Merge tag 'xtensa-20180225' of git://github.com/jcmvbkbc/linux-xtensa
[cris-mirror.git] / net / xfrm / xfrm_device.c
blob8e70291e586a97cab0a57e94a01d2fb7942b08b4
1 /*
2 * xfrm_device.c - IPsec device offloading code.
4 * Copyright (c) 2015 secunet Security Networks AG
6 * Author:
7 * Steffen Klassert <steffen.klassert@secunet.com>
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
15 #include <linux/errno.h>
16 #include <linux/module.h>
17 #include <linux/netdevice.h>
18 #include <linux/skbuff.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <net/dst.h>
22 #include <net/xfrm.h>
23 #include <linux/notifier.h>
25 #ifdef CONFIG_XFRM_OFFLOAD
26 struct sk_buff *validate_xmit_xfrm(struct sk_buff *skb, netdev_features_t features, bool *again)
28 int err;
29 unsigned long flags;
30 struct xfrm_state *x;
31 struct sk_buff *skb2;
32 struct softnet_data *sd;
33 netdev_features_t esp_features = features;
34 struct xfrm_offload *xo = xfrm_offload(skb);
36 if (!xo)
37 return skb;
39 if (!(features & NETIF_F_HW_ESP))
40 esp_features = features & ~(NETIF_F_SG | NETIF_F_CSUM_MASK);
42 x = skb->sp->xvec[skb->sp->len - 1];
43 if (xo->flags & XFRM_GRO || x->xso.flags & XFRM_OFFLOAD_INBOUND)
44 return skb;
46 local_irq_save(flags);
47 sd = this_cpu_ptr(&softnet_data);
48 err = !skb_queue_empty(&sd->xfrm_backlog);
49 local_irq_restore(flags);
51 if (err) {
52 *again = true;
53 return skb;
56 if (skb_is_gso(skb)) {
57 struct net_device *dev = skb->dev;
59 if (unlikely(!x->xso.offload_handle || (x->xso.dev != dev))) {
60 struct sk_buff *segs;
62 /* Packet got rerouted, fixup features and segment it. */
63 esp_features = esp_features & ~(NETIF_F_HW_ESP
64 | NETIF_F_GSO_ESP);
66 segs = skb_gso_segment(skb, esp_features);
67 if (IS_ERR(segs)) {
68 kfree_skb(skb);
69 atomic_long_inc(&dev->tx_dropped);
70 return NULL;
71 } else {
72 consume_skb(skb);
73 skb = segs;
78 if (!skb->next) {
79 x->outer_mode->xmit(x, skb);
81 xo->flags |= XFRM_DEV_RESUME;
83 err = x->type_offload->xmit(x, skb, esp_features);
84 if (err) {
85 if (err == -EINPROGRESS)
86 return NULL;
88 XFRM_INC_STATS(xs_net(x), LINUX_MIB_XFRMOUTSTATEPROTOERROR);
89 kfree_skb(skb);
90 return NULL;
93 skb_push(skb, skb->data - skb_mac_header(skb));
95 return skb;
98 skb2 = skb;
100 do {
101 struct sk_buff *nskb = skb2->next;
102 skb2->next = NULL;
104 xo = xfrm_offload(skb2);
105 xo->flags |= XFRM_DEV_RESUME;
107 x->outer_mode->xmit(x, skb2);
109 err = x->type_offload->xmit(x, skb2, esp_features);
110 if (!err) {
111 skb2->next = nskb;
112 } else if (err != -EINPROGRESS) {
113 XFRM_INC_STATS(xs_net(x), LINUX_MIB_XFRMOUTSTATEPROTOERROR);
114 skb2->next = nskb;
115 kfree_skb_list(skb2);
116 return NULL;
117 } else {
118 if (skb == skb2)
119 skb = nskb;
121 if (!skb)
122 return NULL;
124 goto skip_push;
127 skb_push(skb2, skb2->data - skb_mac_header(skb2));
129 skip_push:
130 skb2 = nskb;
131 } while (skb2);
133 return skb;
135 EXPORT_SYMBOL_GPL(validate_xmit_xfrm);
137 int xfrm_dev_state_add(struct net *net, struct xfrm_state *x,
138 struct xfrm_user_offload *xuo)
140 int err;
141 struct dst_entry *dst;
142 struct net_device *dev;
143 struct xfrm_state_offload *xso = &x->xso;
144 xfrm_address_t *saddr;
145 xfrm_address_t *daddr;
147 if (!x->type_offload)
148 return -EINVAL;
150 /* We don't yet support UDP encapsulation and TFC padding. */
151 if (x->encap || x->tfcpad)
152 return -EINVAL;
154 dev = dev_get_by_index(net, xuo->ifindex);
155 if (!dev) {
156 if (!(xuo->flags & XFRM_OFFLOAD_INBOUND)) {
157 saddr = &x->props.saddr;
158 daddr = &x->id.daddr;
159 } else {
160 saddr = &x->id.daddr;
161 daddr = &x->props.saddr;
164 dst = __xfrm_dst_lookup(net, 0, 0, saddr, daddr,
165 x->props.family, x->props.output_mark);
166 if (IS_ERR(dst))
167 return 0;
169 dev = dst->dev;
171 dev_hold(dev);
172 dst_release(dst);
175 if (!dev->xfrmdev_ops || !dev->xfrmdev_ops->xdo_dev_state_add) {
176 xso->dev = NULL;
177 dev_put(dev);
178 return 0;
181 if (x->props.flags & XFRM_STATE_ESN &&
