Merge tag 'xtensa-20180225' of git://github.com/jcmvbkbc/linux-xtensa
[cris-mirror.git] / security / integrity / ima / ima_crypto.c
blob205bc69361ea6667febadb403c6cede9a7827a52
1 /*
2 * Copyright (C) 2005,2006,2007,2008 IBM Corporation
4 * Authors:
5 * Mimi Zohar <zohar@us.ibm.com>
6 * Kylene Hall <kjhall@us.ibm.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, version 2 of the License.
12 * File: ima_crypto.c
13 * Calculates md5/sha1 file hash, template hash, boot-aggreate hash
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/kernel.h>
19 #include <linux/moduleparam.h>
20 #include <linux/ratelimit.h>
21 #include <linux/file.h>
22 #include <linux/crypto.h>
23 #include <linux/scatterlist.h>
24 #include <linux/err.h>
25 #include <linux/slab.h>
26 #include <crypto/hash.h>
28 #include "ima.h"
30 /* minimum file size for ahash use */
31 static unsigned long ima_ahash_minsize;
32 module_param_named(ahash_minsize, ima_ahash_minsize, ulong, 0644);
33 MODULE_PARM_DESC(ahash_minsize, "Minimum file size for ahash use");
35 /* default is 0 - 1 page. */
36 static int ima_maxorder;
37 static unsigned int ima_bufsize = PAGE_SIZE;
39 static int param_set_bufsize(const char *val, const struct kernel_param *kp)
41 unsigned long long size;
42 int order;
44 size = memparse(val, NULL);
45 order = get_order(size);
46 if (order >= MAX_ORDER)
47 return -EINVAL;
48 ima_maxorder = order;
49 ima_bufsize = PAGE_SIZE << order;
50 return 0;
53 static const struct kernel_param_ops param_ops_bufsize = {
54 .set = param_set_bufsize,
55 .get = param_get_uint,
57 #define param_check_bufsize(name, p) __param_check(name, p, unsigned int)
59 module_param_named(ahash_bufsize, ima_bufsize, bufsize, 0644);
60 MODULE_PARM_DESC(ahash_bufsize, "Maximum ahash buffer size");
62 static struct crypto_shash *ima_shash_tfm;
63 static struct crypto_ahash *ima_ahash_tfm;
65 int __init ima_init_crypto(void)
67 long rc;
69 ima_shash_tfm = crypto_alloc_shash(hash_algo_name[ima_hash_algo], 0, 0);
70 if (IS_ERR(ima_shash_tfm)) {
71 rc = PTR_ERR(ima_shash_tfm);
72 pr_err("Can not allocate %s (reason: %ld)\n",
73 hash_algo_name[ima_hash_algo], rc);
74 return rc;
76 return 0;
79 static struct crypto_shash *ima_alloc_tfm(enum hash_algo algo)
81 struct crypto_shash *tfm = ima_shash_tfm;
82 int rc;
84 if (algo < 0 || algo >= HASH_ALGO__LAST)
85 algo = ima_hash_algo;
87 if (algo != ima_hash_algo) {
88 tfm = crypto_alloc_shash(hash_algo_name[algo], 0, 0);
89 if (IS_ERR(tfm)) {
90 rc = PTR_ERR(tfm);
91 pr_err("Can not allocate %s (reason: %d)\n",
92 hash_algo_name[algo], rc);
95 return tfm;
98 static void ima_free_tfm(struct crypto_shash *tfm)
100 if (tfm != ima_shash_tfm)
101 crypto_free_shash(tfm);
105 * ima_alloc_pages() - Allocate contiguous pages.
106 * @max_size: Maximum amount of memory to allocate.
107 * @allocated_size: Returned size of actual allocation.
108 * @last_warn: Should the min_size allocation warn or not.
110 * Tries to do opportunistic allocation for memory first trying to allocate
111 * max_size amount of memory and then splitting that until zero order is
112 * reached. Allocation is tried without generating allocation warnings unless
113 * last_warn is set. Last_warn set affects only last allocation of zero order.
115 * By default, ima_maxorder is 0 and it is equivalent to kmalloc(GFP_KERNEL)
117 * Return pointer to allocated memory, or NULL on failure.
