2 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
4 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 * Copyright (C) 2010 ST-Ericsson SA
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/highmem.h>
23 #include <linux/log2.h>
24 #include <linux/mmc/pm.h>
25 #include <linux/mmc/host.h>
26 #include <linux/mmc/card.h>
27 #include <linux/mmc/slot-gpio.h>
28 #include <linux/amba/bus.h>
29 #include <linux/clk.h>
30 #include <linux/scatterlist.h>
31 #include <linux/gpio.h>
32 #include <linux/of_gpio.h>
33 #include <linux/regulator/consumer.h>
34 #include <linux/dmaengine.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/amba/mmci.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/types.h>
39 #include <linux/pinctrl/consumer.h>
41 #include <asm/div64.h>
45 #include "mmci_qcom_dml.h"
47 #define DRIVER_NAME "mmci-pl18x"
49 static unsigned int fmax
= 515633;
52 * struct variant_data - MMCI variant-specific quirks
53 * @clkreg: default value for MCICLOCK register
54 * @clkreg_enable: enable value for MMCICLOCK register
55 * @clkreg_8bit_bus_enable: enable value for 8 bit bus
56 * @clkreg_neg_edge_enable: enable value for inverted data/cmd output
57 * @datalength_bits: number of bits in the MMCIDATALENGTH register
58 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
59 * is asserted (likewise for RX)
60 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
61 * is asserted (likewise for RX)
62 * @data_cmd_enable: enable value for data commands.
63 * @st_sdio: enable ST specific SDIO logic
64 * @st_clkdiv: true if using a ST-specific clock divider algorithm
65 * @datactrl_mask_ddrmode: ddr mode mask in datactrl register.
66 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
67 * @blksz_datactrl4: true if Block size is at b4..b16 position in datactrl
69 * @datactrl_mask_sdio: SDIO enable mask in datactrl register
70 * @pwrreg_powerup: power up value for MMCIPOWER register
71 * @f_max: maximum clk frequency supported by the controller.
72 * @signal_direction: input/out direction of bus signals can be indicated
73 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
74 * @busy_detect: true if the variant supports busy detection on DAT0.
75 * @busy_dpsm_flag: bitmask enabling busy detection in the DPSM
76 * @busy_detect_flag: bitmask identifying the bit in the MMCISTATUS register
77 * indicating that the card is busy
78 * @busy_detect_mask: bitmask identifying the bit in the MMCIMASK0 to mask for
79 * getting busy end detection interrupts
80 * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
81 * @explicit_mclk_control: enable explicit mclk control in driver.
82 * @qcom_fifo: enables qcom specific fifo pio read logic.
83 * @qcom_dml: enables qcom specific dma glue for dma transfers.
84 * @reversed_irq_handling: handle data irq before cmd irq.
85 * @mmcimask1: true if variant have a MMCIMASK1 register.
86 * @start_err: bitmask identifying the STARTBITERR bit inside MMCISTATUS
88 * @opendrain: bitmask identifying the OPENDRAIN bit inside MMCIPOWER register
92 unsigned int clkreg_enable
;
93 unsigned int clkreg_8bit_bus_enable
;
94 unsigned int clkreg_neg_edge_enable
;
95 unsigned int datalength_bits
;
96 unsigned int fifosize
;
97 unsigned int fifohalfsize
;
98 unsigned int data_cmd_enable
;
99 unsigned int datactrl_mask_ddrmode
;
100 unsigned int datactrl_mask_sdio
;
103 bool blksz_datactrl16
;
104 bool blksz_datactrl4
;
107 bool signal_direction
;
111 u32 busy_detect_flag
;
112 u32 busy_detect_mask
;
114 bool explicit_mclk_control
;
117 bool reversed_irq_handling
;
123 static struct variant_data variant_arm
= {
125 .fifohalfsize
= 8 * 4,
126 .datalength_bits
= 16,
127 .pwrreg_powerup
= MCI_PWR_UP
,
129 .reversed_irq_handling
= true,
131 .start_err
= MCI_STARTBITERR
,
132 .opendrain
= MCI_ROD
,
135 static struct variant_data variant_arm_extended_fifo
= {
137 .fifohalfsize
= 64 * 4,
138 .datalength_bits
= 16,
139 .pwrreg_powerup
= MCI_PWR_UP
,
142 .start_err
= MCI_STARTBITERR
,
143 .opendrain
= MCI_ROD
,
146 static struct variant_data variant_arm_extended_fifo_hwfc
= {
148 .fifohalfsize
= 64 * 4,
149 .clkreg_enable
= MCI_ARM_HWFCEN
,
150 .datalength_bits
= 16,
151 .pwrreg_powerup
= MCI_PWR_UP
,
154 .start_err
= MCI_STARTBITERR
,
155 .opendrain
= MCI_ROD
,
158 static struct variant_data variant_u300
= {
160 .fifohalfsize
= 8 * 4,
161 .clkreg_enable
= MCI_ST_U300_HWFCEN
,
162 .clkreg_8bit_bus_enable
= MCI_ST_8BIT_BUS
,
163 .datalength_bits
= 16,
164 .datactrl_mask_sdio
= MCI_DPSM_ST_SDIOEN
,
166 .pwrreg_powerup
= MCI_PWR_ON
,
168 .signal_direction
= true,
169 .pwrreg_clkgate
= true,
170 .pwrreg_nopower
= true,
172 .start_err
= MCI_STARTBITERR
,
176 static struct variant_data variant_nomadik
= {
178 .fifohalfsize
= 8 * 4,
179 .clkreg
= MCI_CLK_ENABLE
,
180 .clkreg_8bit_bus_enable
= MCI_ST_8BIT_BUS
,
181 .datalength_bits
= 24,
182 .datactrl_mask_sdio
= MCI_DPSM_ST_SDIOEN
,
185 .pwrreg_powerup
= MCI_PWR_ON
,
187 .signal_direction
= true,
188 .pwrreg_clkgate
= true,
189 .pwrreg_nopower
= true,
191 .start_err
= MCI_STARTBITERR
,
195 static struct variant_data variant_ux500
= {
197 .fifohalfsize
= 8 * 4,
198 .clkreg
= MCI_CLK_ENABLE
,
199 .clkreg_enable
= MCI_ST_UX500_HWFCEN
,
200 .clkreg_8bit_bus_enable
= MCI_ST_8BIT_BUS
,
201 .clkreg_neg_edge_enable
= MCI_ST_UX500_NEG_EDGE
,
202 .datalength_bits
= 24,
203 .datactrl_mask_sdio
= MCI_DPSM_ST_SDIOEN
,
206 .pwrreg_powerup
= MCI_PWR_ON
,
208 .signal_direction
= true,
209 .pwrreg_clkgate
= true,
211 .busy_dpsm_flag
= MCI_DPSM_ST_BUSYMODE
,
212 .busy_detect_flag
= MCI_ST_CARDBUSY
,
213 .busy_detect_mask
= MCI_ST_BUSYENDMASK
,
214 .pwrreg_nopower
= true,
216 .start_err
= MCI_STARTBITERR
,
220 static struct variant_data variant_ux500v2
= {
222 .fifohalfsize
= 8 * 4,
223 .clkreg
= MCI_CLK_ENABLE
,
224 .clkreg_enable
= MCI_ST_UX500_HWFCEN
,
225 .clkreg_8bit_bus_enable
= MCI_ST_8BIT_BUS
,
226 .clkreg_neg_edge_enable
= MCI_ST_UX500_NEG_EDGE
,
227 .datactrl_mask_ddrmode
= MCI_DPSM_ST_DDRMODE
,
228 .datalength_bits
= 24,
229 .datactrl_mask_sdio
= MCI_DPSM_ST_SDIOEN
,
232 .blksz_datactrl16
= true,
233 .pwrreg_powerup
= MCI_PWR_ON
,
235 .signal_direction
= true,
236 .pwrreg_clkgate
= true,
238 .busy_dpsm_flag
= MCI_DPSM_ST_BUSYMODE
,
239 .busy_detect_flag
= MCI_ST_CARDBUSY
,
240 .busy_detect_mask
= MCI_ST_BUSYENDMASK
,
241 .pwrreg_nopower
= true,
243 .start_err
= MCI_STARTBITERR
,
247 static struct variant_data variant_stm32
= {
249 .fifohalfsize
= 8 * 4,
250 .clkreg
= MCI_CLK_ENABLE
,
251 .clkreg_enable
= MCI_ST_UX500_HWFCEN
,
252 .clkreg_8bit_bus_enable
= MCI_ST_8BIT_BUS
,
253 .clkreg_neg_edge_enable
= MCI_ST_UX500_NEG_EDGE
,
254 .datalength_bits
= 24,
255 .datactrl_mask_sdio
= MCI_DPSM_ST_SDIOEN
,
258 .pwrreg_powerup
= MCI_PWR_ON
,
260 .pwrreg_clkgate
= true,
261 .pwrreg_nopower
= true,
264 static struct variant_data variant_qcom
= {
266 .fifohalfsize
= 8 * 4,
267 .clkreg
= MCI_CLK_ENABLE
,
268 .clkreg_enable
= MCI_QCOM_CLK_FLOWENA
|
269 MCI_QCOM_CLK_SELECT_IN_FBCLK
,
270 .clkreg_8bit_bus_enable
= MCI_QCOM_CLK_WIDEBUS_8
,
271 .datactrl_mask_ddrmode
= MCI_QCOM_CLK_SELECT_IN_DDR_MODE
,
272 .data_cmd_enable
= MCI_CPSM_QCOM_DATCMD
,
273 .blksz_datactrl4
= true,
274 .datalength_bits
= 24,
275 .pwrreg_powerup
= MCI_PWR_UP
,
277 .explicit_mclk_control
= true,
281 .start_err
= MCI_STARTBITERR
,
282 .opendrain
= MCI_ROD
,
285 /* Busy detection for the ST Micro variant */
286 static int mmci_card_busy(struct mmc_host
*mmc
)
288 struct mmci_host
*host
= mmc_priv(mmc
);
292 spin_lock_irqsave(&host
->lock
, flags
);
293 if (readl(host
->base
+ MMCISTATUS
) & host
->variant
->busy_detect_flag
)
295 spin_unlock_irqrestore(&host
->lock
, flags
);
301 * Validate mmc prerequisites
303 static int mmci_validate_data(struct mmci_host
*host
,
304 struct mmc_data
*data
)
309 if (!is_power_of_2(data
->blksz
)) {
310 dev_err(mmc_dev(host
->mmc
),
311 "unsupported block size (%d bytes)\n", data
->blksz
);
318 static void mmci_reg_delay(struct mmci_host
*host
)
321 * According to the spec, at least three feedback clock cycles
322 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
323 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
324 * Worst delay time during card init is at 100 kHz => 30 us.
