2 * Copyright (c) 2016 Avago Technologies. All rights reserved.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of version 2 of the GNU General Public License as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful.
9 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
10 * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
11 * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
12 * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
13 * See the GNU General Public License for more details, a copy of which
14 * can be found in the file COPYING included with this package
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/module.h>
19 #include <linux/parser.h>
20 #include <uapi/scsi/fc/fc_fs.h>
21 #include <uapi/scsi/fc/fc_els.h>
22 #include <linux/delay.h>
26 #include <linux/nvme-fc-driver.h>
27 #include <linux/nvme-fc.h>
30 /* *************************** Data Structures/Defines ****************** */
34 * We handle AEN commands ourselves and don't even let the
35 * block layer know about them.
37 #define NVME_FC_NR_AEN_COMMANDS 1
38 #define NVME_FC_AQ_BLKMQ_DEPTH \
39 (NVME_AQ_DEPTH - NVME_FC_NR_AEN_COMMANDS)
40 #define AEN_CMDID_BASE (NVME_FC_AQ_BLKMQ_DEPTH + 1)
42 enum nvme_fc_queue_flags
{
43 NVME_FC_Q_CONNECTED
= (1 << 0),
46 #define NVMEFC_QUEUE_DELAY 3 /* ms units */
48 struct nvme_fc_queue
{
49 struct nvme_fc_ctrl
*ctrl
;
51 struct blk_mq_hw_ctx
*hctx
;
54 size_t cmnd_capsule_len
;
63 } __aligned(sizeof(u64
)); /* alignment for other things alloc'd with */
65 enum nvme_fcop_flags
{
66 FCOP_FLAGS_TERMIO
= (1 << 0),
67 FCOP_FLAGS_RELEASED
= (1 << 1),
68 FCOP_FLAGS_COMPLETE
= (1 << 2),
69 FCOP_FLAGS_AEN
= (1 << 3),
72 struct nvmefc_ls_req_op
{
73 struct nvmefc_ls_req ls_req
;
75 struct nvme_fc_rport
*rport
;
76 struct nvme_fc_queue
*queue
;
81 struct completion ls_done
;
82 struct list_head lsreq_list
; /* rport->ls_req_list */
86 enum nvme_fcpop_state
{
87 FCPOP_STATE_UNINIT
= 0,
89 FCPOP_STATE_ACTIVE
= 2,
90 FCPOP_STATE_ABORTED
= 3,
91 FCPOP_STATE_COMPLETE
= 4,
94 struct nvme_fc_fcp_op
{
95 struct nvme_request nreq
; /*
98 * the 1st element in the
100 * associated with the
103 struct nvmefc_fcp_req fcp_req
;
105 struct nvme_fc_ctrl
*ctrl
;
106 struct nvme_fc_queue
*queue
;
114 struct nvme_fc_cmd_iu cmd_iu
;
115 struct nvme_fc_ersp_iu rsp_iu
;
118 struct nvme_fc_lport
{
119 struct nvme_fc_local_port localport
;
122 struct list_head port_list
; /* nvme_fc_port_list */
123 struct list_head endp_list
;
124 struct device
*dev
; /* physical device for dma */
125 struct nvme_fc_port_template
*ops
;
127 } __aligned(sizeof(u64
)); /* alignment for other things alloc'd with */
129 struct nvme_fc_rport
{
130 struct nvme_fc_remote_port remoteport
;
132 struct list_head endp_list
; /* for lport->endp_list */
133 struct list_head ctrl_list
;
134 struct list_head ls_req_list
;
135 struct device
*dev
; /* physical device for dma */
136 struct nvme_fc_lport
*lport
;
139 } __aligned(sizeof(u64
)); /* alignment for other things alloc'd with */
141 enum nvme_fcctrl_flags
{
142 FCCTRL_TERMIO
= (1 << 0),
145 struct nvme_fc_ctrl
{
147 struct nvme_fc_queue
*queues
;
149 struct nvme_fc_lport
*lport
;
150 struct nvme_fc_rport
*rport
;
155 struct list_head ctrl_list
; /* rport->ctrl_list */
157 struct blk_mq_tag_set admin_tag_set
;
158 struct blk_mq_tag_set tag_set
;
160 struct work_struct delete_work
;
161 struct delayed_work connect_work
;
166 wait_queue_head_t ioabort_wait
;
168 struct nvme_fc_fcp_op aen_ops
[NVME_FC_NR_AEN_COMMANDS
];
170 struct nvme_ctrl ctrl
;
173 static inline struct nvme_fc_ctrl
*
174 to_fc_ctrl(struct nvme_ctrl
*ctrl
)
176 return container_of(ctrl
, struct nvme_fc_ctrl
, ctrl
);
179 static inline struct nvme_fc_lport
*
180 localport_to_lport(struct nvme_fc_local_port
*portptr
)
182 return container_of(portptr
, struct nvme_fc_lport
, localport
);
185 static inline struct nvme_fc_rport
*
186 remoteport_to_rport(struct nvme_fc_remote_port
*portptr
)
188 return container_of(portptr
, struct nvme_fc_rport
, remoteport
);
191 static inline struct nvmefc_ls_req_op
*
192 ls_req_to_lsop(struct nvmefc_ls_req
*lsreq
)
194 return container_of(lsreq
, struct nvmefc_ls_req_op
, ls_req
);
197 static inline struct nvme_fc_fcp_op
*
198 fcp_req_to_fcp_op(struct nvmefc_fcp_req
*fcpreq
)
200 return container_of(fcpreq
, struct nvme_fc_fcp_op
, fcp_req
);
205 /* *************************** Globals **************************** */
208 static DEFINE_SPINLOCK(nvme_fc_lock
);
210 static LIST_HEAD(nvme_fc_lport_list
);
211 static DEFINE_IDA(nvme_fc_local_port_cnt
);
212 static DEFINE_IDA(nvme_fc_ctrl_cnt
);
217 /* *********************** FC-NVME Port Management ************************ */
219 static int __nvme_fc_del_ctrl(struct nvme_fc_ctrl
*);
220 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl
*,
221 struct nvme_fc_queue
*, unsigned int);
225 * nvme_fc_register_localport - transport entry point called by an
226 * LLDD to register the existence of a NVME
228 * @pinfo: pointer to information about the port to be registered
229 * @template: LLDD entrypoints and operational parameters for the port
230 * @dev: physical hardware device node port corresponds to. Will be
231 * used for DMA mappings
232 * @lport_p: pointer to a local port pointer. Upon success, the routine
233 * will allocate a nvme_fc_local_port structure and place its
234 * address in the local port pointer. Upon failure, local port
235 * pointer will be set to 0.
238 * a completion status. Must be 0 upon success; a negative errno
239 * (ex: -ENXIO) upon failure.
242 nvme_fc_register_localport(struct nvme_fc_port_info
*pinfo
,
243 struct nvme_fc_port_template
*template,
245 struct nvme_fc_local_port
**portptr
)
247 struct nvme_fc_lport
*newrec
;
251 if (!template->localport_delete
|| !template->remoteport_delete
||
252 !template->ls_req
|| !template->fcp_io
||
253 !template->ls_abort
|| !template->fcp_abort
||
254 !template->max_hw_queues
|| !template->max_sgl_segments
||
255 !template->max_dif_sgl_segments
|| !template->dma_boundary
) {
257 goto out_reghost_failed
;
260 newrec
= kmalloc((sizeof(*newrec
) + template->local_priv_sz
),
264 goto out_reghost_failed
;
267 idx
= ida_simple_get(&nvme_fc_local_port_cnt
, 0, 0, GFP_KERNEL
);
273 if (!get_device(dev
) && dev
) {
278 INIT_LIST_HEAD(&newrec
->port_list
);
279 INIT_LIST_HEAD(&newrec
->endp_list
);
280 kref_init(&newrec
->ref
);
281 newrec
->ops
= template;
283 ida_init(&newrec
->endp_cnt
);
284 newrec
->localport
.private = &newrec
[1];
285 newrec
->localport
.node_name
= pinfo
->node_name
;
286 newrec
->localport
.port_name
= pinfo
->port_name
;
287 newrec
->localport
.port_role
= pinfo
->port_role
;
288 newrec
->localport
.port_id
= pinfo
->port_id
;
289 newrec
->localport
.port_state
= FC_OBJSTATE_ONLINE
;
290 newrec
->localport
.port_num
= idx
;
292 spin_lock_irqsave(&nvme_fc_lock
, flags
);
293 list_add_tail(&newrec
->port_list
, &nvme_fc_lport_list
);
294 spin_unlock_irqrestore(&nvme_fc_lock
, flags
);
297 dma_set_seg_boundary(dev
, template->dma_boundary
);
299 *portptr
= &newrec
->localport
;
303 ida_simple_remove(&nvme_fc_local_port_cnt
, idx
);
311 EXPORT_SYMBOL_GPL(nvme_fc_register_localport
);
314 nvme_fc_free_lport(struct kref
*ref
)
316 struct nvme_fc_lport
*lport
=
317 container_of(ref
, struct nvme_fc_lport
, ref
);
320 WARN_ON(lport
->localport
.port_state
!= FC_OBJSTATE_DELETED
);
321 WARN_ON(!list_empty(&lport
->endp_list
));
323 /* remove from transport list */
324 spin_lock_irqsave(&nvme_fc_lock
, flags
);
325 list_del(&lport
->port_list
);
326 spin_unlock_irqrestore(&nvme_fc_lock
, flags
);
328 /* let the LLDD know we've finished tearing it down */
329 lport
->ops
->localport_delete(&lport
->localport
);
331 ida_simple_remove(&nvme_fc_local_port_cnt
, lport
->localport
.port_num
);
332 ida_destroy(&lport
->endp_cnt
);
334 put_device(lport
->dev
);
340 nvme_fc_lport_put(struct nvme_fc_lport
*lport
)
342 kref_put(&lport
->ref
, nvme_fc_free_lport
);
346 nvme_fc_lport_get(struct nvme_fc_lport
*lport
)
348 return kref_get_unless_zero(&lport
->ref
);
352 * nvme_fc_unregister_localport - transport entry point called by an
353 * LLDD to deregister/remove a previously
354 * registered a NVME host FC port.
355 * @localport: pointer to the (registered) local port that is to be
359 * a completion status. Must be 0 upon success; a negative errno
360 * (ex: -ENXIO) upon failure.
363 nvme_fc_unregister_localport(struct nvme_fc_local_port
*portptr
)
365 struct nvme_fc_lport
*lport
= localport_to_lport(portptr
);
371 spin_lock_irqsave(&nvme_fc_lock
, flags
);
373 if (portptr
->port_state
!= FC_OBJSTATE_ONLINE
) {
374 spin_unlock_irqrestore(&nvme_fc_lock
, flags
);
377 portptr
->port_state
= FC_OBJSTATE_DELETED
;
379 spin_unlock_irqrestore(&nvme_fc_lock
, flags
);
381 nvme_fc_lport_put(lport
);
385 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport
);
388 * nvme_fc_register_remoteport - transport entry point called by an
389 * LLDD to register the existence of a NVME
390 * subsystem FC port on its fabric.
391 * @localport: pointer to the (registered) local port that the remote
392 * subsystem port is connected to.
393 * @pinfo: pointer to information about the port to be registered
394 * @rport_p: pointer to a remote port pointer. Upon success, the routine
395 * will allocate a nvme_fc_remote_port structure and place its
396 * address in the remote port pointer. Upon failure, remote port
397 * pointer will be set to 0.
400 * a completion status. Must be 0 upon success; a negative errno
401 * (ex: -ENXIO) upon failure.