119 static void *ima_alloc_pages(loff_t max_size, size_t *allocated_size,
120 int last_warn)
122 void *ptr;
123 int order = ima_maxorder;
124 gfp_t gfp_mask = __GFP_RECLAIM | __GFP_NOWARN | __GFP_NORETRY;
126 if (order)
127 order = min(get_order(max_size), order);
129 for (; order; order--) {
130 ptr = (void *)__get_free_pages(gfp_mask, order);
131 if (ptr) {
132 *allocated_size = PAGE_SIZE << order;
133 return ptr;
137 /* order is zero - one page */
139 gfp_mask = GFP_KERNEL;
141 if (!last_warn)
142 gfp_mask |= __GFP_NOWARN;
144 ptr = (void *)__get_free_pages(gfp_mask, 0);
145 if (ptr) {
146 *allocated_size = PAGE_SIZE;
147 return ptr;
150 *allocated_size = 0;
151 return NULL;
155 * ima_free_pages() - Free pages allocated by ima_alloc_pages().
156 * @ptr: Pointer to allocated pages.
157 * @size: Size of allocated buffer.
159 static void ima_free_pages(void *ptr, size_t size)
161 if (!ptr)
162 return;
163 free_pages((unsigned long)ptr, get_order(size));
166 static struct crypto_ahash *ima_alloc_atfm(enum hash_algo algo)
168 struct crypto_ahash *tfm = ima_ahash_tfm;
169 int rc;
171 if (algo < 0 || algo >= HASH_ALGO__LAST)
172 algo = ima_hash_algo;
174 if (algo != ima_hash_algo || !tfm) {
175 tfm = crypto_alloc_ahash(hash_algo_name[algo], 0, 0);
176 if (!IS_ERR(tfm)) {
177 if (algo == ima_hash_algo)
178 ima_ahash_tfm = tfm;
179 } else {
180 rc = PTR_ERR(tfm);
181 pr_err("Can not allocate %s (reason: %d)\n",
182 hash_algo_name[algo], rc);
185 return tfm;
188 static void ima_free_atfm(struct crypto_ahash *tfm)
190 if (tfm != ima_ahash_tfm)
191 crypto_free_ahash(tfm);
194 static inline int ahash_wait(int err, struct crypto_wait *wait)
197 err = crypto_wait_req(err, wait);
199 if (err)
200 pr_crit_ratelimited("ahash calculation failed: err: %d\n", err);
202 return err;
205 static int ima_calc_file_hash_atfm(struct file *file,
206 struct ima_digest_data *hash,
207 struct crypto_ahash *tfm)
209 loff_t i_size, offset;
210 char *rbuf[2] = { NULL, };
211 int rc, read = 0, rbuf_len, active = 0, ahash_rc = 0;
212 struct ahash_request *req;
213 struct scatterlist sg[1];
214 struct crypto_wait wait;
215 size_t rbuf_size[2];
217 hash->length = crypto_ahash_digestsize(tfm);
219 req = ahash_request_alloc(tfm, GFP_KERNEL);
220 if (!req)
221 return -ENOMEM;
223 crypto_init_wait(&wait);
224 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
225 CRYPTO_TFM_REQ_MAY_SLEEP,
226 crypto_req_done, &wait);
228 rc = ahash_wait(crypto_ahash_init(req), &wait);
229 if (rc)
230 goto out1;
232 i_size = i_size_read(file_inode(file));
234 if (i_size == 0)
235 goto out2;
238 * Try to allocate maximum size of memory.
239 * Fail if even a single page cannot be allocated.
241 rbuf[0] = ima_alloc_pages(i_size, &rbuf_size[0], 1);
242 if (!rbuf[0]) {
243 rc = -ENOMEM;
244 goto out1;
247 /* Only allocate one buffer if that is enough. */
248 if (i_size > rbuf_size[0]) {
250 * Try to allocate secondary buffer. If that fails fallback to
251 * using single buffering. Use previous memory allocation size
252 * as baseline for possible allocation size.