325 * Worst delay time when up and running is at 25 MHz => 120 ns.
327 if (host
->cclk
< 25000000)
334 * This must be called with host->lock held
336 static void mmci_write_clkreg(struct mmci_host
*host
, u32 clk
)
338 if (host
->clk_reg
!= clk
) {
340 writel(clk
, host
->base
+ MMCICLOCK
);
345 * This must be called with host->lock held
347 static void mmci_write_pwrreg(struct mmci_host
*host
, u32 pwr
)
349 if (host
->pwr_reg
!= pwr
) {
351 writel(pwr
, host
->base
+ MMCIPOWER
);
356 * This must be called with host->lock held
358 static void mmci_write_datactrlreg(struct mmci_host
*host
, u32 datactrl
)
360 /* Keep busy mode in DPSM if enabled */
361 datactrl
|= host
->datactrl_reg
& host
->variant
->busy_dpsm_flag
;
363 if (host
->datactrl_reg
!= datactrl
) {
364 host
->datactrl_reg
= datactrl
;
365 writel(datactrl
, host
->base
+ MMCIDATACTRL
);
370 * This must be called with host->lock held
372 static void mmci_set_clkreg(struct mmci_host
*host
, unsigned int desired
)
374 struct variant_data
*variant
= host
->variant
;
375 u32 clk
= variant
->clkreg
;
377 /* Make sure cclk reflects the current calculated clock */
381 if (variant
->explicit_mclk_control
) {
382 host
->cclk
= host
->mclk
;
383 } else if (desired
>= host
->mclk
) {
384 clk
= MCI_CLK_BYPASS
;
385 if (variant
->st_clkdiv
)
386 clk
|= MCI_ST_UX500_NEG_EDGE
;
387 host
->cclk
= host
->mclk
;
388 } else if (variant
->st_clkdiv
) {
390 * DB8500 TRM says f = mclk / (clkdiv + 2)
391 * => clkdiv = (mclk / f) - 2
392 * Round the divider up so we don't exceed the max
395 clk
= DIV_ROUND_UP(host
->mclk
, desired
) - 2;
398 host
->cclk
= host
->mclk
/ (clk
+ 2);
401 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
402 * => clkdiv = mclk / (2 * f) - 1
404 clk
= host
->mclk
/ (2 * desired
) - 1;
407 host
->cclk
= host
->mclk
/ (2 * (clk
+ 1));
410 clk
|= variant
->clkreg_enable
;
411 clk
|= MCI_CLK_ENABLE
;
412 /* This hasn't proven to be worthwhile */
413 /* clk |= MCI_CLK_PWRSAVE; */
416 /* Set actual clock for debug */
417 host
->mmc
->actual_clock
= host
->cclk
;
419 if (host
->mmc
->ios
.bus_width
== MMC_BUS_WIDTH_4
)
421 if (host
->mmc
->ios
.bus_width
== MMC_BUS_WIDTH_8
)
422 clk
|= variant
->clkreg_8bit_bus_enable
;
424 if (host
->mmc
->ios
.timing
== MMC_TIMING_UHS_DDR50
||
425 host
->mmc
->ios
.timing
== MMC_TIMING_MMC_DDR52
)
426 clk
|= variant
->clkreg_neg_edge_enable
;
428 mmci_write_clkreg(host
, clk
);
432 mmci_request_end(struct mmci_host
*host
, struct mmc_request
*mrq
)
434 writel(0, host
->base
+ MMCICOMMAND
);
441 mmc_request_done(host
->mmc
, mrq
);
444 static void mmci_set_mask1(struct mmci_host
*host
, unsigned int mask
)
446 void __iomem
*base
= host
->base
;
447 struct variant_data
*variant
= host
->variant
;
449 if (host
->singleirq
) {
450 unsigned int mask0
= readl(base
+ MMCIMASK0
);
452 mask0
&= ~MCI_IRQ1MASK
;
455 writel(mask0
, base
+ MMCIMASK0
);
458 if (variant
->mmcimask1
)
459 writel(mask
, base
+ MMCIMASK1
);
461 host
->mask1_reg
= mask
;
464 static void mmci_stop_data(struct mmci_host
*host
)
466 mmci_write_datactrlreg(host
, 0);
467 mmci_set_mask1(host
, 0);
471 static void mmci_init_sg(struct mmci_host
*host
, struct mmc_data
*data
)
473 unsigned int flags
= SG_MITER_ATOMIC
;
475 if (data
->flags
& MMC_DATA_READ
)
476 flags
|= SG_MITER_TO_SG
;
478 flags
|= SG_MITER_FROM_SG
;
480 sg_miter_start(&host
->sg_miter
, data
->sg
, data
->sg_len
, flags
);
484 * All the DMA operation mode stuff goes inside this ifdef.
485 * This assumes that you have a generic DMA device interface,
486 * no custom DMA interfaces are supported.
488 #ifdef CONFIG_DMA_ENGINE
489 static void mmci_dma_setup(struct mmci_host
*host
)
491 const char *rxname
, *txname
;
492 struct variant_data
*variant
= host
->variant
;
494 host
->dma_rx_channel
= dma_request_slave_channel(mmc_dev(host
->mmc
), "rx");
495 host
->dma_tx_channel
= dma_request_slave_channel(mmc_dev(host
->mmc
), "tx");
497 /* initialize pre request cookie */
498 host
->next_data
.cookie
= 1;
501 * If only an RX channel is specified, the driver will
502 * attempt to use it bidirectionally, however if it is
503 * is specified but cannot be located, DMA will be disabled.
505 if (host
->dma_rx_channel
&& !host
->dma_tx_channel
)
506 host
->dma_tx_channel
= host
->dma_rx_channel
;
508 if (host
->dma_rx_channel
)
509 rxname
= dma_chan_name(host
->dma_rx_channel
);
513 if (host
->dma_tx_channel
)
514 txname
= dma_chan_name(host
->dma_tx_channel
);
518 dev_info(mmc_dev(host
->mmc
), "DMA channels RX %s, TX %s\n",
522 * Limit the maximum segment size in any SG entry according to
523 * the parameters of the DMA engine device.
