2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/errqueue.h>
97 #include <linux/types.h>
98 #include <linux/socket.h>
100 #include <linux/kernel.h>
101 #include <linux/module.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <linux/sched.h>
105 #include <linux/sched/mm.h>
106 #include <linux/timer.h>
107 #include <linux/string.h>
108 #include <linux/sockios.h>
109 #include <linux/net.h>
110 #include <linux/mm.h>
111 #include <linux/slab.h>
112 #include <linux/interrupt.h>
113 #include <linux/poll.h>
114 #include <linux/tcp.h>
115 #include <linux/init.h>
116 #include <linux/highmem.h>
117 #include <linux/user_namespace.h>
118 #include <linux/static_key.h>
119 #include <linux/memcontrol.h>
120 #include <linux/prefetch.h>
122 #include <linux/uaccess.h>
124 #include <linux/netdevice.h>
125 #include <net/protocol.h>
126 #include <linux/skbuff.h>
127 #include <net/net_namespace.h>
128 #include <net/request_sock.h>
129 #include <net/sock.h>
130 #include <linux/net_tstamp.h>
131 #include <net/xfrm.h>
132 #include <linux/ipsec.h>
133 #include <net/cls_cgroup.h>
134 #include <net/netprio_cgroup.h>
135 #include <linux/sock_diag.h>
137 #include <linux/filter.h>
138 #include <net/sock_reuseport.h>
140 #include <trace/events/sock.h>
143 #include <net/busy_poll.h>
145 static DEFINE_MUTEX(proto_list_mutex
);
146 static LIST_HEAD(proto_list
);
148 static void sock_inuse_add(struct net
*net
, int val
);
151 * sk_ns_capable - General socket capability test
152 * @sk: Socket to use a capability on or through
153 * @user_ns: The user namespace of the capability to use
154 * @cap: The capability to use
156 * Test to see if the opener of the socket had when the socket was
157 * created and the current process has the capability @cap in the user
158 * namespace @user_ns.
160 bool sk_ns_capable(const struct sock
*sk
,
161 struct user_namespace
*user_ns
, int cap
)
163 return file_ns_capable(sk
->sk_socket
->file
, user_ns
, cap
) &&
164 ns_capable(user_ns
, cap
);
166 EXPORT_SYMBOL(sk_ns_capable
);
169 * sk_capable - Socket global capability test
170 * @sk: Socket to use a capability on or through
171 * @cap: The global capability to use
173 * Test to see if the opener of the socket had when the socket was
174 * created and the current process has the capability @cap in all user
177 bool sk_capable(const struct sock
*sk
, int cap
)
179 return sk_ns_capable(sk
, &init_user_ns
, cap
);
181 EXPORT_SYMBOL(sk_capable
);
184 * sk_net_capable - Network namespace socket capability test
185 * @sk: Socket to use a capability on or through
186 * @cap: The capability to use
188 * Test to see if the opener of the socket had when the socket was created
189 * and the current process has the capability @cap over the network namespace
190 * the socket is a member of.
192 bool sk_net_capable(const struct sock
*sk
, int cap
)
194 return sk_ns_capable(sk
, sock_net(sk
)->user_ns
, cap
);
196 EXPORT_SYMBOL(sk_net_capable
);
199 * Each address family might have different locking rules, so we have
200 * one slock key per address family and separate keys for internal and
203 static struct lock_class_key af_family_keys
[AF_MAX
];
204 static struct lock_class_key af_family_kern_keys
[AF_MAX
];
205 static struct lock_class_key af_family_slock_keys
[AF_MAX
];
206 static struct lock_class_key af_family_kern_slock_keys
[AF_MAX
];
209 * Make lock validator output more readable. (we pre-construct these
210 * strings build-time, so that runtime initialization of socket
214 #define _sock_locks(x) \
215 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \
216 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \
217 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \
218 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \
219 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \
220 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \
221 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \
222 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \
223 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \
224 x "27" , x "28" , x "AF_CAN" , \
225 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \
226 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \
227 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \
228 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \
229 x "AF_QIPCRTR", x "AF_SMC" , x "AF_MAX"
231 static const char *const af_family_key_strings
[AF_MAX
+1] = {
232 _sock_locks("sk_lock-")
234 static const char *const af_family_slock_key_strings
[AF_MAX
+1] = {
235 _sock_locks("slock-")
237 static const char *const af_family_clock_key_strings
[AF_MAX
+1] = {
238 _sock_locks("clock-")
241 static const char *const af_family_kern_key_strings
[AF_MAX
+1] = {
242 _sock_locks("k-sk_lock-")
244 static const char *const af_family_kern_slock_key_strings
[AF_MAX
+1] = {
245 _sock_locks("k-slock-")
247 static const char *const af_family_kern_clock_key_strings
[AF_MAX
+1] = {
248 _sock_locks("k-clock-")
250 static const char *const af_family_rlock_key_strings
[AF_MAX
+1] = {
251 "rlock-AF_UNSPEC", "rlock-AF_UNIX" , "rlock-AF_INET" ,
252 "rlock-AF_AX25" , "rlock-AF_IPX" , "rlock-AF_APPLETALK",
253 "rlock-AF_NETROM", "rlock-AF_BRIDGE" , "rlock-AF_ATMPVC" ,
254 "rlock-AF_X25" , "rlock-AF_INET6" , "rlock-AF_ROSE" ,
255 "rlock-AF_DECnet", "rlock-AF_NETBEUI" , "rlock-AF_SECURITY" ,
256 "rlock-AF_KEY" , "rlock-AF_NETLINK" , "rlock-AF_PACKET" ,
257 "rlock-AF_ASH" , "rlock-AF_ECONET" , "rlock-AF_ATMSVC" ,
258 "rlock-AF_RDS" , "rlock-AF_SNA" , "rlock-AF_IRDA" ,
259 "rlock-AF_PPPOX" , "rlock-AF_WANPIPE" , "rlock-AF_LLC" ,
260 "rlock-27" , "rlock-28" , "rlock-AF_CAN" ,
261 "rlock-AF_TIPC" , "rlock-AF_BLUETOOTH", "rlock-AF_IUCV" ,
262 "rlock-AF_RXRPC" , "rlock-AF_ISDN" , "rlock-AF_PHONET" ,
263 "rlock-AF_IEEE802154", "rlock-AF_CAIF" , "rlock-AF_ALG" ,
264 "rlock-AF_NFC" , "rlock-AF_VSOCK" , "rlock-AF_KCM" ,
265 "rlock-AF_QIPCRTR", "rlock-AF_SMC" , "rlock-AF_MAX"
267 static const char *const af_family_wlock_key_strings
[AF_MAX
+1] = {
268 "wlock-AF_UNSPEC", "wlock-AF_UNIX" , "wlock-AF_INET" ,
269 "wlock-AF_AX25" , "wlock-AF_IPX" , "wlock-AF_APPLETALK",
270 "wlock-AF_NETROM", "wlock-AF_BRIDGE" , "wlock-AF_ATMPVC" ,
271 "wlock-AF_X25" , "wlock-AF_INET6" , "wlock-AF_ROSE" ,
272 "wlock-AF_DECnet", "wlock-AF_NETBEUI" , "wlock-AF_SECURITY" ,
273 "wlock-AF_KEY" , "wlock-AF_NETLINK" , "wlock-AF_PACKET" ,
274 "wlock-AF_ASH" , "wlock-AF_ECONET" , "wlock-AF_ATMSVC" ,
275 "wlock-AF_RDS" , "wlock-AF_SNA" , "wlock-AF_IRDA" ,
276 "wlock-AF_PPPOX" , "wlock-AF_WANPIPE" , "wlock-AF_LLC" ,
277 "wlock-27" , "wlock-28" , "wlock-AF_CAN" ,
278 "wlock-AF_TIPC" , "wlock-AF_BLUETOOTH", "wlock-AF_IUCV" ,
279 "wlock-AF_RXRPC" , "wlock-AF_ISDN" , "wlock-AF_PHONET" ,
280 "wlock-AF_IEEE802154", "wlock-AF_CAIF" , "wlock-AF_ALG" ,
281 "wlock-AF_NFC" , "wlock-AF_VSOCK" , "wlock-AF_KCM" ,
282 "wlock-AF_QIPCRTR", "wlock-AF_SMC" , "wlock-AF_MAX"
284 static const char *const af_family_elock_key_strings
[AF_MAX
+1] = {
285 "elock-AF_UNSPEC", "elock-AF_UNIX" , "elock-AF_INET" ,
286 "elock-AF_AX25" , "elock-AF_IPX" , "elock-AF_APPLETALK",
287 "elock-AF_NETROM", "elock-AF_BRIDGE" , "elock-AF_ATMPVC" ,
288 "elock-AF_X25" , "elock-AF_INET6" , "elock-AF_ROSE" ,
289 "elock-AF_DECnet", "elock-AF_NETBEUI" , "elock-AF_SECURITY" ,
290 "elock-AF_KEY" , "elock-AF_NETLINK" , "elock-AF_PACKET" ,
291 "elock-AF_ASH" , "elock-AF_ECONET" , "elock-AF_ATMSVC" ,
292 "elock-AF_RDS" , "elock-AF_SNA" , "elock-AF_IRDA" ,
293 "elock-AF_PPPOX" , "elock-AF_WANPIPE" , "elock-AF_LLC" ,
294 "elock-27" , "elock-28" , "elock-AF_CAN" ,
295 "elock-AF_TIPC" , "elock-AF_BLUETOOTH", "elock-AF_IUCV" ,
296 "elock-AF_RXRPC" , "elock-AF_ISDN" , "elock-AF_PHONET" ,
297 "elock-AF_IEEE802154", "elock-AF_CAIF" , "elock-AF_ALG" ,
298 "elock-AF_NFC" , "elock-AF_VSOCK" , "elock-AF_KCM" ,
299 "elock-AF_QIPCRTR", "elock-AF_SMC" , "elock-AF_MAX"
303 * sk_callback_lock and sk queues locking rules are per-address-family,
304 * so split the lock classes by using a per-AF key:
306 static struct lock_class_key af_callback_keys
[AF_MAX
];
307 static struct lock_class_key af_rlock_keys
[AF_MAX
];
308 static struct lock_class_key af_wlock_keys
[AF_MAX
];
309 static struct lock_class_key af_elock_keys
[AF_MAX
];
310 static struct lock_class_key af_kern_callback_keys
[AF_MAX
];
312 /* Run time adjustable parameters. */
313 __u32 sysctl_wmem_max __read_mostly
= SK_WMEM_MAX
;
314 EXPORT_SYMBOL(sysctl_wmem_max
);
315 __u32 sysctl_rmem_max __read_mostly
= SK_RMEM_MAX
;
316 EXPORT_SYMBOL(sysctl_rmem_max
);
317 __u32 sysctl_wmem_default __read_mostly
= SK_WMEM_MAX
;
318 __u32 sysctl_rmem_default __read_mostly
= SK_RMEM_MAX
;
320 /* Maximal space eaten by iovec or ancillary data plus some space */
321 int sysctl_optmem_max __read_mostly
= sizeof(unsigned long)*(2*UIO_MAXIOV
+512);
322 EXPORT_SYMBOL(sysctl_optmem_max
);
324 int sysctl_tstamp_allow_data __read_mostly
= 1;
326 struct static_key memalloc_socks
= STATIC_KEY_INIT_FALSE
;
327 EXPORT_SYMBOL_GPL(memalloc_socks
);
330 * sk_set_memalloc - sets %SOCK_MEMALLOC
331 * @sk: socket to set it on
333 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
334 * It's the responsibility of the admin to adjust min_free_kbytes
335 * to meet the requirements
337 void sk_set_memalloc(struct sock
*sk
)
339 sock_set_flag(sk
, SOCK_MEMALLOC
);
340 sk
->sk_allocation
|= __GFP_MEMALLOC
;
341 static_key_slow_inc(&memalloc_socks
);
343 EXPORT_SYMBOL_GPL(sk_set_memalloc
);
345 void sk_clear_memalloc(struct sock
*sk
)
347 sock_reset_flag(sk
, SOCK_MEMALLOC
);
348 sk
->sk_allocation
&= ~__GFP_MEMALLOC
;
349 static_key_slow_dec(&memalloc_socks
);
352 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
353 * progress of swapping. SOCK_MEMALLOC may be cleared while
354 * it has rmem allocations due to the last swapfile being deactivated
355 * but there is a risk that the socket is unusable due to exceeding
356 * the rmem limits. Reclaim the reserves and obey rmem limits again.