404 nvme_fc_register_remoteport(struct nvme_fc_local_port
*localport
,
405 struct nvme_fc_port_info
*pinfo
,
406 struct nvme_fc_remote_port
**portptr
)
408 struct nvme_fc_lport
*lport
= localport_to_lport(localport
);
409 struct nvme_fc_rport
*newrec
;
413 newrec
= kmalloc((sizeof(*newrec
) + lport
->ops
->remote_priv_sz
),
417 goto out_reghost_failed
;
420 if (!nvme_fc_lport_get(lport
)) {
422 goto out_kfree_rport
;
425 idx
= ida_simple_get(&lport
->endp_cnt
, 0, 0, GFP_KERNEL
);
431 INIT_LIST_HEAD(&newrec
->endp_list
);
432 INIT_LIST_HEAD(&newrec
->ctrl_list
);
433 INIT_LIST_HEAD(&newrec
->ls_req_list
);
434 kref_init(&newrec
->ref
);
435 spin_lock_init(&newrec
->lock
);
436 newrec
->remoteport
.localport
= &lport
->localport
;
437 newrec
->dev
= lport
->dev
;
438 newrec
->lport
= lport
;
439 newrec
->remoteport
.private = &newrec
[1];
440 newrec
->remoteport
.port_role
= pinfo
->port_role
;
441 newrec
->remoteport
.node_name
= pinfo
->node_name
;
442 newrec
->remoteport
.port_name
= pinfo
->port_name
;
443 newrec
->remoteport
.port_id
= pinfo
->port_id
;
444 newrec
->remoteport
.port_state
= FC_OBJSTATE_ONLINE
;
445 newrec
->remoteport
.port_num
= idx
;
447 spin_lock_irqsave(&nvme_fc_lock
, flags
);
448 list_add_tail(&newrec
->endp_list
, &lport
->endp_list
);
449 spin_unlock_irqrestore(&nvme_fc_lock
, flags
);
451 *portptr
= &newrec
->remoteport
;
455 nvme_fc_lport_put(lport
);
462 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport
);
465 nvme_fc_free_rport(struct kref
*ref
)
467 struct nvme_fc_rport
*rport
=
468 container_of(ref
, struct nvme_fc_rport
, ref
);
469 struct nvme_fc_lport
*lport
=
470 localport_to_lport(rport
->remoteport
.localport
);
473 WARN_ON(rport
->remoteport
.port_state
!= FC_OBJSTATE_DELETED
);
474 WARN_ON(!list_empty(&rport
->ctrl_list
));
476 /* remove from lport list */
477 spin_lock_irqsave(&nvme_fc_lock
, flags
);
478 list_del(&rport
->endp_list
);
479 spin_unlock_irqrestore(&nvme_fc_lock
, flags
);
481 /* let the LLDD know we've finished tearing it down */
482 lport
->ops
->remoteport_delete(&rport
->remoteport
);
484 ida_simple_remove(&lport
->endp_cnt
, rport
->remoteport
.port_num
);
488 nvme_fc_lport_put(lport
);
492 nvme_fc_rport_put(struct nvme_fc_rport
*rport
)
494 kref_put(&rport
->ref
, nvme_fc_free_rport
);
498 nvme_fc_rport_get(struct nvme_fc_rport
*rport
)
500 return kref_get_unless_zero(&rport
->ref
);
504 nvme_fc_abort_lsops(struct nvme_fc_rport
*rport
)
506 struct nvmefc_ls_req_op
*lsop
;
510 spin_lock_irqsave(&rport
->lock
, flags
);
512 list_for_each_entry(lsop
, &rport
->ls_req_list
, lsreq_list
) {
513 if (!(lsop
->flags
& FCOP_FLAGS_TERMIO
)) {
514 lsop
->flags
|= FCOP_FLAGS_TERMIO
;
515 spin_unlock_irqrestore(&rport
->lock
, flags
);
516 rport
->lport
->ops
->ls_abort(&rport
->lport
->localport
,
522 spin_unlock_irqrestore(&rport
->lock
, flags
);
528 * nvme_fc_unregister_remoteport - transport entry point called by an
529 * LLDD to deregister/remove a previously
530 * registered a NVME subsystem FC port.
531 * @remoteport: pointer to the (registered) remote port that is to be
535 * a completion status. Must be 0 upon success; a negative errno
536 * (ex: -ENXIO) upon failure.
539 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port
*portptr
)
541 struct nvme_fc_rport
*rport
= remoteport_to_rport(portptr
);
542 struct nvme_fc_ctrl
*ctrl
;
548 spin_lock_irqsave(&rport
->lock
, flags
);
550 if (portptr
->port_state
!= FC_OBJSTATE_ONLINE
) {
551 spin_unlock_irqrestore(&rport
->lock
, flags
);
554 portptr
->port_state
= FC_OBJSTATE_DELETED
;
556 /* tear down all associations to the remote port */
557 list_for_each_entry(ctrl
, &rport
->ctrl_list
, ctrl_list
)
558 __nvme_fc_del_ctrl(ctrl
);
560 spin_unlock_irqrestore(&rport
->lock
, flags
);
562 nvme_fc_abort_lsops(rport
);
564 nvme_fc_rport_put(rport
);
567 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport
);
570 /* *********************** FC-NVME DMA Handling **************************** */
573 * The fcloop device passes in a NULL device pointer. Real LLD's will
574 * pass in a valid device pointer. If NULL is passed to the dma mapping
575 * routines, depending on the platform, it may or may not succeed, and
579 * Wrapper all the dma routines and check the dev pointer.
581 * If simple mappings (return just a dma address, we'll noop them,
582 * returning a dma address of 0.
584 * On more complex mappings (dma_map_sg), a pseudo routine fills
585 * in the scatter list, setting all dma addresses to 0.
588 static inline dma_addr_t
589 fc_dma_map_single(struct device
*dev
, void *ptr
, size_t size
,
590 enum dma_data_direction dir
)
592 return dev
? dma_map_single(dev
, ptr
, size
, dir
) : (dma_addr_t
)0L;
596 fc_dma_mapping_error(struct device
*dev
, dma_addr_t dma_addr
)
598 return dev
? dma_mapping_error(dev
, dma_addr
) : 0;
602 fc_dma_unmap_single(struct device
*dev
, dma_addr_t addr
, size_t size
,
603 enum dma_data_direction dir
)
606 dma_unmap_single(dev
, addr
, size
, dir
);
610 fc_dma_sync_single_for_cpu(struct device
*dev
, dma_addr_t addr
, size_t size
,
611 enum dma_data_direction dir
)
614 dma_sync_single_for_cpu(dev
, addr
, size
, dir
);
618 fc_dma_sync_single_for_device(struct device
*dev
, dma_addr_t addr
, size_t size
,
619 enum dma_data_direction dir
)
622 dma_sync_single_for_device(dev
, addr
, size
, dir
);
625 /* pseudo dma_map_sg call */
627 fc_map_sg(struct scatterlist
*sg
, int nents
)
629 struct scatterlist
*s
;
632 WARN_ON(nents
== 0 || sg
[0].length
== 0);
634 for_each_sg(sg
, s
, nents
, i
) {
636 #ifdef CONFIG_NEED_SG_DMA_LENGTH
637 s
->dma_length
= s
->length
;
644 fc_dma_map_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
645 enum dma_data_direction dir
)
647 return dev
? dma_map_sg(dev
, sg
, nents
, dir
) : fc_map_sg(sg
, nents
);
651 fc_dma_unmap_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
652 enum dma_data_direction dir
)
655 dma_unmap_sg(dev
, sg
, nents
, dir
);
659 /* *********************** FC-NVME LS Handling **************************** */
661 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl
*);
662 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl
*);
666 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op
*lsop
)
668 struct nvme_fc_rport
*rport
= lsop
->rport
;
669 struct nvmefc_ls_req
*lsreq
= &lsop
->ls_req
;
672 spin_lock_irqsave(&rport
->lock
, flags
);
674 if (!lsop
->req_queued
) {
675 spin_unlock_irqrestore(&rport
->lock
, flags
);
679 list_del(&lsop
->lsreq_list
);
681 lsop
->req_queued
= false;
683 spin_unlock_irqrestore(&rport
->lock
, flags
);
685 fc_dma_unmap_single(rport
->dev
, lsreq
->rqstdma
,
686 (lsreq
->rqstlen
+ lsreq
->rsplen
),
689 nvme_fc_rport_put(rport
);
693 __nvme_fc_send_ls_req(struct nvme_fc_rport
*rport
,
694 struct nvmefc_ls_req_op
*lsop
,
695 void (*done
)(struct nvmefc_ls_req
*req
, int status
))
697 struct nvmefc_ls_req
*lsreq
= &lsop
->ls_req
;
701 if (rport
->remoteport
.port_state
!= FC_OBJSTATE_ONLINE
)
702 return -ECONNREFUSED
;
704 if (!nvme_fc_rport_get(rport
))
709 lsop
->req_queued
= false;
710 INIT_LIST_HEAD(&lsop
->lsreq_list
);
711 init_completion(&lsop
->ls_done
);
713 lsreq
->rqstdma
= fc_dma_map_single(rport
->dev
, lsreq
->rqstaddr
,
714 lsreq
->rqstlen
+ lsreq
->rsplen
,
716 if (fc_dma_mapping_error(rport
->dev
, lsreq
->rqstdma
)) {
720 lsreq
->rspdma
= lsreq
->rqstdma
+ lsreq
->rqstlen
;
722 spin_lock_irqsave(&rport
->lock
, flags
);
724 list_add_tail(&lsop
->lsreq_list
, &rport
->ls_req_list
);
726 lsop
->req_queued
= true;
728 spin_unlock_irqrestore(&rport
->lock
, flags
);
730 ret
= rport
->lport
->ops
->ls_req(&rport
->lport
->localport
,
731 &rport
->remoteport
, lsreq
);
738 lsop
->ls_error
= ret
;
739 spin_lock_irqsave(&rport
->lock
, flags
);
740 lsop
->req_queued
= false;
741 list_del(&lsop
->lsreq_list
);
742 spin_unlock_irqrestore(&rport
->lock
, flags
);
743 fc_dma_unmap_single(rport
->dev
, lsreq
->rqstdma
,
744 (lsreq
->rqstlen
+ lsreq
->rsplen
),
747 nvme_fc_rport_put(rport
);
753 nvme_fc_send_ls_req_done(struct nvmefc_ls_req
*lsreq
, int status
)
755 struct nvmefc_ls_req_op
*lsop
= ls_req_to_lsop(lsreq
);
757 lsop
->ls_error
= status
;
758 complete(&lsop
->ls_done
);
762 nvme_fc_send_ls_req(struct nvme_fc_rport
*rport
, struct nvmefc_ls_req_op
*lsop
)
764 struct nvmefc_ls_req
*lsreq
= &lsop
->ls_req
;
765 struct fcnvme_ls_rjt
*rjt
= lsreq
->rspaddr
;
768 ret
= __nvme_fc_send_ls_req(rport
, lsop
, nvme_fc_send_ls_req_done
);
772 * No timeout/not interruptible as we need the struct
773 * to exist until the lldd calls us back. Thus mandate
774 * wait until driver calls back. lldd responsible for
777 wait_for_completion(&lsop
->ls_done
);
779 __nvme_fc_finish_ls_req(lsop
);
781 ret
= lsop
->ls_error
;
787 /* ACC or RJT payload ? */
788 if (rjt
->w0
.ls_cmd
== FCNVME_LS_RJT
)
795 nvme_fc_send_ls_req_async(struct nvme_fc_rport
*rport
,
796 struct nvmefc_ls_req_op
*lsop
,
797 void (*done
)(struct nvmefc_ls_req
*req
, int status
))
799 /* don't wait for completion */
801 return __nvme_fc_send_ls_req(rport
, lsop
, done
);
804 /* Validation Error indexes into the string table below */
808 VERR_LSDESC_RQST
= 2,
809 VERR_LSDESC_RQST_LEN
= 3,
811 VERR_ASSOC_ID_LEN
= 5,
813 VERR_CONN_ID_LEN
= 7,
815 VERR_CR_ASSOC_ACC_LEN
= 9,
817 VERR_CR_CONN_ACC_LEN
= 11,
819 VERR_DISCONN_ACC_LEN
= 13,
822 static char *validation_errors
[] = {
826 "Bad LSDESC_RQST Length",
827 "Not Association ID",
828 "Bad Association ID Length",
830 "Bad Connection ID Length",
832 "Bad CR_ASSOC ACC Length",
834 "Bad CR_CONN ACC Length",
835 "Not Disconnect Rqst",
836 "Bad Disconnect ACC Length",
840 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl
*ctrl
,
841 struct nvme_fc_queue
*queue
, u16 qsize
, u16 ersp_ratio
)
843 struct nvmefc_ls_req_op
*lsop
;
844 struct nvmefc_ls_req
*lsreq
;
845 struct fcnvme_ls_cr_assoc_rqst
*assoc_rqst
;
846 struct fcnvme_ls_cr_assoc_acc
*assoc_acc
;
849 lsop
= kzalloc((sizeof(*lsop
) +
850 ctrl
->lport
->ops
->lsrqst_priv_sz
+
851 sizeof(*assoc_rqst
) + sizeof(*assoc_acc
)), GFP_KERNEL
);
856 lsreq
= &lsop
->ls_req
;
858 lsreq
->private = (void *)&lsop
[1];
859 assoc_rqst
= (struct fcnvme_ls_cr_assoc_rqst
*)
860 (lsreq
->private + ctrl
->lport
->ops
->lsrqst_priv_sz
);
861 assoc_acc
= (struct fcnvme_ls_cr_assoc_acc
*)&assoc_rqst
[1];
863 assoc_rqst
->w0
.ls_cmd
= FCNVME_LS_CREATE_ASSOCIATION
;
864 assoc_rqst
->desc_list_len
=
865 cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd
));
867 assoc_rqst
->assoc_cmd
.desc_tag
=
868 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD
);
869 assoc_rqst
->assoc_cmd
.desc_len
=
