Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cris-mirror.git] / net / mac80211 / sta_info.c
blobaf0b608ee8ed11bdab91a163e4f8e8036f991185
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
4 * Copyright 2013-2014 Intel Mobile Communications GmbH
5 * Copyright (C) 2015 - 2017 Intel Deutschland GmbH
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/etherdevice.h>
15 #include <linux/netdevice.h>
16 #include <linux/types.h>
17 #include <linux/slab.h>
18 #include <linux/skbuff.h>
19 #include <linux/if_arp.h>
20 #include <linux/timer.h>
21 #include <linux/rtnetlink.h>
23 #include <net/codel.h>
24 #include <net/mac80211.h>
25 #include "ieee80211_i.h"
26 #include "driver-ops.h"
27 #include "rate.h"
28 #include "sta_info.h"
29 #include "debugfs_sta.h"
30 #include "mesh.h"
31 #include "wme.h"
33 /**
34 * DOC: STA information lifetime rules
36 * STA info structures (&struct sta_info) are managed in a hash table
37 * for faster lookup and a list for iteration. They are managed using
38 * RCU, i.e. access to the list and hash table is protected by RCU.
40 * Upon allocating a STA info structure with sta_info_alloc(), the caller
41 * owns that structure. It must then insert it into the hash table using
42 * either sta_info_insert() or sta_info_insert_rcu(); only in the latter
43 * case (which acquires an rcu read section but must not be called from
44 * within one) will the pointer still be valid after the call. Note that
45 * the caller may not do much with the STA info before inserting it, in
46 * particular, it may not start any mesh peer link management or add
47 * encryption keys.
49 * When the insertion fails (sta_info_insert()) returns non-zero), the
50 * structure will have been freed by sta_info_insert()!
52 * Station entries are added by mac80211 when you establish a link with a
53 * peer. This means different things for the different type of interfaces
54 * we support. For a regular station this mean we add the AP sta when we
55 * receive an association response from the AP. For IBSS this occurs when
56 * get to know about a peer on the same IBSS. For WDS we add the sta for
57 * the peer immediately upon device open. When using AP mode we add stations
58 * for each respective station upon request from userspace through nl80211.
60 * In order to remove a STA info structure, various sta_info_destroy_*()
61 * calls are available.
63 * There is no concept of ownership on a STA entry, each structure is
64 * owned by the global hash table/list until it is removed. All users of
65 * the structure need to be RCU protected so that the structure won't be
66 * freed before they are done using it.
69 static const struct rhashtable_params sta_rht_params = {
70 .nelem_hint = 3, /* start small */
71 .automatic_shrinking = true,
72 .head_offset = offsetof(struct sta_info, hash_node),
73 .key_offset = offsetof(struct sta_info, addr),
74 .key_len = ETH_ALEN,
75 .max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE,
78 /* Caller must hold local->sta_mtx */
79 static int sta_info_hash_del(struct ieee80211_local *local,
80 struct sta_info *sta)
82 return rhltable_remove(&local->sta_hash, &sta->hash_node,
83 sta_rht_params);
86 static void __cleanup_single_sta(struct sta_info *sta)
88 int ac, i;
89 struct tid_ampdu_tx *tid_tx;
90 struct ieee80211_sub_if_data *sdata = sta->sdata;
91 struct ieee80211_local *local = sdata->local;
92 struct fq *fq = &local->fq;
93 struct ps_data *ps;
95 if (test_sta_flag(sta, WLAN_STA_PS_STA) ||
96 test_sta_flag(sta, WLAN_STA_PS_DRIVER) ||
97 test_sta_flag(sta, WLAN_STA_PS_DELIVER)) {
98 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
99 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
100 ps = &sdata->bss->ps;
101 else if (ieee80211_vif_is_mesh(&sdata->vif))
102 ps = &sdata->u.mesh.ps;
103 else
104 return;
106 clear_sta_flag(sta, WLAN_STA_PS_STA);
107 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
108 clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
110 atomic_dec(&ps->num_sta_ps);
113 if (sta->sta.txq[0]) {
114 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
115 struct txq_info *txqi = to_txq_info(sta->sta.txq[i]);
117 spin_lock_bh(&fq->lock);
118 ieee80211_txq_purge(local, txqi);
119 spin_unlock_bh(&fq->lock);
123 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
124 local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]);
125 ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]);
126 ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]);
129 if (ieee80211_vif_is_mesh(&sdata->vif))
130 mesh_sta_cleanup(sta);
132 cancel_work_sync(&sta->drv_deliver_wk);
135 * Destroy aggregation state here. It would be nice to wait for the
136 * driver to finish aggregation stop and then clean up, but for now
137 * drivers have to handle aggregation stop being requested, followed
138 * directly by station destruction.
140 for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
141 kfree(sta->ampdu_mlme.tid_start_tx[i]);
142 tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]);
143 if (!tid_tx)
144 continue;
145 ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending);
146 kfree(tid_tx);
150 static void cleanup_single_sta(struct sta_info *sta)
152 struct ieee80211_sub_if_data *sdata = sta->sdata;
153 struct ieee80211_local *local = sdata->local;
155 __cleanup_single_sta(sta);
156 sta_info_free(local, sta);
159 struct rhlist_head *sta_info_hash_lookup(struct ieee80211_local *local,
160 const u8 *addr)
162 return rhltable_lookup(&local->sta_hash, addr, sta_rht_params);
165 /* protected by RCU */
166 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata,
167 const u8 *addr)
169 struct ieee80211_local *local = sdata->local;
170 struct rhlist_head *tmp;
171 struct sta_info *sta;
173 rcu_read_lock();
174 for_each_sta_info(local, addr, sta, tmp) {
175 if (sta->sdata == sdata) {
176 rcu_read_unlock();
177 /* this is safe as the caller must already hold
178 * another rcu read section or the mutex
180 return sta;
183 rcu_read_unlock();
184 return NULL;
188 * Get sta info either from the specified interface
189 * or from one of its vlans
191 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata,
192 const u8 *addr)
194 struct ieee80211_local *local = sdata->local;
195 struct rhlist_head *tmp;
196 struct sta_info *sta;
198 rcu_read_lock();
199 for_each_sta_info(local, addr, sta, tmp) {
200 if (sta->sdata == sdata ||
201 (sta->sdata->bss && sta->sdata->bss == sdata->bss)) {
202 rcu_read_unlock();
203 /* this is safe as the caller must already hold
204 * another rcu read section or the mutex
206 return sta;
209 rcu_read_unlock();
210 return NULL;
213 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata,
214 int idx)
216 struct ieee80211_local *local = sdata->local;
217 struct sta_info *sta;
218 int i = 0;
220 list_for_each_entry_rcu(sta, &local->sta_list, list) {
221 if (sdata != sta->sdata)
222 continue;
223 if (i < idx) {
224 ++i;
225 continue;
227 return sta;
230 return NULL;
234 * sta_info_free - free STA
236 * @local: pointer to the global information
237 * @sta: STA info to free
239 * This function must undo everything done by sta_info_alloc()
240 * that may happen before sta_info_insert(). It may only be
241 * called when sta_info_insert() has not been attempted (and
242 * if that fails, the station is freed anyway.)