360 EXPORT_SYMBOL_GPL(sk_clear_memalloc
);
362 int __sk_backlog_rcv(struct sock
*sk
, struct sk_buff
*skb
)
365 unsigned int noreclaim_flag
;
367 /* these should have been dropped before queueing */
368 BUG_ON(!sock_flag(sk
, SOCK_MEMALLOC
));
370 noreclaim_flag
= memalloc_noreclaim_save();
371 ret
= sk
->sk_backlog_rcv(sk
, skb
);
372 memalloc_noreclaim_restore(noreclaim_flag
);
376 EXPORT_SYMBOL(__sk_backlog_rcv
);
378 static int sock_set_timeout(long *timeo_p
, char __user
*optval
, int optlen
)
382 if (optlen
< sizeof(tv
))
384 if (copy_from_user(&tv
, optval
, sizeof(tv
)))
386 if (tv
.tv_usec
< 0 || tv
.tv_usec
>= USEC_PER_SEC
)
390 static int warned __read_mostly
;
393 if (warned
< 10 && net_ratelimit()) {
395 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
396 __func__
, current
->comm
, task_pid_nr(current
));
400 *timeo_p
= MAX_SCHEDULE_TIMEOUT
;
401 if (tv
.tv_sec
== 0 && tv
.tv_usec
== 0)
403 if (tv
.tv_sec
< (MAX_SCHEDULE_TIMEOUT
/HZ
- 1))
404 *timeo_p
= tv
.tv_sec
* HZ
+ DIV_ROUND_UP(tv
.tv_usec
, USEC_PER_SEC
/ HZ
);
408 static void sock_warn_obsolete_bsdism(const char *name
)
411 static char warncomm
[TASK_COMM_LEN
];
412 if (strcmp(warncomm
, current
->comm
) && warned
< 5) {
413 strcpy(warncomm
, current
->comm
);
414 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
420 static bool sock_needs_netstamp(const struct sock
*sk
)
422 switch (sk
->sk_family
) {
431 static void sock_disable_timestamp(struct sock
*sk
, unsigned long flags
)
433 if (sk
->sk_flags
& flags
) {
434 sk
->sk_flags
&= ~flags
;
435 if (sock_needs_netstamp(sk
) &&
436 !(sk
->sk_flags
& SK_FLAGS_TIMESTAMP
))
437 net_disable_timestamp();
442 int __sock_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
)
445 struct sk_buff_head
*list
= &sk
->sk_receive_queue
;
447 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
) {
448 atomic_inc(&sk
->sk_drops
);
449 trace_sock_rcvqueue_full(sk
, skb
);
453 if (!sk_rmem_schedule(sk
, skb
, skb
->truesize
)) {
454 atomic_inc(&sk
->sk_drops
);
459 skb_set_owner_r(skb
, sk
);
461 /* we escape from rcu protected region, make sure we dont leak
466 spin_lock_irqsave(&list
->lock
, flags
);
467 sock_skb_set_dropcount(sk
, skb
);
468 __skb_queue_tail(list
, skb
);
469 spin_unlock_irqrestore(&list
->lock
, flags
);
471 if (!sock_flag(sk
, SOCK_DEAD
))
472 sk
->sk_data_ready(sk
);
475 EXPORT_SYMBOL(__sock_queue_rcv_skb
);
477 int sock_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
)
481 err
= sk_filter(sk
, skb
);
485 return __sock_queue_rcv_skb(sk
, skb
);
487 EXPORT_SYMBOL(sock_queue_rcv_skb
);
489 int __sk_receive_skb(struct sock
*sk
, struct sk_buff
*skb
,
490 const int nested
, unsigned int trim_cap
, bool refcounted
)
492 int rc
= NET_RX_SUCCESS
;
494 if (sk_filter_trim_cap(sk
, skb
, trim_cap
))
495 goto discard_and_relse
;
499 if (sk_rcvqueues_full(sk
, sk
->sk_rcvbuf
)) {
500 atomic_inc(&sk
->sk_drops
);
501 goto discard_and_relse
;
504 bh_lock_sock_nested(sk
);
507 if (!sock_owned_by_user(sk
)) {
509 * trylock + unlock semantics:
511 mutex_acquire(&sk
->sk_lock
.dep_map
, 0, 1, _RET_IP_
);
513 rc
= sk_backlog_rcv(sk
, skb
);
515 mutex_release(&sk
->sk_lock
.dep_map
, 1, _RET_IP_
);
516 } else if (sk_add_backlog(sk
, skb
, sk
->sk_rcvbuf
)) {
518 atomic_inc(&sk
->sk_drops
);
519 goto discard_and_relse
;
531 EXPORT_SYMBOL(__sk_receive_skb
);
533 struct dst_entry
*__sk_dst_check(struct sock
*sk
, u32 cookie
)
535 struct dst_entry
*dst
= __sk_dst_get(sk
);
537 if (dst
&& dst
->obsolete
&& dst
->ops
->check(dst
, cookie
) == NULL
) {
538 sk_tx_queue_clear(sk
);
539 sk
->sk_dst_pending_confirm
= 0;
540 RCU_INIT_POINTER(sk
->sk_dst_cache
, NULL
);
547 EXPORT_SYMBOL(__sk_dst_check
);
549 struct dst_entry
*sk_dst_check(struct sock
*sk
, u32 cookie
)
551 struct dst_entry
*dst
= sk_dst_get(sk
);
553 if (dst
&& dst
->obsolete
&& dst
->ops
->check(dst
, cookie
) == NULL
) {
561 EXPORT_SYMBOL(sk_dst_check
);
563 static int sock_setbindtodevice(struct sock
*sk
, char __user
*optval
,
566 int ret
= -ENOPROTOOPT
;
567 #ifdef CONFIG_NETDEVICES
568 struct net
*net
= sock_net(sk
);
569 char devname
[IFNAMSIZ
];
574 if (!ns_capable(net
->user_ns
, CAP_NET_RAW
))
581 /* Bind this socket to a particular device like "eth0",
582 * as specified in the passed interface name. If the
583 * name is "" or the option length is zero the socket
586 if (optlen
> IFNAMSIZ
- 1)
587 optlen
= IFNAMSIZ
- 1;
588 memset(devname
, 0, sizeof(devname
));
591 if (copy_from_user(devname
, optval
, optlen
))
595 if (devname
[0] != '\0') {
596 struct net_device
*dev
;
599 dev
= dev_get_by_name_rcu(net
, devname
);
601 index
= dev
->ifindex
;
609 sk
->sk_bound_dev_if
= index
;
621 static int sock_getbindtodevice(struct sock
*sk
, char __user
*optval
,
622 int __user
*optlen
, int len
)
624 int ret
= -ENOPROTOOPT
;
625 #ifdef CONFIG_NETDEVICES
626 struct net
*net
= sock_net(sk
);
627 char devname
[IFNAMSIZ
];
629 if (sk
->sk_bound_dev_if
== 0) {
638 ret
= netdev_get_name(net
, devname
, sk
->sk_bound_dev_if
);
642 len
= strlen(devname
) + 1;
645 if (copy_to_user(optval
, devname
, len
))
650 if (put_user(len
, optlen
))
661 static inline void sock_valbool_flag(struct sock
*sk
, int bit
, int valbool
)
664 sock_set_flag(sk
, bit
);
666 sock_reset_flag(sk
, bit
);
669 bool sk_mc_loop(struct sock
*sk
)
671 if (dev_recursion_level())
675 switch (sk
->sk_family
) {
677 return inet_sk(sk
)->mc_loop
;
678 #if IS_ENABLED(CONFIG_IPV6)
680 return inet6_sk(sk
)->mc_loop
;
686 EXPORT_SYMBOL(sk_mc_loop
);
689 * This is meant for all protocols to use and covers goings on
690 * at the socket level. Everything here is generic.
693 int sock_setsockopt(struct socket
*sock
, int level
, int optname
,
694 char __user
*optval
, unsigned int optlen
)
696 struct sock
*sk
= sock
->sk
;
703 * Options without arguments
706 if (optname
== SO_BINDTODEVICE
)
707 return sock_setbindtodevice(sk
, optval
, optlen
);
709 if (optlen
< sizeof(int))
712 if (get_user(val
, (int __user
*)optval
))
715 valbool
= val
? 1 : 0;
721 if (val
&& !capable(CAP_NET_ADMIN
))
724 sock_valbool_flag(sk
, SOCK_DBG
, valbool
);
727 sk
->sk_reuse
= (valbool
? SK_CAN_REUSE
: SK_NO_REUSE
);
730 sk
->sk_reuseport
= valbool
;
739 sock_valbool_flag(sk
, SOCK_LOCALROUTE
, valbool
);
742 sock_valbool_flag(sk
, SOCK_BROADCAST
, valbool
);
745 /* Don't error on this BSD doesn't and if you think
746 * about it this is right. Otherwise apps have to
747 * play 'guess the biggest size' games. RCVBUF/SNDBUF
748 * are treated in BSD as hints
750 val
= min_t(u32
, val
, sysctl_wmem_max
);
752 sk
->sk_userlocks
|= SOCK_SNDBUF_LOCK
;
753 sk
->sk_sndbuf
= max_t(int, val
* 2, SOCK_MIN_SNDBUF
);
754 /* Wake up sending tasks if we upped the value. */
755 sk
->sk_write_space(sk
);
759 if (!capable(CAP_NET_ADMIN
)) {
766 /* Don't error on this BSD doesn't and if you think
767 * about it this is right. Otherwise apps have to
768 * play 'guess the biggest size' games. RCVBUF/SNDBUF
769 * are treated in BSD as hints
771 val
= min_t(u32
, val
, sysctl_rmem_max
);
773 sk
->sk_userlocks
|= SOCK_RCVBUF_LOCK
;
775 * We double it on the way in to account for
776 * "struct sk_buff" etc. overhead. Applications
777 * assume that the SO_RCVBUF setting they make will
778 * allow that much actual data to be received on that
781 * Applications are unaware that "struct sk_buff" and
782 * other overheads allocate from the receive buffer
783 * during socket buffer allocation.
785 * And after considering the possible alternatives,
786 * returning the value we actually used in getsockopt
787 * is the most desirable behavior.
