wiphy->bands[band]->channels[j];
1422 i++;
1423 wext_freq_not_found: ;
1426 /* No channels found? */
1427 if (!i) {
1428 err = -EINVAL;
1429 goto out;
1432 /* Set real number of channels specified in creq->channels[] */
1433 creq->n_channels = i;
1435 /* translate "Scan for SSID" request */
1436 if (wreq) {
1437 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
1438 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
1439 err = -EINVAL;
1440 goto out;
1442 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
1443 creq->ssids[0].ssid_len = wreq->essid_len;
1445 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
1446 creq->n_ssids = 0;
1449 for (i = 0; i < NUM_NL80211_BANDS; i++)
1450 if (wiphy->bands[i])
1451 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
1453 eth_broadcast_addr(creq->bssid);
1455 rdev->scan_req = creq;
1456 err = rdev_scan(rdev, creq);
1457 if (err) {
1458 rdev->scan_req = NULL;
1459 /* creq will be freed below */
1460 } else {
1461 nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
1462 /* creq now owned by driver */
1463 creq = NULL;
1464 dev_hold(dev);
1466 out:
1467 kfree(creq);
1468 return err;
1470 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
1472 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
1473 const struct cfg80211_bss_ies *ies,
1474 char *current_ev, char *end_buf)
1476 const u8 *pos, *end, *next;
1477 struct iw_event iwe;
1479 if (!ies)
1480 return current_ev;
1483 * If needed, fragment the IEs buffer (at IE boundaries) into short
1484 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
1486 pos = ies->data;
1487 end = pos + ies->len;
1489 while (end - pos > IW_GENERIC_IE_MAX) {
1490 next = pos + 2 + pos[1];
1491 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
1492 next = next + 2 + next[1];
1494 memset(&iwe, 0, sizeof(iwe));
1495 iwe.cmd = IWEVGENIE;
1496 iwe.u.data.length = next - pos;
1497 current_ev = iwe_stream_add_point_check(info, current_ev,
1498 end_buf, &iwe,
1499 (void *)pos);
1500 if (IS_ERR(current_ev))
1501 return current_ev;
1502 pos = next;
1505 if (end > pos) {
1506 memset(&iwe, 0, sizeof(iwe));
1507 iwe.cmd = IWEVGENIE;
1508 iwe.u.data.length = end - pos;
1509 current_ev = iwe_stream_add_point_check(info, current_ev,
1510 end_buf, &iwe,
1511 (void *)pos);
1512 if (IS_ERR(current_ev))
1513 return current_ev;
1516 return current_ev;
1519 static char *
1520 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
1521 struct cfg80211_internal_bss *bss, char *current_ev,
1522 char *end_buf)
1524 const struct cfg80211_bss_ies *ies;
1525 struct iw_event iwe;
1526 const u8 *ie;
1527 u8 buf[50];
1528 u8 *cfg, *p, *tmp;
1529 int rem, i, sig;
1530 bool ismesh = false;
1532 memset(&iwe, 0, sizeof(iwe));
1533 iwe.cmd = SIOCGIWAP;
1534 iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
1535 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
1536 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
1537 IW_EV_ADDR_LEN);
1538 if (IS_ERR(current_ev))
1539 return current_ev;
1541 memset(&iwe, 0, sizeof(iwe));
1542 iwe.cmd = SIOCGIWFREQ;
1543 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
1544 iwe.u.freq.e = 0;
1545 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
1546 IW_EV_FREQ_LEN);
1547 if (IS_ERR(current_ev))
1548 return current_ev;
1550 memset(&iwe, 0, sizeof(iwe));
1551 iwe.cmd = SIOCGIWFREQ;
1552 iwe.u.freq.m = bss->pub.channel->center_freq;
1553 iwe.u.freq.e = 6;
1554 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
1555 IW_EV_FREQ_LEN);
1556 if (IS_ERR(current_ev))
1557 return current_ev;
1559 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
1560 memset(&iwe, 0, sizeof(iwe));
1561 iwe.cmd = IWEVQUAL;