244 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta)
246 if (sta->rate_ctrl)
247 rate_control_free_sta(sta);
249 sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr);
251 if (sta->sta.txq[0])
252 kfree(to_txq_info(sta->sta.txq[0]));
253 kfree(rcu_dereference_raw(sta->sta.rates));
254 #ifdef CONFIG_MAC80211_MESH
255 kfree(sta->mesh);
256 #endif
257 free_percpu(sta->pcpu_rx_stats);
258 kfree(sta);
261 /* Caller must hold local->sta_mtx */
262 static int sta_info_hash_add(struct ieee80211_local *local,
263 struct sta_info *sta)
265 return rhltable_insert(&local->sta_hash, &sta->hash_node,
266 sta_rht_params);
269 static void sta_deliver_ps_frames(struct work_struct *wk)
271 struct sta_info *sta;
273 sta = container_of(wk, struct sta_info, drv_deliver_wk);
275 if (sta->dead)
276 return;
278 local_bh_disable();
279 if (!test_sta_flag(sta, WLAN_STA_PS_STA))
280 ieee80211_sta_ps_deliver_wakeup(sta);
281 else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL))
282 ieee80211_sta_ps_deliver_poll_response(sta);
283 else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD))
284 ieee80211_sta_ps_deliver_uapsd(sta);
285 local_bh_enable();
288 static int sta_prepare_rate_control(struct ieee80211_local *local,
289 struct sta_info *sta, gfp_t gfp)
291 if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL))
292 return 0;
294 sta->rate_ctrl = local->rate_ctrl;
295 sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl,
296 sta, gfp);
297 if (!sta->rate_ctrl_priv)
298 return -ENOMEM;
300 return 0;
303 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata,
304 const u8 *addr, gfp_t gfp)
306 struct ieee80211_local *local = sdata->local;
307 struct ieee80211_hw *hw = &local->hw;
308 struct sta_info *sta;
309 int i;
311 sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp);
312 if (!sta)
313 return NULL;
315 if (ieee80211_hw_check(hw, USES_RSS)) {
316 sta->pcpu_rx_stats =
317 alloc_percpu_gfp(struct ieee80211_sta_rx_stats, gfp);
318 if (!sta->pcpu_rx_stats)
319 goto free;
322 spin_lock_init(&sta->lock);
323 spin_lock_init(&sta->ps_lock);
324 INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames);
325 INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work);
326 mutex_init(&sta->ampdu_mlme.mtx);
327 #ifdef CONFIG_MAC80211_MESH
328 if (ieee80211_vif_is_mesh(&sdata->vif)) {
329 sta->mesh = kzalloc(sizeof(*sta->mesh), gfp);
330 if (!sta->mesh)
331 goto free;
332 sta->mesh->plink_sta = sta;
333 spin_lock_init(&sta->mesh->plink_lock);
334 if (ieee80211_vif_is_mesh(&sdata->vif) &&
335 !sdata->u.mesh.user_mpm)
336 timer_setup(&sta->mesh->plink_timer, mesh_plink_timer,
338 sta->mesh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE;
340 #endif
342 memcpy(sta->addr, addr, ETH_ALEN);
343 memcpy(sta->sta.addr, addr, ETH_ALEN);
344 sta->sta.max_rx_aggregation_subframes =
345 local->hw.max_rx_aggregation_subframes;
347 sta->local = local;
348 sta->sdata = sdata;
349 sta->rx_stats.last_rx = jiffies;
351 u64_stats_init(&sta->rx_stats.syncp);
353 sta->sta_state = IEEE80211_STA_NONE;
355 /* Mark TID as unreserved */
356 sta->reserved_tid = IEEE80211_TID_UNRESERVED;
358 sta->last_connected = ktime_get_seconds();
359 ewma_signal_init(&sta->rx_stats_avg.signal);
360 for (i = 0; i < ARRAY_SIZE(sta->rx_stats_avg.chain_signal); i++)
361 ewma_signal_init(&sta->rx_stats_avg.chain_signal[i]);
363 if (local->ops->wake_tx_queue) {
364 void *txq_data;
365 int size = sizeof(struct txq_info) +
366 ALIGN(hw->txq_data_size, sizeof(void *));
368 txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp);
369 if (!txq_data)
370 goto free;
372 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
373 struct txq_info *txq = txq_data + i * size;
375 ieee80211_txq_init(sdata, sta, txq, i);
379 if (sta_prepare_rate_control(local, sta, gfp))
380 goto free_txq;
382 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
383 skb_queue_head_init(&sta->ps_tx_buf[i]);
384 skb_queue_head_init(&sta->tx_filtered[i]);
387 for (i = 0; i < IEEE80211_NUM_TIDS; i++)
388 sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX);
390 sta->sta.smps_mode = IEEE80211_SMPS_OFF;
391 if (sdata->vif.type == NL80211_IFTYPE_AP ||
392 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
393 struct ieee80211_supported_band *sband;
394 u8 smps;
396 sband = ieee80211_get_sband(sdata);
397 if (!sband)
398 goto free_txq;
400 smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >>
401 IEEE80211_HT_CAP_SM_PS_SHIFT;
403 * Assume that hostapd advertises our caps in the beacon and
404 * this is the known_smps_mode for a station that just assciated
406 switch (smps) {
407 case WLAN_HT_SMPS_CONTROL_DISABLED:
408 sta->known_smps_mode = IEEE80211_SMPS_OFF;
409 break;
410 case WLAN_HT_SMPS_CONTROL_STATIC:
411 sta->known_smps_mode = IEEE80211_SMPS_STATIC;
412 break;
413 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
414 sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC;
415 break;
416 default:
417 WARN_ON(1);
421 sta->sta.max_rc_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_BA;
423 sta->cparams.ce_threshold = CODEL_DISABLED_THRESHOLD;
424 sta->cparams.target = MS2TIME(20);
425 sta->cparams.interval = MS2TIME(100);
426 sta->cparams.ecn = true;
428 sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr);
430 return sta;
432 free_txq:
433 if (sta->sta.txq[0])
434 kfree(to_txq_info(sta->sta.txq[0]));
435 free:
436 free_percpu(sta->pcpu_rx_stats);
437 #ifdef CONFIG_MAC80211_MESH
438 kfree(sta->mesh);
439 #endif
440 kfree(sta);
441 return NULL;
444 static int sta_info_insert_check(struct sta_info *sta)
446 struct ieee80211_sub_if_data *sdata = sta->sdata;
449 * Can't be a WARN_ON because it can be triggered through a race:
450 * something inserts a STA (on one CPU) without holding the RTNL
451 * and another CPU turns off the net device.
453 if (unlikely(!ieee80211_sdata_running(sdata)))
454 return -ENETDOWN;
456 if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) ||
457 is_multicast_ether_addr(sta->sta.addr)))
458 return -EINVAL;
460 /* The RCU read lock is required by rhashtable due to
461 * asynchronous resize/rehash. We also require the mutex
462 * for correctness.
464 rcu_read_lock();
465 lockdep_assert_held(&sdata->local->sta_mtx);
466 if (ieee80211_hw_check(&sdata->local->hw, NEEDS_UNIQUE_STA_ADDR) &&
467 ieee80211_find_sta_by_ifaddr(&sdata->local->hw, sta->addr, NULL)) {
468 rcu_read_unlock();
469 return -ENOTUNIQ;
471 rcu_read_unlock();
473 return 0;
476 static int sta_info_insert_drv_state(struct ieee80211_local *local,
477 struct ieee80211_sub_if_data *sdata,
478 struct sta_info *sta)
480 enum ieee80211_sta_state state;
481 int err = 0;
483 for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) {
484 err = drv_sta_state(local, sdata, sta, state, state + 1);
485 if (err)
486 break;
489 if (!err) {
491 * Drivers using legacy sta_add/sta_remove callbacks only
492 * get uploaded set to true after sta_add is called.
494 if (!local->ops->sta_add)
495 sta->uploaded = true;
496 return 0;
499 if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
500 sdata_info(sdata,
501 "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n",
502 sta->sta.addr, state + 1, err);
503 err = 0;
506 /* unwind on error */
507 for (; state > IEEE80211_STA_NOTEXIST; state--)
508 WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1));
510 return err;
513 static void
514 ieee80211_recalc_p2p_go_ps_allowed(struct ieee80211_sub_if_data *sdata)
516 struct ieee80211_local *local = sdata->local;
517 bool allow_p2p_go_ps = sdata->vif.p2p;
518 struct sta_info *sta;
520 rcu_read_lock();
521 list_for_each_entry_rcu(sta, &local->sta_list, list) {
522 if (sdata != sta->sdata ||
523 !test_sta_flag(sta, WLAN_STA_ASSOC))
524 continue;
525 if (!sta->sta.support_p2p_ps) {
526 allow_p2p_go_ps = false;
527 break;
530 rcu_read_unlock();
532 if (allow_p2p_go_ps != sdata->vif.bss_conf.allow_p2p_go_ps) {
533 sdata->vif.bss_conf.allow_p2p_go_ps = allow_p2p_go_ps;
534 ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_P2P_PS);
539 * should be called with sta_mtx locked
540 * this function replaces the mutex lock
541 * with a RCU lock
543 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU)
545 struct ieee80211_local *local = sta->local;
546 struct ieee80211_sub_if_data *sdata = sta->sdata;
547 struct station_info *sinfo = NULL;
548 int err = 0;
550 lockdep_assert_held(&local->sta_mtx);
552 /* check if STA exists already */
553 if (sta_info_get_bss(sdata, sta->sta.addr)) {
554 err = -EEXIST;
555 goto out_err;
558 sinfo = kzalloc(sizeof(struct station_info), GFP_KERNEL);
559 if (!sinfo) {
560 err = -ENOMEM;
561 goto out_err;
564 local->num_sta++;
565 local->sta_generation++;
566 smp_mb();
568 /* simplify things and don't accept BA sessions yet */
569 set_sta_flag(sta, WLAN_STA_BLOCK_BA);
571 /* make the station visible */
572 err = sta_info_hash_add(local, sta);
573 if (err)
574 goto out_drop_sta;
576 list_add_tail_rcu(&sta->list, &local->sta_list);
578 /* notify driver */
579 err = sta_info_insert_drv_state(local, sdata, sta);
580 if (err)
581 goto out_remove;
583 set_sta_flag(sta, WLAN_STA_INSERTED);
585 if (sta->sta_state >= IEEE80211_STA_ASSOC) {
586 ieee80211_recalc_min_chandef(sta->sdata);
587 if (!sta->sta.support_p2p_ps)
588 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
591 /* accept BA sessions now */
592 clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
594 ieee80211_sta_debugfs_add(sta);
595 rate_control_add_sta_debugfs(sta);
597 sinfo->generation = local->sta_generation;
598 cfg80211_new_sta(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
599 kfree(sinfo);
601 sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr);
603 /* move reference to rcu-protected */
604 rcu_read_lock();
605 mutex_unlock(&local->sta_mtx);
607 if (ieee80211_vif_is_mesh(&sdata->vif))
608 mesh_accept_plinks_update(sdata);
610 return 0;
611 out_remove:
612 sta_info_hash_del(local, sta);
613 list_del_rcu(&sta->list);
614 out_drop_sta:
615 local->num_sta--;
616 synchronize_net();
617 __cleanup_single_sta(sta);
618 out_err:
619 mutex_unlock(&local->sta_mtx);
620 kfree(sinfo);
621 rcu_read_lock();
622 return err;
625 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU)
627 struct ieee80211_local *local = sta->local;
628 int err;
630 might_sleep();
632 mutex_lock(&local->sta_mtx);
634 err = sta_info_insert_check(sta);
635 if (err) {
636 mutex_unlock(&local->sta_mtx);
637 rcu_read_lock();
638 goto out_free;
641 err = sta_info_insert_finish(sta);
642 if (err)
643 goto out_free;
645 return 0;
646 out_free:
647 sta_info_free(local, sta);
648 return err;
651 int sta_info_insert(struct sta_info *sta)
653 int err = sta_info_insert_rcu(sta);
655 rcu_read_unlock();
657 return err;
660 static inline void __bss_tim_set(u8 *tim, u16 id)
663 * This format has been mandated by the IEEE specifications,
664 * so this line may not be changed to use the __set_bit() format.