789 sk
->sk_rcvbuf
= max_t(int, val
* 2, SOCK_MIN_RCVBUF
);
793 if (!capable(CAP_NET_ADMIN
)) {
800 if (sk
->sk_prot
->keepalive
)
801 sk
->sk_prot
->keepalive(sk
, valbool
);
802 sock_valbool_flag(sk
, SOCK_KEEPOPEN
, valbool
);
806 sock_valbool_flag(sk
, SOCK_URGINLINE
, valbool
);
810 sk
->sk_no_check_tx
= valbool
;
814 if ((val
>= 0 && val
<= 6) ||
815 ns_capable(sock_net(sk
)->user_ns
, CAP_NET_ADMIN
))
816 sk
->sk_priority
= val
;
822 if (optlen
< sizeof(ling
)) {
823 ret
= -EINVAL
; /* 1003.1g */
826 if (copy_from_user(&ling
, optval
, sizeof(ling
))) {
831 sock_reset_flag(sk
, SOCK_LINGER
);
833 #if (BITS_PER_LONG == 32)
834 if ((unsigned int)ling
.l_linger
>= MAX_SCHEDULE_TIMEOUT
/HZ
)
835 sk
->sk_lingertime
= MAX_SCHEDULE_TIMEOUT
;
838 sk
->sk_lingertime
= (unsigned int)ling
.l_linger
* HZ
;
839 sock_set_flag(sk
, SOCK_LINGER
);
844 sock_warn_obsolete_bsdism("setsockopt");
849 set_bit(SOCK_PASSCRED
, &sock
->flags
);
851 clear_bit(SOCK_PASSCRED
, &sock
->flags
);
857 if (optname
== SO_TIMESTAMP
)
858 sock_reset_flag(sk
, SOCK_RCVTSTAMPNS
);
860 sock_set_flag(sk
, SOCK_RCVTSTAMPNS
);
861 sock_set_flag(sk
, SOCK_RCVTSTAMP
);
862 sock_enable_timestamp(sk
, SOCK_TIMESTAMP
);
864 sock_reset_flag(sk
, SOCK_RCVTSTAMP
);
865 sock_reset_flag(sk
, SOCK_RCVTSTAMPNS
);
869 case SO_TIMESTAMPING
:
870 if (val
& ~SOF_TIMESTAMPING_MASK
) {
875 if (val
& SOF_TIMESTAMPING_OPT_ID
&&
876 !(sk
->sk_tsflags
& SOF_TIMESTAMPING_OPT_ID
)) {
877 if (sk
->sk_protocol
== IPPROTO_TCP
&&
878 sk
->sk_type
== SOCK_STREAM
) {
879 if ((1 << sk
->sk_state
) &
880 (TCPF_CLOSE
| TCPF_LISTEN
)) {
884 sk
->sk_tskey
= tcp_sk(sk
)->snd_una
;
890 if (val
& SOF_TIMESTAMPING_OPT_STATS
&&
891 !(val
& SOF_TIMESTAMPING_OPT_TSONLY
)) {
896 sk
->sk_tsflags
= val
;
897 if (val
& SOF_TIMESTAMPING_RX_SOFTWARE
)
898 sock_enable_timestamp(sk
,
899 SOCK_TIMESTAMPING_RX_SOFTWARE
);
901 sock_disable_timestamp(sk
,
902 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE
));
908 sk
->sk_rcvlowat
= val
? : 1;
912 ret
= sock_set_timeout(&sk
->sk_rcvtimeo
, optval
, optlen
);
916 ret
= sock_set_timeout(&sk
->sk_sndtimeo
, optval
, optlen
);
919 case SO_ATTACH_FILTER
:
921 if (optlen
== sizeof(struct sock_fprog
)) {
922 struct sock_fprog fprog
;
925 if (copy_from_user(&fprog
, optval
, sizeof(fprog
)))
928 ret
= sk_attach_filter(&fprog
, sk
);
934 if (optlen
== sizeof(u32
)) {
938 if (copy_from_user(&ufd
, optval
, sizeof(ufd
)))
941 ret
= sk_attach_bpf(ufd
, sk
);
945 case SO_ATTACH_REUSEPORT_CBPF
:
947 if (optlen
== sizeof(struct sock_fprog
)) {
948 struct sock_fprog fprog
;
951 if (copy_from_user(&fprog
, optval
, sizeof(fprog
)))
954 ret
= sk_reuseport_attach_filter(&fprog
, sk
);
958 case SO_ATTACH_REUSEPORT_EBPF
:
960 if (optlen
== sizeof(u32
)) {
964 if (copy_from_user(&ufd
, optval
, sizeof(ufd
)))
967 ret
= sk_reuseport_attach_bpf(ufd
, sk
);
971 case SO_DETACH_FILTER
:
972 ret
= sk_detach_filter(sk
);
976 if (sock_flag(sk
, SOCK_FILTER_LOCKED
) && !valbool
)
979 sock_valbool_flag(sk
, SOCK_FILTER_LOCKED
, valbool
);
984 set_bit(SOCK_PASSSEC
, &sock
->flags
);
986 clear_bit(SOCK_PASSSEC
, &sock
->flags
);
989 if (!ns_capable(sock_net(sk
)->user_ns
, CAP_NET_ADMIN
))
996 sock_valbool_flag(sk
, SOCK_RXQ_OVFL
, valbool
);
1000 sock_valbool_flag(sk
, SOCK_WIFI_STATUS
, valbool
);
1004 if (sock
->ops
->set_peek_off
)
1005 ret
= sock
->ops
->set_peek_off(sk
, val
);
1011 sock_valbool_flag(sk
, SOCK_NOFCS
, valbool
);
1014 case SO_SELECT_ERR_QUEUE
:
1015 sock_valbool_flag(sk
, SOCK_SELECT_ERR_QUEUE
, valbool
);
1018 #ifdef CONFIG_NET_RX_BUSY_POLL
1020 /* allow unprivileged users to decrease the value */
1021 if ((val
> sk
->sk_ll_usec
) && !capable(CAP_NET_ADMIN
))
1027 sk
->sk_ll_usec
= val
;
1032 case SO_MAX_PACING_RATE
:
1034 cmpxchg(&sk
->sk_pacing_status
,
1037 sk
->sk_max_pacing_rate
= val
;
1038 sk
->sk_pacing_rate
= min(sk
->sk_pacing_rate
,
1039 sk
->sk_max_pacing_rate
);
1042 case SO_INCOMING_CPU
:
1043 sk
->sk_incoming_cpu
= val
;
1048 dst_negative_advice(sk
);
1052 if (sk
->sk_family
!= PF_INET
&& sk
->sk_family
!= PF_INET6
)
1054 else if (sk
->sk_protocol
!= IPPROTO_TCP
)
1056 else if (sk
->sk_state
!= TCP_CLOSE
)
1058 else if (val
< 0 || val
> 1)
1061 sock_valbool_flag(sk
, SOCK_ZEROCOPY
, valbool
);
1071 EXPORT_SYMBOL(sock_setsockopt
);
1074 static void cred_to_ucred(struct pid
*pid
, const struct cred
*cred
,
1075 struct ucred
*ucred
)
1077 ucred
->pid
= pid_vnr(pid
);
1078 ucred
->uid
= ucred
->gid
= -1;
1080 struct user_namespace
*current_ns
= current_user_ns();
1082 ucred
->uid
= from_kuid_munged(current_ns
, cred
->euid
);
1083 ucred
->gid
= from_kgid_munged(current_ns
, cred
->egid
);
1087 static int groups_to_user(gid_t __user
*dst
, const struct group_info
*src
)
1089 struct user_namespace
*user_ns
= current_user_ns();
1092 for (i
= 0; i
< src
->ngroups
; i
++)
1093 if (put_user(from_kgid_munged(user_ns
, src
->gid
[i
]), dst
+ i
))
1099 int sock_getsockopt(struct socket
*sock
, int level
, int optname
,
1100 char __user
*optval
, int __user
*optlen
)
1102 struct sock
*sk
= sock
->sk
;
1111 int lv
= sizeof(int);
1114 if (get_user(len
, optlen
))
1119 memset(&v
, 0, sizeof(v
));
1123 v
.val
= sock_flag(sk
, SOCK_DBG
);
1127 v
.val
= sock_flag(sk
, SOCK_LOCALROUTE
);
1131 v
.val
= sock_flag(sk
, SOCK_BROADCAST
);
1135 v
.val
= sk
->sk_sndbuf
;
1139 v
.val
= sk
->sk_rcvbuf
;
1143 v
.val
= sk
->sk_reuse
;
1147 v
.val
= sk
->sk_reuseport
;
1151 v
.val
= sock_flag(sk
, SOCK_KEEPOPEN
);
1155 v
.val
= sk
->sk_type
;
1159 v
.val
= sk
->sk_protocol
;
1163 v
.val
= sk
->sk_family
;
1167 v
.val
= -sock_error(sk
);
1169 v
.val
= xchg(&sk
->sk_err_soft
, 0);
1173 v
.val
= sock_flag(sk
, SOCK_URGINLINE
);
1177 v
.val
= sk
->sk_no_check_tx
;
1181 v
.val
= sk
->sk_priority
;
1185 lv
= sizeof(v
.ling
);
1186 v
.ling
.l_onoff
= sock_flag(sk
, SOCK_LINGER
);
1187 v
.ling
.l_linger
= sk
->sk_lingertime
/ HZ
;
1191 sock_warn_obsolete_bsdism("getsockopt");
1195 v
.val
= sock_flag(sk
, SOCK_RCVTSTAMP
) &&
1196 !sock_flag(sk
, SOCK_RCVTSTAMPNS
);
1199 case SO_TIMESTAMPNS
:
1200 v
.val
= sock_flag(sk
, SOCK_RCVTSTAMPNS
);
1203 case SO_TIMESTAMPING
:
1204 v
.val
= sk
->sk_tsflags
;
1208 lv
= sizeof(struct timeval
);
1209 if (sk
->sk_rcvtimeo
== MAX_SCHEDULE_TIMEOUT
) {
1213 v
.tm
.tv_sec
= sk
->sk_rcvtimeo
/ HZ
;
1214 v
.tm
.tv_usec
= ((sk
->sk_rcvtimeo
% HZ
) * USEC_PER_SEC
) / HZ
;
1219 lv
= sizeof(struct timeval
);
1220 if (sk
->sk_sndtimeo
== MAX_SCHEDULE_TIMEOUT
) {
1224 v
.tm
.tv_sec
= sk
->sk_sndtimeo
/ HZ
;
1225 v
.tm
.tv_usec
= ((sk
->sk_sndtimeo
% HZ
) * USEC_PER_SEC
) / HZ
;
1230 v
.val
= sk
->sk_rcvlowat
;
1238 v
.val
= !!test_bit(SOCK_PASSCRED
, &sock
->flags
);
1243 struct ucred peercred
;
1244 if (len
> sizeof(peercred
))
1245 len
= sizeof(peercred
);
1246 cred_to_ucred(sk
->sk_peer_pid
, sk
->sk_peer_cred
, &peercred
);
1247 if (copy_to_user(optval
, &peercred
, len
))
1256 if (!sk
->sk_peer_cred
)
1259 n
= sk
->sk_peer_cred
->group_info
->ngroups
;
1260 if (len
< n
* sizeof(gid_t
)) {
1261 len
= n
* sizeof(gid_t
);
1262 return put_user(len
, optlen
) ? -EFAULT
: -ERANGE
;
1264 len
= n
* sizeof(gid_t
);
1266 ret
= groups_to_user((gid_t __user
*)optval
,
1267 sk
->sk_peer_cred
->group_info
);
1277 if (sock
->ops
->getname(sock
, (struct sockaddr
*)address
, &lv
, 2))
1281 if (copy_to_user(optval
, address
, len
))
1286 /* Dubious BSD thing... Probably nobody even uses it, but
1287 * the UNIX standard wants it for whatever reason... -DaveM
1290 v
.val
= sk
->sk_state
== TCP_LISTEN
;
1294 v
.val
= !!test_bit(SOCK_PASSSEC
, &sock
->flags
);
1298 return security_socket_getpeersec_stream(sock
, optval
, optlen
, len
);
1301 v
.val
= sk
->sk_mark
;
1305 v
.val
= sock_flag(sk
, SOCK_RXQ_OVFL
);
1308 case SO_WIFI_STATUS
:
1309 v
.val
= sock_flag(sk
, SOCK_WIFI_STATUS
);
1313 if (!sock
->ops
->set_peek_off
)
1316 v
.val
= sk
->sk_peek_off
;
1319 v
.val
= sock_flag(sk
, SOCK_NOFCS
);
1322 case SO_BINDTODEVICE
:
1323 return sock_getbindtodevice(sk
, optval
, optlen
, len
);
1326 len
= sk_get_filter(sk
, (struct sock_filter __user
*)optval
, len
);
1332 case SO_LOCK_FILTER
:
1333 v
.val
= sock_flag(sk
, SOCK_FILTER_LOCKED
);
1336 case SO_BPF_EXTENSIONS
:
1337 v
.val
= bpf_tell_extensions();
1340 case SO_SELECT_ERR_QUEUE
:
1341 v
.val
= sock_flag(sk
, SOCK_SELECT_ERR_QUEUE
);
1344 #ifdef CONFIG_NET_RX_BUSY_POLL
1346 v
.val
= sk
->sk_ll_usec
;
1350 case SO_MAX_PACING_RATE
:
1351 v
.val
= sk
->sk_max_pacing_rate
;
1354 case SO_INCOMING_CPU
:
1355 v
.val
= sk
->sk_incoming_cpu
;
1360 u32 meminfo
[SK_MEMINFO_VARS
];
1362 if (get_user(len
, optlen
))
1365 sk_get_meminfo(sk
, meminfo
);
1367 len
= min_t(unsigned int, len
, sizeof(meminfo
));
1368 if (copy_to_user(optval
, &meminfo
, len
))
1374 #ifdef CONFIG_NET_RX_BUSY_POLL
1375 case SO_INCOMING_NAPI_ID
:
1376 v
.val
= READ_ONCE(sk
->sk_napi_id
);
1378 /* aggregate non-NAPI IDs down to 0 */
1379 if (v
.val
< MIN_NAPI_ID
)
1389 v
.val64
= sock_gen_cookie(sk
);
1393 v
.val
= sock_flag(sk
, SOCK_ZEROCOPY
);
1397 /* We implement the SO_SNDLOWAT etc to not be settable
1400 return -ENOPROTOOPT
;
1405 if (copy_to_user(optval
, &v
, len
))
1408 if (put_user(len
, optlen
))
1414 * Initialize an sk_lock.
1416 * (We also register the sk_lock with the lock validator.)