525 if (host
->dma_tx_channel
) {
526 struct device
*dev
= host
->dma_tx_channel
->device
->dev
;
527 unsigned int max_seg_size
= dma_get_max_seg_size(dev
);
529 if (max_seg_size
< host
->mmc
->max_seg_size
)
530 host
->mmc
->max_seg_size
= max_seg_size
;
532 if (host
->dma_rx_channel
) {
533 struct device
*dev
= host
->dma_rx_channel
->device
->dev
;
534 unsigned int max_seg_size
= dma_get_max_seg_size(dev
);
536 if (max_seg_size
< host
->mmc
->max_seg_size
)
537 host
->mmc
->max_seg_size
= max_seg_size
;
540 if (variant
->qcom_dml
&& host
->dma_rx_channel
&& host
->dma_tx_channel
)
541 if (dml_hw_init(host
, host
->mmc
->parent
->of_node
))
542 variant
->qcom_dml
= false;
546 * This is used in or so inline it
547 * so it can be discarded.
549 static inline void mmci_dma_release(struct mmci_host
*host
)
551 if (host
->dma_rx_channel
)
552 dma_release_channel(host
->dma_rx_channel
);
553 if (host
->dma_tx_channel
)
554 dma_release_channel(host
->dma_tx_channel
);
555 host
->dma_rx_channel
= host
->dma_tx_channel
= NULL
;
558 static void mmci_dma_data_error(struct mmci_host
*host
)
560 dev_err(mmc_dev(host
->mmc
), "error during DMA transfer!\n");
561 dmaengine_terminate_all(host
->dma_current
);
562 host
->dma_in_progress
= false;
563 host
->dma_current
= NULL
;
564 host
->dma_desc_current
= NULL
;
565 host
->data
->host_cookie
= 0;
568 static void mmci_dma_unmap(struct mmci_host
*host
, struct mmc_data
*data
)
570 struct dma_chan
*chan
;
572 if (data
->flags
& MMC_DATA_READ
)
573 chan
= host
->dma_rx_channel
;
575 chan
= host
->dma_tx_channel
;
577 dma_unmap_sg(chan
->device
->dev
, data
->sg
, data
->sg_len
,
578 mmc_get_dma_dir(data
));
581 static void mmci_dma_finalize(struct mmci_host
*host
, struct mmc_data
*data
)
586 /* Wait up to 1ms for the DMA to complete */
588 status
= readl(host
->base
+ MMCISTATUS
);
589 if (!(status
& MCI_RXDATAAVLBLMASK
) || i
>= 100)
595 * Check to see whether we still have some data left in the FIFO -
596 * this catches DMA controllers which are unable to monitor the
597 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
598 * contiguous buffers. On TX, we'll get a FIFO underrun error.
600 if (status
& MCI_RXDATAAVLBLMASK
) {
601 mmci_dma_data_error(host
);
606 if (!data
->host_cookie
)
607 mmci_dma_unmap(host
, data
);
610 * Use of DMA with scatter-gather is impossible.
611 * Give up with DMA and switch back to PIO mode.
613 if (status
& MCI_RXDATAAVLBLMASK
) {
614 dev_err(mmc_dev(host
->mmc
), "buggy DMA detected. Taking evasive action.\n");
615 mmci_dma_release(host
);
618 host
->dma_in_progress
= false;
619 host
->dma_current
= NULL
;
620 host
->dma_desc_current
= NULL
;
623 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
624 static int __mmci_dma_prep_data(struct mmci_host
*host
, struct mmc_data
*data
,
625 struct dma_chan
**dma_chan
,
626 struct dma_async_tx_descriptor
**dma_desc
)
628 struct variant_data
*variant
= host
->variant
;
629 struct dma_slave_config conf
= {
630 .src_addr
= host
->phybase
+ MMCIFIFO
,
631 .dst_addr
= host
->phybase
+ MMCIFIFO
,
632 .src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
,
633 .dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
,
634 .src_maxburst
= variant
->fifohalfsize
>> 2, /* # of words */
635 .dst_maxburst
= variant
->fifohalfsize
>> 2, /* # of words */
638 struct dma_chan
*chan
;
639 struct dma_device
*device
;
640 struct dma_async_tx_descriptor
*desc
;
642 unsigned long flags
= DMA_CTRL_ACK
;
644 if (data
->flags
& MMC_DATA_READ
) {
645 conf
.direction
= DMA_DEV_TO_MEM
;
646 chan
= host
->dma_rx_channel
;
648 conf
.direction
= DMA_MEM_TO_DEV
;
649 chan
= host
->dma_tx_channel
;
652 /* If there's no DMA channel, fall back to PIO */
656 /* If less than or equal to the fifo size, don't bother with DMA */
657 if (data
->blksz
* data
->blocks
<= variant
->fifosize
)
660 device
= chan
->device
;
661 nr_sg
= dma_map_sg(device
->dev
, data
->sg
, data
->sg_len
,
662 mmc_get_dma_dir(data
));
666 if (host
->variant
->qcom_dml
)
667 flags
|= DMA_PREP_INTERRUPT
;
669 dmaengine_slave_config(chan
, &conf
);
670 desc
= dmaengine_prep_slave_sg(chan
, data
->sg
, nr_sg
,
671 conf
.direction
, flags
);
681 dma_unmap_sg(device
->dev
, data
->sg
, data
->sg_len
,
682 mmc_get_dma_dir(data
));
686 static inline int mmci_dma_prep_data(struct mmci_host
*host
,
687 struct mmc_data
*data
)
689 /* Check if next job is already prepared. */
690 if (host
->dma_current
&& host
->dma_desc_current
)
693 /* No job were prepared thus do it now. */
694 return __mmci_dma_prep_data(host
, data
, &host
->dma_current
,
695 &host
->dma_desc_current
);
698 static inline int mmci_dma_prep_next(struct mmci_host
*host
,
699 struct mmc_data
*data
)
701 struct mmci_host_next
*nd
= &host
->next_data
;
702 return __mmci_dma_prep_data(host
, data
, &nd
->dma_chan
, &nd
->dma_desc
);
705 static int mmci_dma_start_data(struct mmci_host
*host
, unsigned int datactrl
)
708 struct mmc_data
*data
= host
->data
;
710 ret
= mmci_dma_prep_data(host
, host
->data
);
714 /* Okay, go for it. */
715 dev_vdbg(mmc_dev(host
->mmc
),
716 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
717 data
->sg_len
, data
->blksz
, data
->blocks
, data
->flags
);
718 host
->dma_in_progress
= true;
719 dmaengine_submit(host
->dma_desc_current
);
720 dma_async_issue_pending(host
->dma_current
);
722 if (host
->variant
->qcom_dml
)
723 dml_start_xfer(host
, data
);
725 datactrl
|= MCI_DPSM_DMAENABLE
;
727 /* Trigger the DMA transfer */
728 mmci_write_datactrlreg(host
, datactrl
);
731 * Let the MMCI say when the data is ended and it's time
732 * to fire next DMA request. When that happens, MMCI will
733 * call mmci_data_end()
735 writel(readl(host
->base
+ MMCIMASK0
) | MCI_DATAENDMASK
,
736 host
->base
+ MMCIMASK0
);
740 static void mmci_get_next_data(struct mmci_host
*host
, struct mmc_data
*data
)
742 struct mmci_host_next
*next
= &host
->next_data
;
744 WARN_ON(data
->host_cookie
&& data
->host_cookie
!= next
->cookie
);
745 WARN_ON(!data
->host_cookie
&& (next
->dma_desc
|| next
->dma_chan