666 tim[id / 8] |= (1 << (id % 8));
669 static inline void __bss_tim_clear(u8 *tim, u16 id)
672 * This format has been mandated by the IEEE specifications,
673 * so this line may not be changed to use the __clear_bit() format.
675 tim[id / 8] &= ~(1 << (id % 8));
678 static inline bool __bss_tim_get(u8 *tim, u16 id)
681 * This format has been mandated by the IEEE specifications,
682 * so this line may not be changed to use the test_bit() format.
684 return tim[id / 8] & (1 << (id % 8));
687 static unsigned long ieee80211_tids_for_ac(int ac)
689 /* If we ever support TIDs > 7, this obviously needs to be adjusted */
690 switch (ac) {
691 case IEEE80211_AC_VO:
692 return BIT(6) | BIT(7);
693 case IEEE80211_AC_VI:
694 return BIT(4) | BIT(5);
695 case IEEE80211_AC_BE:
696 return BIT(0) | BIT(3);
697 case IEEE80211_AC_BK:
698 return BIT(1) | BIT(2);
699 default:
700 WARN_ON(1);
701 return 0;
705 static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending)
707 struct ieee80211_local *local = sta->local;
708 struct ps_data *ps;
709 bool indicate_tim = false;
710 u8 ignore_for_tim = sta->sta.uapsd_queues;
711 int ac;
712 u16 id = sta->sta.aid;
714 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
715 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
716 if (WARN_ON_ONCE(!sta->sdata->bss))
717 return;
719 ps = &sta->sdata->bss->ps;
720 #ifdef CONFIG_MAC80211_MESH
721 } else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) {
722 ps = &sta->sdata->u.mesh.ps;
723 #endif
724 } else {
725 return;
728 /* No need to do anything if the driver does all */
729 if (ieee80211_hw_check(&local->hw, AP_LINK_PS) && !local->ops->set_tim)
730 return;
732 if (sta->dead)
733 goto done;
736 * If all ACs are delivery-enabled then we should build
737 * the TIM bit for all ACs anyway; if only some are then
738 * we ignore those and build the TIM bit using only the
739 * non-enabled ones.
741 if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1)
742 ignore_for_tim = 0;
744 if (ignore_pending)
745 ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1;
747 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
748 unsigned long tids;
750 if (ignore_for_tim & ieee80211_ac_to_qos_mask[ac])
751 continue;
753 indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) ||
754 !skb_queue_empty(&sta->ps_tx_buf[ac]);
755 if (indicate_tim)
756 break;
758 tids = ieee80211_tids_for_ac(ac);
760 indicate_tim |=
761 sta->driver_buffered_tids & tids;
762 indicate_tim |=
763 sta->txq_buffered_tids & tids;
766 done:
767 spin_lock_bh(&local->tim_lock);
769 if (indicate_tim == __bss_tim_get(ps->tim, id))
770 goto out_unlock;
772 if (indicate_tim)
773 __bss_tim_set(ps->tim, id);
774 else
775 __bss_tim_clear(ps->tim, id);
777 if (local->ops->set_tim && !WARN_ON(sta->dead)) {
778 local->tim_in_locked_section = true;
779 drv_set_tim(local, &sta->sta, indicate_tim);
780 local->tim_in_locked_section = false;
783 out_unlock:
784 spin_unlock_bh(&local->tim_lock);
787 void sta_info_recalc_tim(struct sta_info *sta)
789 __sta_info_recalc_tim(sta, false);
792 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb)
794 struct ieee80211_tx_info *info;
795 int timeout;
797 if (!skb)
798 return false;
800 info = IEEE80211_SKB_CB(skb);
802 /* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */
803 timeout = (sta->listen_interval *
804 sta->sdata->vif.bss_conf.beacon_int *
805 32 / 15625) * HZ;
806 if (timeout < STA_TX_BUFFER_EXPIRE)
807 timeout = STA_TX_BUFFER_EXPIRE;
808 return time_after(jiffies, info->control.jiffies + timeout);
812 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local,
813 struct sta_info *sta, int ac)
815 unsigned long flags;
816 struct sk_buff *skb;
819 * First check for frames that should expire on the filtered
820 * queue. Frames here were rejected by the driver and are on
821 * a separate queue to avoid reordering with normal PS-buffered
822 * frames. They also aren't accounted for right now in the
823 * total_ps_buffered counter.
825 for (;;) {
826 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
827 skb = skb_peek(&sta->tx_filtered[ac]);
828 if (sta_info_buffer_expired(sta, skb))
829 skb = __skb_dequeue(&sta->tx_filtered[ac]);
830 else
831 skb = NULL;
832 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
835 * Frames are queued in order, so if this one
836 * hasn't expired yet we can stop testing. If
837 * we actually reached the end of the queue we
838 * also need to stop, of course.
840 if (!skb)
841 break;
842 ieee80211_free_txskb(&local->hw, skb);
846 * Now also check the normal PS-buffered queue, this will
847 * only find something if the filtered queue was emptied
848 * since the filtered frames are all before the normal PS
849 * buffered frames.
851 for (;;) {
852 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
853 skb = skb_peek(&sta->ps_tx_buf[ac]);
854 if (sta_info_buffer_expired(sta, skb))
855 skb = __skb_dequeue(&sta->ps_tx_buf[ac]);
856 else
857 skb = NULL;
858 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
861 * frames are queued in order, so if this one
862 * hasn't expired yet (or we reached the end of
863 * the queue) we can stop testing
865 if (!skb)
866 break;
868 local->total_ps_buffered--;
869 ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n",
870 sta->sta.addr);
871 ieee80211_free_txskb(&local->hw, skb);
875 * Finally, recalculate the TIM bit for this station -- it might
876 * now be clear because the station was too slow to retrieve its
877 * frames.
879 sta_info_recalc_tim(sta);
882 * Return whether there are any frames still buffered, this is
883 * used to check whether the cleanup timer still needs to run,
884 * if there are no frames we don't need to rearm the timer.
886 return !(skb_queue_empty(&sta->ps_tx_buf[ac]) &&
887 skb_queue_empty(&sta->tx_filtered[ac]));
890 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local,
891 struct sta_info *sta)
893 bool have_buffered = false;
894 int ac;
896 /* This is only necessary for stations on BSS/MBSS interfaces */
897 if (!sta->sdata->bss &&
898 !ieee80211_vif_is_mesh(&sta->sdata->vif))
899 return false;
901 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
902 have_buffered |=
903 sta_info_cleanup_expire_buffered_ac(local, sta, ac);
905 return have_buffered;
908 static int __must_check __sta_info_destroy_part1(struct sta_info *sta)
910 struct ieee80211_local *local;
911 struct ieee80211_sub_if_data *sdata;
912 int ret;
914 might_sleep();
916 if (!sta)
917 return -ENOENT;
919 local = sta->local;
920 sdata = sta->sdata;
922 lockdep_assert_held(&local->sta_mtx);
925 * Before removing the station from the driver and
926 * rate control, it might still start new aggregation
927 * sessions -- block that to make sure the tear-down
928 * will be sufficient.
930 set_sta_flag(sta, WLAN_STA_BLOCK_BA);
931 ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA);
934 * Before removing the station from the driver there might be pending
935 * rx frames on RSS queues sent prior to the disassociation - wait for
936 * all such frames to be processed.
938 drv_sync_rx_queues(local, sta);
940 ret = sta_info_hash_del(local, sta);
941 if (WARN_ON(ret))
942 return ret;
945 * for TDLS peers, make sure to return to the base channel before
946 * removal.