871 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd
));
873 assoc_rqst
->assoc_cmd
.ersp_ratio
= cpu_to_be16(ersp_ratio
);
874 assoc_rqst
->assoc_cmd
.sqsize
= cpu_to_be16(qsize
);
875 /* Linux supports only Dynamic controllers */
876 assoc_rqst
->assoc_cmd
.cntlid
= cpu_to_be16(0xffff);
877 uuid_copy(&assoc_rqst
->assoc_cmd
.hostid
, &ctrl
->ctrl
.opts
->host
->id
);
878 strncpy(assoc_rqst
->assoc_cmd
.hostnqn
, ctrl
->ctrl
.opts
->host
->nqn
,
879 min(FCNVME_ASSOC_HOSTNQN_LEN
, NVMF_NQN_SIZE
));
880 strncpy(assoc_rqst
->assoc_cmd
.subnqn
, ctrl
->ctrl
.opts
->subsysnqn
,
881 min(FCNVME_ASSOC_SUBNQN_LEN
, NVMF_NQN_SIZE
));
884 lsreq
->rqstaddr
= assoc_rqst
;
885 lsreq
->rqstlen
= sizeof(*assoc_rqst
);
886 lsreq
->rspaddr
= assoc_acc
;
887 lsreq
->rsplen
= sizeof(*assoc_acc
);
888 lsreq
->timeout
= NVME_FC_CONNECT_TIMEOUT_SEC
;
890 ret
= nvme_fc_send_ls_req(ctrl
->rport
, lsop
);
892 goto out_free_buffer
;
894 /* process connect LS completion */
896 /* validate the ACC response */
897 if (assoc_acc
->hdr
.w0
.ls_cmd
!= FCNVME_LS_ACC
)
899 else if (assoc_acc
->hdr
.desc_list_len
!=
901 sizeof(struct fcnvme_ls_cr_assoc_acc
)))
902 fcret
= VERR_CR_ASSOC_ACC_LEN
;
903 else if (assoc_acc
->hdr
.rqst
.desc_tag
!=
904 cpu_to_be32(FCNVME_LSDESC_RQST
))
905 fcret
= VERR_LSDESC_RQST
;
906 else if (assoc_acc
->hdr
.rqst
.desc_len
!=
907 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst
)))
908 fcret
= VERR_LSDESC_RQST_LEN
;
909 else if (assoc_acc
->hdr
.rqst
.w0
.ls_cmd
!= FCNVME_LS_CREATE_ASSOCIATION
)
910 fcret
= VERR_CR_ASSOC
;
911 else if (assoc_acc
->associd
.desc_tag
!=
912 cpu_to_be32(FCNVME_LSDESC_ASSOC_ID
))
913 fcret
= VERR_ASSOC_ID
;
914 else if (assoc_acc
->associd
.desc_len
!=
916 sizeof(struct fcnvme_lsdesc_assoc_id
)))
917 fcret
= VERR_ASSOC_ID_LEN
;
918 else if (assoc_acc
->connectid
.desc_tag
!=
919 cpu_to_be32(FCNVME_LSDESC_CONN_ID
))
920 fcret
= VERR_CONN_ID
;
921 else if (assoc_acc
->connectid
.desc_len
!=
922 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id
)))
923 fcret
= VERR_CONN_ID_LEN
;
928 "q %d connect failed: %s\n",
929 queue
->qnum
, validation_errors
[fcret
]);
931 ctrl
->association_id
=
932 be64_to_cpu(assoc_acc
->associd
.association_id
);
933 queue
->connection_id
=
934 be64_to_cpu(assoc_acc
->connectid
.connection_id
);
935 set_bit(NVME_FC_Q_CONNECTED
, &queue
->flags
);
943 "queue %d connect admin queue failed (%d).\n",
949 nvme_fc_connect_queue(struct nvme_fc_ctrl
*ctrl
, struct nvme_fc_queue
*queue
,
950 u16 qsize
, u16 ersp_ratio
)
952 struct nvmefc_ls_req_op
*lsop
;
953 struct nvmefc_ls_req
*lsreq
;
954 struct fcnvme_ls_cr_conn_rqst
*conn_rqst
;
955 struct fcnvme_ls_cr_conn_acc
*conn_acc
;
958 lsop
= kzalloc((sizeof(*lsop
) +
959 ctrl
->lport
->ops
->lsrqst_priv_sz
+
960 sizeof(*conn_rqst
) + sizeof(*conn_acc
)), GFP_KERNEL
);
965 lsreq
= &lsop
->ls_req
;
967 lsreq
->private = (void *)&lsop
[1];
968 conn_rqst
= (struct fcnvme_ls_cr_conn_rqst
*)
969 (lsreq
->private + ctrl
->lport
->ops
->lsrqst_priv_sz
);
970 conn_acc
= (struct fcnvme_ls_cr_conn_acc
*)&conn_rqst
[1];
972 conn_rqst
->w0
.ls_cmd
= FCNVME_LS_CREATE_CONNECTION
;
973 conn_rqst
->desc_list_len
= cpu_to_be32(
974 sizeof(struct fcnvme_lsdesc_assoc_id
) +
975 sizeof(struct fcnvme_lsdesc_cr_conn_cmd
));
977 conn_rqst
->associd
.desc_tag
= cpu_to_be32(FCNVME_LSDESC_ASSOC_ID
);
978 conn_rqst
->associd
.desc_len
=
980 sizeof(struct fcnvme_lsdesc_assoc_id
));
981 conn_rqst
->associd
.association_id
= cpu_to_be64(ctrl
->association_id
);
982 conn_rqst
->connect_cmd
.desc_tag
=
983 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD
);
984 conn_rqst
->connect_cmd
.desc_len
=
986 sizeof(struct fcnvme_lsdesc_cr_conn_cmd
));
987 conn_rqst
->connect_cmd
.ersp_ratio
= cpu_to_be16(ersp_ratio
);
988 conn_rqst
->connect_cmd
.qid
= cpu_to_be16(queue
->qnum
);
989 conn_rqst
->connect_cmd
.sqsize
= cpu_to_be16(qsize
);
992 lsreq
->rqstaddr
= conn_rqst
;
993 lsreq
->rqstlen
= sizeof(*conn_rqst
);
994 lsreq
->rspaddr
= conn_acc
;
995 lsreq
->rsplen
= sizeof(*conn_acc
);
996 lsreq
->timeout
= NVME_FC_CONNECT_TIMEOUT_SEC
;
998 ret
= nvme_fc_send_ls_req(ctrl
->rport
, lsop
);
1000 goto out_free_buffer
;
1002 /* process connect LS completion */
1004 /* validate the ACC response */
1005 if (conn_acc
->hdr
.w0
.ls_cmd
!= FCNVME_LS_ACC
)
1007 else if (conn_acc
->hdr
.desc_list_len
!=
1008 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc
)))
1009 fcret
= VERR_CR_CONN_ACC_LEN
;
1010 else if (conn_acc
->hdr
.rqst
.desc_tag
!= cpu_to_be32(FCNVME_LSDESC_RQST
))
1011 fcret
= VERR_LSDESC_RQST
;
1012 else if (conn_acc
->hdr
.rqst
.desc_len
!=
1013 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst
)))
1014 fcret
= VERR_LSDESC_RQST_LEN
;
1015 else if (conn_acc
->hdr
.rqst
.w0
.ls_cmd
!= FCNVME_LS_CREATE_CONNECTION
)
1016 fcret
= VERR_CR_CONN
;
1017 else if (conn_acc
->connectid
.desc_tag
!=
1018 cpu_to_be32(FCNVME_LSDESC_CONN_ID
))
1019 fcret
= VERR_CONN_ID
;
1020 else if (conn_acc
->connectid
.desc_len
!=
1021 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id
)))
1022 fcret
= VERR_CONN_ID_LEN
;
1027 "q %d connect failed: %s\n",
1028 queue
->qnum
, validation_errors
[fcret
]);
1030 queue
->connection_id
=
1031 be64_to_cpu(conn_acc
->connectid
.connection_id
);
1032 set_bit(NVME_FC_Q_CONNECTED
, &queue
->flags
);
1040 "queue %d connect command failed (%d).\n",
1046 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req
*lsreq
, int status
)
1048 struct nvmefc_ls_req_op
*lsop
= ls_req_to_lsop(lsreq
);
1050 __nvme_fc_finish_ls_req(lsop
);
1052 /* fc-nvme iniator doesn't care about success or failure of cmd */
1058 * This routine sends a FC-NVME LS to disconnect (aka terminate)
1059 * the FC-NVME Association. Terminating the association also
1060 * terminates the FC-NVME connections (per queue, both admin and io
1061 * queues) that are part of the association. E.g. things are torn
1062 * down, and the related FC-NVME Association ID and Connection IDs
1065 * The behavior of the fc-nvme initiator is such that it's
1066 * understanding of the association and connections will implicitly
1067 * be torn down. The action is implicit as it may be due to a loss of
1068 * connectivity with the fc-nvme target, so you may never get a
1069 * response even if you tried. As such, the action of this routine
1070 * is to asynchronously send the LS, ignore any results of the LS, and
1071 * continue on with terminating the association. If the fc-nvme target
1072 * is present and receives the LS, it too can tear down.
1075 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl
*ctrl
)
1077 struct fcnvme_ls_disconnect_rqst
*discon_rqst
;
1078 struct fcnvme_ls_disconnect_acc
*discon_acc
;
1079 struct nvmefc_ls_req_op
*lsop
;
1080 struct nvmefc_ls_req
*lsreq
;
1083 lsop
= kzalloc((sizeof(*lsop
) +
1084 ctrl
->lport
->ops
->lsrqst_priv_sz
+
1085 sizeof(*discon_rqst
) + sizeof(*discon_acc
)),
1088 /* couldn't sent it... too bad */
1091 lsreq
= &lsop
->ls_req
;
1093 lsreq
->private = (void *)&lsop
[1];
1094 discon_rqst
= (struct fcnvme_ls_disconnect_rqst
*)
1095 (lsreq
->private + ctrl
->lport
->ops
->lsrqst_priv_sz
);
1096 discon_acc
= (struct fcnvme_ls_disconnect_acc
*)&discon_rqst
[1];
1098 discon_rqst
->w0
.ls_cmd
= FCNVME_LS_DISCONNECT
;
1099 discon_rqst
->desc_list_len
= cpu_to_be32(
1100 sizeof(struct fcnvme_lsdesc_assoc_id
) +
1101 sizeof(struct fcnvme_lsdesc_disconn_cmd
));
1103 discon_rqst
->associd
.desc_tag
= cpu_to_be32(FCNVME_LSDESC_ASSOC_ID
);
1104 discon_rqst
->associd
.desc_len
=
1106 sizeof(struct fcnvme_lsdesc_assoc_id
));
1108 discon_rqst
->associd
.association_id
= cpu_to_be64(ctrl
->association_id
);
1110 discon_rqst
->discon_cmd
.desc_tag
= cpu_to_be32(
1111 FCNVME_LSDESC_DISCONN_CMD
);
1112 discon_rqst
->discon_cmd
.desc_len
=
1114 sizeof(struct fcnvme_lsdesc_disconn_cmd
));
1115 discon_rqst
->discon_cmd
.scope
= FCNVME_DISCONN_ASSOCIATION
;
1116 discon_rqst
->discon_cmd
.id
= cpu_to_be64(ctrl
->association_id
);
1118 lsreq
->rqstaddr
= discon_rqst
;
1119 lsreq
->rqstlen
= sizeof(*discon_rqst
);
1120 lsreq
->rspaddr
= discon_acc
;
1121 lsreq
->rsplen
= sizeof(*discon_acc
);
1122 lsreq
->timeout
= NVME_FC_CONNECT_TIMEOUT_SEC
;
1124 ret
= nvme_fc_send_ls_req_async(ctrl
->rport
, lsop
,
1125 nvme_fc_disconnect_assoc_done
);
1129 /* only meaningful part to terminating the association */
1130 ctrl
->association_id
= 0;
1134 /* *********************** NVME Ctrl Routines **************************** */
1136 static void __nvme_fc_final_op_cleanup(struct request
*rq
);
1137 static void nvme_fc_error_recovery(struct nvme_fc_ctrl
*ctrl
, char *errmsg
);
1140 nvme_fc_reinit_request(void *data
, struct request
*rq
)
1142 struct nvme_fc_fcp_op
*op
= blk_mq_rq_to_pdu(rq
);
1143 struct nvme_fc_cmd_iu
*cmdiu
= &op
->cmd_iu
;
1145 memset(cmdiu
, 0, sizeof(*cmdiu
));
1146 cmdiu
->scsi_id
= NVME_CMD_SCSI_ID
;
1147 cmdiu
->fc_id
= NVME_CMD_FC_ID
;
1148 cmdiu
->iu_len
= cpu_to_be16(sizeof(*cmdiu
) / sizeof(u32
));
1149 memset(&op
->rsp_iu
, 0, sizeof(op
->rsp_iu
));
1155 __nvme_fc_exit_request(struct nvme_fc_ctrl
*ctrl
,
1156 struct nvme_fc_fcp_op
*op
)
1158 fc_dma_unmap_single(ctrl
->lport
->dev
, op
->fcp_req
.rspdma
,
1159 sizeof(op
->rsp_iu
), DMA_FROM_DEVICE
);
1160 fc_dma_unmap_single(ctrl
->lport
->dev
, op
->fcp_req
.cmddma
,
1161 sizeof(op
->cmd_iu
), DMA_TO_DEVICE
);
1163 atomic_set(&op
->state
, FCPOP_STATE_UNINIT
);
1167 nvme_fc_exit_request(struct blk_mq_tag_set
*set
, struct request
*rq
,
1168 unsigned int hctx_idx
)
1170 struct nvme_fc_fcp_op
*op
= blk_mq_rq_to_pdu(rq
);
1172 return __nvme_fc_exit_request(set
->driver_data
, op
);
1176 __nvme_fc_abort_op(struct nvme_fc_ctrl
*ctrl
, struct nvme_fc_fcp_op
*op
)
1180 state
= atomic_xchg(&op
->state
, FCPOP_STATE_ABORTED
);
1181 if (state
!= FCPOP_STATE_ACTIVE
) {
1182 atomic_set(&op
->state
, state
);
1186 ctrl
->lport
->ops
->fcp_abort(&ctrl
->lport
->localport
,
1187 &ctrl
->rport
->remoteport
,
1188 op
->queue
->lldd_handle
,
1195 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl
*ctrl
)
1197 struct nvme_fc_fcp_op
*aen_op
= ctrl
->aen_ops
;
1198 unsigned long flags
;
1201 for (i
= 0; i
< NVME_FC_NR_AEN_COMMANDS
; i
++, aen_op
++) {
1202 if (atomic_read(&aen_op
->state
) != FCPOP_STATE_ACTIVE
)
1205 spin_lock_irqsave(&ctrl
->lock
, flags
);
1206 if (ctrl
->flags
& FCCTRL_TERMIO
) {
1208 aen_op
->flags
|= FCOP_FLAGS_TERMIO
;
1210 spin_unlock_irqrestore(&ctrl
->lock
, flags
);
1212 ret
= __nvme_fc_abort_op(ctrl
, aen_op
);
1215 * if __nvme_fc_abort_op failed the io wasn't
1216 * active. Thus this call path is running in
1217 * parallel to the io complete. Treat as non-error.