));
747 host
->dma_desc_current
= next
->dma_desc
;
748 host
->dma_current
= next
->dma_chan
;
749 next
->dma_desc
= NULL
;
750 next
->dma_chan
= NULL
;
753 static void mmci_pre_request(struct mmc_host
*mmc
, struct mmc_request
*mrq
)
755 struct mmci_host
*host
= mmc_priv(mmc
);
756 struct mmc_data
*data
= mrq
->data
;
757 struct mmci_host_next
*nd
= &host
->next_data
;
762 BUG_ON(data
->host_cookie
);
764 if (mmci_validate_data(host
, data
))
767 if (!mmci_dma_prep_next(host
, data
))
768 data
->host_cookie
= ++nd
->cookie
< 0 ? 1 : nd
->cookie
;
771 static void mmci_post_request(struct mmc_host
*mmc
, struct mmc_request
*mrq
,
774 struct mmci_host
*host
= mmc_priv(mmc
);
775 struct mmc_data
*data
= mrq
->data
;
777 if (!data
|| !data
->host_cookie
)
780 mmci_dma_unmap(host
, data
);
783 struct mmci_host_next
*next
= &host
->next_data
;
784 struct dma_chan
*chan
;
785 if (data
->flags
& MMC_DATA_READ
)
786 chan
= host
->dma_rx_channel
;
788 chan
= host
->dma_tx_channel
;
789 dmaengine_terminate_all(chan
);
791 if (host
->dma_desc_current
== next
->dma_desc
)
792 host
->dma_desc_current
= NULL
;
794 if (host
->dma_current
== next
->dma_chan
) {
795 host
->dma_in_progress
= false;
796 host
->dma_current
= NULL
;
799 next
->dma_desc
= NULL
;
800 next
->dma_chan
= NULL
;
801 data
->host_cookie
= 0;
806 /* Blank functions if the DMA engine is not available */
807 static void mmci_get_next_data(struct mmci_host
*host
, struct mmc_data
*data
)
810 static inline void mmci_dma_setup(struct mmci_host
*host
)
814 static inline void mmci_dma_release(struct mmci_host
*host
)
818 static inline void mmci_dma_unmap(struct mmci_host
*host
, struct mmc_data
*data
)
822 static inline void mmci_dma_finalize(struct mmci_host
*host
,
823 struct mmc_data
*data
)
827 static inline void mmci_dma_data_error(struct mmci_host
*host
)
831 static inline int mmci_dma_start_data(struct mmci_host
*host
, unsigned int datactrl
)
836 #define mmci_pre_request NULL
837 #define mmci_post_request NULL
841 static void mmci_start_data(struct mmci_host
*host
, struct mmc_data
*data
)
843 struct variant_data
*variant
= host
->variant
;
844 unsigned int datactrl
, timeout
, irqmask
;
845 unsigned long long clks
;
849 dev_dbg(mmc_dev(host
->mmc
), "blksz %04x blks %04x flags %08x\n",
850 data
->blksz
, data
->blocks
, data
->flags
);
853 host
->size
= data
->blksz
* data
->blocks
;
854 data
->bytes_xfered
= 0;
856 clks
= (unsigned long long)data
->timeout_ns
* host
->cclk
;
857 do_div(clks
, NSEC_PER_SEC
);
859 timeout
= data
->timeout_clks
+ (unsigned int)clks
;
862 writel(timeout
, base
+ MMCIDATATIMER
);
863 writel(host
->size
, base
+ MMCIDATALENGTH
);
865 blksz_bits
= ffs(data
->blksz
) - 1;
866 BUG_ON(1 << blksz_bits
!= data
->blksz
);
868 if (variant
->blksz_datactrl16
)
869 datactrl
= MCI_DPSM_ENABLE
| (data
->blksz
<< 16);
870 else if (variant
->blksz_datactrl4
)
871 datactrl
= MCI_DPSM_ENABLE
| (data
->blksz
<< 4);
873 datactrl
= MCI_DPSM_ENABLE
| blksz_bits
<< 4;
875 if (data
->flags
& MMC_DATA_READ
)
876 datactrl
|= MCI_DPSM_DIRECTION
;
878 if (host
->mmc
->card
&& mmc_card_sdio(host
->mmc
->card
)) {
881 datactrl
|= variant
->datactrl_mask_sdio
;
884 * The ST Micro variant for SDIO small write transfers
885 * needs to have clock H/W flow control disabled,
886 * otherwise the transfer will not start. The threshold
887 * depends on the rate of MCLK.
889 if (variant
->st_sdio
&& data
->flags
& MMC_DATA_WRITE
&&
891 (host
->size
<= 8 && host
->mclk
> 50000000)))
892 clk
= host
->clk_reg
& ~variant
->clkreg_enable
;
894 clk
= host
->clk_reg
| variant
->clkreg_enable
;
896 mmci_write_clkreg(host
, clk
);
899 if (host
->mmc
->ios
.timing
== MMC_TIMING_UHS_DDR50
||
900 host
->mmc
->ios
.timing
== MMC_TIMING_MMC_DDR52
)
901 datactrl
|= variant
->datactrl_mask_ddrmode
;
904 * Attempt to use DMA operation mode, if this
905 * should fail, fall back to PIO mode
907 if (!mmci_dma_start_data(host
, datactrl
))
910 /* IRQ mode, map the SG list for CPU reading/writing */
911 mmci_init_sg(host
, data
);
913 if (data
->flags
& MMC_DATA_READ
) {
914 irqmask
= MCI_RXFIFOHALFFULLMASK
;
917 * If we have less than the fifo 'half-full' threshold to
918 * transfer, trigger a PIO interrupt as soon as any data
921 if (host
->size
< variant
->fifohalfsize
)
922 irqmask
|= MCI_RXDATAAVLBLMASK
;
925 * We don't actually need to include "FIFO empty" here
926 * since its implicit in "FIFO half empty".
928 irqmask
= MCI_TXFIFOHALFEMPTYMASK
;
931 mmci_write_datactrlreg(host
, datactrl
);
932 writel(readl(base
+ MMCIMASK0
) & ~MCI_DATAENDMASK
, base
+ MMCIMASK0
);
933 mmci_set_mask1(host
, irqmask
);
937 mmci_start_command(struct mmci_host
*host
, struct mmc_command
*cmd
, u32 c
)
939 void __iomem
*base
= host
->base
;
941 dev_dbg(mmc_dev(host
->mmc
), "op %02x arg %08x flags %08x\n",
942 cmd
->opcode
, cmd
->arg
, cmd
->flags
);
944 if (readl(base
+ MMCICOMMAND
) & MCI_CPSM_ENABLE
) {
945 writel(0, base
+ MMCICOMMAND
);
946 mmci_reg_delay(host
);
949 c
|= cmd
->opcode
| MCI_CPSM_ENABLE
;
950 if (cmd
->flags
& MMC_RSP_PRESENT
) {
951 if (cmd
->flags
& MMC_RSP_136
)
952 c
|= MCI_CPSM_LONGRSP
;
953 c
|= MCI_CPSM_RESPONSE
;
956 c
|= MCI_CPSM_INTERRUPT
;
958 if (mmc_cmd_type(cmd
) == MMC_CMD_ADTC
)
959 c
|= host
->variant
->data_cmd_enable
;
963 writel(cmd
->arg
, base
+ MMCIARGUMENT
);
964 writel(c
, base
+ MMCICOMMAND
);
968 mmci_data_irq(struct mmci_host
*host
, struct mmc_data
*data
,
971 /* Make sure we have data to handle */
975 /* First check for errors */
976 if (status
& (MCI_DATACRCFAIL
| MCI_DATATIMEOUT
|
977 host
->variant
->start_err
|
978 MCI_TXUNDERRUN
| MCI_RXOVERRUN
)) {
981 /* Terminate the DMA transfer */
982 if (dma_inprogress(host
)) {
983 mmci_dma_data_error(host
);
984 mmci_dma_unmap(host
, data
);
988 * Calculate how far we are into the transfer. Note that
989 * the data counter gives the number of bytes transferred
990 * on the MMC bus, not on the host side. On reads, this
991 * can be as much as a FIFO-worth of data ahead. This
992 * matters for FIFO overruns only.