948 if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) {
949 drv_tdls_cancel_channel_switch(local, sdata, &sta->sta);
950 clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL);
953 list_del_rcu(&sta->list);
954 sta->removed = true;
956 drv_sta_pre_rcu_remove(local, sta->sdata, sta);
958 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
959 rcu_access_pointer(sdata->u.vlan.sta) == sta)
960 RCU_INIT_POINTER(sdata->u.vlan.sta, NULL);
962 return 0;
965 static void __sta_info_destroy_part2(struct sta_info *sta)
967 struct ieee80211_local *local = sta->local;
968 struct ieee80211_sub_if_data *sdata = sta->sdata;
969 struct station_info *sinfo;
970 int ret;
973 * NOTE: This assumes at least synchronize_net() was done
974 * after _part1 and before _part2!
977 might_sleep();
978 lockdep_assert_held(&local->sta_mtx);
980 /* now keys can no longer be reached */
981 ieee80211_free_sta_keys(local, sta);
983 /* disable TIM bit - last chance to tell driver */
984 __sta_info_recalc_tim(sta, true);
986 sta->dead = true;
988 local->num_sta--;
989 local->sta_generation++;
991 while (sta->sta_state > IEEE80211_STA_NONE) {
992 ret = sta_info_move_state(sta, sta->sta_state - 1);
993 if (ret) {
994 WARN_ON_ONCE(1);
995 break;
999 if (sta->uploaded) {
1000 ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE,
1001 IEEE80211_STA_NOTEXIST);
1002 WARN_ON_ONCE(ret != 0);
1005 sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr);
1007 sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL);
1008 if (sinfo)
1009 sta_set_sinfo(sta, sinfo);
1010 cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
1011 kfree(sinfo);
1013 rate_control_remove_sta_debugfs(sta);
1014 ieee80211_sta_debugfs_remove(sta);
1016 cleanup_single_sta(sta);
1019 int __must_check __sta_info_destroy(struct sta_info *sta)
1021 int err = __sta_info_destroy_part1(sta);
1023 if (err)
1024 return err;
1026 synchronize_net();
1028 __sta_info_destroy_part2(sta);
1030 return 0;
1033 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr)
1035 struct sta_info *sta;
1036 int ret;
1038 mutex_lock(&sdata->local->sta_mtx);
1039 sta = sta_info_get(sdata, addr);
1040 ret = __sta_info_destroy(sta);
1041 mutex_unlock(&sdata->local->sta_mtx);
1043 return ret;
1046 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata,
1047 const u8 *addr)
1049 struct sta_info *sta;
1050 int ret;
1052 mutex_lock(&sdata->local->sta_mtx);
1053 sta = sta_info_get_bss(sdata, addr);
1054 ret = __sta_info_destroy(sta);
1055 mutex_unlock(&sdata->local->sta_mtx);
1057 return ret;
1060 static void sta_info_cleanup(struct timer_list *t)
1062 struct ieee80211_local *local = from_timer(local, t, sta_cleanup);
1063 struct sta_info *sta;
1064 bool timer_needed = false;
1066 rcu_read_lock();
1067 list_for_each_entry_rcu(sta, &local->sta_list, list)
1068 if (sta_info_cleanup_expire_buffered(local, sta))
1069 timer_needed = true;
1070 rcu_read_unlock();
1072 if (local->quiescing)
1073 return;
1075 if (!timer_needed)
1076 return;
1078 mod_timer(&local->sta_cleanup,
1079 round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL));
1082 int sta_info_init(struct ieee80211_local *local)
1084 int err;
1086 err = rhltable_init(&local->sta_hash, &sta_rht_params);
1087 if (err)
1088 return err;
1090 spin_lock_init(&local->tim_lock);
1091 mutex_init(&local->sta_mtx);
1092 INIT_LIST_HEAD(&local->sta_list);
1094 timer_setup(&local->sta_cleanup, sta_info_cleanup, 0);
1095 return 0;
1098 void sta_info_stop(struct ieee80211_local *local)
1100 del_timer_sync(&local->sta_cleanup);
1101 rhltable_destroy(&local->sta_hash);
1105 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans)
1107 struct ieee80211_local *local = sdata->local;
1108 struct sta_info *sta, *tmp;
1109 LIST_HEAD(free_list);
1110 int ret = 0;
1112 might_sleep();
1114 WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP);
1115 WARN_ON(vlans && !sdata->bss);
1117 mutex_lock(&local->sta_mtx);
1118 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1119 if (sdata == sta->sdata ||
1120 (vlans && sdata->bss == sta->sdata->bss)) {
1121 if (!WARN_ON(__sta_info_destroy_part1(sta)))
1122 list_add(&sta->free_list, &free_list);
1123 ret++;
1127 if (!list_empty(&free_list)) {
1128 synchronize_net();
1129 list_for_each_entry_safe(sta, tmp, &free_list, free_list)
1130 __sta_info_destroy_part2(sta);
1132 mutex_unlock(&local->sta_mtx);
1134 return ret;
1137 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata,
1138 unsigned long exp_time)
1140 struct ieee80211_local *local = sdata->local;
1141 struct sta_info *sta, *tmp;
1143 mutex_lock(&local->sta_mtx);
1145 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1146 unsigned long last_active = ieee80211_sta_last_active(sta);
1148 if (sdata != sta->sdata)
1149 continue;
1151 if (time_is_before_jiffies(last_active + exp_time)) {
1152 sta_dbg(sta->sdata, "expiring inactive STA %pM\n",
1153 sta->sta.addr);
1155 if (ieee80211_vif_is_mesh(&sdata->vif) &&
1156 test_sta_flag(sta, WLAN_STA_PS_STA))
1157 atomic_dec(&sdata->u.mesh.ps.num_sta_ps);
1159 WARN_ON(__sta_info_destroy(sta));
1163 mutex_unlock(&local->sta_mtx);
1166 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw,
1167 const u8 *addr,
1168 const u8 *localaddr)
1170 struct ieee80211_local *local = hw_to_local(hw);
1171 struct rhlist_head *tmp;
1172 struct sta_info *sta;
1175 * Just return a random station if localaddr is NULL
1176 * ... first in list.
1178 for_each_sta_info(local, addr, sta, tmp) {
1179 if (localaddr &&
1180 !ether_addr_equal(sta->sdata->vif.addr, localaddr))
1181 continue;
1182 if (!sta->uploaded)
1183 return NULL;
1184 return &sta->sta;
1187 return NULL;
1189 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr);
1191 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif,
1192 const u8 *addr)
1194 struct sta_info *sta;
1196 if (!vif)
1197 return NULL;
1199 sta = sta_info_get_bss(vif_to_sdata(vif), addr);
1200 if (!sta)
1201 return NULL;
1203 if (!sta->uploaded)
1204 return NULL;
1206 return &sta->sta;
1208 EXPORT_SYMBOL(ieee80211_find_sta);
1210 /* powersave support code */
1211 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta)
1213 struct ieee80211_sub_if_data *sdata = sta->sdata;
1214 struct ieee80211_local *local = sdata->local;
1215 struct sk_buff_head pending;
1216 int filtered = 0, buffered = 0, ac, i;
1217 unsigned long flags;
1218 struct ps_data *ps;
1220 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1221 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
1222 u.ap);
1224 if (sdata->vif.type == NL80211_IFTYPE_AP)
1225 ps = &sdata->bss->ps;
1226 else if (ieee80211_vif_is_mesh(&sdata->vif))
1227 ps = &sdata->u.mesh.ps;
1228 else
1229 return;
1231 clear_sta_flag(sta, WLAN_STA_SP);
1233 BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1);
1234 sta->driver_buffered_tids = 0;
1235 sta->txq_buffered_tids = 0;
1237 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1238 drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta);
1240 if (sta->sta.txq[0]) {
1241 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
1242 if (!txq_has_queue(sta->sta.txq[i]))
1243 continue;
1245 drv_wake_tx_queue(local, to_txq_info(sta->sta.txq[i]));
1249 skb_queue_head_init(&pending);
1251 /* sync with ieee80211_tx_h_unicast_ps_buf */
1252 spin_lock(&sta->ps_lock);
1253 /* Send all buffered frames to the station */
1254 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1255 int count = skb_queue_len(&pending), tmp;
1257 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
1258 skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending);
1259 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
1260 tmp = skb_queue_len(&pending);
1261 filtered += tmp - count;
1262 count = tmp;
1264 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
1265 skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending);
1266 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
1267 tmp = skb_queue_len(&pending);
1268 buffered += tmp - count;
1271 ieee80211_add_pending_skbs(local, &pending);
1273 /* now we're no longer in the deliver code */
1274 clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
1276 /* The station might have polled and then woken up before we responded,
1277 * so clear these flags now to avoid them sticking around.