254 rbuf[1] = ima_alloc_pages(i_size - rbuf_size[0],
255 &rbuf_size[1], 0);
258 if (!(file->f_mode & FMODE_READ)) {
259 file->f_mode |= FMODE_READ;
260 read = 1;
263 for (offset = 0; offset < i_size; offset += rbuf_len) {
264 if (!rbuf[1] && offset) {
265 /* Not using two buffers, and it is not the first
266 * read/request, wait for the completion of the
267 * previous ahash_update() request.
269 rc = ahash_wait(ahash_rc, &wait);
270 if (rc)
271 goto out3;
273 /* read buffer */
274 rbuf_len = min_t(loff_t, i_size - offset, rbuf_size[active]);
275 rc = integrity_kernel_read(file, offset, rbuf[active],
276 rbuf_len);
277 if (rc != rbuf_len)
278 goto out3;
280 if (rbuf[1] && offset) {
281 /* Using two buffers, and it is not the first
282 * read/request, wait for the completion of the
283 * previous ahash_update() request.
285 rc = ahash_wait(ahash_rc, &wait);
286 if (rc)
287 goto out3;
290 sg_init_one(&sg[0], rbuf[active], rbuf_len);
291 ahash_request_set_crypt(req, sg, NULL, rbuf_len);
293 ahash_rc = crypto_ahash_update(req);
295 if (rbuf[1])
296 active = !active; /* swap buffers, if we use two */
298 /* wait for the last update request to complete */
299 rc = ahash_wait(ahash_rc, &wait);
300 out3:
301 if (read)
302 file->f_mode &= ~FMODE_READ;
303 ima_free_pages(rbuf[0], rbuf_size[0]);
304 ima_free_pages(rbuf[1], rbuf_size[1]);
305 out2:
306 if (!rc) {
307 ahash_request_set_crypt(req, NULL, hash->digest, 0);
308 rc = ahash_wait(crypto_ahash_final(req), &wait);
310 out1:
311 ahash_request_free(req);
312 return rc;
315 static int ima_calc_file_ahash(struct file *file, struct ima_digest_data *hash)
317 struct crypto_ahash *tfm;
318 int rc;
320 tfm = ima_alloc_atfm(hash->algo);
321 if (IS_ERR(tfm))
322 return PTR_ERR(tfm);
324 rc = ima_calc_file_hash_atfm(file, hash, tfm);
326 ima_free_atfm(tfm);
328 return rc;
331 static int ima_calc_file_hash_tfm(struct file *file,
332 struct ima_digest_data *hash,
333 struct crypto_shash *tfm)
335 loff_t i_size, offset = 0;
336 char *rbuf;
337 int rc, read = 0;
338 SHASH_DESC_ON_STACK(shash, tfm);
340 shash->tfm = tfm;
341 shash->flags = 0;
343 hash->length = crypto_shash_digestsize(tfm);
345 rc = crypto_shash_init(shash);
346 if (rc != 0)
347 return rc;
349 i_size = i_size_read(file_inode(file));
351 if (i_size == 0)
352 goto out;
354 rbuf = kzalloc(PAGE_SIZE, GFP_KERNEL);
355 if (!rbuf)
356 return -ENOMEM;
358 if (!(file->f_mode & FMODE_READ)) {
359 file->f_mode |= FMODE_READ;
360 read = 1;
363 while (offset < i_size) {
364 int rbuf_len;
366 rbuf_len = integrity_kernel_read(file, offset, rbuf, PAGE_SIZE);
367 if (rbuf_len < 0) {
368 rc = rbuf_len;
369 break;
371 if (rbuf_len == 0)
372 break;
373 offset += rbuf_len;
375 rc = crypto_shash_update(shash, rbuf, rbuf_len);
376 if (rc)
377 break;
379 if (read)
380 file->f_mode &= ~FMODE_READ;
381 kfree(rbuf);
382 out:
383 if (!rc)
384 rc = crypto_shash_final(shash, hash->digest);
385 return rc;
388 static int ima_calc_file_shash(struct file *file, struct ima_digest_data *hash)
390 struct crypto_shash *tfm;
391 int rc;
393 tfm = ima_alloc_tfm(hash->algo);
394 if (IS_ERR(tfm))
395 return PTR_ERR(tfm);
397 rc = ima_calc_file_hash_tfm(file, hash, tfm);
399 ima_free_tfm(tfm);
401 return rc;
405 * ima_calc_file_hash - calculate file hash
407 * Asynchronous hash (ahash) allows using HW acceleration for calculating
408 * a hash. ahash performance varies for different data sizes on different
409 * crypto accelerators. shash performance might be better for smaller files.