1418 static inline void sock_lock_init(struct sock
*sk
)
1420 if (sk
->sk_kern_sock
)
1421 sock_lock_init_class_and_name(
1423 af_family_kern_slock_key_strings
[sk
->sk_family
],
1424 af_family_kern_slock_keys
+ sk
->sk_family
,
1425 af_family_kern_key_strings
[sk
->sk_family
],
1426 af_family_kern_keys
+ sk
->sk_family
);
1428 sock_lock_init_class_and_name(
1430 af_family_slock_key_strings
[sk
->sk_family
],
1431 af_family_slock_keys
+ sk
->sk_family
,
1432 af_family_key_strings
[sk
->sk_family
],
1433 af_family_keys
+ sk
->sk_family
);
1437 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1438 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1439 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1441 static void sock_copy(struct sock
*nsk
, const struct sock
*osk
)
1443 #ifdef CONFIG_SECURITY_NETWORK
1444 void *sptr
= nsk
->sk_security
;
1446 memcpy(nsk
, osk
, offsetof(struct sock
, sk_dontcopy_begin
));
1448 memcpy(&nsk
->sk_dontcopy_end
, &osk
->sk_dontcopy_end
,
1449 osk
->sk_prot
->obj_size
- offsetof(struct sock
, sk_dontcopy_end
));
1451 #ifdef CONFIG_SECURITY_NETWORK
1452 nsk
->sk_security
= sptr
;
1453 security_sk_clone(osk
, nsk
);
1457 static struct sock
*sk_prot_alloc(struct proto
*prot
, gfp_t priority
,
1461 struct kmem_cache
*slab
;
1465 sk
= kmem_cache_alloc(slab
, priority
& ~__GFP_ZERO
);
1468 if (priority
& __GFP_ZERO
)
1469 sk_prot_clear_nulls(sk
, prot
->obj_size
);
1471 sk
= kmalloc(prot
->obj_size
, priority
);
1474 if (security_sk_alloc(sk
, family
, priority
))
1477 if (!try_module_get(prot
->owner
))
1479 sk_tx_queue_clear(sk
);
1485 security_sk_free(sk
);
1488 kmem_cache_free(slab
, sk
);
1494 static void sk_prot_free(struct proto
*prot
, struct sock
*sk
)
1496 struct kmem_cache
*slab
;
1497 struct module
*owner
;
1499 owner
= prot
->owner
;
1502 cgroup_sk_free(&sk
->sk_cgrp_data
);
1503 mem_cgroup_sk_free(sk
);
1504 security_sk_free(sk
);
1506 kmem_cache_free(slab
, sk
);
1513 * sk_alloc - All socket objects are allocated here
1514 * @net: the applicable net namespace
1515 * @family: protocol family
1516 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1517 * @prot: struct proto associated with this new sock instance
1518 * @kern: is this to be a kernel socket?
1520 struct sock
*sk_alloc(struct net
*net
, int family
, gfp_t priority
,
1521 struct proto
*prot
, int kern
)
1525 sk
= sk_prot_alloc(prot
, priority
| __GFP_ZERO
, family
);
1527 sk
->sk_family
= family
;
1529 * See comment in struct sock definition to understand
1530 * why we need sk_prot_creator -acme
1532 sk
->sk_prot
= sk
->sk_prot_creator
= prot
;
1533 sk
->sk_kern_sock
= kern
;
1535 sk
->sk_net_refcnt
= kern
? 0 : 1;
1536 if (likely(sk
->sk_net_refcnt
)) {
1538 sock_inuse_add(net
, 1);
1541 sock_net_set(sk
, net
);
1542 refcount_set(&sk
->sk_wmem_alloc
, 1);
1544 mem_cgroup_sk_alloc(sk
);
1545 cgroup_sk_alloc(&sk
->sk_cgrp_data
);
1546 sock_update_classid(&sk
->sk_cgrp_data
);
1547 sock_update_netprioidx(&sk
->sk_cgrp_data
);
1552 EXPORT_SYMBOL(sk_alloc
);
1554 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
1555 * grace period. This is the case for UDP sockets and TCP listeners.
1557 static void __sk_destruct(struct rcu_head
*head
)
1559 struct sock
*sk
= container_of(head
, struct sock
, sk_rcu
);
1560 struct sk_filter
*filter
;
1562 if (sk
->sk_destruct
)
1563 sk
->sk_destruct(sk
);
1565 filter
= rcu_dereference_check(sk
->sk_filter
,
1566 refcount_read(&sk
->sk_wmem_alloc
) == 0);
1568 sk_filter_uncharge(sk
, filter
);
1569 RCU_INIT_POINTER(sk
->sk_filter
, NULL
);
1571 if (rcu_access_pointer(sk
->sk_reuseport_cb
))
1572 reuseport_detach_sock(sk
);
1574 sock_disable_timestamp(sk
, SK_FLAGS_TIMESTAMP
);
1576 if (atomic_read(&sk
->sk_omem_alloc
))
1577 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1578 __func__
, atomic_read(&sk
->sk_omem_alloc
));
1580 if (sk
->sk_frag
.page
) {
1581 put_page(sk
->sk_frag
.page
);
1582 sk
->sk_frag
.page
= NULL
;
1585 if (sk
->sk_peer_cred
)
1586 put_cred(sk
->sk_peer_cred
);
1587 put_pid(sk
->sk_peer_pid
);
1588 if (likely(sk
->sk_net_refcnt
))
1589 put_net(sock_net(sk
));
1590 sk_prot_free(sk
->sk_prot_creator
, sk
);
1593 void sk_destruct(struct sock
*sk
)
1595 if (sock_flag(sk
, SOCK_RCU_FREE
))
1596 call_rcu(&sk
->sk_rcu
, __sk_destruct
);
1598 __sk_destruct(&sk
->sk_rcu
);
1601 static void __sk_free(struct sock
*sk
)
1603 if (likely(sk
->sk_net_refcnt
))
1604 sock_inuse_add(sock_net(sk
), -1);
1606 if (unlikely(sock_diag_has_destroy_listeners(sk
) && sk
->sk_net_refcnt
))
1607 sock_diag_broadcast_destroy(sk
);
1612 void sk_free(struct sock
*sk
)
1615 * We subtract one from sk_wmem_alloc and can know if
1616 * some packets are still in some tx queue.
1617 * If not null, sock_wfree() will call __sk_free(sk) later
1619 if (refcount_dec_and_test(&sk
->sk_wmem_alloc
))
1622 EXPORT_SYMBOL(sk_free
);
1624 static void sk_init_common(struct sock
*sk
)
1626 skb_queue_head_init(&sk
->sk_receive_queue
);
1627 skb_queue_head_init(&sk
->sk_write_queue
);
1628 skb_queue_head_init(&sk
->sk_error_queue
);
1630 rwlock_init(&sk
->sk_callback_lock
);
1631 lockdep_set_class_and_name(&sk
->sk_receive_queue
.lock
,
1632 af_rlock_keys
+ sk
->sk_family
,
1633 af_family_rlock_key_strings
[sk
->sk_family
]);
1634 lockdep_set_class_and_name(&sk
->sk_write_queue
.lock
,
1635 af_wlock_keys
+ sk
->sk_family
,
1636 af_family_wlock_key_strings
[sk
->sk_family
]);
1637 lockdep_set_class_and_name(&sk
->sk_error_queue
.lock
,
1638 af_elock_keys
+ sk
->sk_family
,
1639 af_family_elock_key_strings
[sk
->sk_family
]);
1640 lockdep_set_class_and_name(&sk
->sk_callback_lock
,
1641 af_callback_keys
+ sk
->sk_family
,
1642 af_family_clock_key_strings
[sk
->sk_family
]);
1646 * sk_clone_lock - clone a socket, and lock its clone
1647 * @sk: the socket to clone
1648 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1650 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1652 struct sock
*sk_clone_lock(const struct sock
*sk
, const gfp_t priority
)
1655 bool is_charged
= true;
1657 newsk
= sk_prot_alloc(sk
->sk_prot
, priority
, sk
->sk_family
);
1658 if (newsk
!= NULL
) {
1659 struct sk_filter
*filter
;
1661 sock_copy(newsk
, sk
);
1663 newsk
->sk_prot_creator
= sk
->sk_prot
;
1666 if (likely(newsk
->sk_net_refcnt
))
1667 get_net(sock_net(newsk
));
1668 sk_node_init(&newsk
->sk_node
);
1669 sock_lock_init(newsk
);
1670 bh_lock_sock(newsk
);
1671 newsk
->sk_backlog
.head
= newsk
->sk_backlog
.tail
= NULL
;
1672 newsk
->sk_backlog
.len
= 0;
1674 atomic_set(&newsk
->sk_rmem_alloc
, 0);
1676 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1678 refcount_set(&newsk
->sk_wmem_alloc
, 1);
1679 atomic_set(&newsk
->sk_omem_alloc
, 0);
1680 sk_init_common(newsk
);
1682 newsk
->sk_dst_cache
= NULL
;
1683 newsk
->sk_dst_pending_confirm
= 0;
1684 newsk
->sk_wmem_queued
= 0;
1685 newsk
->sk_forward_alloc
= 0;
1686 atomic_set(&newsk
->sk_drops
, 0);
1687 newsk
->sk_send_head
= NULL
;
1688 newsk
->sk_userlocks
= sk
->sk_userlocks
& ~SOCK_BINDPORT_LOCK
;
1689 atomic_set(&newsk
->sk_zckey
, 0);
1691 sock_reset_flag(newsk
, SOCK_DONE
);
1692 mem_cgroup_sk_alloc(newsk
);
1693 cgroup_sk_alloc(&newsk
->sk_cgrp_data
);
1696 filter
= rcu_dereference(sk
->sk_filter
);
1698 /* though it's an empty new sock, the charging may fail
1699 * if sysctl_optmem_max was changed between creation of
1700 * original socket and cloning
1702 is_charged
= sk_filter_charge(newsk
, filter
);
1703 RCU_INIT_POINTER(newsk
->sk_filter
, filter
);
1706 if (unlikely(!is_charged
|| xfrm_sk_clone_policy(newsk
, sk
))) {
1707 /* We need to make sure that we don't uncharge the new
1708 * socket if we couldn't charge it in the first place
1709 * as otherwise we uncharge the parent's filter.
1712 RCU_INIT_POINTER(newsk
->sk_filter
, NULL
);
1713 sk_free_unlock_clone(newsk
);
1717 RCU_INIT_POINTER(newsk
->sk_reuseport_cb
, NULL
);
1720 newsk
->sk_err_soft
= 0;
1721 newsk
->sk_priority
= 0;
1722 newsk
->sk_incoming_cpu
= raw_smp_processor_id();
1723 atomic64_set(&newsk
->sk_cookie
, 0);
1724 if (likely(newsk
->sk_net_refcnt
))
1725 sock_inuse_add(sock_net(newsk
), 1);
1728 * Before updating sk_refcnt, we must commit prior changes to memory
1729 * (Documentation/RCU/rculist_nulls.txt for details)
1732 refcount_set(&newsk
->sk_refcnt
, 2);
1735 * Increment the counter in the same struct proto as the master
1736 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1737 * is the same as sk->sk_prot->socks, as this field was copied
1740 * This _changes_ the previous behaviour, where
1741 * tcp_create_openreq_child always was incrementing the
1742 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1743 * to be taken into account in all callers. -acme
1745 sk_refcnt_debug_inc(newsk
);
1746 sk_set_socket(newsk
, NULL
);
1747 newsk
->sk_wq
= NULL
;
1749 if (newsk
->sk_prot
->sockets_allocated
)
1750 sk_sockets_allocated_inc(newsk
);
1752 if (sock_needs_netstamp(sk
) &&
1753 newsk
->sk_flags
& SK_FLAGS_TIMESTAMP
)
1754 net_enable_timestamp();
1759 EXPORT_SYMBOL_GPL(sk_clone_lock
);
1761 void sk_free_unlock_clone(struct sock
*sk
)
1763 /* It is still raw copy of parent, so invalidate
1764 * destructor and make plain sk_free() */
1765 sk
->sk_destruct
= NULL
;
1769 EXPORT_SYMBOL_GPL(sk_free_unlock_clone
);
1771 void sk_setup_caps(struct sock
*sk
, struct dst_entry
*dst
)
1775 sk_dst_set(sk
, dst
);
1776 sk
->sk_route_caps
= dst
->dev
->features
;
1777 if (sk
->sk_route_caps
& NETIF_F_GSO
)
1778 sk
->sk_route_caps
|= NETIF_F_GSO_SOFTWARE
;
1779 sk
->sk_route_caps
&= ~sk
->sk_route_nocaps
;
1780 if (sk_can_gso(sk
)) {
1781 if (dst
->header_len
&& !xfrm_dst_offload_ok(dst
)) {
1782 sk
->sk_route_caps
&= ~NETIF_F_GSO_MASK
;
1784 sk
->sk_route_caps
|= NETIF_F_SG
| NETIF_F_HW_CSUM
;
1785 sk
->sk_gso_max_size
= dst
->dev
->gso_max_size
;
1786 max_segs
= max_t(u32
, dst
->dev
->gso_max_segs
, 1);
1789 sk
->sk_gso_max_segs
= max_segs
;
1791 EXPORT_SYMBOL_GPL(sk_setup_caps
);
1794 * Simple resource managers for sockets.
1799 * Write buffer destructor automatically called from kfree_skb.
1801 void sock_wfree(struct sk_buff
*skb
)
1803 struct sock
*sk
= skb
->sk
;
1804 unsigned int len
= skb
->truesize
;
1806 if (!sock_flag(sk
, SOCK_USE_WRITE_QUEUE
)) {
1808 * Keep a reference on sk_wmem_alloc, this will be released
1809 * after sk_write_space() call
1811 WARN_ON(refcount_sub_and_test(len
- 1, &sk
->sk_wmem_alloc
));
1812 sk
->sk_write_space(sk
);
1816 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1817 * could not do because of in-flight packets
1819 if (refcount_sub_and_test(len
, &sk
->sk_wmem_alloc
))
1822 EXPORT_SYMBOL(sock_wfree
);
1824 /* This variant of sock_wfree() is used by TCP,
1825 * since it sets SOCK_USE_WRITE_QUEUE.