1279 clear_sta_flag(sta, WLAN_STA_PSPOLL);
1280 clear_sta_flag(sta, WLAN_STA_UAPSD);
1281 spin_unlock(&sta->ps_lock);
1283 atomic_dec(&ps->num_sta_ps);
1285 /* This station just woke up and isn't aware of our SMPS state */
1286 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
1287 !ieee80211_smps_is_restrictive(sta->known_smps_mode,
1288 sdata->smps_mode) &&
1289 sta->known_smps_mode != sdata->bss->req_smps &&
1290 sta_info_tx_streams(sta) != 1) {
1291 ht_dbg(sdata,
1292 "%pM just woke up and MIMO capable - update SMPS\n",
1293 sta->sta.addr);
1294 ieee80211_send_smps_action(sdata, sdata->bss->req_smps,
1295 sta->sta.addr,
1296 sdata->vif.bss_conf.bssid);
1299 local->total_ps_buffered -= buffered;
1301 sta_info_recalc_tim(sta);
1303 ps_dbg(sdata,
1304 "STA %pM aid %d sending %d filtered/%d PS frames since STA woke up\n",
1305 sta->sta.addr, sta->sta.aid, filtered, buffered);
1307 ieee80211_check_fast_xmit(sta);
1310 static void ieee80211_send_null_response(struct sta_info *sta, int tid,
1311 enum ieee80211_frame_release_type reason,
1312 bool call_driver, bool more_data)
1314 struct ieee80211_sub_if_data *sdata = sta->sdata;
1315 struct ieee80211_local *local = sdata->local;
1316 struct ieee80211_qos_hdr *nullfunc;
1317 struct sk_buff *skb;
1318 int size = sizeof(*nullfunc);
1319 __le16 fc;
1320 bool qos = sta->sta.wme;
1321 struct ieee80211_tx_info *info;
1322 struct ieee80211_chanctx_conf *chanctx_conf;
1324 if (qos) {
1325 fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1326 IEEE80211_STYPE_QOS_NULLFUNC |
1327 IEEE80211_FCTL_FROMDS);
1328 } else {
1329 size -= 2;
1330 fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1331 IEEE80211_STYPE_NULLFUNC |
1332 IEEE80211_FCTL_FROMDS);
1335 skb = dev_alloc_skb(local->hw.extra_tx_headroom + size);
1336 if (!skb)
1337 return;
1339 skb_reserve(skb, local->hw.extra_tx_headroom);
1341 nullfunc = skb_put(skb, size);
1342 nullfunc->frame_control = fc;
1343 nullfunc->duration_id = 0;
1344 memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN);
1345 memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN);
1346 memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN);
1347 nullfunc->seq_ctrl = 0;
1349 skb->priority = tid;
1350 skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]);
1351 if (qos) {
1352 nullfunc->qos_ctrl = cpu_to_le16(tid);
1354 if (reason == IEEE80211_FRAME_RELEASE_UAPSD) {
1355 nullfunc->qos_ctrl |=
1356 cpu_to_le16(IEEE80211_QOS_CTL_EOSP);
1357 if (more_data)
1358 nullfunc->frame_control |=
1359 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1363 info = IEEE80211_SKB_CB(skb);
1366 * Tell TX path to send this frame even though the
1367 * STA may still remain is PS mode after this frame
1368 * exchange. Also set EOSP to indicate this packet
1369 * ends the poll/service period.
1371 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER |
1372 IEEE80211_TX_STATUS_EOSP |
1373 IEEE80211_TX_CTL_REQ_TX_STATUS;
1375 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1377 if (call_driver)
1378 drv_allow_buffered_frames(local, sta, BIT(tid), 1,
1379 reason, false);
1381 skb->dev = sdata->dev;
1383 rcu_read_lock();
1384 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
1385 if (WARN_ON(!chanctx_conf)) {
1386 rcu_read_unlock();
1387 kfree_skb(skb);
1388 return;
1391 info->band = chanctx_conf->def.chan->band;
1392 ieee80211_xmit(sdata, sta, skb);
1393 rcu_read_unlock();
1396 static int find_highest_prio_tid(unsigned long tids)
1398 /* lower 3 TIDs aren't ordered perfectly */
1399 if (tids & 0xF8)
1400 return fls(tids) - 1;
1401 /* TID 0 is BE just like TID 3 */
1402 if (tids & BIT(0))
1403 return 0;
1404 return fls(tids) - 1;
1407 /* Indicates if the MORE_DATA bit should be set in the last
1408 * frame obtained by ieee80211_sta_ps_get_frames.
1409 * Note that driver_release_tids is relevant only if
1410 * reason = IEEE80211_FRAME_RELEASE_PSPOLL
1412 static bool
1413 ieee80211_sta_ps_more_data(struct sta_info *sta, u8 ignored_acs,
1414 enum ieee80211_frame_release_type reason,
1415 unsigned long driver_release_tids)
1417 int ac;
1419 /* If the driver has data on more than one TID then
1420 * certainly there's more data if we release just a
1421 * single frame now (from a single TID). This will
1422 * only happen for PS-Poll.
1424 if (reason == IEEE80211_FRAME_RELEASE_PSPOLL &&
1425 hweight16(driver_release_tids) > 1)
1426 return true;
1428 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1429 if (ignored_acs & ieee80211_ac_to_qos_mask[ac])
1430 continue;
1432 if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1433 !skb_queue_empty(&sta->ps_tx_buf[ac]))
1434 return true;
1437 return false;
1440 static void
1441 ieee80211_sta_ps_get_frames(struct sta_info *sta, int n_frames, u8 ignored_acs,
1442 enum ieee80211_frame_release_type reason,
1443 struct sk_buff_head *frames,
1444 unsigned long *driver_release_tids)
1446 struct ieee80211_sub_if_data *sdata = sta->sdata;
1447 struct ieee80211_local *local = sdata->local;
1448 int ac;
1450 /* Get response frame(s) and more data bit for the last one. */
1451 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1452 unsigned long tids;
1454 if (ignored_acs & ieee80211_ac_to_qos_mask[ac])
1455 continue;
1457 tids = ieee80211_tids_for_ac(ac);
1459 /* if we already have frames from software, then we can't also
1460 * release from hardware queues
1462 if (skb_queue_empty(frames)) {
1463 *driver_release_tids |=
1464 sta->driver_buffered_tids & tids;
1465 *driver_release_tids |= sta->txq_buffered_tids & tids;
1468 if (!*driver_release_tids) {
1469 struct sk_buff *skb;
1471 while (n_frames > 0) {
1472 skb = skb_dequeue(&sta->tx_filtered[ac]);
1473 if (!skb) {
1474 skb = skb_dequeue(
1475 &sta->ps_tx_buf[ac]);
1476 if (skb)
1477 local->total_ps_buffered--;
1479 if (!skb)
1480 break;
1481 n_frames--;
1482 __skb_queue_tail(frames, skb);
1486 /* If we have more frames buffered on this AC, then abort the
1487 * loop since we can't send more data from other ACs before
1488 * the buffered frames from this.
1490 if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1491 !skb_queue_empty(&sta->ps_tx_buf[ac]))
1492 break;
1496 static void
1497 ieee80211_sta_ps_deliver_response(struct sta_info *sta,
1498 int n_frames, u8 ignored_acs,
1499 enum ieee80211_frame_release_type reason)
1501 struct ieee80211_sub_if_data *sdata = sta->sdata;
1502 struct ieee80211_local *local = sdata->local;
1503 unsigned long driver_release_tids = 0;
1504 struct sk_buff_head frames;
1505 bool more_data;
1507 /* Service or PS-Poll period starts */
1508 set_sta_flag(sta, WLAN_STA_SP);
1510 __skb_queue_head_init(&frames);
1512 ieee80211_sta_ps_get_frames(sta, n_frames, ignored_acs, reason,
1513 &frames, &driver_release_tids);
1515 more_data = ieee80211_sta_ps_more_data(sta, ignored_acs, reason, driver_release_tids);
1517 if (driver_release_tids && reason == IEEE80211_FRAME_RELEASE_PSPOLL)
1518 driver_release_tids =
1519 BIT(find_highest_prio_tid(driver_release_tids));
1521 if (skb_queue_empty(&frames) && !driver_release_tids) {
1522 int tid, ac;
1525 * For PS-Poll, this can only happen due to a race condition
1526 * when we set the TIM bit and the station notices it, but
1527 * before it can poll for the frame we expire it.
1529 * For uAPSD, this is said in the standard (11.2.1.5 h):
1530 * At each unscheduled SP for a non-AP STA, the AP shall
1531 * attempt to transmit at least one MSDU or MMPDU, but no
1532 * more than the value specified in the Max SP Length field
1533 * in the QoS Capability element from delivery-enabled ACs,
1534 * that are destined for the non-AP STA.
1536 * Since we have no other MSDU/MMPDU, transmit a QoS null frame.
1539 /* This will evaluate to 1, 3, 5 or 7. */
1540 for (ac = IEEE80211_AC_VO; ac < IEEE80211_NUM_ACS; ac++)
1541 if (!(ignored_acs & ieee80211_ac_to_qos_mask[ac]))
1542 break;
1543 tid = 7 - 2 * ac;
1545 ieee80211_send_null_response(sta, tid, reason, true, false);
1546 } else if (!driver_release_tids) {
1547 struct sk_buff_head pending;
1548 struct sk_buff *skb;
1549 int num = 0;
1550 u16 tids = 0;
1551 bool need_null = false;
1553 skb_queue_head_init(&pending);
1555 while ((skb = __skb_dequeue(&frames))) {
1556 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1557 struct ieee80211_hdr *hdr = (void *) skb->data;
1558 u8 *qoshdr = NULL;
1560 num++;
1563 * Tell TX path to send this frame even though the
1564 * STA may still remain is PS mode after this frame
1565 * exchange.