1220 /* back out the flags/counters */
1221 spin_lock_irqsave(&ctrl
->lock
, flags
);
1222 if (ctrl
->flags
& FCCTRL_TERMIO
)
1224 aen_op
->flags
&= ~FCOP_FLAGS_TERMIO
;
1225 spin_unlock_irqrestore(&ctrl
->lock
, flags
);
1232 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl
*ctrl
,
1233 struct nvme_fc_fcp_op
*op
)
1235 unsigned long flags
;
1236 bool complete_rq
= false;
1238 spin_lock_irqsave(&ctrl
->lock
, flags
);
1239 if (unlikely(op
->flags
& FCOP_FLAGS_TERMIO
)) {
1240 if (ctrl
->flags
& FCCTRL_TERMIO
) {
1242 wake_up(&ctrl
->ioabort_wait
);
1245 if (op
->flags
& FCOP_FLAGS_RELEASED
)
1248 op
->flags
|= FCOP_FLAGS_COMPLETE
;
1249 spin_unlock_irqrestore(&ctrl
->lock
, flags
);
1255 nvme_fc_fcpio_done(struct nvmefc_fcp_req
*req
)
1257 struct nvme_fc_fcp_op
*op
= fcp_req_to_fcp_op(req
);
1258 struct request
*rq
= op
->rq
;
1259 struct nvmefc_fcp_req
*freq
= &op
->fcp_req
;
1260 struct nvme_fc_ctrl
*ctrl
= op
->ctrl
;
1261 struct nvme_fc_queue
*queue
= op
->queue
;
1262 struct nvme_completion
*cqe
= &op
->rsp_iu
.cqe
;
1263 struct nvme_command
*sqe
= &op
->cmd_iu
.sqe
;
1264 __le16 status
= cpu_to_le16(NVME_SC_SUCCESS
<< 1);
1265 union nvme_result result
;
1266 bool complete_rq
, terminate_assoc
= true;
1270 * The current linux implementation of a nvme controller
1271 * allocates a single tag set for all io queues and sizes
1272 * the io queues to fully hold all possible tags. Thus, the
1273 * implementation does not reference or care about the sqhd
1274 * value as it never needs to use the sqhd/sqtail pointers
1275 * for submission pacing.
1277 * This affects the FC-NVME implementation in two ways:
1278 * 1) As the value doesn't matter, we don't need to waste
1279 * cycles extracting it from ERSPs and stamping it in the
1280 * cases where the transport fabricates CQEs on successful
1282 * 2) The FC-NVME implementation requires that delivery of
1283 * ERSP completions are to go back to the nvme layer in order
1284 * relative to the rsn, such that the sqhd value will always
1285 * be "in order" for the nvme layer. As the nvme layer in
1286 * linux doesn't care about sqhd, there's no need to return
1290 * As the core nvme layer in linux currently does not look at
1291 * every field in the cqe - in cases where the FC transport must
1292 * fabricate a CQE, the following fields will not be set as they
1293 * are not referenced:
1294 * cqe.sqid, cqe.sqhd, cqe.command_id
1296 * Failure or error of an individual i/o, in a transport
1297 * detected fashion unrelated to the nvme completion status,
1298 * potentially cause the initiator and target sides to get out
1299 * of sync on SQ head/tail (aka outstanding io count allowed).
1300 * Per FC-NVME spec, failure of an individual command requires
1301 * the connection to be terminated, which in turn requires the
1302 * association to be terminated.
1305 fc_dma_sync_single_for_cpu(ctrl
->lport
->dev
, op
->fcp_req
.rspdma
,
1306 sizeof(op
->rsp_iu
), DMA_FROM_DEVICE
);
1308 if (atomic_read(&op
->state
) == FCPOP_STATE_ABORTED
)
1309 status
= cpu_to_le16((NVME_SC_ABORT_REQ
| NVME_SC_DNR
) << 1);
1310 else if (freq
->status
)
1311 status
= cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR
<< 1);
1314 * For the linux implementation, if we have an unsuccesful
1315 * status, they blk-mq layer can typically be called with the
1316 * non-zero status and the content of the cqe isn't important.
1322 * command completed successfully relative to the wire
1323 * protocol. However, validate anything received and
1324 * extract the status and result from the cqe (create it
1328 switch (freq
->rcv_rsplen
) {
1331 case NVME_FC_SIZEOF_ZEROS_RSP
:
1333 * No response payload or 12 bytes of payload (which
1334 * should all be zeros) are considered successful and
1335 * no payload in the CQE by the transport.
1337 if (freq
->transferred_length
!=
1338 be32_to_cpu(op
->cmd_iu
.data_len
)) {
1339 status
= cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR
<< 1);
1345 case sizeof(struct nvme_fc_ersp_iu
):
1347 * The ERSP IU contains a full completion with CQE.
1348 * Validate ERSP IU and look at cqe.
1350 if (unlikely(be16_to_cpu(op
->rsp_iu
.iu_len
) !=
1351 (freq
->rcv_rsplen
/ 4) ||
1352 be32_to_cpu(op
->rsp_iu
.xfrd_len
) !=
1353 freq
->transferred_length
||
1354 op
->rsp_iu
.status_code
||
1355 sqe
->common
.command_id
!= cqe
->command_id
)) {
1356 status
= cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR
<< 1);
1359 result
= cqe
->result
;
1360 status
= cqe
->status
;
1364 status
= cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR
<< 1);
1368 terminate_assoc
= false;
1371 if (op
->flags
& FCOP_FLAGS_AEN
) {
1372 nvme_complete_async_event(&queue
->ctrl
->ctrl
, status
, &result
);
1373 complete_rq
= __nvme_fc_fcpop_chk_teardowns(ctrl
, op
);
1374 atomic_set(&op
->state
, FCPOP_STATE_IDLE
);
1375 op
->flags
= FCOP_FLAGS_AEN
; /* clear other flags */
1376 nvme_fc_ctrl_put(ctrl
);
1380 complete_rq
= __nvme_fc_fcpop_chk_teardowns(ctrl
, op
);
1382 if (unlikely(op
->flags
& FCOP_FLAGS_TERMIO
)) {
1383 status
= cpu_to_le16(NVME_SC_ABORT_REQ
<< 1);
1384 if (blk_queue_dying(rq
->q
))
1385 status
|= cpu_to_le16(NVME_SC_DNR
<< 1);
1387 nvme_end_request(rq
, status
, result
);
1389 __nvme_fc_final_op_cleanup(rq
);
1392 if (terminate_assoc
)
1393 nvme_fc_error_recovery(ctrl
, "transport detected io error");
1397 __nvme_fc_init_request(struct nvme_fc_ctrl
*ctrl
,
1398 struct nvme_fc_queue
*queue
, struct nvme_fc_fcp_op
*op
,
1399 struct request
*rq
, u32 rqno
)
1401 struct nvme_fc_cmd_iu
*cmdiu
= &op
->cmd_iu
;
1404 memset(op
, 0, sizeof(*op
));
1405 op
->fcp_req
.cmdaddr
= &op
->cmd_iu
;
1406 op
->fcp_req
.cmdlen
= sizeof(op
->cmd_iu
);
1407 op
->fcp_req
.rspaddr
= &op
->rsp_iu
;
1408 op
->fcp_req
.rsplen
= sizeof(op
->rsp_iu
);
1409 op
->fcp_req
.done
= nvme_fc_fcpio_done
;
1410 op
->fcp_req
.first_sgl
= (struct scatterlist
*)&op
[1];
1411 op
->fcp_req
.private = &op
->fcp_req
.first_sgl
[SG_CHUNK_SIZE
];
1417 cmdiu
->scsi_id
= NVME_CMD_SCSI_ID
;
1418 cmdiu
->fc_id
= NVME_CMD_FC_ID
;
1419 cmdiu
->iu_len
= cpu_to_be16(sizeof(*cmdiu
) / sizeof(u32
));
1421 op
->fcp_req
.cmddma
= fc_dma_map_single(ctrl
->lport
->dev
,
1422 &op
->cmd_iu
, sizeof(op
->cmd_iu
), DMA_TO_DEVICE
);
1423 if (fc_dma_mapping_error(ctrl
->lport
->dev
, op
->fcp_req
.cmddma
)) {
1425 "FCP Op failed - cmdiu dma mapping failed.\n");
1430 op
->fcp_req
.rspdma
= fc_dma_map_single(ctrl
->lport
->dev
,
1431 &op
->rsp_iu
, sizeof(op
->rsp_iu
),
1433 if (fc_dma_mapping_error(ctrl
->lport
->dev
, op
->fcp_req
.rspdma
)) {
1435 "FCP Op failed - rspiu dma mapping failed.\n");
1439 atomic_set(&op
->state
, FCPOP_STATE_IDLE
);
1445 nvme_fc_init_request(struct blk_mq_tag_set
*set
, struct request
*rq
,
1446 unsigned int hctx_idx
, unsigned int numa_node
)
1448 struct nvme_fc_ctrl
*ctrl
= set
->driver_data
;
1449 struct nvme_fc_fcp_op
*op
= blk_mq_rq_to_pdu(rq
);
1450 int queue_idx
= (set
== &ctrl
->tag_set
) ? hctx_idx
+ 1 : 0;
1451 struct nvme_fc_queue
*queue
= &ctrl
->queues
[queue_idx
];
1453 return __nvme_fc_init_request(ctrl
, queue
, op
, rq
, queue
->rqcnt
++);
1457 nvme_fc_init_aen_ops(struct nvme_fc_ctrl
*ctrl
)
1459 struct nvme_fc_fcp_op
*aen_op
;
1460 struct nvme_fc_cmd_iu
*cmdiu
;
1461 struct nvme_command
*sqe
;
1465 aen_op
= ctrl
->aen_ops
;
1466 for (i
= 0; i
< NVME_FC_NR_AEN_COMMANDS
; i
++, aen_op
++) {
1467 private = kzalloc(ctrl
->lport
->ops
->fcprqst_priv_sz
,
1472 cmdiu
= &aen_op
->cmd_iu
;
1474 ret
= __nvme_fc_init_request(ctrl
, &ctrl
->queues
[0],
1475 aen_op
, (struct request
*)NULL
,
1476 (AEN_CMDID_BASE
+ i
));
1482 aen_op
->flags
= FCOP_FLAGS_AEN
;
1483 aen_op
->fcp_req
.first_sgl
= NULL
; /* no sg list */
1484 aen_op
->fcp_req
.private = private;
1486 memset(sqe
, 0, sizeof(*sqe
));
1487 sqe
->common
.opcode
= nvme_admin_async_event
;
1488 /* Note: core layer may overwrite the sqe.command_id value */
1489 sqe
->common
.command_id
= AEN_CMDID_BASE
+ i
;
1495 nvme_fc_term_aen_ops(struct nvme_fc_ctrl
*ctrl
)
1497 struct nvme_fc_fcp_op
*aen_op
;
1500 aen_op
= ctrl
->aen_ops
;
1501 for (i
= 0; i
< NVME_FC_NR_AEN_COMMANDS
; i
++, aen_op
++) {
1502 if (!aen_op
->fcp_req
.private)
1505 __nvme_fc_exit_request(ctrl
, aen_op
);
1507 kfree(aen_op
->fcp_req
.private);
1508 aen_op
->fcp_req
.private = NULL
;
1513 __nvme_fc_init_hctx(struct blk_mq_hw_ctx
*hctx
, struct nvme_fc_ctrl
*ctrl
,
1516 struct nvme_fc_queue
*queue
= &ctrl
->queues
[qidx
];
1518 hctx
->driver_data
= queue
;
1523 nvme_fc_init_hctx(struct blk_mq_hw_ctx
*hctx
, void *data
,
1524 unsigned int hctx_idx
)
1526 struct nvme_fc_ctrl
*ctrl
= data
;
1528 __nvme_fc_init_hctx(hctx
, ctrl
, hctx_idx
+ 1);
1534 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx
*hctx
, void *data
,
1535 unsigned int hctx_idx
)
1537 struct nvme_fc_ctrl
*ctrl
= data
;
1539 __nvme_fc_init_hctx(hctx
, ctrl
, hctx_idx
);
1545 nvme_fc_init_queue(struct nvme_fc_ctrl
*ctrl
, int idx
, size_t queue_size
)
1547 struct nvme_fc_queue
*queue
;
1549 queue
= &ctrl
->queues
[idx
];
1550 memset(queue
, 0, sizeof(*queue
));
1553 atomic_set(&queue
->csn
, 1);
1554 queue
->dev
= ctrl
->dev
;
1557 queue
->cmnd_capsule_len
= ctrl
->ctrl
.ioccsz
* 16;
1559 queue
->cmnd_capsule_len
= sizeof(struct nvme_command
);
1561 queue
->queue_size
= queue_size
;
1564 * Considered whether we should allocate buffers for all SQEs
1565 * and CQEs and dma map them - mapping their respective entries
1566 * into the request structures (kernel vm addr and dma address)
1567 * thus the driver could use the buffers/mappings directly.