1827 void __sock_wfree(struct sk_buff
*skb
)
1829 struct sock
*sk
= skb
->sk
;
1831 if (refcount_sub_and_test(skb
->truesize
, &sk
->sk_wmem_alloc
))
1835 void skb_set_owner_w(struct sk_buff
*skb
, struct sock
*sk
)
1840 if (unlikely(!sk_fullsock(sk
))) {
1841 skb
->destructor
= sock_edemux
;
1846 skb
->destructor
= sock_wfree
;
1847 skb_set_hash_from_sk(skb
, sk
);
1849 * We used to take a refcount on sk, but following operation
1850 * is enough to guarantee sk_free() wont free this sock until
1851 * all in-flight packets are completed
1853 refcount_add(skb
->truesize
, &sk
->sk_wmem_alloc
);
1855 EXPORT_SYMBOL(skb_set_owner_w
);
1857 /* This helper is used by netem, as it can hold packets in its
1858 * delay queue. We want to allow the owner socket to send more
1859 * packets, as if they were already TX completed by a typical driver.
1860 * But we also want to keep skb->sk set because some packet schedulers
1861 * rely on it (sch_fq for example).
1863 void skb_orphan_partial(struct sk_buff
*skb
)
1865 if (skb_is_tcp_pure_ack(skb
))
1868 if (skb
->destructor
== sock_wfree
1870 || skb
->destructor
== tcp_wfree
1873 struct sock
*sk
= skb
->sk
;
1875 if (refcount_inc_not_zero(&sk
->sk_refcnt
)) {
1876 WARN_ON(refcount_sub_and_test(skb
->truesize
, &sk
->sk_wmem_alloc
));
1877 skb
->destructor
= sock_efree
;
1883 EXPORT_SYMBOL(skb_orphan_partial
);
1886 * Read buffer destructor automatically called from kfree_skb.
1888 void sock_rfree(struct sk_buff
*skb
)
1890 struct sock
*sk
= skb
->sk
;
1891 unsigned int len
= skb
->truesize
;
1893 atomic_sub(len
, &sk
->sk_rmem_alloc
);
1894 sk_mem_uncharge(sk
, len
);
1896 EXPORT_SYMBOL(sock_rfree
);
1899 * Buffer destructor for skbs that are not used directly in read or write
1900 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1902 void sock_efree(struct sk_buff
*skb
)
1906 EXPORT_SYMBOL(sock_efree
);
1908 kuid_t
sock_i_uid(struct sock
*sk
)
1912 read_lock_bh(&sk
->sk_callback_lock
);
1913 uid
= sk
->sk_socket
? SOCK_INODE(sk
->sk_socket
)->i_uid
: GLOBAL_ROOT_UID
;
1914 read_unlock_bh(&sk
->sk_callback_lock
);
1917 EXPORT_SYMBOL(sock_i_uid
);
1919 unsigned long sock_i_ino(struct sock
*sk
)
1923 read_lock_bh(&sk
->sk_callback_lock
);
1924 ino
= sk
->sk_socket
? SOCK_INODE(sk
->sk_socket
)->i_ino
: 0;
1925 read_unlock_bh(&sk
->sk_callback_lock
);
1928 EXPORT_SYMBOL(sock_i_ino
);
1931 * Allocate a skb from the socket's send buffer.
1933 struct sk_buff
*sock_wmalloc(struct sock
*sk
, unsigned long size
, int force
,
1936 if (force
|| refcount_read(&sk
->sk_wmem_alloc
) < sk
->sk_sndbuf
) {
1937 struct sk_buff
*skb
= alloc_skb(size
, priority
);
1939 skb_set_owner_w(skb
, sk
);
1945 EXPORT_SYMBOL(sock_wmalloc
);
1947 static void sock_ofree(struct sk_buff
*skb
)
1949 struct sock
*sk
= skb
->sk
;
1951 atomic_sub(skb
->truesize
, &sk
->sk_omem_alloc
);
1954 struct sk_buff
*sock_omalloc(struct sock
*sk
, unsigned long size
,
1957 struct sk_buff
*skb
;
1959 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
1960 if (atomic_read(&sk
->sk_omem_alloc
) + SKB_TRUESIZE(size
) >
1964 skb
= alloc_skb(size
, priority
);
1968 atomic_add(skb
->truesize
, &sk
->sk_omem_alloc
);
1970 skb
->destructor
= sock_ofree
;
1975 * Allocate a memory block from the socket's option memory buffer.
1977 void *sock_kmalloc(struct sock
*sk
, int size
, gfp_t priority
)
1979 if ((unsigned int)size
<= sysctl_optmem_max
&&
1980 atomic_read(&sk
->sk_omem_alloc
) + size
< sysctl_optmem_max
) {
1982 /* First do the add, to avoid the race if kmalloc
1985 atomic_add(size
, &sk
->sk_omem_alloc
);
1986 mem
= kmalloc(size
, priority
);
1989 atomic_sub(size
, &sk
->sk_omem_alloc
);
1993 EXPORT_SYMBOL(sock_kmalloc
);
1995 /* Free an option memory block. Note, we actually want the inline
1996 * here as this allows gcc to detect the nullify and fold away the
1997 * condition entirely.
1999 static inline void __sock_kfree_s(struct sock
*sk
, void *mem
, int size
,
2002 if (WARN_ON_ONCE(!mem
))
2008 atomic_sub(size
, &sk
->sk_omem_alloc
);
2011 void sock_kfree_s(struct sock
*sk
, void *mem
, int size
)
2013 __sock_kfree_s(sk
, mem
, size
, false);
2015 EXPORT_SYMBOL(sock_kfree_s
);
2017 void sock_kzfree_s(struct sock
*sk
, void *mem
, int size
)
2019 __sock_kfree_s(sk
, mem
, size
, true);
2021 EXPORT_SYMBOL(sock_kzfree_s
);
2023 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2024 I think, these locks should be removed for datagram sockets.
2026 static long sock_wait_for_wmem(struct sock
*sk
, long timeo
)
2030 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE
, sk
);
2034 if (signal_pending(current
))
2036 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
2037 prepare_to_wait(sk_sleep(sk
), &wait
, TASK_INTERRUPTIBLE
);
2038 if (refcount_read(&sk
->sk_wmem_alloc
) < sk
->sk_sndbuf
)
2040 if (sk
->sk_shutdown
& SEND_SHUTDOWN
)
2044 timeo
= schedule_timeout(timeo
);
2046 finish_wait(sk_sleep(sk
), &wait
);
2052 * Generic send/receive buffer handlers
2055 struct sk_buff
*sock_alloc_send_pskb(struct sock
*sk
, unsigned long header_len
,
2056 unsigned long data_len
, int noblock
,
2057 int *errcode
, int max_page_order
)
2059 struct sk_buff
*skb
;
2063 timeo
= sock_sndtimeo(sk
, noblock
);
2065 err
= sock_error(sk
);
2070 if (sk
->sk_shutdown
& SEND_SHUTDOWN
)
2073 if (sk_wmem_alloc_get(sk
) < sk
->sk_sndbuf
)
2076 sk_set_bit(SOCKWQ_ASYNC_NOSPACE
, sk
);
2077 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
2081 if (signal_pending(current
))
2083 timeo
= sock_wait_for_wmem(sk
, timeo
);
2085 skb
= alloc_skb_with_frags(header_len
, data_len
, max_page_order
,
2086 errcode
, sk
->sk_allocation
);
2088 skb_set_owner_w(skb
, sk
);
2092 err
= sock_intr_errno(timeo
);
2097 EXPORT_SYMBOL(sock_alloc_send_pskb
);
2099 struct sk_buff
*sock_alloc_send_skb(struct sock
*sk
, unsigned long size
,
2100 int noblock
, int *errcode
)
2102 return sock_alloc_send_pskb(sk
, size
, 0, noblock
, errcode
, 0);
2104 EXPORT_SYMBOL(sock_alloc_send_skb
);
2106 int __sock_cmsg_send(struct sock
*sk
, struct msghdr
*msg
, struct cmsghdr
*cmsg
,
2107 struct sockcm_cookie
*sockc
)
2111 switch (cmsg
->cmsg_type
) {
2113 if (!ns_capable(sock_net(sk
)->user_ns
, CAP_NET_ADMIN
))
2115 if (cmsg
->cmsg_len
!= CMSG_LEN(sizeof(u32
)))
2117 sockc
->mark
= *(u32
*)CMSG_DATA(cmsg
);
2119 case SO_TIMESTAMPING
:
2120 if (cmsg
->cmsg_len
!= CMSG_LEN(sizeof(u32
)))
2123 tsflags
= *(u32
*)CMSG_DATA(cmsg
);
2124 if (tsflags
& ~SOF_TIMESTAMPING_TX_RECORD_MASK
)
2127 sockc
->tsflags
&= ~SOF_TIMESTAMPING_TX_RECORD_MASK
;
2128 sockc
->tsflags
|= tsflags
;
2130 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2132 case SCM_CREDENTIALS
:
2139 EXPORT_SYMBOL(__sock_cmsg_send
);
2141 int sock_cmsg_send(struct sock
*sk
, struct msghdr
*msg
,
2142 struct sockcm_cookie
*sockc
)
2144 struct cmsghdr
*cmsg
;
2147 for_each_cmsghdr(cmsg
, msg
) {
2148 if (!CMSG_OK(msg
, cmsg
))
2150 if (cmsg
->cmsg_level
!= SOL_SOCKET
)
2152 ret
= __sock_cmsg_send(sk
, msg
, cmsg
, sockc
);
2158 EXPORT_SYMBOL(sock_cmsg_send
);
2160 static void sk_enter_memory_pressure(struct sock
*sk
)
2162 if (!sk
->sk_prot
->enter_memory_pressure
)
2165 sk
->sk_prot
->enter_memory_pressure(sk
);
2168 static void sk_leave_memory_pressure(struct sock
*sk
)
2170 if (sk
->sk_prot
->leave_memory_pressure
) {
2171 sk
->sk_prot
->leave_memory_pressure(sk
);
2173 unsigned long *memory_pressure
= sk
->sk_prot
->memory_pressure
;
2175 if (memory_pressure
&& *memory_pressure
)
2176 *memory_pressure
= 0;
2180 /* On 32bit arches, an skb frag is limited to 2^15 */
2181 #define SKB_FRAG_PAGE_ORDER get_order(32768)
2184 * skb_page_frag_refill - check that a page_frag contains enough room
2185 * @sz: minimum size of the fragment we want to get
2186 * @pfrag: pointer to page_frag
2187 * @gfp: priority for memory allocation
2189 * Note: While this allocator tries to use high order pages, there is
2190 * no guarantee that allocations succeed. Therefore, @sz MUST be
2191 * less or equal than PAGE_SIZE.
2193 bool skb_page_frag_refill(unsigned int sz
, struct page_frag
*pfrag
, gfp_t gfp
)
2196 if (page_ref_count(pfrag
->page
) == 1) {
2200 if (pfrag
->offset
+ sz
<= pfrag
->size
)
2202 put_page(pfrag
->page
);
2206 if (SKB_FRAG_PAGE_ORDER
) {
2207 /* Avoid direct reclaim but allow kswapd to wake */
2208 pfrag
->page
= alloc_pages((gfp
& ~__GFP_DIRECT_RECLAIM
) |
2209 __GFP_COMP
| __GFP_NOWARN
|
2211 SKB_FRAG_PAGE_ORDER
);
2212 if (likely(pfrag
->page
)) {
2213 pfrag
->size
= PAGE_SIZE
<< SKB_FRAG_PAGE_ORDER
;
2217 pfrag
->page
= alloc_page(gfp
);
2218 if (likely(pfrag
->page
)) {
2219 pfrag
->size
= PAGE_SIZE
;
2224 EXPORT_SYMBOL(skb_page_frag_refill
);
2226 bool sk_page_frag_refill(struct sock
*sk
, struct page_frag
*pfrag
)
2228 if (likely(skb_page_frag_refill(32U, pfrag
, sk
->sk_allocation
)))
2231 sk_enter_memory_pressure(sk
);
2232 sk_stream_moderate_sndbuf(sk
);
2235 EXPORT_SYMBOL(sk_page_frag_refill
);
2237 static void __lock_sock(struct sock
*sk
)
2238 __releases(&sk
->sk_lock
.slock
)
2239 __acquires(&sk
->sk_lock
.slock
)
2244 prepare_to_wait_exclusive(&sk
->sk_lock
.wq
, &wait
,
2245 TASK_UNINTERRUPTIBLE
);
2246 spin_unlock_bh(&sk
->sk_lock
.slock
);
2248 spin_lock_bh(&sk
->sk_lock
.slock
);
2249 if (!sock_owned_by_user(sk
))
2252 finish_wait(&sk
->sk_lock
.wq
, &wait
);
2255 static void __release_sock(struct sock
*sk
)
2256 __releases(&sk
->sk_lock
.slock
)
2257 __acquires(&sk
->sk_lock
.slock
)
2259 struct sk_buff
*skb
, *next
;
2261 while ((skb
= sk
->sk_backlog
.head
) != NULL
) {
2262 sk
->sk_backlog
.head
= sk
->sk_backlog
.tail
= NULL
;
2264 spin_unlock_bh(&sk
->sk_lock
.slock
);
2269 WARN_ON_ONCE(skb_dst_is_noref(skb
));
2271 sk_backlog_rcv(sk
, skb
);
2276 } while (skb
!= NULL
);
2278 spin_lock_bh(&sk
->sk_lock
.slock
);
2282 * Doing the zeroing here guarantee we can not loop forever
2283 * while a wild producer attempts to flood us.