1567 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER;
1568 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1571 * Use MoreData flag to indicate whether there are
1572 * more buffered frames for this STA
1574 if (more_data || !skb_queue_empty(&frames))
1575 hdr->frame_control |=
1576 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1577 else
1578 hdr->frame_control &=
1579 cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
1581 if (ieee80211_is_data_qos(hdr->frame_control) ||
1582 ieee80211_is_qos_nullfunc(hdr->frame_control))
1583 qoshdr = ieee80211_get_qos_ctl(hdr);
1585 tids |= BIT(skb->priority);
1587 __skb_queue_tail(&pending, skb);
1589 /* end service period after last frame or add one */
1590 if (!skb_queue_empty(&frames))
1591 continue;
1593 if (reason != IEEE80211_FRAME_RELEASE_UAPSD) {
1594 /* for PS-Poll, there's only one frame */
1595 info->flags |= IEEE80211_TX_STATUS_EOSP |
1596 IEEE80211_TX_CTL_REQ_TX_STATUS;
1597 break;
1600 /* For uAPSD, things are a bit more complicated. If the
1601 * last frame has a QoS header (i.e. is a QoS-data or
1602 * QoS-nulldata frame) then just set the EOSP bit there
1603 * and be done.
1604 * If the frame doesn't have a QoS header (which means
1605 * it should be a bufferable MMPDU) then we can't set
1606 * the EOSP bit in the QoS header; add a QoS-nulldata
1607 * frame to the list to send it after the MMPDU.
1609 * Note that this code is only in the mac80211-release
1610 * code path, we assume that the driver will not buffer
1611 * anything but QoS-data frames, or if it does, will
1612 * create the QoS-nulldata frame by itself if needed.
1614 * Cf. 802.11-2012 10.2.1.10 (c).
1616 if (qoshdr) {
1617 *qoshdr |= IEEE80211_QOS_CTL_EOSP;
1619 info->flags |= IEEE80211_TX_STATUS_EOSP |
1620 IEEE80211_TX_CTL_REQ_TX_STATUS;
1621 } else {
1622 /* The standard isn't completely clear on this
1623 * as it says the more-data bit should be set
1624 * if there are more BUs. The QoS-Null frame
1625 * we're about to send isn't buffered yet, we
1626 * only create it below, but let's pretend it
1627 * was buffered just in case some clients only
1628 * expect more-data=0 when eosp=1.
1630 hdr->frame_control |=
1631 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1632 need_null = true;
1633 num++;
1635 break;
1638 drv_allow_buffered_frames(local, sta, tids, num,
1639 reason, more_data);
1641 ieee80211_add_pending_skbs(local, &pending);
1643 if (need_null)
1644 ieee80211_send_null_response(
1645 sta, find_highest_prio_tid(tids),
1646 reason, false, false);
1648 sta_info_recalc_tim(sta);
1649 } else {
1650 int tid;
1653 * We need to release a frame that is buffered somewhere in the
1654 * driver ... it'll have to handle that.
1655 * Note that the driver also has to check the number of frames
1656 * on the TIDs we're releasing from - if there are more than
1657 * n_frames it has to set the more-data bit (if we didn't ask
1658 * it to set it anyway due to other buffered frames); if there
1659 * are fewer than n_frames it has to make sure to adjust that
1660 * to allow the service period to end properly.
1662 drv_release_buffered_frames(local, sta, driver_release_tids,
1663 n_frames, reason, more_data);
1666 * Note that we don't recalculate the TIM bit here as it would
1667 * most likely have no effect at all unless the driver told us
1668 * that the TID(s) became empty before returning here from the
1669 * release function.
1670 * Either way, however, when the driver tells us that the TID(s)
1671 * became empty or we find that a txq became empty, we'll do the
1672 * TIM recalculation.
1675 if (!sta->sta.txq[0])
1676 return;
1678 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1679 if (!(driver_release_tids & BIT(tid)) ||
1680 txq_has_queue(sta->sta.txq[tid]))
1681 continue;
1683 sta_info_recalc_tim(sta);
1684 break;
1689 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta)
1691 u8 ignore_for_response = sta->sta.uapsd_queues;
1694 * If all ACs are delivery-enabled then we should reply
1695 * from any of them, if only some are enabled we reply
1696 * only from the non-enabled ones.
1698 if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1)
1699 ignore_for_response = 0;
1701 ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response,
1702 IEEE80211_FRAME_RELEASE_PSPOLL);
1705 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta)
1707 int n_frames = sta->sta.max_sp;
1708 u8 delivery_enabled = sta->sta.uapsd_queues;
1711 * If we ever grow support for TSPEC this might happen if
1712 * the TSPEC update from hostapd comes in between a trigger
1713 * frame setting WLAN_STA_UAPSD in the RX path and this
1714 * actually getting called.
1716 if (!delivery_enabled)
1717 return;
1719 switch (sta->sta.max_sp) {
1720 case 1:
1721 n_frames = 2;
1722 break;
1723 case 2:
1724 n_frames = 4;
1725 break;
1726 case 3:
1727 n_frames = 6;
1728 break;
1729 case 0:
1730 /* XXX: what is a good value? */
1731 n_frames = 128;
1732 break;
1735 ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled,
1736 IEEE80211_FRAME_RELEASE_UAPSD);
1739 void ieee80211_sta_block_awake(struct ieee80211_hw *hw,
1740 struct ieee80211_sta *pubsta, bool block)
1742 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1744 trace_api_sta_block_awake(sta->local, pubsta, block);
1746 if (block) {
1747 set_sta_flag(sta, WLAN_STA_PS_DRIVER);
1748 ieee80211_clear_fast_xmit(sta);
1749 return;
1752 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1753 return;
1755 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) {
1756 set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1757 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1758 ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1759 } else if (test_sta_flag(sta, WLAN_STA_PSPOLL) ||
1760 test_sta_flag(sta, WLAN_STA_UAPSD)) {
1761 /* must be asleep in this case */
1762 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1763 ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1764 } else {
1765 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1766 ieee80211_check_fast_xmit(sta);
1769 EXPORT_SYMBOL(ieee80211_sta_block_awake);
1771 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta)
1773 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1774 struct ieee80211_local *local = sta->local;
1776 trace_api_eosp(local, pubsta);
1778 clear_sta_flag(sta, WLAN_STA_SP);
1780 EXPORT_SYMBOL(ieee80211_sta_eosp);
1782 void ieee80211_send_eosp_nullfunc(struct ieee80211_sta *pubsta, int tid)
1784 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1785 enum ieee80211_frame_release_type reason;
1786 bool more_data;
1788 trace_api_send_eosp_nullfunc(sta->local, pubsta, tid);
1790 reason = IEEE80211_FRAME_RELEASE_UAPSD;
1791 more_data = ieee80211_sta_ps_more_data(sta, ~sta->sta.uapsd_queues,
1792 reason, 0);
1794 ieee80211_send_null_response(sta, tid, reason, false, more_data);
1796 EXPORT_SYMBOL(ieee80211_send_eosp_nullfunc);
1798 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta,
1799 u8 tid, bool buffered)
1801 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1803 if (WARN_ON(tid >= IEEE80211_NUM_TIDS))
1804 return;
1806 trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered);
1808 if (buffered)
1809 set_bit(tid, &sta->driver_buffered_tids);
1810 else
1811 clear_bit(tid, &sta->driver_buffered_tids);
1813 sta_info_recalc_tim(sta);
1815 EXPORT_SYMBOL(ieee80211_sta_set_buffered);
1817 int sta_info_move_state(struct sta_info *sta,
1818 enum ieee80211_sta_state new_state)
1820 might_sleep();
1822 if (sta->sta_state == new_state)
1823 return 0;
1825 /* check allowed transitions first */
1827 switch (new_state) {
1828 case IEEE80211_STA_NONE:
1829 if (sta->sta_state != IEEE80211_STA_AUTH)
1830 return -EINVAL;
1831 break;
1832 case IEEE80211_STA_AUTH:
1833 if (sta->sta_state != IEEE80211_STA_NONE &&
1834 sta->sta_state != IEEE80211_STA_ASSOC)
1835 return -EINVAL;
1836 break;
1837 case IEEE80211_STA_ASSOC:
1838 if (sta->sta_state != IEEE80211_STA_AUTH &&