410 * The 'ima.ahash_minsize' module parameter allows specifying the best
411 * minimum file size for using ahash on the system.
413 * If the ima.ahash_minsize parameter is not specified, this function uses
414 * shash for the hash calculation. If ahash fails, it falls back to using
415 * shash.
417 int ima_calc_file_hash(struct file *file, struct ima_digest_data *hash)
419 loff_t i_size;
420 int rc;
423 * For consistency, fail file's opened with the O_DIRECT flag on
424 * filesystems mounted with/without DAX option.
426 if (file->f_flags & O_DIRECT) {
427 hash->length = hash_digest_size[ima_hash_algo];
428 hash->algo = ima_hash_algo;
429 return -EINVAL;
432 i_size = i_size_read(file_inode(file));
434 if (ima_ahash_minsize && i_size >= ima_ahash_minsize) {
435 rc = ima_calc_file_ahash(file, hash);
436 if (!rc)
437 return 0;
440 return ima_calc_file_shash(file, hash);
444 * Calculate the hash of template data
446 static int ima_calc_field_array_hash_tfm(struct ima_field_data *field_data,
447 struct ima_template_desc *td,
448 int num_fields,
449 struct ima_digest_data *hash,
450 struct crypto_shash *tfm)
452 SHASH_DESC_ON_STACK(shash, tfm);
453 int rc, i;
455 shash->tfm = tfm;
456 shash->flags = 0;
458 hash->length = crypto_shash_digestsize(tfm);
460 rc = crypto_shash_init(shash);
461 if (rc != 0)
462 return rc;
464 for (i = 0; i < num_fields; i++) {
465 u8 buffer[IMA_EVENT_NAME_LEN_MAX + 1] = { 0 };
466 u8 *data_to_hash = field_data[i].data;
467 u32 datalen = field_data[i].len;
468 u32 datalen_to_hash =
469 !ima_canonical_fmt ? datalen : cpu_to_le32(datalen);
471 if (strcmp(td->name, IMA_TEMPLATE_IMA_NAME) != 0) {
472 rc = crypto_shash_update(shash,
473 (const u8 *) &datalen_to_hash,
474 sizeof(datalen_to_hash));
475 if (rc)
476 break;
477 } else if (strcmp(td->fields[i]->field_id, "n") == 0) {
478 memcpy(buffer, data_to_hash, datalen);
479 data_to_hash = buffer;
480 datalen = IMA_EVENT_NAME_LEN_MAX + 1;
482 rc = crypto_shash_update(shash, data_to_hash, datalen);
483 if (rc)
484 break;
487 if (!rc)
488 rc = crypto_shash_final(shash, hash->digest);
490 return rc;
493 int ima_calc_field_array_hash(struct ima_field_data *field_data,
494 struct ima_template_desc *desc, int num_fields,
495 struct ima_digest_data *hash)
497 struct crypto_shash *tfm;
498 int rc;
500 tfm = ima_alloc_tfm(hash->algo);
501 if (IS_ERR(tfm))
502 return PTR_ERR(tfm);
504 rc = ima_calc_field_array_hash_tfm(field_data, desc, num_fields,
505 hash, tfm);
507 ima_free_tfm(tfm);
509 return rc;
512 static int calc_buffer_ahash_atfm(const void *buf, loff_t len,
513 struct ima_digest_data *hash,
514 struct crypto_ahash *tfm)
516 struct ahash_request *req;
517 struct scatterlist sg;
518 struct crypto_wait wait;
519 int rc, ahash_rc = 0;
521 hash->length = crypto_ahash_digestsize(tfm);
523 req = ahash_request_alloc(tfm, GFP_KERNEL);
524 if (!req)
525 return -ENOMEM;
527 crypto_init_wait(&wait);
528 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
529 CRYPTO_TFM_REQ_MAY_SLEEP,
530 crypto_req_done, &wait);
532 rc = ahash_wait(crypto_ahash_init(req), &wait);