1568 * It only makes sense if the LLDD would use them for its
1569 * messaging api. It's very unlikely most adapter api's would use
1570 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1571 * structures were used instead.
1576 * This routine terminates a queue at the transport level.
1577 * The transport has already ensured that all outstanding ios on
1578 * the queue have been terminated.
1579 * The transport will send a Disconnect LS request to terminate
1580 * the queue's connection. Termination of the admin queue will also
1581 * terminate the association at the target.
1584 nvme_fc_free_queue(struct nvme_fc_queue
*queue
)
1586 if (!test_and_clear_bit(NVME_FC_Q_CONNECTED
, &queue
->flags
))
1590 * Current implementation never disconnects a single queue.
1591 * It always terminates a whole association. So there is never
1592 * a disconnect(queue) LS sent to the target.
1595 queue
->connection_id
= 0;
1596 clear_bit(NVME_FC_Q_CONNECTED
, &queue
->flags
);
1600 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl
*ctrl
,
1601 struct nvme_fc_queue
*queue
, unsigned int qidx
)
1603 if (ctrl
->lport
->ops
->delete_queue
)
1604 ctrl
->lport
->ops
->delete_queue(&ctrl
->lport
->localport
, qidx
,
1605 queue
->lldd_handle
);
1606 queue
->lldd_handle
= NULL
;
1610 nvme_fc_free_io_queues(struct nvme_fc_ctrl
*ctrl
)
1614 for (i
= 1; i
< ctrl
->ctrl
.queue_count
; i
++)
1615 nvme_fc_free_queue(&ctrl
->queues
[i
]);
1619 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl
*ctrl
,
1620 struct nvme_fc_queue
*queue
, unsigned int qidx
, u16 qsize
)
1624 queue
->lldd_handle
= NULL
;
1625 if (ctrl
->lport
->ops
->create_queue
)
1626 ret
= ctrl
->lport
->ops
->create_queue(&ctrl
->lport
->localport
,
1627 qidx
, qsize
, &queue
->lldd_handle
);
1633 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl
*ctrl
)
1635 struct nvme_fc_queue
*queue
= &ctrl
->queues
[ctrl
->ctrl
.queue_count
- 1];
1638 for (i
= ctrl
->ctrl
.queue_count
- 1; i
>= 1; i
--, queue
--)
1639 __nvme_fc_delete_hw_queue(ctrl
, queue
, i
);
1643 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl
*ctrl
, u16 qsize
)
1645 struct nvme_fc_queue
*queue
= &ctrl
->queues
[1];
1648 for (i
= 1; i
< ctrl
->ctrl
.queue_count
; i
++, queue
++) {
1649 ret
= __nvme_fc_create_hw_queue(ctrl
, queue
, i
, qsize
);
1658 __nvme_fc_delete_hw_queue(ctrl
, &ctrl
->queues
[i
], i
);
1663 nvme_fc_connect_io_queues(struct nvme_fc_ctrl
*ctrl
, u16 qsize
)
1667 for (i
= 1; i
< ctrl
->ctrl
.queue_count
; i
++) {
1668 ret
= nvme_fc_connect_queue(ctrl
, &ctrl
->queues
[i
], qsize
,
1672 ret
= nvmf_connect_io_queue(&ctrl
->ctrl
, i
);
1681 nvme_fc_init_io_queues(struct nvme_fc_ctrl
*ctrl
)
1685 for (i
= 1; i
< ctrl
->ctrl
.queue_count
; i
++)
1686 nvme_fc_init_queue(ctrl
, i
, ctrl
->ctrl
.sqsize
);
1690 nvme_fc_ctrl_free(struct kref
*ref
)
1692 struct nvme_fc_ctrl
*ctrl
=
1693 container_of(ref
, struct nvme_fc_ctrl
, ref
);
1694 unsigned long flags
;
1696 if (ctrl
->ctrl
.tagset
) {
1697 blk_cleanup_queue(ctrl
->ctrl
.connect_q
);
1698 blk_mq_free_tag_set(&ctrl
->tag_set
);
1701 /* remove from rport list */
1702 spin_lock_irqsave(&ctrl
->rport
->lock
, flags
);
1703 list_del(&ctrl
->ctrl_list
);
1704 spin_unlock_irqrestore(&ctrl
->rport
->lock
, flags
);
1706 blk_mq_unquiesce_queue(ctrl
->ctrl
.admin_q
);
1707 blk_cleanup_queue(ctrl
->ctrl
.admin_q
);
1708 blk_mq_free_tag_set(&ctrl
->admin_tag_set
);
1710 kfree(ctrl
->queues
);
1712 put_device(ctrl
->dev
);
1713 nvme_fc_rport_put(ctrl
->rport
);
1715 ida_simple_remove(&nvme_fc_ctrl_cnt
, ctrl
->cnum
);
1716 if (ctrl
->ctrl
.opts
)
1717 nvmf_free_options(ctrl
->ctrl
.opts
);
1722 nvme_fc_ctrl_put(struct nvme_fc_ctrl
*ctrl
)
1724 kref_put(&ctrl
->ref
, nvme_fc_ctrl_free
);
1728 nvme_fc_ctrl_get(struct nvme_fc_ctrl
*ctrl
)
1730 return kref_get_unless_zero(&ctrl
->ref
);
1734 * All accesses from nvme core layer done - can now free the
1735 * controller. Called after last nvme_put_ctrl() call
1738 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl
*nctrl
)
1740 struct nvme_fc_ctrl
*ctrl
= to_fc_ctrl(nctrl
);
1742 WARN_ON(nctrl
!= &ctrl
->ctrl
);
1744 nvme_fc_ctrl_put(ctrl
);
1748 nvme_fc_error_recovery(struct nvme_fc_ctrl
*ctrl
, char *errmsg
)
1750 /* only proceed if in LIVE state - e.g. on first error */
1751 if (ctrl
->ctrl
.state
!= NVME_CTRL_LIVE
)
1754 dev_warn(ctrl
->ctrl
.device
,
1755 "NVME-FC{%d}: transport association error detected: %s\n",
1756 ctrl
->cnum
, errmsg
);
1757 dev_warn(ctrl
->ctrl
.device
,
1758 "NVME-FC{%d}: resetting controller\n", ctrl
->cnum
);
1760 if (!nvme_change_ctrl_state(&ctrl
->ctrl
, NVME_CTRL_RECONNECTING
)) {
1761 dev_err(ctrl
->ctrl
.device
,
1762 "NVME-FC{%d}: error_recovery: Couldn't change state "
1763 "to RECONNECTING\n", ctrl
->cnum
);
1767 nvme_reset_ctrl(&ctrl
->ctrl
);
1770 static enum blk_eh_timer_return
1771 nvme_fc_timeout(struct request
*rq
, bool reserved
)
1773 struct nvme_fc_fcp_op
*op
= blk_mq_rq_to_pdu(rq
);
1774 struct nvme_fc_ctrl
*ctrl
= op
->ctrl
;
1778 return BLK_EH_RESET_TIMER
;
1780 ret
= __nvme_fc_abort_op(ctrl
, op
);
1782 /* io wasn't active to abort consider it done */
1783 return BLK_EH_HANDLED
;
1786 * we can't individually ABTS an io without affecting the queue,
1787 * thus killing the queue, adn thus the association.
1788 * So resolve by performing a controller reset, which will stop
1789 * the host/io stack, terminate the association on the link,
1790 * and recreate an association on the link.
1792 nvme_fc_error_recovery(ctrl
, "io timeout error");
1794 return BLK_EH_HANDLED
;
1798 nvme_fc_map_data(struct nvme_fc_ctrl
*ctrl
, struct request
*rq
,
1799 struct nvme_fc_fcp_op
*op
)
1801 struct nvmefc_fcp_req
*freq
= &op
->fcp_req
;
1802 enum dma_data_direction dir
;
1807 if (!blk_rq_payload_bytes(rq
))
1810 freq
->sg_table
.sgl
= freq
->first_sgl
;
1811 ret
= sg_alloc_table_chained(&freq
->sg_table
,
1812 blk_rq_nr_phys_segments(rq
), freq
->sg_table
.sgl
);
1816 op
->nents
= blk_rq_map_sg(rq
->q
, rq
, freq
->sg_table
.sgl
);
1817 WARN_ON(op
->nents
> blk_rq_nr_phys_segments(rq
));
1818 dir
= (rq_data_dir(rq
) == WRITE
) ? DMA_TO_DEVICE
: DMA_FROM_DEVICE
;
1819 freq
->sg_cnt
= fc_dma_map_sg(ctrl
->lport
->dev
, freq
->sg_table
.sgl
,
1821 if (unlikely(freq
->sg_cnt
<= 0)) {
1822 sg_free_table_chained(&freq
->sg_table
, true);
1828 * TODO: blk_integrity_rq(rq) for DIF
1834 nvme_fc_unmap_data(struct nvme_fc_ctrl
*ctrl
, struct request
*rq
,
1835 struct nvme_fc_fcp_op
*op
)
1837 struct nvmefc_fcp_req
*freq
= &op
->fcp_req
;
1842 fc_dma_unmap_sg(ctrl
->lport
->dev
, freq
->sg_table
.sgl
, op
->nents
,
1843 ((rq_data_dir(rq
) == WRITE
) ?
1844 DMA_TO_DEVICE
: DMA_FROM_DEVICE
));
1846 nvme_cleanup_cmd(rq
);
1848 sg_free_table_chained(&freq
->sg_table
, true);
1854 * In FC, the queue is a logical thing. At transport connect, the target
1855 * creates its "queue" and returns a handle that is to be given to the
1856 * target whenever it posts something to the corresponding SQ. When an
1857 * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
1858 * command contained within the SQE, an io, and assigns a FC exchange
1859 * to it. The SQE and the associated SQ handle are sent in the initial
1860 * CMD IU sents on the exchange. All transfers relative to the io occur
1861 * as part of the exchange. The CQE is the last thing for the io,
1862 * which is transferred (explicitly or implicitly) with the RSP IU
1863 * sent on the exchange. After the CQE is received, the FC exchange is
1864 * terminaed and the Exchange may be used on a different io.
1866 * The transport to LLDD api has the transport making a request for a
1867 * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
1868 * resource and transfers the command. The LLDD will then process all
1869 * steps to complete the io. Upon completion, the transport done routine
1872 * So - while the operation is outstanding to the LLDD, there is a link
1873 * level FC exchange resource that is also outstanding. This must be
1874 * considered in all cleanup operations.
1877 nvme_fc_start_fcp_op(struct nvme_fc_ctrl
*ctrl
, struct nvme_fc_queue
*queue
,
1878 struct nvme_fc_fcp_op
*op
, u32 data_len
,
1879 enum nvmefc_fcp_datadir io_dir
)
1881 struct nvme_fc_cmd_iu
*cmdiu
= &op
->cmd_iu
;
1882 struct nvme_command
*sqe
= &cmdiu
->sqe
;
1887 * before attempting to send the io, check to see if we believe
1888 * the target device is present
1890 if (ctrl
->rport
->remoteport
.port_state
!= FC_OBJSTATE_ONLINE
)
1891 return BLK_STS_IOERR
;
1893 if (!nvme_fc_ctrl_get(ctrl
))
1894 return BLK_STS_IOERR
;
1896 /* format the FC-NVME CMD IU and fcp_req */
1897 cmdiu
->connection_id
= cpu_to_be64(queue
->connection_id
);
1898 csn
= atomic_inc_return(&queue
->csn
);
1899 cmdiu
->csn
= cpu_to_be32(csn
);
1900 cmdiu
->data_len
= cpu_to_be32(data_len
);
1902 case NVMEFC_FCP_WRITE
:
1903 cmdiu
->flags
= FCNVME_CMD_FLAGS_WRITE
;
1905 case NVMEFC_FCP_READ
:
1906 cmdiu
->flags
= FCNVME_CMD_FLAGS_READ
;
1908 case NVMEFC_FCP_NODATA
:
1912 op
->fcp_req
.payload_length
= data_len
;
1913 op
->fcp_req
.io_dir
= io_dir
;
1914 op
->fcp_req
.transferred_length
= 0;
1915 op
->fcp_req
.rcv_rsplen
= 0;
1916 op
->fcp_req
.status
= NVME_SC_SUCCESS
;
1917 op
->fcp_req
.sqid
= cpu_to_le16(queue
->qnum
);
1920 * validate per fabric rules, set fields mandated by fabric spec
1921 * as well as those by FC-NVME spec.