1839 sta->sta_state != IEEE80211_STA_AUTHORIZED)
1840 return -EINVAL;
1841 break;
1842 case IEEE80211_STA_AUTHORIZED:
1843 if (sta->sta_state != IEEE80211_STA_ASSOC)
1844 return -EINVAL;
1845 break;
1846 default:
1847 WARN(1, "invalid state %d", new_state);
1848 return -EINVAL;
1851 sta_dbg(sta->sdata, "moving STA %pM to state %d\n",
1852 sta->sta.addr, new_state);
1855 * notify the driver before the actual changes so it can
1856 * fail the transition
1858 if (test_sta_flag(sta, WLAN_STA_INSERTED)) {
1859 int err = drv_sta_state(sta->local, sta->sdata, sta,
1860 sta->sta_state, new_state);
1861 if (err)
1862 return err;
1865 /* reflect the change in all state variables */
1867 switch (new_state) {
1868 case IEEE80211_STA_NONE:
1869 if (sta->sta_state == IEEE80211_STA_AUTH)
1870 clear_bit(WLAN_STA_AUTH, &sta->_flags);
1871 break;
1872 case IEEE80211_STA_AUTH:
1873 if (sta->sta_state == IEEE80211_STA_NONE) {
1874 set_bit(WLAN_STA_AUTH, &sta->_flags);
1875 } else if (sta->sta_state == IEEE80211_STA_ASSOC) {
1876 clear_bit(WLAN_STA_ASSOC, &sta->_flags);
1877 ieee80211_recalc_min_chandef(sta->sdata);
1878 if (!sta->sta.support_p2p_ps)
1879 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
1881 break;
1882 case IEEE80211_STA_ASSOC:
1883 if (sta->sta_state == IEEE80211_STA_AUTH) {
1884 set_bit(WLAN_STA_ASSOC, &sta->_flags);
1885 ieee80211_recalc_min_chandef(sta->sdata);
1886 if (!sta->sta.support_p2p_ps)
1887 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
1888 } else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) {
1889 ieee80211_vif_dec_num_mcast(sta->sdata);
1890 clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
1891 ieee80211_clear_fast_xmit(sta);
1892 ieee80211_clear_fast_rx(sta);
1894 break;
1895 case IEEE80211_STA_AUTHORIZED:
1896 if (sta->sta_state == IEEE80211_STA_ASSOC) {
1897 ieee80211_vif_inc_num_mcast(sta->sdata);
1898 set_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
1899 ieee80211_check_fast_xmit(sta);
1900 ieee80211_check_fast_rx(sta);
1902 break;
1903 default:
1904 break;
1907 sta->sta_state = new_state;
1909 return 0;
1912 u8 sta_info_tx_streams(struct sta_info *sta)
1914 struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap;
1915 u8 rx_streams;
1917 if (!sta->sta.ht_cap.ht_supported)
1918 return 1;
1920 if (sta->sta.vht_cap.vht_supported) {
1921 int i;
1922 u16 tx_mcs_map =
1923 le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map);
1925 for (i = 7; i >= 0; i--)
1926 if ((tx_mcs_map & (0x3 << (i * 2))) !=
1927 IEEE80211_VHT_MCS_NOT_SUPPORTED)
1928 return i + 1;
1931 if (ht_cap->mcs.rx_mask[3])
1932 rx_streams = 4;
1933 else if (ht_cap->mcs.rx_mask[2])
1934 rx_streams = 3;
1935 else if (ht_cap->mcs.rx_mask[1])
1936 rx_streams = 2;
1937 else
1938 rx_streams = 1;
1940 if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF))
1941 return rx_streams;
1943 return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK)
1944 >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1;
1947 static struct ieee80211_sta_rx_stats *
1948 sta_get_last_rx_stats(struct sta_info *sta)
1950 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
1951 struct ieee80211_local *local = sta->local;
1952 int cpu;
1954 if (!ieee80211_hw_check(&local->hw, USES_RSS))
1955 return stats;
1957 for_each_possible_cpu(cpu) {
1958 struct ieee80211_sta_rx_stats *cpustats;
1960 cpustats = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
1962 if (time_after(cpustats->last_rx, stats->last_rx))
1963 stats = cpustats;
1966 return stats;
1969 static void sta_stats_decode_rate(struct ieee80211_local *local, u16 rate,
1970 struct rate_info *rinfo)
1972 rinfo->bw = STA_STATS_GET(BW, rate);
1974 switch (STA_STATS_GET(TYPE, rate)) {
1975 case STA_STATS_RATE_TYPE_VHT:
1976 rinfo->flags = RATE_INFO_FLAGS_VHT_MCS;
1977 rinfo->mcs = STA_STATS_GET(VHT_MCS, rate);
1978 rinfo->nss = STA_STATS_GET(VHT_NSS, rate);
1979 if (STA_STATS_GET(SGI, rate))
1980 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
1981 break;
1982 case STA_STATS_RATE_TYPE_HT:
1983 rinfo->flags = RATE_INFO_FLAGS_MCS;
1984 rinfo->mcs = STA_STATS_GET(HT_MCS, rate);
1985 if (STA_STATS_GET(SGI, rate))
1986 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
1987 break;
1988 case STA_STATS_RATE_TYPE_LEGACY: {
1989 struct ieee80211_supported_band *sband;
1990 u16 brate;
1991 unsigned int shift;
1992 int band = STA_STATS_GET(LEGACY_BAND, rate);
1993 int rate_idx = STA_STATS_GET(LEGACY_IDX, rate);
1995 rinfo->flags = 0;
1996 sband = local->hw.wiphy->bands[band];
1997 brate = sband->bitrates[rate_idx].bitrate;
1998 if (rinfo->bw == RATE_INFO_BW_5)
1999 shift = 2;
2000 else if (rinfo->bw == RATE_INFO_BW_10)
2001 shift = 1;
2002 else
2003 shift = 0;
2004 rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift);
2005 break;
2010 static int sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo)
2012 u16 rate = READ_ONCE(sta_get_last_rx_stats(sta)->last_rate);
2014 if (rate == STA_STATS_RATE_INVALID)
2015 return -EINVAL;
2017 sta_stats_decode_rate(sta->local, rate, rinfo);
2018 return 0;
2021 static void sta_set_tidstats(struct sta_info *sta,
2022 struct cfg80211_tid_stats *tidstats,
2023 int tid)
2025 struct ieee80211_local *local = sta->local;
2027 if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) {
2028 unsigned int start;
2030 do {
2031 start = u64_stats_fetch_begin(&sta->rx_stats.syncp);
2032 tidstats->rx_msdu = sta->rx_stats.msdu[tid];
2033 } while (u64_stats_fetch_retry(&sta->rx_stats.syncp, start));
2035 tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU);
2038 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) {
2039 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU);
2040 tidstats->tx_msdu = sta->tx_stats.msdu[tid];
2043 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) &&
2044 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2045 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_RETRIES);
2046 tidstats->tx_msdu_retries = sta->status_stats.msdu_retries[tid];
2049 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) &&
2050 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2051 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_FAILED);
2052 tidstats->tx_msdu_failed = sta->status_stats.msdu_failed[tid];
2056 static inline u64 sta_get_stats_bytes(struct ieee80211_sta_rx_stats *rxstats)
2058 unsigned int start;
2059 u64 value;
2061 do {
2062 start = u64_stats_fetch_begin(&rxstats->syncp);
2063 value = rxstats->bytes;
2064 } while (u64_stats_fetch_retry(&rxstats->syncp, start));
2066 return value;
2069 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo)
2071 struct ieee80211_sub_if_data *sdata = sta->sdata;
2072 struct ieee80211_local *local = sdata->local;
2073 u32 thr = 0;
2074 int i, ac, cpu;
2075 struct ieee80211_sta_rx_stats *last_rxstats;
2077 last_rxstats = sta_get_last_rx_stats(sta);
2079 sinfo->generation = sdata->local->sta_generation;
2081 /* do before driver, so beacon filtering drivers have a
2082 * chance to e.g. just add the number of filtered beacons
2083 * (or just modify the value entirely, of course)
2085 if (sdata->vif.type == NL80211_IFTYPE_STATION)
2086 sinfo->rx_beacon = sdata->u.mgd.count_beacon_signal;
2088 drv_sta_statistics(local, sdata, &sta->sta, sinfo);
2090 sinfo->filled |= BIT(NL80211_STA_INFO_INACTIVE_TIME) |
2091 BIT(NL80211_STA_INFO_STA_FLAGS) |
2092 BIT(NL80211_STA_INFO_BSS_PARAM) |
2093 BIT(NL80211_STA_INFO_CONNECTED_TIME) |
2094 BIT(NL80211_STA_INFO_RX_DROP_MISC);
2096 if (sdata->vif.type == NL80211_IFTYPE_STATION) {
2097 sinfo->beacon_loss_count = sdata->u.mgd.beacon_loss_count;
2098 sinfo->filled |= BIT(NL80211_STA_INFO_BEACON_LOSS);
2101 sinfo->connected_time = ktime_get_seconds() - sta->last_connected;
2102 sinfo->inactive_time =
2103 jiffies_to_msecs(jiffies - ieee80211_sta_last_active(sta));
2105 if (!(sinfo->filled & (BIT(NL80211_STA_INFO_TX_BYTES64) |
2106 BIT(NL80211_STA_INFO_TX_BYTES)))) {
2107 sinfo->tx_bytes = 0;