533 if (rc)
534 goto out;
536 sg_init_one(&sg, buf, len);
537 ahash_request_set_crypt(req, &sg, NULL, len);
539 ahash_rc = crypto_ahash_update(req);
541 /* wait for the update request to complete */
542 rc = ahash_wait(ahash_rc, &wait);
543 if (!rc) {
544 ahash_request_set_crypt(req, NULL, hash->digest, 0);
545 rc = ahash_wait(crypto_ahash_final(req), &wait);
547 out:
548 ahash_request_free(req);
549 return rc;
552 static int calc_buffer_ahash(const void *buf, loff_t len,
553 struct ima_digest_data *hash)
555 struct crypto_ahash *tfm;
556 int rc;
558 tfm = ima_alloc_atfm(hash->algo);
559 if (IS_ERR(tfm))
560 return PTR_ERR(tfm);
562 rc = calc_buffer_ahash_atfm(buf, len, hash, tfm);
564 ima_free_atfm(tfm);
566 return rc;
569 static int calc_buffer_shash_tfm(const void *buf, loff_t size,
570 struct ima_digest_data *hash,
571 struct crypto_shash *tfm)
573 SHASH_DESC_ON_STACK(shash, tfm);
574 unsigned int len;
575 int rc;
577 shash->tfm = tfm;
578 shash->flags = 0;
580 hash->length = crypto_shash_digestsize(tfm);
582 rc = crypto_shash_init(shash);
583 if (rc != 0)
584 return rc;
586 while (size) {
587 len = size < PAGE_SIZE ? size : PAGE_SIZE;
588 rc = crypto_shash_update(shash, buf, len);
589 if (rc)
590 break;
591 buf += len;
592 size -= len;
595 if (!rc)
596 rc = crypto_shash_final(shash, hash->digest);
597 return rc;
600 static int calc_buffer_shash(const void *buf, loff_t len,
601 struct ima_digest_data *hash)
603 struct crypto_shash *tfm;
604 int rc;
606 tfm = ima_alloc_tfm(hash->algo);
607 if (IS_ERR(tfm))
608 return PTR_ERR(tfm);
610 rc = calc_buffer_shash_tfm(buf, len, hash, tfm);
612 ima_free_tfm(tfm);
613 return rc;
616 int ima_calc_buffer_hash(const void *buf, loff_t len,
617 struct ima_digest_data *hash)
619 int rc;
621 if (ima_ahash_minsize && len >= ima_ahash_minsize) {
622 rc = calc_buffer_ahash(buf, len, hash);
623 if (!rc)
624 return 0;
627 return calc_buffer_shash(buf, len, hash);
630 static void __init ima_pcrread(int idx, u8 *pcr)
632 if (!ima_used_chip)
633 return;
635 if (tpm_pcr_read(NULL, idx, pcr) != 0)
636 pr_err("Error Communicating to TPM chip\n");
640 * Calculate the boot aggregate hash
642 static int __init ima_calc_boot_aggregate_tfm(char *digest,
643 struct crypto_shash *tfm)
645 u8 pcr_i[TPM_DIGEST_SIZE];
646 int rc, i;
647 SHASH_DESC_ON_STACK(shash, tfm);
649 shash->tfm = tfm;
650 shash->flags = 0;
652 rc = crypto_shash_init(shash);
653 if (rc != 0)
654 return rc;
656 /* cumulative sha1 over tpm registers 0-7 */
657 for (i = TPM_PCR0; i < TPM_PCR8; i++) {
658 ima_pcrread(i, pcr_i);
659 /* now accumulate with current aggregate */
660 rc = crypto_shash_update(shash, pcr_i, TPM_DIGEST_SIZE);
662 if (!rc)
663 crypto_shash_final(shash, digest);
664 return rc;
667 int __init ima_calc_boot_aggregate(struct ima_digest_data *hash)
669 struct crypto_shash *tfm;
670 int rc;
672 tfm = ima_alloc_tfm(hash->algo);
673 if (IS_ERR(tfm))
674 return PTR_ERR(tfm);
676 hash->length = crypto_shash_digestsize(tfm);
677 rc = ima_calc_boot_aggregate_tfm(hash->digest, tfm);
679 ima_free_tfm(tfm);
681 return rc;