1562 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
1563 IW_QUAL_NOISE_INVALID |
1564 IW_QUAL_QUAL_UPDATED;
1565 switch (wiphy->signal_type) {
1566 case CFG80211_SIGNAL_TYPE_MBM:
1567 sig = bss->pub.signal / 100;
1568 iwe.u.qual.level = sig;
1569 iwe.u.qual.updated |= IW_QUAL_DBM;
1570 if (sig < -110) /* rather bad */
1571 sig = -110;
1572 else if (sig > -40) /* perfect */
1573 sig = -40;
1574 /* will give a range of 0 .. 70 */
1575 iwe.u.qual.qual = sig + 110;
1576 break;
1577 case CFG80211_SIGNAL_TYPE_UNSPEC:
1578 iwe.u.qual.level = bss->pub.signal;
1579 /* will give range 0 .. 100 */
1580 iwe.u.qual.qual = bss->pub.signal;
1581 break;
1582 default:
1583 /* not reached */
1584 break;
1586 current_ev = iwe_stream_add_event_check(info, current_ev,
1587 end_buf, &iwe,
1588 IW_EV_QUAL_LEN);
1589 if (IS_ERR(current_ev))
1590 return current_ev;
1593 memset(&iwe, 0, sizeof(iwe));
1594 iwe.cmd = SIOCGIWENCODE;
1595 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
1596 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
1597 else
1598 iwe.u.data.flags = IW_ENCODE_DISABLED;
1599 iwe.u.data.length = 0;
1600 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
1601 &iwe, "");
1602 if (IS_ERR(current_ev))
1603 return current_ev;
1605 rcu_read_lock();
1606 ies = rcu_dereference(bss->pub.ies);
1607 rem = ies->len;
1608 ie = ies->data;
1610 while (rem >= 2) {
1611 /* invalid data */
1612 if (ie[1] > rem - 2)
1613 break;
1615 switch (ie[0]) {
1616 case WLAN_EID_SSID:
1617 memset(&iwe, 0, sizeof(iwe));
1618 iwe.cmd = SIOCGIWESSID;
1619 iwe.u.data.length = ie[1];
1620 iwe.u.data.flags = 1;
1621 current_ev = iwe_stream_add_point_check(info,
1622 current_ev,
1623 end_buf, &iwe,
1624 (u8 *)ie + 2);
1625 if (IS_ERR(current_ev))
1626 goto unlock;
1627 break;
1628 case WLAN_EID_MESH_ID:
1629 memset(&iwe, 0, sizeof(iwe));
1630 iwe.cmd = SIOCGIWESSID;
1631 iwe.u.data.length = ie[1];
1632 iwe.u.data.flags = 1;
1633 current_ev = iwe_stream_add_point_check(info,
1634 current_ev,
1635 end_buf, &iwe,
1636 (u8 *)ie + 2);
1637 if (IS_ERR(current_ev))
1638 goto unlock;
1639 break;
1640 case WLAN_EID_MESH_CONFIG:
1641 ismesh = true;
1642 if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
1643 break;
1644 cfg = (u8 *)ie + 2;
1645 memset(&iwe, 0, sizeof(iwe));
1646 iwe.cmd = IWEVCUSTOM;
1647 sprintf(buf, "Mesh Network Path Selection Protocol ID: "
1648 "0x%02X", cfg[0]);
1649 iwe.u.data.length = strlen(buf);
1650 current_ev = iwe_stream_add_point_check(info,
1651 current_ev,
1652 end_buf,
1653 &iwe, buf);
1654 if (IS_ERR(current_ev))
1655 goto unlock;
1656 sprintf(buf, "Path Selection Metric ID: 0x%02X",
1657 cfg[1]);
1658 iwe.u.data.length = strlen(buf);
1659 current_ev = iwe_stream_add_point_check(info,
1660 current_ev,
1661 end_buf,
1662 &iwe, buf);
1663 if (IS_ERR(current_ev))
1664 goto unlock;
1665 sprintf(buf, "Congestion Control Mode ID: 0x%02X",
1666 cfg[2]);
1667 iwe.u.data.length = strlen(buf);
1668 current_ev = iwe_stream_add_point_check(info,
1669 current_ev,
1670 end_buf,
1671 &iwe, buf);
1672 if (IS_ERR(current_ev))
1673 goto unlock;
1674 sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
1675 iwe.u.data.length = strlen(buf);
1676 current_ev = iwe_stream_add_point_check(info,
1677 current_ev,
1678 end_buf,
1679 &iwe, buf);
1680 if (IS_ERR(current_ev))
1681 goto unlock;
1682 sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
1683 iwe.u.data.length = strlen(buf);
1684 current_ev = iwe_stream_add_point_check(info,
1685 current_ev,
1686 end_buf,
1687 &iwe, buf);
1688 if (IS_ERR(current_ev))
1689 goto unlock;
1690 sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
1691 iwe.u.data.length = strlen(buf);