1923 WARN_ON_ONCE(sqe
->common
.metadata
);
1924 WARN_ON_ONCE(sqe
->common
.dptr
.prp1
);
1925 WARN_ON_ONCE(sqe
->common
.dptr
.prp2
);
1926 sqe
->common
.flags
|= NVME_CMD_SGL_METABUF
;
1929 * format SQE DPTR field per FC-NVME rules
1930 * type=data block descr; subtype=offset;
1931 * offset is currently 0.
1933 sqe
->rw
.dptr
.sgl
.type
= NVME_SGL_FMT_OFFSET
;
1934 sqe
->rw
.dptr
.sgl
.length
= cpu_to_le32(data_len
);
1935 sqe
->rw
.dptr
.sgl
.addr
= 0;
1937 if (!(op
->flags
& FCOP_FLAGS_AEN
)) {
1938 ret
= nvme_fc_map_data(ctrl
, op
->rq
, op
);
1940 nvme_cleanup_cmd(op
->rq
);
1941 nvme_fc_ctrl_put(ctrl
);
1942 if (ret
== -ENOMEM
|| ret
== -EAGAIN
)
1943 return BLK_STS_RESOURCE
;
1944 return BLK_STS_IOERR
;
1948 fc_dma_sync_single_for_device(ctrl
->lport
->dev
, op
->fcp_req
.cmddma
,
1949 sizeof(op
->cmd_iu
), DMA_TO_DEVICE
);
1951 atomic_set(&op
->state
, FCPOP_STATE_ACTIVE
);
1953 if (!(op
->flags
& FCOP_FLAGS_AEN
))
1954 blk_mq_start_request(op
->rq
);
1956 ret
= ctrl
->lport
->ops
->fcp_io(&ctrl
->lport
->localport
,
1957 &ctrl
->rport
->remoteport
,
1958 queue
->lldd_handle
, &op
->fcp_req
);
1961 if (op
->rq
) /* normal request */
1962 nvme_fc_unmap_data(ctrl
, op
->rq
, op
);
1963 /* else - aen. no cleanup needed */
1965 nvme_fc_ctrl_put(ctrl
);
1968 return BLK_STS_IOERR
;
1971 blk_mq_delay_run_hw_queue(queue
->hctx
, NVMEFC_QUEUE_DELAY
);
1973 return BLK_STS_RESOURCE
;
1980 nvme_fc_queue_rq(struct blk_mq_hw_ctx
*hctx
,
1981 const struct blk_mq_queue_data
*bd
)
1983 struct nvme_ns
*ns
= hctx
->queue
->queuedata
;
1984 struct nvme_fc_queue
*queue
= hctx
->driver_data
;
1985 struct nvme_fc_ctrl
*ctrl
= queue
->ctrl
;
1986 struct request
*rq
= bd
->rq
;
1987 struct nvme_fc_fcp_op
*op
= blk_mq_rq_to_pdu(rq
);
1988 struct nvme_fc_cmd_iu
*cmdiu
= &op
->cmd_iu
;
1989 struct nvme_command
*sqe
= &cmdiu
->sqe
;
1990 enum nvmefc_fcp_datadir io_dir
;
1994 ret
= nvme_setup_cmd(ns
, rq
, sqe
);
1998 data_len
= blk_rq_payload_bytes(rq
);
2000 io_dir
= ((rq_data_dir(rq
) == WRITE
) ?
2001 NVMEFC_FCP_WRITE
: NVMEFC_FCP_READ
);
2003 io_dir
= NVMEFC_FCP_NODATA
;
2005 return nvme_fc_start_fcp_op(ctrl
, queue
, op
, data_len
, io_dir
);
2008 static struct blk_mq_tags
*
2009 nvme_fc_tagset(struct nvme_fc_queue
*queue
)
2011 if (queue
->qnum
== 0)
2012 return queue
->ctrl
->admin_tag_set
.tags
[queue
->qnum
];
2014 return queue
->ctrl
->tag_set
.tags
[queue
->qnum
- 1];
2018 nvme_fc_poll(struct blk_mq_hw_ctx
*hctx
, unsigned int tag
)
2021 struct nvme_fc_queue
*queue
= hctx
->driver_data
;
2022 struct nvme_fc_ctrl
*ctrl
= queue
->ctrl
;
2023 struct request
*req
;
2024 struct nvme_fc_fcp_op
*op
;
2026 req
= blk_mq_tag_to_rq(nvme_fc_tagset(queue
), tag
);
2030 op
= blk_mq_rq_to_pdu(req
);
2032 if ((atomic_read(&op
->state
) == FCPOP_STATE_ACTIVE
) &&
2033 (ctrl
->lport
->ops
->poll_queue
))
2034 ctrl
->lport
->ops
->poll_queue(&ctrl
->lport
->localport
,
2035 queue
->lldd_handle
);
2037 return ((atomic_read(&op
->state
) != FCPOP_STATE_ACTIVE
));
2041 nvme_fc_submit_async_event(struct nvme_ctrl
*arg
, int aer_idx
)
2043 struct nvme_fc_ctrl
*ctrl
= to_fc_ctrl(arg
);
2044 struct nvme_fc_fcp_op
*aen_op
;
2045 unsigned long flags
;
2046 bool terminating
= false;
2049 if (aer_idx
> NVME_FC_NR_AEN_COMMANDS
)
2052 spin_lock_irqsave(&ctrl
->lock
, flags
);
2053 if (ctrl
->flags
& FCCTRL_TERMIO
)
2055 spin_unlock_irqrestore(&ctrl
->lock
, flags
);
2060 aen_op
= &ctrl
->aen_ops
[aer_idx
];
2062 ret
= nvme_fc_start_fcp_op(ctrl
, aen_op
->queue
, aen_op
, 0,
2065 dev_err(ctrl
->ctrl
.device
,
2066 "failed async event work [%d]\n", aer_idx
);
2070 __nvme_fc_final_op_cleanup(struct request
*rq
)
2072 struct nvme_fc_fcp_op
*op
= blk_mq_rq_to_pdu(rq
);
2073 struct nvme_fc_ctrl
*ctrl
= op
->ctrl
;
2075 atomic_set(&op
->state
, FCPOP_STATE_IDLE
);
2076 op
->flags
&= ~(FCOP_FLAGS_TERMIO
| FCOP_FLAGS_RELEASED
|
2077 FCOP_FLAGS_COMPLETE
);
2079 nvme_fc_unmap_data(ctrl
, rq
, op
);
2080 nvme_complete_rq(rq
);
2081 nvme_fc_ctrl_put(ctrl
);
2086 nvme_fc_complete_rq(struct request
*rq
)
2088 struct nvme_fc_fcp_op
*op
= blk_mq_rq_to_pdu(rq
);
2089 struct nvme_fc_ctrl
*ctrl
= op
->ctrl
;
2090 unsigned long flags
;
2091 bool completed
= false;
2094 * the core layer, on controller resets after calling
2095 * nvme_shutdown_ctrl(), calls complete_rq without our
2096 * calling blk_mq_complete_request(), thus there may still
2097 * be live i/o outstanding with the LLDD. Means transport has
2098 * to track complete calls vs fcpio_done calls to know what
2099 * path to take on completes and dones.
2101 spin_lock_irqsave(&ctrl
->lock
, flags
);
2102 if (op
->flags
& FCOP_FLAGS_COMPLETE
)
2105 op
->flags
|= FCOP_FLAGS_RELEASED
;
2106 spin_unlock_irqrestore(&ctrl
->lock
, flags
);
2109 __nvme_fc_final_op_cleanup(rq
);
2113 * This routine is used by the transport when it needs to find active
2114 * io on a queue that is to be terminated. The transport uses
2115 * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2116 * this routine to kill them on a 1 by 1 basis.
2118 * As FC allocates FC exchange for each io, the transport must contact
2119 * the LLDD to terminate the exchange, thus releasing the FC exchange.
2120 * After terminating the exchange the LLDD will call the transport's
2121 * normal io done path for the request, but it will have an aborted
2122 * status. The done path will return the io request back to the block
2123 * layer with an error status.
2126 nvme_fc_terminate_exchange(struct request
*req
, void *data
, bool reserved
)
2128 struct nvme_ctrl
*nctrl
= data
;
2129 struct nvme_fc_ctrl
*ctrl
= to_fc_ctrl(nctrl
);
2130 struct nvme_fc_fcp_op
*op
= blk_mq_rq_to_pdu(req
);
2131 unsigned long flags
;
2134 if (!blk_mq_request_started(req
))
2137 spin_lock_irqsave(&ctrl
->lock
, flags
);
2138 if (ctrl
->flags
& FCCTRL_TERMIO
) {
2140 op
->flags
|= FCOP_FLAGS_TERMIO
;
2142 spin_unlock_irqrestore(&ctrl
->lock
, flags
);
2144 status
= __nvme_fc_abort_op(ctrl
, op
);
2147 * if __nvme_fc_abort_op failed the io wasn't
2148 * active. Thus this call path is running in
2149 * parallel to the io complete. Treat as non-error.
2152 /* back out the flags/counters */
2153 spin_lock_irqsave(&ctrl
->lock
, flags
);
2154 if (ctrl
->flags
& FCCTRL_TERMIO
)
2156 op
->flags
&= ~FCOP_FLAGS_TERMIO
;
2157 spin_unlock_irqrestore(&ctrl
->lock
, flags
);
2163 static const struct blk_mq_ops nvme_fc_mq_ops
= {
2164 .queue_rq
= nvme_fc_queue_rq
,
2165 .complete
= nvme_fc_complete_rq
,
2166 .init_request
= nvme_fc_init_request
,
2167 .exit_request
= nvme_fc_exit_request
,
2168 .reinit_request
= nvme_fc_reinit_request
,
2169 .init_hctx
= nvme_fc_init_hctx
,
2170 .poll
= nvme_fc_poll
,
2171 .timeout
= nvme_fc_timeout
,
2175 nvme_fc_create_io_queues(struct nvme_fc_ctrl
*ctrl
)
2177 struct nvmf_ctrl_options
*opts
= ctrl
->ctrl
.opts
;
2178 unsigned int nr_io_queues
;
2181 nr_io_queues
= min(min(opts
->nr_io_queues
, num_online_cpus()),
2182 ctrl
->lport
->ops
->max_hw_queues
);
2183 ret
= nvme_set_queue_count(&ctrl
->ctrl
, &nr_io_queues
);
2185 dev_info(ctrl
->ctrl
.device
,
2186 "set_queue_count failed: %d\n", ret
);
2190 ctrl
->ctrl
.queue_count
= nr_io_queues
+ 1;
2194 nvme_fc_init_io_queues(ctrl
);
2196 memset(&ctrl
->tag_set
, 0, sizeof(ctrl
->tag_set
));
2197 ctrl
->tag_set
.ops
= &nvme_fc_mq_ops
;
2198 ctrl
->tag_set
.queue_depth
= ctrl
->ctrl
.opts
->queue_size
;
2199 ctrl
->tag_set
.reserved_tags
= 1; /* fabric connect */
2200 ctrl
->tag_set
.numa_node
= NUMA_NO_NODE
;
2201 ctrl
->tag_set
.flags
= BLK_MQ_F_SHOULD_MERGE
;
2202 ctrl
->tag_set
.cmd_size
= sizeof(struct nvme_fc_fcp_op
) +
2204 sizeof(struct scatterlist
)) +
2205 ctrl
->lport
->ops
->fcprqst_priv_sz
;
2206 ctrl
->tag_set
.driver_data
= ctrl
;
2207 ctrl
->tag_set
.nr_hw_queues
= ctrl
->ctrl
.queue_count
- 1;
2208 ctrl
->tag_set
.timeout
= NVME_IO_TIMEOUT
;
2210 ret
= blk_mq_alloc_tag_set(&ctrl
->tag_set
);
2214 ctrl
->ctrl
.tagset
= &ctrl
->tag_set
;
2216 ctrl
->ctrl
.connect_q
= blk_mq_init_queue(&ctrl
->tag_set
);
2217 if (IS_ERR(ctrl
->ctrl
.connect_q
)) {
2218 ret
= PTR_ERR(ctrl
->ctrl
.connect_q
);
2219 goto out_free_tag_set
;
2222 ret
= nvme_fc_create_hw_io_queues(ctrl
, ctrl
->ctrl
.opts
->queue_size
);
2224 goto out_cleanup_blk_queue
;
2226 ret
= nvme_fc_connect_io_queues(ctrl
, ctrl
->ctrl
.opts
->queue_size
);
2228 goto out_delete_hw_queues
;
2232 out_delete_hw_queues
:
2233 nvme_fc_delete_hw_io_queues(ctrl
);
2234 out_cleanup_blk_queue
:
2235 blk_cleanup_queue(ctrl
->ctrl
.connect_q
);
2237 blk_mq_free_tag_set(&ctrl
->tag_set
);
2238 nvme_fc_free_io_queues(ctrl
);
2240 /* force put free routine to ignore io queues */
2241 ctrl
->ctrl
.tagset
= NULL
;
2247 nvme_fc_reinit_io_queues(struct nvme_fc_ctrl
*ctrl
)
2249 struct nvmf_ctrl_options
*opts
= ctrl
->ctrl
.opts
;
2250 unsigned int nr_io_queues
;
2253 nr_io_queues
= min(min(opts
->nr_io_queues
, num_online_cpus()),
2254 ctrl
->lport
->ops
->max_hw_queues
);
2255 ret
= nvme_set_queue_count(&ctrl
->ctrl
, &nr_io_queues
);
2257 dev_info(ctrl
->ctrl
.device
,
2258 "set_queue_count failed: %d\n", ret
);
2262 ctrl
->ctrl
.queue_count
= nr_io_queues
+ 1;
2263 /* check for io queues existing */
2264 if (ctrl
->ctrl
.queue_count
== 1)
2267 nvme_fc_init_io_queues(ctrl
);
2269 ret
= blk_mq_reinit_tagset(&ctrl
->tag_set
);
2271 goto out_free_io_queues
;
2273 ret
= nvme_fc_create_hw_io_queues(ctrl
, ctrl
->ctrl
.opts
->queue_size
);
2275 goto out_free_io_queues
;
2277 ret
= nvme_fc_connect_io_queues(ctrl
, ctrl
->ctrl
.opts
->queue_size
);
2279 goto out_delete_hw_queues
;
2281 blk_mq_update_nr_hw_queues(&ctrl
->tag_set
, nr_io_queues
);
2285 out_delete_hw_queues
:
2286 nvme_fc_delete_hw_io_queues(ctrl
);
2288 nvme_fc_free_io_queues(ctrl
);
2293 * This routine restarts the controller on the host side, and
2294 * on the link side, recreates the controller association.