994 remain
= readl(host
->base
+ MMCIDATACNT
);
995 success
= data
->blksz
* data
->blocks
- remain
;
997 dev_dbg(mmc_dev(host
->mmc
), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
999 if (status
& MCI_DATACRCFAIL
) {
1000 /* Last block was not successful */
1002 data
->error
= -EILSEQ
;
1003 } else if (status
& MCI_DATATIMEOUT
) {
1004 data
->error
= -ETIMEDOUT
;
1005 } else if (status
& MCI_STARTBITERR
) {
1006 data
->error
= -ECOMM
;
1007 } else if (status
& MCI_TXUNDERRUN
) {
1009 } else if (status
& MCI_RXOVERRUN
) {
1010 if (success
> host
->variant
->fifosize
)
1011 success
-= host
->variant
->fifosize
;
1016 data
->bytes_xfered
= round_down(success
, data
->blksz
);
1019 if (status
& MCI_DATABLOCKEND
)
1020 dev_err(mmc_dev(host
->mmc
), "stray MCI_DATABLOCKEND interrupt\n");
1022 if (status
& MCI_DATAEND
|| data
->error
) {
1023 if (dma_inprogress(host
))
1024 mmci_dma_finalize(host
, data
);
1025 mmci_stop_data(host
);
1028 /* The error clause is handled above, success! */
1029 data
->bytes_xfered
= data
->blksz
* data
->blocks
;
1031 if (!data
->stop
|| host
->mrq
->sbc
) {
1032 mmci_request_end(host
, data
->mrq
);
1034 mmci_start_command(host
, data
->stop
, 0);
1040 mmci_cmd_irq(struct mmci_host
*host
, struct mmc_command
*cmd
,
1041 unsigned int status
)
1043 void __iomem
*base
= host
->base
;
1049 sbc
= (cmd
== host
->mrq
->sbc
);
1052 * We need to be one of these interrupts to be considered worth
1053 * handling. Note that we tag on any latent IRQs postponed
1054 * due to waiting for busy status.
1056 if (!((status
|host
->busy_status
) &
1057 (MCI_CMDCRCFAIL
|MCI_CMDTIMEOUT
|MCI_CMDSENT
|MCI_CMDRESPEND
)))
1061 * ST Micro variant: handle busy detection.
1063 if (host
->variant
->busy_detect
) {
1064 bool busy_resp
= !!(cmd
->flags
& MMC_RSP_BUSY
);
1066 /* We are busy with a command, return */
1067 if (host
->busy_status
&&
1068 (status
& host
->variant
->busy_detect_flag
))
1072 * We were not busy, but we now got a busy response on
1073 * something that was not an error, and we double-check
1074 * that the special busy status bit is still set before
1077 if (!host
->busy_status
&& busy_resp
&&
1078 !(status
& (MCI_CMDCRCFAIL
|MCI_CMDTIMEOUT
)) &&
1079 (readl(base
+ MMCISTATUS
) & host
->variant
->busy_detect_flag
)) {
1081 /* Clear the busy start IRQ */
1082 writel(host
->variant
->busy_detect_mask
,
1083 host
->base
+ MMCICLEAR
);
1085 /* Unmask the busy end IRQ */
1086 writel(readl(base
+ MMCIMASK0
) |
1087 host
->variant
->busy_detect_mask
,
1090 * Now cache the last response status code (until
1091 * the busy bit goes low), and return.
1094 status
& (MCI_CMDSENT
|MCI_CMDRESPEND
);
1099 * At this point we are not busy with a command, we have
1100 * not received a new busy request, clear and mask the busy
1101 * end IRQ and fall through to process the IRQ.
1103 if (host
->busy_status
) {
1105 writel(host
->variant
->busy_detect_mask
,
1106 host
->base
+ MMCICLEAR
);
1108 writel(readl(base
+ MMCIMASK0
) &
1109 ~host
->variant
->busy_detect_mask
,
1111 host
->busy_status
= 0;
1117 if (status
& MCI_CMDTIMEOUT
) {
1118 cmd
->error
= -ETIMEDOUT
;
1119 } else if (status
& MCI_CMDCRCFAIL
&& cmd
->flags
& MMC_RSP_CRC
) {
1120 cmd
->error
= -EILSEQ
;
1122 cmd
->resp
[0] = readl(base
+ MMCIRESPONSE0
);
1123 cmd
->resp
[1] = readl(base
+ MMCIRESPONSE1
);
1124 cmd
->resp
[2] = readl(base
+ MMCIRESPONSE2
);
1125 cmd
->resp
[3] = readl(base
+ MMCIRESPONSE3
);
1128 if ((!sbc
&& !cmd
->data
) || cmd
->error
) {
1130 /* Terminate the DMA transfer */
1131 if (dma_inprogress(host
)) {
1132 mmci_dma_data_error(host
);
1133 mmci_dma_unmap(host
, host
->data
);
1135 mmci_stop_data(host
);
1137 mmci_request_end(host
, host
->mrq
);
1139 mmci_start_command(host
, host
->mrq
->cmd
, 0);
1140 } else if (!(cmd
->data
->flags
& MMC_DATA_READ
)) {
1141 mmci_start_data(host
, cmd
->data
);
1145 static int mmci_get_rx_fifocnt(struct mmci_host
*host
, u32 status
, int remain
)
1147 return remain
- (readl(host
->base
+ MMCIFIFOCNT
) << 2);
1150 static int mmci_qcom_get_rx_fifocnt(struct mmci_host
*host
, u32 status
, int r
)
1153 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1154 * from the fifo range should be used
1156 if (status
& MCI_RXFIFOHALFFULL
)
1157 return host
->variant
->fifohalfsize
;
1158 else if (status
& MCI_RXDATAAVLBL
)
1164 static int mmci_pio_read(struct mmci_host
*host
, char *buffer
, unsigned int remain
)
1166 void __iomem
*base
= host
->base
;
1168 u32 status
= readl(host
->base
+ MMCISTATUS
);
1169 int host_remain
= host
->size
;
1172 int count
= host
->get_rx_fifocnt(host
, status
, host_remain
);
1181 * SDIO especially may want to send something that is
1182 * not divisible by 4 (as opposed to card sectors
1183 * etc). Therefore make sure to always read the last bytes
1184 * while only doing full 32-bit reads towards the FIFO.
1186 if (unlikely(count
& 0x3)) {
1188 unsigned char buf
[4];
1189 ioread32_rep(base
+ MMCIFIFO
, buf
, 1);
1190 memcpy(ptr
, buf
, count
);
1192 ioread32_rep(base
+ MMCIFIFO
, ptr
, count
>> 2);
1196 ioread32_rep(base
+ MMCIFIFO
, ptr
, count
>> 2);
1201 host_remain
-= count
;
1206 status
= readl(base
+ MMCISTATUS
);
1207 } while (status
& MCI_RXDATAAVLBL
);
1209 return ptr
- buffer
;
1212 static int mmci_pio_write(struct mmci_host
*host
, char *buffer
, unsigned int remain
, u32 status
)
1214 struct variant_data
*variant
= host
->variant
;
1215 void __iomem
*base
= host
->base
;
1219 unsigned int count
, maxcnt
;
1221 maxcnt
= status
& MCI_TXFIFOEMPTY
?
1222 variant
->fifosize
: variant
->fifohalfsize
;
1223 count
= min(remain
, maxcnt
);
1226 * SDIO especially may want to send something that is
1227 * not divisible by 4 (as opposed to card sectors
1228 * etc), and the FIFO only accept full 32-bit writes.
1229 * So compensate by adding +3 on the count, a single
1230 * byte become a 32bit write, 7 bytes will be two
1233 iowrite32_rep(base
+ MMCIFIFO
, ptr
, (count
+ 3) >> 2);
1241 status
= readl(base
+ MMCISTATUS
);
1242 } while (status
& MCI_TXFIFOHALFEMPTY
);
1244 return ptr
- buffer
;
1248 * PIO data transfer IRQ handler.
1250 static irqreturn_t
mmci_pio_irq(int irq
, void *dev_id
)
1252 struct mmci_host
*host
= dev_id
;
1253 struct sg_mapping_iter
*sg_miter
= &host
->sg_miter
;
1254 struct variant_data
*variant
= host
->variant
;
1255 void __iomem
*base
= host
->base
;
1256 unsigned long flags
;
1259 status
= readl(base
+ MMCISTATUS
);
1261 dev_dbg(mmc_dev(host
->mmc
), "irq1 (pio) %08x\n", status
);
1263 local_irq_save(flags
);
1266 unsigned int remain
, len
;
1270 * For write, we only need to test the half-empty flag
1271 * here - if the FIFO is completely empty, then by
1272 * definition it is more than half empty.
1274 * For read, check for data available.