2285 sk
->sk_backlog
.len
= 0;
2288 void __sk_flush_backlog(struct sock
*sk
)
2290 spin_lock_bh(&sk
->sk_lock
.slock
);
2292 spin_unlock_bh(&sk
->sk_lock
.slock
);
2296 * sk_wait_data - wait for data to arrive at sk_receive_queue
2297 * @sk: sock to wait on
2298 * @timeo: for how long
2299 * @skb: last skb seen on sk_receive_queue
2301 * Now socket state including sk->sk_err is changed only under lock,
2302 * hence we may omit checks after joining wait queue.
2303 * We check receive queue before schedule() only as optimization;
2304 * it is very likely that release_sock() added new data.
2306 int sk_wait_data(struct sock
*sk
, long *timeo
, const struct sk_buff
*skb
)
2308 DEFINE_WAIT_FUNC(wait
, woken_wake_function
);
2311 add_wait_queue(sk_sleep(sk
), &wait
);
2312 sk_set_bit(SOCKWQ_ASYNC_WAITDATA
, sk
);
2313 rc
= sk_wait_event(sk
, timeo
, skb_peek_tail(&sk
->sk_receive_queue
) != skb
, &wait
);
2314 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA
, sk
);
2315 remove_wait_queue(sk_sleep(sk
), &wait
);
2318 EXPORT_SYMBOL(sk_wait_data
);
2321 * __sk_mem_raise_allocated - increase memory_allocated
2323 * @size: memory size to allocate
2324 * @amt: pages to allocate
2325 * @kind: allocation type
2327 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2329 int __sk_mem_raise_allocated(struct sock
*sk
, int size
, int amt
, int kind
)
2331 struct proto
*prot
= sk
->sk_prot
;
2332 long allocated
= sk_memory_allocated_add(sk
, amt
);
2334 if (mem_cgroup_sockets_enabled
&& sk
->sk_memcg
&&
2335 !mem_cgroup_charge_skmem(sk
->sk_memcg
, amt
))
2336 goto suppress_allocation
;
2339 if (allocated
<= sk_prot_mem_limits(sk
, 0)) {
2340 sk_leave_memory_pressure(sk
);
2344 /* Under pressure. */
2345 if (allocated
> sk_prot_mem_limits(sk
, 1))
2346 sk_enter_memory_pressure(sk
);
2348 /* Over hard limit. */
2349 if (allocated
> sk_prot_mem_limits(sk
, 2))
2350 goto suppress_allocation
;
2352 /* guarantee minimum buffer size under pressure */
2353 if (kind
== SK_MEM_RECV
) {
2354 if (atomic_read(&sk
->sk_rmem_alloc
) < sk_get_rmem0(sk
, prot
))
2357 } else { /* SK_MEM_SEND */
2358 int wmem0
= sk_get_wmem0(sk
, prot
);
2360 if (sk
->sk_type
== SOCK_STREAM
) {
2361 if (sk
->sk_wmem_queued
< wmem0
)
2363 } else if (refcount_read(&sk
->sk_wmem_alloc
) < wmem0
) {
2368 if (sk_has_memory_pressure(sk
)) {
2371 if (!sk_under_memory_pressure(sk
))
2373 alloc
= sk_sockets_allocated_read_positive(sk
);
2374 if (sk_prot_mem_limits(sk
, 2) > alloc
*
2375 sk_mem_pages(sk
->sk_wmem_queued
+
2376 atomic_read(&sk
->sk_rmem_alloc
) +
2377 sk
->sk_forward_alloc
))
2381 suppress_allocation
:
2383 if (kind
== SK_MEM_SEND
&& sk
->sk_type
== SOCK_STREAM
) {
2384 sk_stream_moderate_sndbuf(sk
);
2386 /* Fail only if socket is _under_ its sndbuf.
2387 * In this case we cannot block, so that we have to fail.
2389 if (sk
->sk_wmem_queued
+ size
>= sk
->sk_sndbuf
)
2393 trace_sock_exceed_buf_limit(sk
, prot
, allocated
);
2395 sk_memory_allocated_sub(sk
, amt
);
2397 if (mem_cgroup_sockets_enabled
&& sk
->sk_memcg
)
2398 mem_cgroup_uncharge_skmem(sk
->sk_memcg
, amt
);
2402 EXPORT_SYMBOL(__sk_mem_raise_allocated
);
2405 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2407 * @size: memory size to allocate
2408 * @kind: allocation type
2410 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2411 * rmem allocation. This function assumes that protocols which have
2412 * memory_pressure use sk_wmem_queued as write buffer accounting.
2414 int __sk_mem_schedule(struct sock
*sk
, int size
, int kind
)
2416 int ret
, amt
= sk_mem_pages(size
);
2418 sk
->sk_forward_alloc
+= amt
<< SK_MEM_QUANTUM_SHIFT
;
2419 ret
= __sk_mem_raise_allocated(sk
, size
, amt
, kind
);
2421 sk
->sk_forward_alloc
-= amt
<< SK_MEM_QUANTUM_SHIFT
;
2424 EXPORT_SYMBOL(__sk_mem_schedule
);
2427 * __sk_mem_reduce_allocated - reclaim memory_allocated
2429 * @amount: number of quanta
2431 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2433 void __sk_mem_reduce_allocated(struct sock
*sk
, int amount
)
2435 sk_memory_allocated_sub(sk
, amount
);
2437 if (mem_cgroup_sockets_enabled
&& sk
->sk_memcg
)
2438 mem_cgroup_uncharge_skmem(sk
->sk_memcg
, amount
);
2440 if (sk_under_memory_pressure(sk
) &&
2441 (sk_memory_allocated(sk
) < sk_prot_mem_limits(sk
, 0)))
2442 sk_leave_memory_pressure(sk
);
2444 EXPORT_SYMBOL(__sk_mem_reduce_allocated
);
2447 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2449 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2451 void __sk_mem_reclaim(struct sock
*sk
, int amount
)
2453 amount
>>= SK_MEM_QUANTUM_SHIFT
;
2454 sk
->sk_forward_alloc
-= amount
<< SK_MEM_QUANTUM_SHIFT
;
2455 __sk_mem_reduce_allocated(sk
, amount
);
2457 EXPORT_SYMBOL(__sk_mem_reclaim
);
2459 int sk_set_peek_off(struct sock
*sk
, int val
)
2461 sk
->sk_peek_off
= val
;
2464 EXPORT_SYMBOL_GPL(sk_set_peek_off
);
2467 * Set of default routines for initialising struct proto_ops when
2468 * the protocol does not support a particular function. In certain
2469 * cases where it makes no sense for a protocol to have a "do nothing"
2470 * function, some default processing is provided.
2473 int sock_no_bind(struct socket
*sock
, struct sockaddr
*saddr
, int len
)
2477 EXPORT_SYMBOL(sock_no_bind
);
2479 int sock_no_connect(struct socket
*sock
, struct sockaddr
*saddr
,
2484 EXPORT_SYMBOL(sock_no_connect
);
2486 int sock_no_socketpair(struct socket
*sock1
, struct socket
*sock2
)
2490 EXPORT_SYMBOL(sock_no_socketpair
);
2492 int sock_no_accept(struct socket
*sock
, struct socket
*newsock
, int flags
,
2497 EXPORT_SYMBOL(sock_no_accept
);
2499 int sock_no_getname(struct socket
*sock
, struct sockaddr
*saddr
,
2504 EXPORT_SYMBOL(sock_no_getname
);
2506 __poll_t
sock_no_poll(struct file
*file
, struct socket
*sock
, poll_table
*pt
)
2510 EXPORT_SYMBOL(sock_no_poll
);
2512 int sock_no_ioctl(struct socket
*sock
, unsigned int cmd
, unsigned long arg
)
2516 EXPORT_SYMBOL(sock_no_ioctl
);
2518 int sock_no_listen(struct socket
*sock
, int backlog
)
2522 EXPORT_SYMBOL(sock_no_listen
);
2524 int sock_no_shutdown(struct socket
*sock
, int how
)
2528 EXPORT_SYMBOL(sock_no_shutdown
);
2530 int sock_no_setsockopt(struct socket
*sock
, int level
, int optname
,
2531 char __user
*optval
, unsigned int optlen
)
2535 EXPORT_SYMBOL(sock_no_setsockopt
);
2537 int sock_no_getsockopt(struct socket
*sock
, int level
, int optname
,
2538 char __user
*optval
, int __user
*optlen
)
2542 EXPORT_SYMBOL(sock_no_getsockopt
);
2544 int sock_no_sendmsg(struct socket
*sock
, struct msghdr
*m
, size_t len
)
2548 EXPORT_SYMBOL(sock_no_sendmsg
);
2550 int sock_no_sendmsg_locked(struct sock
*sk
, struct msghdr
*m
, size_t len
)
2554 EXPORT_SYMBOL(sock_no_sendmsg_locked
);
2556 int sock_no_recvmsg(struct socket
*sock
, struct msghdr
*m
, size_t len
,
2561 EXPORT_SYMBOL(sock_no_recvmsg
);
2563 int sock_no_mmap(struct file
*file
, struct socket
*sock
, struct vm_area_struct
*vma
)
2565 /* Mirror missing mmap method error code */
2568 EXPORT_SYMBOL(sock_no_mmap
);
2570 ssize_t
sock_no_sendpage(struct socket
*sock
, struct page
*page
, int offset
, size_t size
, int flags
)
2573 struct msghdr msg
= {.msg_flags
= flags
};
2575 char *kaddr
= kmap(page
);
2576 iov
.iov_base
= kaddr
+ offset
;
2578 res
= kernel_sendmsg(sock
, &msg
, &iov
, 1, size
);
2582 EXPORT_SYMBOL(sock_no_sendpage
);
2584 ssize_t
sock_no_sendpage_locked(struct sock
*sk
, struct page
*page
,
2585 int offset
, size_t size
, int flags
)
2588 struct msghdr msg
= {.msg_flags
= flags
};
2590 char *kaddr
= kmap(page
);
2592 iov
.iov_base
= kaddr
+ offset
;
2594 res
= kernel_sendmsg_locked(sk
, &msg
, &iov
, 1, size
);
2598 EXPORT_SYMBOL(sock_no_sendpage_locked
);
2601 * Default Socket Callbacks
2604 static void sock_def_wakeup(struct sock
*sk
)
2606 struct socket_wq
*wq
;
2609 wq
= rcu_dereference(sk
->sk_wq
);
2610 if (skwq_has_sleeper(wq
))
2611 wake_up_interruptible_all(&wq
->wait
);
2615 static void sock_def_error_report(struct sock
*sk
)
2617 struct socket_wq
*wq
;
2620 wq
= rcu_dereference(sk
->sk_wq
);
2621 if (skwq_has_sleeper(wq
))
2622 wake_up_interruptible_poll(&wq
->wait
, EPOLLERR
);
2623 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_ERR
);
2627 static void sock_def_readable(struct sock
*sk
)
2629 struct socket_wq
*wq
;
2632 wq
= rcu_dereference(sk
->sk_wq
);
2633 if (skwq_has_sleeper(wq
))
2634 wake_up_interruptible_sync_poll(&wq
->wait
, EPOLLIN
| EPOLLPRI
|
2635 EPOLLRDNORM
| EPOLLRDBAND
);
2636 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
2640 static void sock_def_write_space(struct sock
*sk
)
2642 struct socket_wq
*wq
;
2646 /* Do not wake up a writer until he can make "significant"
2649 if ((refcount_read(&sk
->sk_wmem_alloc
) << 1) <= sk
->sk_sndbuf
) {
2650 wq
= rcu_dereference(sk
->sk_wq
);
2651 if (skwq_has_sleeper(wq
))
2652 wake_up_interruptible_sync_poll(&wq
->wait
, EPOLLOUT
|
2653 EPOLLWRNORM
| EPOLLWRBAND
);
2655 /* Should agree with poll, otherwise some programs break */