1692 current_ev = iwe_stream_add_point_check(info,
1693 current_ev,
1694 end_buf,
1695 &iwe, buf);
1696 if (IS_ERR(current_ev))
1697 goto unlock;
1698 sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
1699 iwe.u.data.length = strlen(buf);
1700 current_ev = iwe_stream_add_point_check(info,
1701 current_ev,
1702 end_buf,
1703 &iwe, buf);
1704 if (IS_ERR(current_ev))
1705 goto unlock;
1706 break;
1707 case WLAN_EID_SUPP_RATES:
1708 case WLAN_EID_EXT_SUPP_RATES:
1709 /* display all supported rates in readable format */
1710 p = current_ev + iwe_stream_lcp_len(info);
1712 memset(&iwe, 0, sizeof(iwe));
1713 iwe.cmd = SIOCGIWRATE;
1714 /* Those two flags are ignored... */
1715 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
1717 for (i = 0; i < ie[1]; i++) {
1718 iwe.u.bitrate.value =
1719 ((ie[i + 2] & 0x7f) * 500000);
1720 tmp = p;
1721 p = iwe_stream_add_value(info, current_ev, p,
1722 end_buf, &iwe,
1723 IW_EV_PARAM_LEN);
1724 if (p == tmp) {
1725 current_ev = ERR_PTR(-E2BIG);
1726 goto unlock;
1729 current_ev = p;
1730 break;
1732 rem -= ie[1] + 2;
1733 ie += ie[1] + 2;
1736 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
1737 ismesh) {
1738 memset(&iwe, 0, sizeof(iwe));
1739 iwe.cmd = SIOCGIWMODE;
1740 if (ismesh)
1741 iwe.u.mode = IW_MODE_MESH;
1742 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
1743 iwe.u.mode = IW_MODE_MASTER;
1744 else
1745 iwe.u.mode = IW_MODE_ADHOC;
1746 current_ev = iwe_stream_add_event_check(info, current_ev,
1747 end_buf, &iwe,
1748 IW_EV_UINT_LEN);
1749 if (IS_ERR(current_ev))
1750 goto unlock;
1753 memset(&iwe, 0, sizeof(iwe));
1754 iwe.cmd = IWEVCUSTOM;
1755 sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
1756 iwe.u.data.length = strlen(buf);
1757 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
1758 &iwe, buf);
1759 if (IS_ERR(current_ev))
1760 goto unlock;
1761 memset(&iwe, 0, sizeof(iwe));
1762 iwe.cmd = IWEVCUSTOM;
1763 sprintf(buf, " Last beacon: %ums ago",
1764 elapsed_jiffies_msecs(bss->ts));
1765 iwe.u.data.length = strlen(buf);
1766 current_ev = iwe_stream_add_point_check(info, current_ev,
1767 end_buf, &iwe, buf);
1768 if (IS_ERR(current_ev))
1769 goto unlock;
1771 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
1773 unlock:
1774 rcu_read_unlock();
1775 return current_ev;
1779 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
1780 struct iw_request_info *info,
1781 char *buf, size_t len)
1783 char *current_ev = buf;
1784 char *end_buf = buf + len;
1785 struct cfg80211_internal_bss *bss;
1786 int err = 0;
1788 spin_lock_bh(&rdev->bss_lock);
1789 cfg80211_bss_expire(rdev);
1791 list_for_each_entry(bss, &rdev->bss_list, list) {
1792 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
1793 err = -E2BIG;
1794 break;
1796 current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
1797 current_ev, end_buf);
1798 if (IS_ERR(current_ev)) {
1799 err = PTR_ERR(current_ev);
1800 break;
1803 spin_unlock_bh(&rdev->bss_lock);
1805 if (err)
1806 return err;
1807 return current_ev - buf;
1811 int cfg80211_wext_giwscan(struct net_device *dev,
1812 struct iw_request_info *info,
1813 struct iw_point *data, char *extra)
1815 struct cfg80211_registered_device *rdev;
1816 int res;
1818 if (!netif_running(dev))
1819 return -ENETDOWN;
1821 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
1823 if (IS_ERR(rdev))
1824 return PTR_ERR(rdev);
1826 if (rdev->scan_req || rdev->scan_msg)
1827 return -EAGAIN;
1829 res = ieee80211_scan_results(rdev, info, extra, data->length);
1830 data->length = 0;
1831 if (res >= 0) {
1832 data->length = res;
1833 res = 0;
1836 return res;
1838 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
1839 #endif