1276 if (!(status
& (MCI_TXFIFOHALFEMPTY
|MCI_RXDATAAVLBL
)))
1279 if (!sg_miter_next(sg_miter
))
1282 buffer
= sg_miter
->addr
;
1283 remain
= sg_miter
->length
;
1286 if (status
& MCI_RXACTIVE
)
1287 len
= mmci_pio_read(host
, buffer
, remain
);
1288 if (status
& MCI_TXACTIVE
)
1289 len
= mmci_pio_write(host
, buffer
, remain
, status
);
1291 sg_miter
->consumed
= len
;
1299 status
= readl(base
+ MMCISTATUS
);
1302 sg_miter_stop(sg_miter
);
1304 local_irq_restore(flags
);
1307 * If we have less than the fifo 'half-full' threshold to transfer,
1308 * trigger a PIO interrupt as soon as any data is available.
1310 if (status
& MCI_RXACTIVE
&& host
->size
< variant
->fifohalfsize
)
1311 mmci_set_mask1(host
, MCI_RXDATAAVLBLMASK
);
1314 * If we run out of data, disable the data IRQs; this
1315 * prevents a race where the FIFO becomes empty before
1316 * the chip itself has disabled the data path, and
1317 * stops us racing with our data end IRQ.
1319 if (host
->size
== 0) {
1320 mmci_set_mask1(host
, 0);
1321 writel(readl(base
+ MMCIMASK0
) | MCI_DATAENDMASK
, base
+ MMCIMASK0
);
1328 * Handle completion of command and data transfers.
1330 static irqreturn_t
mmci_irq(int irq
, void *dev_id
)
1332 struct mmci_host
*host
= dev_id
;
1336 spin_lock(&host
->lock
);
1339 status
= readl(host
->base
+ MMCISTATUS
);
1341 if (host
->singleirq
) {
1342 if (status
& host
->mask1_reg
)
1343 mmci_pio_irq(irq
, dev_id
);
1345 status
&= ~MCI_IRQ1MASK
;
1349 * We intentionally clear the MCI_ST_CARDBUSY IRQ (if it's
1350 * enabled) in mmci_cmd_irq() function where ST Micro busy
1351 * detection variant is handled. Considering the HW seems to be
1352 * triggering the IRQ on both edges while monitoring DAT0 for
1353 * busy completion and that same status bit is used to monitor
1354 * start and end of busy detection, special care must be taken
1355 * to make sure that both start and end interrupts are always
1356 * cleared one after the other.
1358 status
&= readl(host
->base
+ MMCIMASK0
);
1359 if (host
->variant
->busy_detect
)
1360 writel(status
& ~host
->variant
->busy_detect_mask
,
1361 host
->base
+ MMCICLEAR
);
1363 writel(status
, host
->base
+ MMCICLEAR
);
1365 dev_dbg(mmc_dev(host
->mmc
), "irq0 (data+cmd) %08x\n", status
);
1367 if (host
->variant
->reversed_irq_handling
) {
1368 mmci_data_irq(host
, host
->data
, status
);
1369 mmci_cmd_irq(host
, host
->cmd
, status
);
1371 mmci_cmd_irq(host
, host
->cmd
, status
);
1372 mmci_data_irq(host
, host
->data
, status
);
1376 * Don't poll for busy completion in irq context.
1378 if (host
->variant
->busy_detect
&& host
->busy_status
)
1379 status
&= ~host
->variant
->busy_detect_flag
;
1384 spin_unlock(&host
->lock
);
1386 return IRQ_RETVAL(ret
);
1389 static void mmci_request(struct mmc_host
*mmc
, struct mmc_request
*mrq
)
1391 struct mmci_host
*host
= mmc_priv(mmc
);
1392 unsigned long flags
;
1394 WARN_ON(host
->mrq
!= NULL
);
1396 mrq
->cmd
->error
= mmci_validate_data(host
, mrq
->data
);
1397 if (mrq
->cmd
->error
) {
1398 mmc_request_done(mmc
, mrq
);
1402 spin_lock_irqsave(&host
->lock
, flags
);
1407 mmci_get_next_data(host
, mrq
->data
);
1409 if (mrq
->data
&& mrq
->data
->flags
& MMC_DATA_READ
)
1410 mmci_start_data(host
, mrq
->data
);
1413 mmci_start_command(host
, mrq
->sbc
, 0);
1415 mmci_start_command(host
, mrq
->cmd
, 0);
1417 spin_unlock_irqrestore(&host
->lock
, flags
);
1420 static void mmci_set_ios(struct mmc_host
*mmc
, struct mmc_ios
*ios
)
1422 struct mmci_host
*host
= mmc_priv(mmc
);
1423 struct variant_data
*variant
= host
->variant
;
1425 unsigned long flags
;
1428 if (host
->plat
->ios_handler
&&
1429 host
->plat
->ios_handler(mmc_dev(mmc
), ios
))
1430 dev_err(mmc_dev(mmc
), "platform ios_handler failed\n");
1432 switch (ios
->power_mode
) {
1434 if (!IS_ERR(mmc
->supply
.vmmc
))
1435 mmc_regulator_set_ocr(mmc
, mmc
->supply
.vmmc
, 0);
1437 if (!IS_ERR(mmc
->supply
.vqmmc
) && host
->vqmmc_enabled
) {
1438 regulator_disable(mmc
->supply
.vqmmc
);
1439 host
->vqmmc_enabled
= false;
1444 if (!IS_ERR(mmc
->supply
.vmmc
))
1445 mmc_regulator_set_ocr(mmc
, mmc
->supply
.vmmc
, ios
->vdd
);
1448 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1449 * and instead uses MCI_PWR_ON so apply whatever value is
1450 * configured in the variant data.
1452 pwr
|= variant
->pwrreg_powerup
;
1456 if (!IS_ERR(mmc
->supply
.vqmmc
) && !host
->vqmmc_enabled
) {
1457 ret
= regulator_enable(mmc
->supply
.vqmmc
);
1459 dev_err(mmc_dev(mmc
),
1460 "failed to enable vqmmc regulator\n");
1462 host
->vqmmc_enabled
= true;
1469 if (variant
->signal_direction
&& ios
->power_mode
!= MMC_POWER_OFF
) {
1471 * The ST Micro variant has some additional bits
1472 * indicating signal direction for the signals in
1473 * the SD/MMC bus and feedback-clock usage.
1475 pwr
|= host
->pwr_reg_add
;
1477 if (ios
->bus_width
== MMC_BUS_WIDTH_4
)
1478 pwr
&= ~MCI_ST_DATA74DIREN
;
1479 else if (ios
->bus_width
== MMC_BUS_WIDTH_1
)
1480 pwr
&= (~MCI_ST_DATA74DIREN
&
1481 ~MCI_ST_DATA31DIREN
&
1482 ~MCI_ST_DATA2DIREN
);
1485 if (variant
->opendrain
) {
1486 if (ios
->bus_mode
== MMC_BUSMODE_OPENDRAIN
)
1487 pwr
|= variant
->opendrain
;
1490 * If the variant cannot configure the pads by its own, then we
1491 * expect the pinctrl to be able to do that for us
1493 if (ios
->bus_mode
== MMC_BUSMODE_OPENDRAIN
)
1494 pinctrl_select_state(host
->pinctrl
, host
->pins_opendrain
);
1496 pinctrl_select_state(host
->pinctrl
, host
->pins_default
);
1500 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1501 * gating the clock, the MCI_PWR_ON bit is cleared.