2297 nvme_fc_create_association(struct nvme_fc_ctrl
*ctrl
)
2299 struct nvmf_ctrl_options
*opts
= ctrl
->ctrl
.opts
;
2304 ++ctrl
->ctrl
.nr_reconnects
;
2307 * Create the admin queue
2310 nvme_fc_init_queue(ctrl
, 0, NVME_FC_AQ_BLKMQ_DEPTH
);
2312 ret
= __nvme_fc_create_hw_queue(ctrl
, &ctrl
->queues
[0], 0,
2313 NVME_FC_AQ_BLKMQ_DEPTH
);
2315 goto out_free_queue
;
2317 ret
= nvme_fc_connect_admin_queue(ctrl
, &ctrl
->queues
[0],
2318 NVME_FC_AQ_BLKMQ_DEPTH
,
2319 (NVME_FC_AQ_BLKMQ_DEPTH
/ 4));
2321 goto out_delete_hw_queue
;
2323 if (ctrl
->ctrl
.state
!= NVME_CTRL_NEW
)
2324 blk_mq_unquiesce_queue(ctrl
->ctrl
.admin_q
);
2326 ret
= nvmf_connect_admin_queue(&ctrl
->ctrl
);
2328 goto out_disconnect_admin_queue
;
2331 * Check controller capabilities
2333 * todo:- add code to check if ctrl attributes changed from
2334 * prior connection values
2337 ret
= nvmf_reg_read64(&ctrl
->ctrl
, NVME_REG_CAP
, &ctrl
->ctrl
.cap
);
2339 dev_err(ctrl
->ctrl
.device
,
2340 "prop_get NVME_REG_CAP failed\n");
2341 goto out_disconnect_admin_queue
;
2345 min_t(int, NVME_CAP_MQES(ctrl
->ctrl
.cap
) + 1, ctrl
->ctrl
.sqsize
);
2347 ret
= nvme_enable_ctrl(&ctrl
->ctrl
, ctrl
->ctrl
.cap
);
2349 goto out_disconnect_admin_queue
;
2351 segs
= min_t(u32
, NVME_FC_MAX_SEGMENTS
,
2352 ctrl
->lport
->ops
->max_sgl_segments
);
2353 ctrl
->ctrl
.max_hw_sectors
= (segs
- 1) << (PAGE_SHIFT
- 9);
2355 ret
= nvme_init_identify(&ctrl
->ctrl
);
2357 goto out_disconnect_admin_queue
;
2361 /* FC-NVME does not have other data in the capsule */
2362 if (ctrl
->ctrl
.icdoff
) {
2363 dev_err(ctrl
->ctrl
.device
, "icdoff %d is not supported!\n",
2365 goto out_disconnect_admin_queue
;
2368 /* FC-NVME supports normal SGL Data Block Descriptors */
2370 if (opts
->queue_size
> ctrl
->ctrl
.maxcmd
) {
2371 /* warn if maxcmd is lower than queue_size */
2372 dev_warn(ctrl
->ctrl
.device
,
2373 "queue_size %zu > ctrl maxcmd %u, reducing "
2375 opts
->queue_size
, ctrl
->ctrl
.maxcmd
);
2376 opts
->queue_size
= ctrl
->ctrl
.maxcmd
;
2379 ret
= nvme_fc_init_aen_ops(ctrl
);
2381 goto out_term_aen_ops
;
2384 * Create the io queues
2387 if (ctrl
->ctrl
.queue_count
> 1) {
2388 if (ctrl
->ctrl
.state
== NVME_CTRL_NEW
)
2389 ret
= nvme_fc_create_io_queues(ctrl
);
2391 ret
= nvme_fc_reinit_io_queues(ctrl
);
2393 goto out_term_aen_ops
;
2396 changed
= nvme_change_ctrl_state(&ctrl
->ctrl
, NVME_CTRL_LIVE
);
2397 WARN_ON_ONCE(!changed
);
2399 ctrl
->ctrl
.nr_reconnects
= 0;
2401 nvme_start_ctrl(&ctrl
->ctrl
);
2403 return 0; /* Success */
2406 nvme_fc_term_aen_ops(ctrl
);
2407 out_disconnect_admin_queue
:
2408 /* send a Disconnect(association) LS to fc-nvme target */
2409 nvme_fc_xmt_disconnect_assoc(ctrl
);
2410 out_delete_hw_queue
:
2411 __nvme_fc_delete_hw_queue(ctrl
, &ctrl
->queues
[0], 0);
2413 nvme_fc_free_queue(&ctrl
->queues
[0]);
2419 * This routine stops operation of the controller on the host side.
2420 * On the host os stack side: Admin and IO queues are stopped,
2421 * outstanding ios on them terminated via FC ABTS.
2422 * On the link side: the association is terminated.
2425 nvme_fc_delete_association(struct nvme_fc_ctrl
*ctrl
)
2427 unsigned long flags
;
2429 spin_lock_irqsave(&ctrl
->lock
, flags
);
2430 ctrl
->flags
|= FCCTRL_TERMIO
;
2432 spin_unlock_irqrestore(&ctrl
->lock
, flags
);
2435 * If io queues are present, stop them and terminate all outstanding
2436 * ios on them. As FC allocates FC exchange for each io, the
2437 * transport must contact the LLDD to terminate the exchange,
2438 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2439 * to tell us what io's are busy and invoke a transport routine
2440 * to kill them with the LLDD. After terminating the exchange
2441 * the LLDD will call the transport's normal io done path, but it
2442 * will have an aborted status. The done path will return the
2443 * io requests back to the block layer as part of normal completions
2444 * (but with error status).
2446 if (ctrl
->ctrl
.queue_count
> 1) {
2447 nvme_stop_queues(&ctrl
->ctrl
);
2448 blk_mq_tagset_busy_iter(&ctrl
->tag_set
,
2449 nvme_fc_terminate_exchange
, &ctrl
->ctrl
);
2453 * Other transports, which don't have link-level contexts bound
2454 * to sqe's, would try to gracefully shutdown the controller by
2455 * writing the registers for shutdown and polling (call
2456 * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2457 * just aborted and we will wait on those contexts, and given
2458 * there was no indication of how live the controlelr is on the
2459 * link, don't send more io to create more contexts for the
2460 * shutdown. Let the controller fail via keepalive failure if
2461 * its still present.
2465 * clean up the admin queue. Same thing as above.
2466 * use blk_mq_tagset_busy_itr() and the transport routine to
2467 * terminate the exchanges.
2469 blk_mq_quiesce_queue(ctrl
->ctrl
.admin_q
);
2470 blk_mq_tagset_busy_iter(&ctrl
->admin_tag_set
,
2471 nvme_fc_terminate_exchange
, &ctrl
->ctrl
);
2473 /* kill the aens as they are a separate path */
2474 nvme_fc_abort_aen_ops(ctrl
);
2476 /* wait for all io that had to be aborted */
2477 spin_lock_irqsave(&ctrl
->lock
, flags
);
2478 wait_event_lock_irq(ctrl
->ioabort_wait
, ctrl
->iocnt
== 0, ctrl
->lock
);
2479 ctrl
->flags
&= ~FCCTRL_TERMIO
;
2480 spin_unlock_irqrestore(&ctrl
->lock
, flags
);
2482 nvme_fc_term_aen_ops(ctrl
);
2485 * send a Disconnect(association) LS to fc-nvme target
2486 * Note: could have been sent at top of process, but
2487 * cleaner on link traffic if after the aborts complete.
2488 * Note: if association doesn't exist, association_id will be 0
2490 if (ctrl
->association_id
)
2491 nvme_fc_xmt_disconnect_assoc(ctrl
);
2493 if (ctrl
->ctrl
.tagset
) {
2494 nvme_fc_delete_hw_io_queues(ctrl
);
2495 nvme_fc_free_io_queues(ctrl
);
2498 __nvme_fc_delete_hw_queue(ctrl
, &ctrl
->queues
[0], 0);
2499 nvme_fc_free_queue(&ctrl
->queues
[0]);
2503 nvme_fc_delete_ctrl_work(struct work_struct
*work
)
2505 struct nvme_fc_ctrl
*ctrl
=
2506 container_of(work
, struct nvme_fc_ctrl
, delete_work
);
2508 cancel_work_sync(&ctrl
->ctrl
.reset_work
);
2509 cancel_delayed_work_sync(&ctrl
->connect_work
);
2510 nvme_stop_ctrl(&ctrl
->ctrl
);
2511 nvme_remove_namespaces(&ctrl
->ctrl
);
2513 * kill the association on the link side. this will block
2514 * waiting for io to terminate
2516 nvme_fc_delete_association(ctrl
);
2519 * tear down the controller
2520 * After the last reference on the nvme ctrl is removed,
2521 * the transport nvme_fc_nvme_ctrl_freed() callback will be
2522 * invoked. From there, the transport will tear down it's
2523 * logical queues and association.