182 !dev->xfrmdev_ops->xdo_dev_state_advance_esn) {
183 xso->dev = NULL;
184 dev_put(dev);
185 return -EINVAL;
188 xso->dev = dev;
189 xso->num_exthdrs = 1;
190 xso->flags = xuo->flags;
192 err = dev->xfrmdev_ops->xdo_dev_state_add(x);
193 if (err) {
194 xso->dev = NULL;
195 dev_put(dev);
196 return err;
199 return 0;
201 EXPORT_SYMBOL_GPL(xfrm_dev_state_add);
203 bool xfrm_dev_offload_ok(struct sk_buff *skb, struct xfrm_state *x)
205 int mtu;
206 struct dst_entry *dst = skb_dst(skb);
207 struct xfrm_dst *xdst = (struct xfrm_dst *)dst;
208 struct net_device *dev = x->xso.dev;
210 if (!x->type_offload || x->encap)
211 return false;
213 if ((!dev || (x->xso.offload_handle && (dev == xfrm_dst_path(dst)->dev))) &&
214 (!xdst->child->xfrm && x->type->get_mtu)) {
215 mtu = x->type->get_mtu(x, xdst->child_mtu_cached);
217 if (skb->len <= mtu)
218 goto ok;
220 if (skb_is_gso(skb) && skb_gso_validate_mtu(skb, mtu))
221 goto ok;
224 return false;
227 if (dev && dev->xfrmdev_ops && dev->xfrmdev_ops->xdo_dev_offload_ok)
228 return x->xso.dev->xfrmdev_ops->xdo_dev_offload_ok(skb, x);
230 return true;
232 EXPORT_SYMBOL_GPL(xfrm_dev_offload_ok);
234 void xfrm_dev_resume(struct sk_buff *skb)
236 struct net_device *dev = skb->dev;
237 int ret = NETDEV_TX_BUSY;
238 struct netdev_queue *txq;
239 struct softnet_data *sd;
240 unsigned long flags;
242 rcu_read_lock();
243 txq = netdev_pick_tx(dev, skb, NULL);
245 HARD_TX_LOCK(dev, txq, smp_processor_id());
246 if (!netif_xmit_frozen_or_stopped(txq))
247 skb = dev_hard_start_xmit(skb, dev, txq, &ret);
248 HARD_TX_UNLOCK(dev, txq);
250 if (!dev_xmit_complete(ret)) {
251 local_irq_save(flags);
252 sd = this_cpu_ptr(&softnet_data);
253 skb_queue_tail(&sd->xfrm_backlog, skb);
254 raise_softirq_irqoff(NET_TX_SOFTIRQ);
255 local_irq_restore(flags);
257 rcu_read_unlock();
259 EXPORT_SYMBOL_GPL(xfrm_dev_resume);
261 void xfrm_dev_backlog(struct softnet_data *sd)
263 struct sk_buff_head *xfrm_backlog = &sd->xfrm_backlog;
264 struct sk_buff_head list;
265 struct sk_buff *skb;
267 if (skb_queue_empty(xfrm_backlog))
268 return;
270 __skb_queue_head_init(&list);
272 spin_lock(&xfrm_backlog->lock);
273 skb_queue_splice_init(xfrm_backlog, &list);
274 spin_unlock(&xfrm_backlog->lock);
276 while (!skb_queue_empty(&list)) {
277 skb = __skb_dequeue(&list);
278 xfrm_dev_resume(skb);
282 #endif
284 static int xfrm_api_check(struct net_device *dev)
286 #ifdef CONFIG_XFRM_OFFLOAD
287 if ((dev->features & NETIF_F_HW_ESP_TX_CSUM) &&
288 !(dev->features & NETIF_F_HW_ESP))
289 return NOTIFY_BAD;
291 if ((dev->features & NETIF_F_HW_ESP) &&
292 (!(dev->xfrmdev_ops &&
293 dev->xfrmdev_ops->xdo_dev_state_add &&
294 dev->xfrmdev_ops->xdo_dev_state_delete)))
295 return NOTIFY_BAD;
296 #else
297 if (dev->features & (NETIF_F_HW_ESP | NETIF_F_HW_ESP_TX_CSUM))
298 return NOTIFY_BAD;
299 #endif
301 return NOTIFY_DONE;
304 static int xfrm_dev_register(struct net_device *dev)
306 return xfrm_api_check(dev);
309 static int xfrm_dev_unregister(struct net_device *dev)
311 xfrm_policy_cache_flush();
312 return NOTIFY_DONE;
315 static int xfrm_dev_feat_change(struct net_device *dev)
317 return xfrm_api_check(dev);
320 static int xfrm_dev_down(struct net_device *dev)
322 if (dev->features & NETIF_F_HW_ESP)
323 xfrm_dev_state_flush(dev_net(dev), dev, true);
325 xfrm_policy_cache_flush();
326 return NOTIFY_DONE;
329 static int xfrm_dev_event(struct notifier_block *this, unsigned long event, void *ptr)
331 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
333 switch (event) {
334 case NETDEV_REGISTER:
335 return xfrm_dev_register(dev);
337 case NETDEV_UNREGISTER:
338 return xfrm_dev_unregister(dev);
340 case NETDEV_FEAT_CHANGE:
341 return xfrm_dev_feat_change(dev);
343 case NETDEV_DOWN:
344 return xfrm_dev_down(dev);
346 return NOTIFY_DONE;
349 static struct notifier_block xfrm_dev_notifier = {
350 .notifier_call = xfrm_dev_event,
353 void __net_init xfrm_dev_init(void)
355 register_netdevice_notifier(&xfrm_dev_notifier);