1503 if (!ios
->clock
&& variant
->pwrreg_clkgate
)
1506 if (host
->variant
->explicit_mclk_control
&&
1507 ios
->clock
!= host
->clock_cache
) {
1508 ret
= clk_set_rate(host
->clk
, ios
->clock
);
1510 dev_err(mmc_dev(host
->mmc
),
1511 "Error setting clock rate (%d)\n", ret
);
1513 host
->mclk
= clk_get_rate(host
->clk
);
1515 host
->clock_cache
= ios
->clock
;
1517 spin_lock_irqsave(&host
->lock
, flags
);
1519 mmci_set_clkreg(host
, ios
->clock
);
1520 mmci_write_pwrreg(host
, pwr
);
1521 mmci_reg_delay(host
);
1523 spin_unlock_irqrestore(&host
->lock
, flags
);
1526 static int mmci_get_cd(struct mmc_host
*mmc
)
1528 struct mmci_host
*host
= mmc_priv(mmc
);
1529 struct mmci_platform_data
*plat
= host
->plat
;
1530 unsigned int status
= mmc_gpio_get_cd(mmc
);
1532 if (status
== -ENOSYS
) {
1534 return 1; /* Assume always present */
1536 status
= plat
->status(mmc_dev(host
->mmc
));
1541 static int mmci_sig_volt_switch(struct mmc_host
*mmc
, struct mmc_ios
*ios
)
1545 if (!IS_ERR(mmc
->supply
.vqmmc
)) {
1547 switch (ios
->signal_voltage
) {
1548 case MMC_SIGNAL_VOLTAGE_330
:
1549 ret
= regulator_set_voltage(mmc
->supply
.vqmmc
,
1552 case MMC_SIGNAL_VOLTAGE_180
:
1553 ret
= regulator_set_voltage(mmc
->supply
.vqmmc
,
1556 case MMC_SIGNAL_VOLTAGE_120
:
1557 ret
= regulator_set_voltage(mmc
->supply
.vqmmc
,
1563 dev_warn(mmc_dev(mmc
), "Voltage switch failed\n");
1569 static struct mmc_host_ops mmci_ops
= {
1570 .request
= mmci_request
,
1571 .pre_req
= mmci_pre_request
,
1572 .post_req
= mmci_post_request
,
1573 .set_ios
= mmci_set_ios
,
1574 .get_ro
= mmc_gpio_get_ro
,
1575 .get_cd
= mmci_get_cd
,
1576 .start_signal_voltage_switch
= mmci_sig_volt_switch
,
1579 static int mmci_of_parse(struct device_node
*np
, struct mmc_host
*mmc
)
1581 struct mmci_host
*host
= mmc_priv(mmc
);
1582 int ret
= mmc_of_parse(mmc
);
1587 if (of_get_property(np
, "st,sig-dir-dat0", NULL
))
1588 host
->pwr_reg_add
|= MCI_ST_DATA0DIREN
;
1589 if (of_get_property(np
, "st,sig-dir-dat2", NULL
))
1590 host
->pwr_reg_add
|= MCI_ST_DATA2DIREN
;
1591 if (of_get_property(np
, "st,sig-dir-dat31", NULL
))
1592 host
->pwr_reg_add
|= MCI_ST_DATA31DIREN
;
1593 if (of_get_property(np
, "st,sig-dir-dat74", NULL
))
1594 host
->pwr_reg_add
|= MCI_ST_DATA74DIREN
;
1595 if (of_get_property(np
, "st,sig-dir-cmd", NULL
))
1596 host
->pwr_reg_add
|= MCI_ST_CMDDIREN
;
1597 if (of_get_property(np
, "st,sig-pin-fbclk", NULL
))
1598 host
->pwr_reg_add
|= MCI_ST_FBCLKEN
;
1600 if (of_get_property(np
, "mmc-cap-mmc-highspeed", NULL
))
1601 mmc
->caps
|= MMC_CAP_MMC_HIGHSPEED
;
1602 if (of_get_property(np
, "mmc-cap-sd-highspeed", NULL
))
1603 mmc
->caps
|= MMC_CAP_SD_HIGHSPEED
;
1608 static int mmci_probe(struct amba_device
*dev
,
1609 const struct amba_id
*id
)
1611 struct mmci_platform_data
*plat
= dev
->dev
.platform_data
;
1612 struct device_node
*np
= dev
->dev
.of_node
;
1613 struct variant_data
*variant
= id
->data
;
1614 struct mmci_host
*host
;
1615 struct mmc_host
*mmc
;
1618 /* Must have platform data or Device Tree. */
1620 dev_err(&dev
->dev
, "No plat data or DT found\n");
1625 plat
= devm_kzalloc(&dev
->dev
, sizeof(*plat
), GFP_KERNEL
);
1630 mmc
= mmc_alloc_host(sizeof(struct mmci_host
), &dev
->dev
);
1634 ret
= mmci_of_parse(np
, mmc
);
1638 host
= mmc_priv(mmc
);
1642 * Some variant (STM32) doesn't have opendrain bit, nevertheless
1643 * pins can be set accordingly using pinctrl
1645 if (!variant
->opendrain
) {
1646 host
->pinctrl
= devm_pinctrl_get(&dev
->dev
);
1647 if (IS_ERR(host
->pinctrl
)) {
1648 dev_err(&dev
->dev
, "failed to get pinctrl");
1649 ret
= PTR_ERR(host
->pinctrl
);
1653 host
->pins_default
= pinctrl_lookup_state(host
->pinctrl
,
1654 PINCTRL_STATE_DEFAULT
);
1655 if (IS_ERR(host
->pins_default
)) {
1656 dev_err(mmc_dev(mmc
), "Can't select default pins\n");
1657 ret
= PTR_ERR(host
->pins_default
);
1661 host
->pins_opendrain
= pinctrl_lookup_state(host
->pinctrl
,
1662 MMCI_PINCTRL_STATE_OPENDRAIN
);
1663 if (IS_ERR(host
->pins_opendrain
)) {
1664 dev_err(mmc_dev(mmc
), "Can't select opendrain pins\n");
1665 ret
= PTR_ERR(host
->pins_opendrain
);
1670 host
->hw_designer
= amba_manf(dev
);
1671 host
->hw_revision
= amba_rev(dev
);
1672 dev_dbg(mmc_dev(mmc
), "designer ID = 0x%02x\n", host
->hw_designer
);
1673 dev_dbg(mmc_dev(mmc
), "revision = 0x%01x\n", host
->hw_revision
);
1675 host
->clk
= devm_clk_get(&dev
->dev
, NULL
);
1676 if (IS_ERR(host
->clk
)) {
1677 ret
= PTR_ERR(host
->clk
);
1681 ret
= clk_prepare_enable(host
->clk
);
1685 if (variant
->qcom_fifo
)
1686 host
->get_rx_fifocnt
= mmci_qcom_get_rx_fifocnt
;
1688 host
->get_rx_fifocnt
= mmci_get_rx_fifocnt
;
1691 host
->variant
= variant
;
1692 host
->mclk
= clk_get_rate(host
->clk
);
1694 * According to the spec, mclk is max 100 MHz,
1695 * so we try to adjust the clock down to this,
1698 if (host
->mclk
> variant
->f_max
) {
1699 ret
= clk_set_rate(host
->clk
, variant
->f_max
);
1702 host
->mclk
= clk_get_rate(host
->clk
);
1703 dev_dbg(mmc_dev(mmc
), "eventual mclk rate: %u Hz\n",
1707 host
->phybase
= dev
->res
.start
;
1708 host
->base
= devm_ioremap_resource(&dev
->dev
, &dev
->res
);
1709 if (IS_ERR(host
->base
)) {
1710 ret
= PTR_ERR(host
->base
);
1715 * The ARM and ST versions of the block have slightly different
1716 * clock divider equations which means that the minimum divider
1718 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1720 if (variant
->st_clkdiv
)
1721 mmc
->f_min
= DIV_ROUND_UP(host
->mclk
, 257);
1722 else if (variant
->explicit_mclk_control
)
1723 mmc
->f_min
= clk_round_rate(host
->clk
, 100000);
1725 mmc
->f_min
= DIV_ROUND_UP(host
->mclk
, 512);
1727 * If no maximum operating frequency is supplied, fall back to use
1728 * the module parameter, which has a (low) default value in case it
1729 * is not specified. Either value must not exceed the clock rate into
1730 * the block, of course.
1733 mmc
->f_max
= variant
->explicit_mclk_control
?
1734 min(variant
->f_max
, mmc
->f_max
) :
1735 min(host
->mclk
, mmc
->f_max
);
1737 mmc
->f_max
= variant
->explicit_mclk_control
?
1738 fmax
: min(host
->mclk
, fmax
);
1741 dev_dbg(mmc_dev(mmc
), "clocking block at %u Hz\n", mmc
->f_max
);
1743 /* Get regulators and the supported OCR mask */
1744 ret
= mmc_regulator_get_supply(mmc
);
1748 if (!mmc
->ocr_avail
)
1749 mmc
->ocr_avail
= plat
->ocr_mask
;
1750 else if (plat
->ocr_mask
)
1751 dev_warn(mmc_dev(mmc
), "Platform OCR mask is ignored\n");
1753 /* DT takes precedence over platform data. */
1755 if (!plat
->cd_invert
)
1756 mmc
->caps2
|= MMC_CAP2_CD_ACTIVE_HIGH
;
1757 mmc
->caps2
|= MMC_CAP2_RO_ACTIVE_HIGH
;
1760 /* We support these capabilities. */
1761 mmc
->caps
|= MMC_CAP_CMD23
;
1764 * Enable busy detection.