2656 if (sock_writeable(sk
))
2657 sk_wake_async(sk
, SOCK_WAKE_SPACE
, POLL_OUT
);
2663 static void sock_def_destruct(struct sock
*sk
)
2667 void sk_send_sigurg(struct sock
*sk
)
2669 if (sk
->sk_socket
&& sk
->sk_socket
->file
)
2670 if (send_sigurg(&sk
->sk_socket
->file
->f_owner
))
2671 sk_wake_async(sk
, SOCK_WAKE_URG
, POLL_PRI
);
2673 EXPORT_SYMBOL(sk_send_sigurg
);
2675 void sk_reset_timer(struct sock
*sk
, struct timer_list
* timer
,
2676 unsigned long expires
)
2678 if (!mod_timer(timer
, expires
))
2681 EXPORT_SYMBOL(sk_reset_timer
);
2683 void sk_stop_timer(struct sock
*sk
, struct timer_list
* timer
)
2685 if (del_timer(timer
))
2688 EXPORT_SYMBOL(sk_stop_timer
);
2690 void sock_init_data(struct socket
*sock
, struct sock
*sk
)
2693 sk
->sk_send_head
= NULL
;
2695 timer_setup(&sk
->sk_timer
, NULL
, 0);
2697 sk
->sk_allocation
= GFP_KERNEL
;
2698 sk
->sk_rcvbuf
= sysctl_rmem_default
;
2699 sk
->sk_sndbuf
= sysctl_wmem_default
;
2700 sk
->sk_state
= TCP_CLOSE
;
2701 sk_set_socket(sk
, sock
);
2703 sock_set_flag(sk
, SOCK_ZAPPED
);
2706 sk
->sk_type
= sock
->type
;
2707 sk
->sk_wq
= sock
->wq
;
2709 sk
->sk_uid
= SOCK_INODE(sock
)->i_uid
;
2712 sk
->sk_uid
= make_kuid(sock_net(sk
)->user_ns
, 0);
2715 rwlock_init(&sk
->sk_callback_lock
);
2716 if (sk
->sk_kern_sock
)
2717 lockdep_set_class_and_name(
2718 &sk
->sk_callback_lock
,
2719 af_kern_callback_keys
+ sk
->sk_family
,
2720 af_family_kern_clock_key_strings
[sk
->sk_family
]);
2722 lockdep_set_class_and_name(
2723 &sk
->sk_callback_lock
,
2724 af_callback_keys
+ sk
->sk_family
,
2725 af_family_clock_key_strings
[sk
->sk_family
]);
2727 sk
->sk_state_change
= sock_def_wakeup
;
2728 sk
->sk_data_ready
= sock_def_readable
;
2729 sk
->sk_write_space
= sock_def_write_space
;
2730 sk
->sk_error_report
= sock_def_error_report
;
2731 sk
->sk_destruct
= sock_def_destruct
;
2733 sk
->sk_frag
.page
= NULL
;
2734 sk
->sk_frag
.offset
= 0;
2735 sk
->sk_peek_off
= -1;
2737 sk
->sk_peer_pid
= NULL
;
2738 sk
->sk_peer_cred
= NULL
;
2739 sk
->sk_write_pending
= 0;
2740 sk
->sk_rcvlowat
= 1;
2741 sk
->sk_rcvtimeo
= MAX_SCHEDULE_TIMEOUT
;
2742 sk
->sk_sndtimeo
= MAX_SCHEDULE_TIMEOUT
;
2744 sk
->sk_stamp
= SK_DEFAULT_STAMP
;
2745 atomic_set(&sk
->sk_zckey
, 0);
2747 #ifdef CONFIG_NET_RX_BUSY_POLL
2749 sk
->sk_ll_usec
= sysctl_net_busy_read
;
2752 sk
->sk_max_pacing_rate
= ~0U;
2753 sk
->sk_pacing_rate
= ~0U;
2754 sk
->sk_pacing_shift
= 10;
2755 sk
->sk_incoming_cpu
= -1;
2757 * Before updating sk_refcnt, we must commit prior changes to memory
2758 * (Documentation/RCU/rculist_nulls.txt for details)
2761 refcount_set(&sk
->sk_refcnt
, 1);
2762 atomic_set(&sk
->sk_drops
, 0);
2764 EXPORT_SYMBOL(sock_init_data
);
2766 void lock_sock_nested(struct sock
*sk
, int subclass
)
2769 spin_lock_bh(&sk
->sk_lock
.slock
);
2770 if (sk
->sk_lock
.owned
)
2772 sk
->sk_lock
.owned
= 1;
2773 spin_unlock(&sk
->sk_lock
.slock
);
2775 * The sk_lock has mutex_lock() semantics here:
2777 mutex_acquire(&sk
->sk_lock
.dep_map
, subclass
, 0, _RET_IP_
);
2780 EXPORT_SYMBOL(lock_sock_nested
);
2782 void release_sock(struct sock
*sk
)
2784 spin_lock_bh(&sk
->sk_lock
.slock
);
2785 if (sk
->sk_backlog
.tail
)
2788 /* Warning : release_cb() might need to release sk ownership,
2789 * ie call sock_release_ownership(sk) before us.
2791 if (sk
->sk_prot
->release_cb
)
2792 sk
->sk_prot
->release_cb(sk
);
2794 sock_release_ownership(sk
);
2795 if (waitqueue_active(&sk
->sk_lock
.wq
))
2796 wake_up(&sk
->sk_lock
.wq
);
2797 spin_unlock_bh(&sk
->sk_lock
.slock
);
2799 EXPORT_SYMBOL(release_sock
);
2802 * lock_sock_fast - fast version of lock_sock
2805 * This version should be used for very small section, where process wont block
2806 * return false if fast path is taken:
2808 * sk_lock.slock locked, owned = 0, BH disabled
2810 * return true if slow path is taken:
2812 * sk_lock.slock unlocked, owned = 1, BH enabled
2814 bool lock_sock_fast(struct sock
*sk
)
2817 spin_lock_bh(&sk
->sk_lock
.slock
);
2819 if (!sk
->sk_lock
.owned
)
2821 * Note : We must disable BH
2826 sk
->sk_lock
.owned
= 1;
2827 spin_unlock(&sk
->sk_lock
.slock
);
2829 * The sk_lock has mutex_lock() semantics here:
2831 mutex_acquire(&sk
->sk_lock
.dep_map
, 0, 0, _RET_IP_
);
2835 EXPORT_SYMBOL(lock_sock_fast
);
2837 int sock_get_timestamp(struct sock
*sk
, struct timeval __user
*userstamp
)
2840 if (!sock_flag(sk
, SOCK_TIMESTAMP
))
2841 sock_enable_timestamp(sk
, SOCK_TIMESTAMP
);
2842 tv
= ktime_to_timeval(sk
->sk_stamp
);
2843 if (tv
.tv_sec
== -1)
2845 if (tv
.tv_sec
== 0) {
2846 sk
->sk_stamp
= ktime_get_real();
2847 tv
= ktime_to_timeval(sk
->sk_stamp
);
2849 return copy_to_user(userstamp
, &tv
, sizeof(tv
)) ? -EFAULT
: 0;
2851 EXPORT_SYMBOL(sock_get_timestamp
);
2853 int sock_get_timestampns(struct sock
*sk
, struct timespec __user
*userstamp
)
2856 if (!sock_flag(sk
, SOCK_TIMESTAMP
))
2857 sock_enable_timestamp(sk
, SOCK_TIMESTAMP
);
2858 ts
= ktime_to_timespec(sk
->sk_stamp
);
2859 if (ts
.tv_sec
== -1)
2861 if (ts
.tv_sec
== 0) {
2862 sk
->sk_stamp
= ktime_get_real();
2863 ts
= ktime_to_timespec(sk
->sk_stamp
);
2865 return copy_to_user(userstamp
, &ts
, sizeof(ts
)) ? -EFAULT
: 0;
2867 EXPORT_SYMBOL(sock_get_timestampns
);
2869 void sock_enable_timestamp(struct sock
*sk
, int flag
)
2871 if (!sock_flag(sk
, flag
)) {
2872 unsigned long previous_flags
= sk
->sk_flags
;
2874 sock_set_flag(sk
, flag
);
2876 * we just set one of the two flags which require net
2877 * time stamping, but time stamping might have been on
2878 * already because of the other one
2880 if (sock_needs_netstamp(sk
) &&
2881 !(previous_flags
& SK_FLAGS_TIMESTAMP
))
2882 net_enable_timestamp();
2886 int sock_recv_errqueue(struct sock
*sk
, struct msghdr
*msg
, int len
,
2887 int level
, int type
)
2889 struct sock_exterr_skb
*serr
;
2890 struct sk_buff
*skb
;
2894 skb
= sock_dequeue_err_skb(sk
);
2900 msg
->msg_flags
|= MSG_TRUNC
;
2903 err
= skb_copy_datagram_msg(skb
, 0, msg
, copied
);
2907 sock_recv_timestamp(msg
, sk
, skb
);
2909 serr
= SKB_EXT_ERR(skb
);
2910 put_cmsg(msg
, level
, type
, sizeof(serr
->ee
), &serr
->ee
);
2912 msg
->msg_flags
|= MSG_ERRQUEUE
;
2920 EXPORT_SYMBOL(sock_recv_errqueue
);
2923 * Get a socket option on an socket.
2925 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2926 * asynchronous errors should be reported by getsockopt. We assume
2927 * this means if you specify SO_ERROR (otherwise whats the point of it).
2929 int sock_common_getsockopt(struct socket
*sock
, int level
, int optname
,
2930 char __user
*optval
, int __user
*optlen
)
2932 struct sock
*sk
= sock
->sk
;
2934 return sk
->sk_prot
->getsockopt(sk
, level
, optname
, optval
, optlen
);
2936 EXPORT_SYMBOL(sock_common_getsockopt
);
2938 #ifdef CONFIG_COMPAT
2939 int compat_sock_common_getsockopt(struct socket
*sock
, int level
, int optname
,
2940 char __user
*optval
, int __user
*optlen
)
2942 struct sock
*sk
= sock
->sk
;
2944 if (sk
->sk_prot
->compat_getsockopt
!= NULL
)
2945 return sk
->sk_prot
->compat_getsockopt(sk
, level
, optname
,
2947 return sk
->sk_prot
->getsockopt(sk
, level
, optname
, optval
, optlen
);
2949 EXPORT_SYMBOL(compat_sock_common_getsockopt
);
2952 int sock_common_recvmsg(struct socket
*sock
, struct msghdr
*msg
, size_t size
,
2955 struct sock
*sk
= sock
->sk
;
2959 err
= sk
->sk_prot
->recvmsg(sk
, msg
, size
, flags
& MSG_DONTWAIT
,
2960 flags
& ~MSG_DONTWAIT
, &addr_len
);
2962 msg
->msg_namelen
= addr_len
;
2965 EXPORT_SYMBOL(sock_common_recvmsg
);
2968 * Set socket options on an inet socket.
2970 int sock_common_setsockopt(struct socket
*sock
, int level
, int optname
,
2971 char __user
*optval
, unsigned int optlen
)
2973 struct sock
*sk
= sock
->sk
;
2975 return sk
->sk_prot
->setsockopt(sk
, level
, optname
, optval
, optlen
);
2977 EXPORT_SYMBOL(sock_common_setsockopt
);
2979 #ifdef CONFIG_COMPAT
2980 int compat_sock_common_setsockopt(struct socket
*sock
, int level
, int optname
,
2981 char __user
*optval
, unsigned int optlen
)
2983 struct sock
*sk
= sock
->sk
;
2985 if (sk
->sk_prot
->compat_setsockopt
!= NULL
)
2986 return sk
->sk_prot
->compat_setsockopt(sk
, level
, optname
,
2988 return sk
->sk_prot
->setsockopt(sk
, level
, optname
, optval
, optlen
);
2990 EXPORT_SYMBOL(compat_sock_common_setsockopt
);
2993 void sk_common_release(struct sock
*sk
)
2995 if (sk
->sk_prot
->destroy
)
2996 sk
->sk_prot
->destroy(sk
);
2999 * Observation: when sock_common_release is called, processes have
3000 * no access to socket. But net still has.
3001 * Step one, detach it from networking:
3003 * A. Remove from hash tables.
3006 sk
->sk_prot
->unhash(sk
);
3009 * In this point socket cannot receive new packets, but it is possible
3010 * that some packets are in flight because some CPU runs receiver and
3011 * did hash table lookup before we unhashed socket. They will achieve
3012 * receive queue and will be purged by socket destructor.