2525 nvme_uninit_ctrl(&ctrl
->ctrl
);
2527 nvme_put_ctrl(&ctrl
->ctrl
);
2531 __nvme_fc_schedule_delete_work(struct nvme_fc_ctrl
*ctrl
)
2533 if (!nvme_change_ctrl_state(&ctrl
->ctrl
, NVME_CTRL_DELETING
))
2536 if (!queue_work(nvme_wq
, &ctrl
->delete_work
))
2543 __nvme_fc_del_ctrl(struct nvme_fc_ctrl
*ctrl
)
2545 return __nvme_fc_schedule_delete_work(ctrl
) ? -EBUSY
: 0;
2549 * Request from nvme core layer to delete the controller
2552 nvme_fc_del_nvme_ctrl(struct nvme_ctrl
*nctrl
)
2554 struct nvme_fc_ctrl
*ctrl
= to_fc_ctrl(nctrl
);
2557 if (!kref_get_unless_zero(&ctrl
->ctrl
.kref
))
2560 ret
= __nvme_fc_del_ctrl(ctrl
);
2563 flush_workqueue(nvme_wq
);
2565 nvme_put_ctrl(&ctrl
->ctrl
);
2571 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl
*ctrl
, int status
)
2573 /* If we are resetting/deleting then do nothing */
2574 if (ctrl
->ctrl
.state
!= NVME_CTRL_RECONNECTING
) {
2575 WARN_ON_ONCE(ctrl
->ctrl
.state
== NVME_CTRL_NEW
||
2576 ctrl
->ctrl
.state
== NVME_CTRL_LIVE
);
2580 dev_info(ctrl
->ctrl
.device
,
2581 "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
2582 ctrl
->cnum
, status
);
2584 if (nvmf_should_reconnect(&ctrl
->ctrl
)) {
2585 dev_info(ctrl
->ctrl
.device
,
2586 "NVME-FC{%d}: Reconnect attempt in %d seconds.\n",
2587 ctrl
->cnum
, ctrl
->ctrl
.opts
->reconnect_delay
);
2588 queue_delayed_work(nvme_wq
, &ctrl
->connect_work
,
2589 ctrl
->ctrl
.opts
->reconnect_delay
* HZ
);
2591 dev_warn(ctrl
->ctrl
.device
,
2592 "NVME-FC{%d}: Max reconnect attempts (%d) "
2593 "reached. Removing controller\n",
2594 ctrl
->cnum
, ctrl
->ctrl
.nr_reconnects
);
2595 WARN_ON(__nvme_fc_schedule_delete_work(ctrl
));
2600 nvme_fc_reset_ctrl_work(struct work_struct
*work
)
2602 struct nvme_fc_ctrl
*ctrl
=
2603 container_of(work
, struct nvme_fc_ctrl
, ctrl
.reset_work
);
2606 nvme_stop_ctrl(&ctrl
->ctrl
);
2607 /* will block will waiting for io to terminate */
2608 nvme_fc_delete_association(ctrl
);
2610 ret
= nvme_fc_create_association(ctrl
);
2612 nvme_fc_reconnect_or_delete(ctrl
, ret
);
2614 dev_info(ctrl
->ctrl
.device
,
2615 "NVME-FC{%d}: controller reset complete\n", ctrl
->cnum
);
2618 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops
= {
2620 .module
= THIS_MODULE
,
2621 .flags
= NVME_F_FABRICS
,
2622 .reg_read32
= nvmf_reg_read32
,
2623 .reg_read64
= nvmf_reg_read64
,
2624 .reg_write32
= nvmf_reg_write32
,
2625 .free_ctrl
= nvme_fc_nvme_ctrl_freed
,
2626 .submit_async_event
= nvme_fc_submit_async_event
,
2627 .delete_ctrl
= nvme_fc_del_nvme_ctrl
,
2628 .get_address
= nvmf_get_address
,
2632 nvme_fc_connect_ctrl_work(struct work_struct
*work
)
2636 struct nvme_fc_ctrl
*ctrl
=
2637 container_of(to_delayed_work(work
),
2638 struct nvme_fc_ctrl
, connect_work
);
2640 ret
= nvme_fc_create_association(ctrl
);
2642 nvme_fc_reconnect_or_delete(ctrl
, ret
);
2644 dev_info(ctrl
->ctrl
.device
,
2645 "NVME-FC{%d}: controller reconnect complete\n",
2650 static const struct blk_mq_ops nvme_fc_admin_mq_ops
= {
2651 .queue_rq
= nvme_fc_queue_rq
,
2652 .complete
= nvme_fc_complete_rq
,
2653 .init_request
= nvme_fc_init_request
,
2654 .exit_request
= nvme_fc_exit_request
,
2655 .reinit_request
= nvme_fc_reinit_request
,
2656 .init_hctx
= nvme_fc_init_admin_hctx
,
2657 .timeout
= nvme_fc_timeout
,
2661 static struct nvme_ctrl
*
2662 nvme_fc_init_ctrl(struct device
*dev
, struct nvmf_ctrl_options
*opts
,
2663 struct nvme_fc_lport
*lport
, struct nvme_fc_rport
*rport
)
2665 struct nvme_fc_ctrl
*ctrl
;
2666 unsigned long flags
;
2669 if (!(rport
->remoteport
.port_role
&
2670 (FC_PORT_ROLE_NVME_DISCOVERY
| FC_PORT_ROLE_NVME_TARGET
))) {
2675 ctrl
= kzalloc(sizeof(*ctrl
), GFP_KERNEL
);
2681 idx
= ida_simple_get(&nvme_fc_ctrl_cnt
, 0, 0, GFP_KERNEL
);
2687 ctrl
->ctrl
.opts
= opts
;
2688 INIT_LIST_HEAD(&ctrl
->ctrl_list
);
2689 ctrl
->lport
= lport
;
2690 ctrl
->rport
= rport
;
2691 ctrl
->dev
= lport
->dev
;
2694 get_device(ctrl
->dev
);
2695 kref_init(&ctrl
->ref
);
2697 INIT_WORK(&ctrl
->delete_work
, nvme_fc_delete_ctrl_work
);
2698 INIT_WORK(&ctrl
->ctrl
.reset_work
, nvme_fc_reset_ctrl_work
);
2699 INIT_DELAYED_WORK(&ctrl
->connect_work
, nvme_fc_connect_ctrl_work
);
2700 spin_lock_init(&ctrl
->lock
);
2702 /* io queue count */
2703 ctrl
->ctrl
.queue_count
= min_t(unsigned int,
2705 lport
->ops
->max_hw_queues
);
2706 ctrl
->ctrl
.queue_count
++; /* +1 for admin queue */
2708 ctrl
->ctrl
.sqsize
= opts
->queue_size
- 1;
2709 ctrl
->ctrl
.kato
= opts
->kato
;
2712 ctrl
->queues
= kcalloc(ctrl
->ctrl
.queue_count
,
2713 sizeof(struct nvme_fc_queue
), GFP_KERNEL
);
2717 memset(&ctrl
->admin_tag_set
, 0, sizeof(ctrl
->admin_tag_set
));
2718 ctrl
->admin_tag_set
.ops
= &nvme_fc_admin_mq_ops
;
2719 ctrl
->admin_tag_set
.queue_depth
= NVME_FC_AQ_BLKMQ_DEPTH
;
2720 ctrl
->admin_tag_set
.reserved_tags
= 2; /* fabric connect + Keep-Alive */
2721 ctrl
->admin_tag_set
.numa_node
= NUMA_NO_NODE
;
2722 ctrl
->admin_tag_set
.cmd_size
= sizeof(struct nvme_fc_fcp_op
) +
2724 sizeof(struct scatterlist
)) +
2725 ctrl
->lport
->ops
->fcprqst_priv_sz
;
2726 ctrl
->admin_tag_set
.driver_data
= ctrl
;
2727 ctrl
->admin_tag_set
.nr_hw_queues
= 1;
2728 ctrl
->admin_tag_set
.timeout
= ADMIN_TIMEOUT
;
2730 ret
= blk_mq_alloc_tag_set(&ctrl
->admin_tag_set
);
2732 goto out_free_queues
;
2734 ctrl
->ctrl
.admin_q
= blk_mq_init_queue(&ctrl
->admin_tag_set
);
2735 if (IS_ERR(ctrl
->ctrl
.admin_q
)) {
2736 ret
= PTR_ERR(ctrl
->ctrl
.admin_q
);
2737 goto out_free_admin_tag_set
;
2741 * Would have been nice to init io queues tag set as well.
2742 * However, we require interaction from the controller
2743 * for max io queue count before we can do so.
2744 * Defer this to the connect path.
2747 ret
= nvme_init_ctrl(&ctrl
->ctrl
, dev
, &nvme_fc_ctrl_ops
, 0);
2749 goto out_cleanup_admin_q
;
2751 /* at this point, teardown path changes to ref counting on nvme ctrl */
2753 spin_lock_irqsave(&rport
->lock
, flags
);
2754 list_add_tail(&ctrl
->ctrl_list
, &rport
->ctrl_list
);
2755 spin_unlock_irqrestore(&rport
->lock
, flags
);
2757 ret
= nvme_fc_create_association(ctrl
);
2759 ctrl
->ctrl
.opts
= NULL
;
2760 /* initiate nvme ctrl ref counting teardown */
2761 nvme_uninit_ctrl(&ctrl
->ctrl
);
2762 nvme_put_ctrl(&ctrl
->ctrl
);
2764 /* Remove core ctrl ref. */
2765 nvme_put_ctrl(&ctrl
->ctrl
);
2767 /* as we're past the point where we transition to the ref
2768 * counting teardown path, if we return a bad pointer here,
2769 * the calling routine, thinking it's prior to the
2770 * transition, will do an rport put. Since the teardown
2771 * path also does a rport put, we do an extra get here to
2772 * so proper order/teardown happens.
2774 nvme_fc_rport_get(rport
);
2778 return ERR_PTR(ret
);
2781 kref_get(&ctrl
->ctrl
.kref
);
2783 dev_info(ctrl
->ctrl
.device
,
2784 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
2785 ctrl
->cnum
, ctrl
->ctrl
.opts
->subsysnqn
);
2789 out_cleanup_admin_q
:
2790 blk_cleanup_queue(ctrl
->ctrl
.admin_q
);
2791 out_free_admin_tag_set
:
2792 blk_mq_free_tag_set(&ctrl
->admin_tag_set
);
2794 kfree(ctrl
->queues
);
2796 put_device(ctrl
->dev
);
2797 ida_simple_remove(&nvme_fc_ctrl_cnt
, ctrl
->cnum
);
2801 /* exit via here doesn't follow ctlr ref points */
2802 return ERR_PTR(ret
);
2807 FCT_TRADDR_WWNN
= 1 << 0,
2808 FCT_TRADDR_WWPN
= 1 << 1,
2811 struct nvmet_fc_traddr
{
2816 static const match_table_t traddr_opt_tokens
= {
2817 { FCT_TRADDR_WWNN
, "nn-%s" },
2818 { FCT_TRADDR_WWPN
, "pn-%s" },
2819 { FCT_TRADDR_ERR
, NULL
}
2823 nvme_fc_parse_address(struct nvmet_fc_traddr
*traddr
, char *buf
)
2825 substring_t args
[MAX_OPT_ARGS
];
2826 char *options
, *o
, *p
;
2830 options
= o
= kstrdup(buf
, GFP_KERNEL
);
2834 while ((p
= strsep(&o
, ":\n")) != NULL
) {
2838 token
= match_token(p
, traddr_opt_tokens
, args
);
2840 case FCT_TRADDR_WWNN
:
2841 if (match_u64(args
, &token64
)) {
2845 traddr
->nn
= token64
;
2847 case FCT_TRADDR_WWPN
:
2848 if (match_u64(args
, &token64
)) {
2852 traddr
->pn
= token64
;
2855 pr_warn("unknown traddr token or missing value '%s'\n",
2867 static struct nvme_ctrl
*
2868 nvme_fc_create_ctrl(struct device
*dev
, struct nvmf_ctrl_options
*opts
)
2870 struct nvme_fc_lport
*lport
;
2871 struct nvme_fc_rport
*rport
;
2872 struct nvme_ctrl
*ctrl
;
2873 struct nvmet_fc_traddr laddr
= { 0L, 0L };
2874 struct nvmet_fc_traddr raddr
= { 0L, 0L };
2875 unsigned long flags
;
2878 ret
= nvme_fc_parse_address(&raddr
, opts
->traddr
);
2879 if (ret
|| !raddr
.nn
|| !raddr
.pn
)
2880 return ERR_PTR(-EINVAL
);
2882 ret
= nvme_fc_parse_address(&laddr
, opts
->host_traddr
);
2883 if (ret
|| !laddr
.nn
|| !laddr
.pn
)
2884 return ERR_PTR(-EINVAL
);
2886 /* find the host and remote ports to connect together */
2887 spin_lock_irqsave(&nvme_fc_lock
, flags
);
2888 list_for_each_entry(lport
, &nvme_fc_lport_list
, port_list
) {
2889 if (lport
->localport
.node_name
!= laddr
.nn
||
2890 lport
->localport
.port_name
!= laddr
.pn
)
2893 list_for_each_entry(rport
, &lport
->endp_list
, endp_list
) {
2894 if (rport
->remoteport
.node_name
!= raddr
.nn
||
2895 rport
->remoteport
.port_name
!= raddr
.pn
)
2898 /* if fail to get reference fall through. Will error */
2899 if (!nvme_fc_rport_get(rport
))
2902 spin_unlock_irqrestore(&nvme_fc_lock
, flags
);
2904 ctrl
= nvme_fc_init_ctrl(dev
, opts
, lport
, rport
);
2906 nvme_fc_rport_put(rport
);
2910 spin_unlock_irqrestore(&nvme_fc_lock
, flags
);
2912 return ERR_PTR(-ENOENT
);
2916 static struct nvmf_transport_ops nvme_fc_transport
= {
2918 .required_opts
= NVMF_OPT_TRADDR
| NVMF_OPT_HOST_TRADDR
,
2919 .allowed_opts
= NVMF_OPT_RECONNECT_DELAY
| NVMF_OPT_CTRL_LOSS_TMO
,
2920 .create_ctrl
= nvme_fc_create_ctrl
,
2923 static int __init
nvme_fc_init_module(void)
2925 return nvmf_register_transport(&nvme_fc_transport
);
2928 static void __exit
nvme_fc_exit_module(void)
2930 /* sanity check - all lports should be removed */
2931 if (!list_empty(&nvme_fc_lport_list
))
2932 pr_warn("%s: localport list not empty\n", __func__
);
2934 nvmf_unregister_transport(&nvme_fc_transport
);
2936 ida_destroy(&nvme_fc_local_port_cnt
);
2937 ida_destroy(&nvme_fc_ctrl_cnt
);
2940 module_init(nvme_fc_init_module
);
2941 module_exit(nvme_fc_exit_module
);
2943 MODULE_LICENSE("GPL v2");