1766 if (variant
->busy_detect
) {
1767 mmci_ops
.card_busy
= mmci_card_busy
;
1769 * Not all variants have a flag to enable busy detection
1770 * in the DPSM, but if they do, set it here.
1772 if (variant
->busy_dpsm_flag
)
1773 mmci_write_datactrlreg(host
,
1774 host
->variant
->busy_dpsm_flag
);
1775 mmc
->caps
|= MMC_CAP_WAIT_WHILE_BUSY
;
1776 mmc
->max_busy_timeout
= 0;
1779 mmc
->ops
= &mmci_ops
;
1781 /* We support these PM capabilities. */
1782 mmc
->pm_caps
|= MMC_PM_KEEP_POWER
;
1787 mmc
->max_segs
= NR_SG
;
1790 * Since only a certain number of bits are valid in the data length
1791 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1794 mmc
->max_req_size
= (1 << variant
->datalength_bits
) - 1;
1797 * Set the maximum segment size. Since we aren't doing DMA
1798 * (yet) we are only limited by the data length register.
1800 mmc
->max_seg_size
= mmc
->max_req_size
;
1803 * Block size can be up to 2048 bytes, but must be a power of two.
1805 mmc
->max_blk_size
= 1 << 11;
1808 * Limit the number of blocks transferred so that we don't overflow
1809 * the maximum request size.
1811 mmc
->max_blk_count
= mmc
->max_req_size
>> 11;
1813 spin_lock_init(&host
->lock
);
1815 writel(0, host
->base
+ MMCIMASK0
);
1817 if (variant
->mmcimask1
)
1818 writel(0, host
->base
+ MMCIMASK1
);
1820 writel(0xfff, host
->base
+ MMCICLEAR
);
1824 * - not using DT but using a descriptor table, or
1825 * - using a table of descriptors ALONGSIDE DT, or
1826 * look up these descriptors named "cd" and "wp" right here, fail
1827 * silently of these do not exist and proceed to try platform data
1830 ret
= mmc_gpiod_request_cd(mmc
, "cd", 0, false, 0, NULL
);
1832 if (ret
== -EPROBE_DEFER
)
1834 else if (gpio_is_valid(plat
->gpio_cd
)) {
1835 ret
= mmc_gpio_request_cd(mmc
, plat
->gpio_cd
, 0);
1841 ret
= mmc_gpiod_request_ro(mmc
, "wp", 0, false, 0, NULL
);
1843 if (ret
== -EPROBE_DEFER
)
1845 else if (gpio_is_valid(plat
->gpio_wp
)) {
1846 ret
= mmc_gpio_request_ro(mmc
, plat
->gpio_wp
);
1853 ret
= devm_request_irq(&dev
->dev
, dev
->irq
[0], mmci_irq
, IRQF_SHARED
,
1854 DRIVER_NAME
" (cmd)", host
);
1859 host
->singleirq
= true;
1861 ret
= devm_request_irq(&dev
->dev
, dev
->irq
[1], mmci_pio_irq
,
1862 IRQF_SHARED
, DRIVER_NAME
" (pio)", host
);
1867 writel(MCI_IRQENABLE
, host
->base
+ MMCIMASK0
);
1869 amba_set_drvdata(dev
, mmc
);
1871 dev_info(&dev
->dev
, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1872 mmc_hostname(mmc
), amba_part(dev
), amba_manf(dev
),
1873 amba_rev(dev
), (unsigned long long)dev
->res
.start
,
1874 dev
->irq
[0], dev
->irq
[1]);
1876 mmci_dma_setup(host
);
1878 pm_runtime_set_autosuspend_delay(&dev
->dev
, 50);
1879 pm_runtime_use_autosuspend(&dev
->dev
);
1883 pm_runtime_put(&dev
->dev
);
1887 clk_disable_unprepare(host
->clk
);
1893 static int mmci_remove(struct amba_device
*dev
)
1895 struct mmc_host
*mmc
= amba_get_drvdata(dev
);
1898 struct mmci_host
*host
= mmc_priv(mmc
);
1899 struct variant_data
*variant
= host
->variant
;
1902 * Undo pm_runtime_put() in probe. We use the _sync
1903 * version here so that we can access the primecell.
1905 pm_runtime_get_sync(&dev
->dev
);
1907 mmc_remove_host(mmc
);
1909 writel(0, host
->base
+ MMCIMASK0
);
1911 if (variant
->mmcimask1
)
1912 writel(0, host
->base
+ MMCIMASK1
);
1914 writel(0, host
->base
+ MMCICOMMAND
);
1915 writel(0, host
->base
+ MMCIDATACTRL
);
1917 mmci_dma_release(host
);
1918 clk_disable_unprepare(host
->clk
);
1926 static void mmci_save(struct mmci_host
*host
)
1928 unsigned long flags
;
1930 spin_lock_irqsave(&host
->lock
, flags
);
1932 writel(0, host
->base
+ MMCIMASK0
);
1933 if (host
->variant
->pwrreg_nopower
) {
1934 writel(0, host
->base
+ MMCIDATACTRL
);
1935 writel(0, host
->base
+ MMCIPOWER
);
1936 writel(0, host
->base
+ MMCICLOCK
);
1938 mmci_reg_delay(host
);
1940 spin_unlock_irqrestore(&host
->lock
, flags
);
1943 static void mmci_restore(struct mmci_host
*host
)
1945 unsigned long flags
;
1947 spin_lock_irqsave(&host
->lock
, flags
);
1949 if (host
->variant
->pwrreg_nopower
) {
1950 writel(host
->clk_reg
, host
->base
+ MMCICLOCK
);
1951 writel(host
->datactrl_reg
, host
->base
+ MMCIDATACTRL
);
1952 writel(host
->pwr_reg
, host
->base
+ MMCIPOWER
);
1954 writel(MCI_IRQENABLE
, host
->base
+ MMCIMASK0
);
1955 mmci_reg_delay(host
);
1957 spin_unlock_irqrestore(&host
->lock
, flags
);
1960 static int mmci_runtime_suspend(struct device
*dev
)
1962 struct amba_device
*adev
= to_amba_device(dev
);
1963 struct mmc_host
*mmc
= amba_get_drvdata(adev
);
1966 struct mmci_host
*host
= mmc_priv(mmc
);
1967 pinctrl_pm_select_sleep_state(dev
);
1969 clk_disable_unprepare(host
->clk
);
1975 static int mmci_runtime_resume(struct device
*dev
)
1977 struct amba_device
*adev
= to_amba_device(dev
);
1978 struct mmc_host
*mmc
= amba_get_drvdata(adev
);
1981 struct mmci_host
*host
= mmc_priv(mmc
);
1982 clk_prepare_enable(host
->clk
);
1984 pinctrl_pm_select_default_state(dev
);
1991 static const struct dev_pm_ops mmci_dev_pm_ops
= {
1992 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend
,
1993 pm_runtime_force_resume
)
1994 SET_RUNTIME_PM_OPS(mmci_runtime_suspend
, mmci_runtime_resume
, NULL
)
1997 static const struct amba_id mmci_ids
[] = {
2001 .data
= &variant_arm
,
2006 .data
= &variant_arm_extended_fifo
,
2011 .data
= &variant_arm_extended_fifo_hwfc
,
2016 .data
= &variant_arm
,
2018 /* ST Micro variants */
2022 .data
= &variant_u300
,
2027 .data
= &variant_nomadik
,
2032 .data
= &variant_nomadik
,
2037 .data
= &variant_ux500
,
2042 .data
= &variant_ux500v2
,
2047 .data
= &variant_stm32
,
2049 /* Qualcomm variants */
2053 .data
= &variant_qcom
,
2058 MODULE_DEVICE_TABLE(amba
, mmci_ids
);
2060 static struct amba_driver mmci_driver
= {
2062 .name
= DRIVER_NAME
,
2063 .pm
= &mmci_dev_pm_ops
,
2065 .probe
= mmci_probe
,
2066 .remove
= mmci_remove
,
2067 .id_table
= mmci_ids
,
2070 module_amba_driver(mmci_driver
);
2072 module_param(fmax
, uint
, 0444);
2074 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2075 MODULE_LICENSE("GPL");