3014 * Also we still have packets pending on receive queue and probably,
3015 * our own packets waiting in device queues. sock_destroy will drain
3016 * receive queue, but transmitted packets will delay socket destruction
3017 * until the last reference will be released.
3022 xfrm_sk_free_policy(sk
);
3024 sk_refcnt_debug_release(sk
);
3028 EXPORT_SYMBOL(sk_common_release
);
3030 void sk_get_meminfo(const struct sock
*sk
, u32
*mem
)
3032 memset(mem
, 0, sizeof(*mem
) * SK_MEMINFO_VARS
);
3034 mem
[SK_MEMINFO_RMEM_ALLOC
] = sk_rmem_alloc_get(sk
);
3035 mem
[SK_MEMINFO_RCVBUF
] = sk
->sk_rcvbuf
;
3036 mem
[SK_MEMINFO_WMEM_ALLOC
] = sk_wmem_alloc_get(sk
);
3037 mem
[SK_MEMINFO_SNDBUF
] = sk
->sk_sndbuf
;
3038 mem
[SK_MEMINFO_FWD_ALLOC
] = sk
->sk_forward_alloc
;
3039 mem
[SK_MEMINFO_WMEM_QUEUED
] = sk
->sk_wmem_queued
;
3040 mem
[SK_MEMINFO_OPTMEM
] = atomic_read(&sk
->sk_omem_alloc
);
3041 mem
[SK_MEMINFO_BACKLOG
] = sk
->sk_backlog
.len
;
3042 mem
[SK_MEMINFO_DROPS
] = atomic_read(&sk
->sk_drops
);
3045 #ifdef CONFIG_PROC_FS
3046 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
3048 int val
[PROTO_INUSE_NR
];
3051 static DECLARE_BITMAP(proto_inuse_idx
, PROTO_INUSE_NR
);
3053 void sock_prot_inuse_add(struct net
*net
, struct proto
*prot
, int val
)
3055 __this_cpu_add(net
->core
.prot_inuse
->val
[prot
->inuse_idx
], val
);
3057 EXPORT_SYMBOL_GPL(sock_prot_inuse_add
);
3059 int sock_prot_inuse_get(struct net
*net
, struct proto
*prot
)
3061 int cpu
, idx
= prot
->inuse_idx
;
3064 for_each_possible_cpu(cpu
)
3065 res
+= per_cpu_ptr(net
->core
.prot_inuse
, cpu
)->val
[idx
];
3067 return res
>= 0 ? res
: 0;
3069 EXPORT_SYMBOL_GPL(sock_prot_inuse_get
);
3071 static void sock_inuse_add(struct net
*net
, int val
)
3073 this_cpu_add(*net
->core
.sock_inuse
, val
);
3076 int sock_inuse_get(struct net
*net
)
3080 for_each_possible_cpu(cpu
)
3081 res
+= *per_cpu_ptr(net
->core
.sock_inuse
, cpu
);
3086 EXPORT_SYMBOL_GPL(sock_inuse_get
);
3088 static int __net_init
sock_inuse_init_net(struct net
*net
)
3090 net
->core
.prot_inuse
= alloc_percpu(struct prot_inuse
);
3091 if (net
->core
.prot_inuse
== NULL
)
3094 net
->core
.sock_inuse
= alloc_percpu(int);
3095 if (net
->core
.sock_inuse
== NULL
)
3101 free_percpu(net
->core
.prot_inuse
);
3105 static void __net_exit
sock_inuse_exit_net(struct net
*net
)
3107 free_percpu(net
->core
.prot_inuse
);
3108 free_percpu(net
->core
.sock_inuse
);
3111 static struct pernet_operations net_inuse_ops
= {
3112 .init
= sock_inuse_init_net
,
3113 .exit
= sock_inuse_exit_net
,
3116 static __init
int net_inuse_init(void)
3118 if (register_pernet_subsys(&net_inuse_ops
))
3119 panic("Cannot initialize net inuse counters");
3124 core_initcall(net_inuse_init
);
3126 static void assign_proto_idx(struct proto
*prot
)
3128 prot
->inuse_idx
= find_first_zero_bit(proto_inuse_idx
, PROTO_INUSE_NR
);
3130 if (unlikely(prot
->inuse_idx
== PROTO_INUSE_NR
- 1)) {
3131 pr_err("PROTO_INUSE_NR exhausted\n");
3135 set_bit(prot
->inuse_idx
, proto_inuse_idx
);
3138 static void release_proto_idx(struct proto
*prot
)
3140 if (prot
->inuse_idx
!= PROTO_INUSE_NR
- 1)
3141 clear_bit(prot
->inuse_idx
, proto_inuse_idx
);
3144 static inline void assign_proto_idx(struct proto
*prot
)
3148 static inline void release_proto_idx(struct proto
*prot
)
3152 static void sock_inuse_add(struct net
*net
, int val
)
3157 static void req_prot_cleanup(struct request_sock_ops
*rsk_prot
)
3161 kfree(rsk_prot
->slab_name
);
3162 rsk_prot
->slab_name
= NULL
;
3163 kmem_cache_destroy(rsk_prot
->slab
);
3164 rsk_prot
->slab
= NULL
;
3167 static int req_prot_init(const struct proto
*prot
)
3169 struct request_sock_ops
*rsk_prot
= prot
->rsk_prot
;
3174 rsk_prot
->slab_name
= kasprintf(GFP_KERNEL
, "request_sock_%s",
3176 if (!rsk_prot
->slab_name
)
3179 rsk_prot
->slab
= kmem_cache_create(rsk_prot
->slab_name
,
3180 rsk_prot
->obj_size
, 0,
3181 prot
->slab_flags
, NULL
);
3183 if (!rsk_prot
->slab
) {
3184 pr_crit("%s: Can't create request sock SLAB cache!\n",
3191 int proto_register(struct proto
*prot
, int alloc_slab
)
3194 prot
->slab
= kmem_cache_create_usercopy(prot
->name
,
3196 SLAB_HWCACHE_ALIGN
| prot
->slab_flags
,
3197 prot
->useroffset
, prot
->usersize
,
3200 if (prot
->slab
== NULL
) {
3201 pr_crit("%s: Can't create sock SLAB cache!\n",
3206 if (req_prot_init(prot
))
3207 goto out_free_request_sock_slab
;
3209 if (prot
->twsk_prot
!= NULL
) {
3210 prot
->twsk_prot
->twsk_slab_name
= kasprintf(GFP_KERNEL
, "tw_sock_%s", prot
->name
);
3212 if (prot
->twsk_prot
->twsk_slab_name
== NULL
)
3213 goto out_free_request_sock_slab
;
3215 prot
->twsk_prot
->twsk_slab
=
3216 kmem_cache_create(prot
->twsk_prot
->twsk_slab_name
,
3217 prot
->twsk_prot
->twsk_obj_size
,
3221 if (prot
->twsk_prot
->twsk_slab
== NULL
)
3222 goto out_free_timewait_sock_slab_name
;
3226 mutex_lock(&proto_list_mutex
);
3227 list_add(&prot
->node
, &proto_list
);
3228 assign_proto_idx(prot
);
3229 mutex_unlock(&proto_list_mutex
);
3232 out_free_timewait_sock_slab_name
:
3233 kfree(prot
->twsk_prot
->twsk_slab_name
);
3234 out_free_request_sock_slab
:
3235 req_prot_cleanup(prot
->rsk_prot
);
3237 kmem_cache_destroy(prot
->slab
);
3242 EXPORT_SYMBOL(proto_register
);
3244 void proto_unregister(struct proto
*prot
)
3246 mutex_lock(&proto_list_mutex
);
3247 release_proto_idx(prot
);
3248 list_del(&prot
->node
);
3249 mutex_unlock(&proto_list_mutex
);
3251 kmem_cache_destroy(prot
->slab
);
3254 req_prot_cleanup(prot
->rsk_prot
);
3256 if (prot
->twsk_prot
!= NULL
&& prot
->twsk_prot
->twsk_slab
!= NULL
) {
3257 kmem_cache_destroy(prot
->twsk_prot
->twsk_slab
);
3258 kfree(prot
->twsk_prot
->twsk_slab_name
);
3259 prot
->twsk_prot
->twsk_slab
= NULL
;
3262 EXPORT_SYMBOL(proto_unregister
);
3264 #ifdef CONFIG_PROC_FS
3265 static void *proto_seq_start(struct seq_file
*seq
, loff_t
*pos
)
3266 __acquires(proto_list_mutex
)
3268 mutex_lock(&proto_list_mutex
);
3269 return seq_list_start_head(&proto_list
, *pos
);
3272 static void *proto_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
3274 return seq_list_next(v
, &proto_list
, pos
);
3277 static void proto_seq_stop(struct seq_file
*seq
, void *v
)
3278 __releases(proto_list_mutex
)
3280 mutex_unlock(&proto_list_mutex
);
3283 static char proto_method_implemented(const void *method
)
3285 return method
== NULL
? 'n' : 'y';
3287 static long sock_prot_memory_allocated(struct proto
*proto
)
3289 return proto
->memory_allocated
!= NULL
? proto_memory_allocated(proto
) : -1L;
3292 static char *sock_prot_memory_pressure(struct proto
*proto
)
3294 return proto
->memory_pressure
!= NULL
?
3295 proto_memory_pressure(proto
) ? "yes" : "no" : "NI";
3298 static void proto_seq_printf(struct seq_file
*seq
, struct proto
*proto
)
3301 seq_printf(seq
, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
3302 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3305 sock_prot_inuse_get(seq_file_net(seq
), proto
),
3306 sock_prot_memory_allocated(proto
),
3307 sock_prot_memory_pressure(proto
),
3309 proto
->slab
== NULL
? "no" : "yes",
3310 module_name(proto
->owner
),
3311 proto_method_implemented(proto
->close
),
3312 proto_method_implemented(proto
->connect
),
3313 proto_method_implemented(proto
->disconnect
),
3314 proto_method_implemented(proto
->accept
),
3315 proto_method_implemented(proto
->ioctl
),
3316 proto_method_implemented(proto
->init
),
3317 proto_method_implemented(proto
->destroy
),
3318 proto_method_implemented(proto
->shutdown
),
3319 proto_method_implemented(proto
->setsockopt
),
3320 proto_method_implemented(proto
->getsockopt
),
3321 proto_method_implemented(proto
->sendmsg
),
3322 proto_method_implemented(proto
->recvmsg
),
3323 proto_method_implemented(proto
->sendpage
),
3324 proto_method_implemented(proto
->bind
),
3325 proto_method_implemented(proto
->backlog_rcv
),
3326 proto_method_implemented(proto
->hash
),
3327 proto_method_implemented(proto
->unhash
),
3328 proto_method_implemented(proto
->get_port
),
3329 proto_method_implemented(proto
->enter_memory_pressure
));
3332 static int proto_seq_show(struct seq_file
*seq
, void *v
)
3334 if (v
== &proto_list
)
3335 seq_printf(seq
, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3344 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3346 proto_seq_printf(seq
, list_entry(v
, struct proto
, node
));
3350 static const struct seq_operations proto_seq_ops
= {
3351 .start
= proto_seq_start
,
3352 .next
= proto_seq_next
,
3353 .stop
= proto_seq_stop
,
3354 .show
= proto_seq_show
,
3357 static int proto_seq_open(struct inode
*inode
, struct file
*file
)
3359 return seq_open_net(inode
, file
, &proto_seq_ops
,
3360 sizeof(struct seq_net_private
));
3363 static const struct file_operations proto_seq_fops
= {
3364 .open
= proto_seq_open
,
3366 .llseek
= seq_lseek
,
3367 .release
= seq_release_net
,
3370 static __net_init
int proto_init_net(struct net
*net
)
3372 if (!proc_create("protocols", S_IRUGO
, net
->proc_net
, &proto_seq_fops
))
3378 static __net_exit
void proto_exit_net(struct net
*net
)
3380 remove_proc_entry("protocols", net
->proc_net
);
3384 static __net_initdata
struct pernet_operations proto_net_ops
= {
3385 .init
= proto_init_net
,
3386 .exit
= proto_exit_net
,
3389 static int __init
proto_init(void)
3391 return register_pernet_subsys(&proto_net_ops
);
3394 subsys_initcall(proto_init
);
3396 #endif /* PROC_FS */
3398 #ifdef CONFIG_NET_RX_BUSY_POLL
3399 bool sk_busy_loop_end(void *p
, unsigned long start_time
)
3401 struct sock
*sk
= p
;
3403 return !skb_queue_empty(&sk
->sk_receive_queue
) ||
3404 sk_busy_loop_timeout(sk
, start_time
);
3406 EXPORT_SYMBOL(sk_busy_loop_end
);
3407 #endif /* CONFIG_NET_RX_BUSY_POLL */