2108 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2109 sinfo->tx_bytes += sta->tx_stats.bytes[ac];
2110 sinfo->filled |= BIT(NL80211_STA_INFO_TX_BYTES64);
2113 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_PACKETS))) {
2114 sinfo->tx_packets = 0;
2115 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2116 sinfo->tx_packets += sta->tx_stats.packets[ac];
2117 sinfo->filled |= BIT(NL80211_STA_INFO_TX_PACKETS);
2120 if (!(sinfo->filled & (BIT(NL80211_STA_INFO_RX_BYTES64) |
2121 BIT(NL80211_STA_INFO_RX_BYTES)))) {
2122 sinfo->rx_bytes += sta_get_stats_bytes(&sta->rx_stats);
2124 if (sta->pcpu_rx_stats) {
2125 for_each_possible_cpu(cpu) {
2126 struct ieee80211_sta_rx_stats *cpurxs;
2128 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2129 sinfo->rx_bytes += sta_get_stats_bytes(cpurxs);
2133 sinfo->filled |= BIT(NL80211_STA_INFO_RX_BYTES64);
2136 if (!(sinfo->filled & BIT(NL80211_STA_INFO_RX_PACKETS))) {
2137 sinfo->rx_packets = sta->rx_stats.packets;
2138 if (sta->pcpu_rx_stats) {
2139 for_each_possible_cpu(cpu) {
2140 struct ieee80211_sta_rx_stats *cpurxs;
2142 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2143 sinfo->rx_packets += cpurxs->packets;
2146 sinfo->filled |= BIT(NL80211_STA_INFO_RX_PACKETS);
2149 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_RETRIES))) {
2150 sinfo->tx_retries = sta->status_stats.retry_count;
2151 sinfo->filled |= BIT(NL80211_STA_INFO_TX_RETRIES);
2154 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_FAILED))) {
2155 sinfo->tx_failed = sta->status_stats.retry_failed;
2156 sinfo->filled |= BIT(NL80211_STA_INFO_TX_FAILED);
2159 sinfo->rx_dropped_misc = sta->rx_stats.dropped;
2160 if (sta->pcpu_rx_stats) {
2161 for_each_possible_cpu(cpu) {
2162 struct ieee80211_sta_rx_stats *cpurxs;
2164 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2165 sinfo->rx_dropped_misc += cpurxs->dropped;
2169 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2170 !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) {
2171 sinfo->filled |= BIT(NL80211_STA_INFO_BEACON_RX) |
2172 BIT(NL80211_STA_INFO_BEACON_SIGNAL_AVG);
2173 sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif);
2176 if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) ||
2177 ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) {
2178 if (!(sinfo->filled & BIT(NL80211_STA_INFO_SIGNAL))) {
2179 sinfo->signal = (s8)last_rxstats->last_signal;
2180 sinfo->filled |= BIT(NL80211_STA_INFO_SIGNAL);
2183 if (!sta->pcpu_rx_stats &&
2184 !(sinfo->filled & BIT(NL80211_STA_INFO_SIGNAL_AVG))) {
2185 sinfo->signal_avg =
2186 -ewma_signal_read(&sta->rx_stats_avg.signal);
2187 sinfo->filled |= BIT(NL80211_STA_INFO_SIGNAL_AVG);
2191 /* for the average - if pcpu_rx_stats isn't set - rxstats must point to
2192 * the sta->rx_stats struct, so the check here is fine with and without
2193 * pcpu statistics
2195 if (last_rxstats->chains &&
2196 !(sinfo->filled & (BIT(NL80211_STA_INFO_CHAIN_SIGNAL) |
2197 BIT(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) {
2198 sinfo->filled |= BIT(NL80211_STA_INFO_CHAIN_SIGNAL);
2199 if (!sta->pcpu_rx_stats)
2200 sinfo->filled |= BIT(NL80211_STA_INFO_CHAIN_SIGNAL_AVG);
2202 sinfo->chains = last_rxstats->chains;
2204 for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) {
2205 sinfo->chain_signal[i] =
2206 last_rxstats->chain_signal_last[i];
2207 sinfo->chain_signal_avg[i] =
2208 -ewma_signal_read(&sta->rx_stats_avg.chain_signal[i]);
2212 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_BITRATE))) {
2213 sta_set_rate_info_tx(sta, &sta->tx_stats.last_rate,
2214 &sinfo->txrate);
2215 sinfo->filled |= BIT(NL80211_STA_INFO_TX_BITRATE);
2218 if (!(sinfo->filled & BIT(NL80211_STA_INFO_RX_BITRATE))) {
2219 if (sta_set_rate_info_rx(sta, &sinfo->rxrate) == 0)
2220 sinfo->filled |= BIT(NL80211_STA_INFO_RX_BITRATE);
2223 sinfo->filled |= BIT(NL80211_STA_INFO_TID_STATS);
2224 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) {
2225 struct cfg80211_tid_stats *tidstats = &sinfo->pertid[i];
2227 sta_set_tidstats(sta, tidstats, i);
2230 if (ieee80211_vif_is_mesh(&sdata->vif)) {
2231 #ifdef CONFIG_MAC80211_MESH
2232 sinfo->filled |= BIT(NL80211_STA_INFO_LLID) |
2233 BIT(NL80211_STA_INFO_PLID) |
2234 BIT(NL80211_STA_INFO_PLINK_STATE) |
2235 BIT(NL80211_STA_INFO_LOCAL_PM) |
2236 BIT(NL80211_STA_INFO_PEER_PM) |
2237 BIT(NL80211_STA_INFO_NONPEER_PM);
2239 sinfo->llid = sta->mesh->llid;
2240 sinfo->plid = sta->mesh->plid;
2241 sinfo->plink_state = sta->mesh->plink_state;
2242 if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) {
2243 sinfo->filled |= BIT(NL80211_STA_INFO_T_OFFSET);
2244 sinfo->t_offset = sta->mesh->t_offset;
2246 sinfo->local_pm = sta->mesh->local_pm;
2247 sinfo->peer_pm = sta->mesh->peer_pm;
2248 sinfo->nonpeer_pm = sta->mesh->nonpeer_pm;
2249 #endif
2252 sinfo->bss_param.flags = 0;
2253 if (sdata->vif.bss_conf.use_cts_prot)
2254 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT;
2255 if (sdata->vif.bss_conf.use_short_preamble)
2256 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE;
2257 if (sdata->vif.bss_conf.use_short_slot)
2258 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME;
2259 sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period;
2260 sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int;
2262 sinfo->sta_flags.set = 0;
2263 sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) |
2264 BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) |
2265 BIT(NL80211_STA_FLAG_WME) |
2266 BIT(NL80211_STA_FLAG_MFP) |
2267 BIT(NL80211_STA_FLAG_AUTHENTICATED) |
2268 BIT(NL80211_STA_FLAG_ASSOCIATED) |
2269 BIT(NL80211_STA_FLAG_TDLS_PEER);
2270 if (test_sta_flag(sta, WLAN_STA_AUTHORIZED))
2271 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED);
2272 if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE))
2273 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE);
2274 if (sta->sta.wme)
2275 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME);
2276 if (test_sta_flag(sta, WLAN_STA_MFP))
2277 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP);
2278 if (test_sta_flag(sta, WLAN_STA_AUTH))
2279 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED);
2280 if (test_sta_flag(sta, WLAN_STA_ASSOC))
2281 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED);
2282 if (test_sta_flag(sta, WLAN_STA_TDLS_PEER))
2283 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER);
2285 thr = sta_get_expected_throughput(sta);
2287 if (thr != 0) {
2288 sinfo->filled |= BIT(NL80211_STA_INFO_EXPECTED_THROUGHPUT);
2289 sinfo->expected_throughput = thr;
2293 u32 sta_get_expected_throughput(struct sta_info *sta)
2295 struct ieee80211_sub_if_data *sdata = sta->sdata;
2296 struct ieee80211_local *local = sdata->local;
2297 struct rate_control_ref *ref = NULL;
2298 u32 thr = 0;
2300 if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL))
2301 ref = local->rate_ctrl;
2303 /* check if the driver has a SW RC implementation */
2304 if (ref && ref->ops->get_expected_throughput)
2305 thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv);
2306 else
2307 thr = drv_get_expected_throughput(local, sta);
2309 return thr;
2312 unsigned long ieee80211_sta_last_active(struct sta_info *sta)
2314 struct ieee80211_sta_rx_stats *stats = sta_get_last_rx_stats(sta);
2316 if (time_after(stats->last_rx, sta->status_stats.last_ack))
2317 return stats->last_rx;
2318 return sta->status_stats.last_ack;
2321 static void sta_update_codel_params(struct sta_info *sta, u32 thr)
2323 if (!sta->sdata->local->ops->wake_tx_queue)
2324 return;
2326 if (thr && thr < STA_SLOW_THRESHOLD * sta->local->num_sta) {
2327 sta->cparams.target = MS2TIME(50);
2328 sta->cparams.interval = MS2TIME(300);
2329 sta->cparams.ecn = false;
2330 } else {
2331 sta->cparams.target = MS2TIME(20);
2332 sta->cparams.interval = MS2TIME(100);
2333 sta->cparams.ecn = true;
2337 void ieee80211_sta_set_expected_throughput(struct ieee80211_sta *pubsta,
2338 u32 thr)
2340 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
2342 sta_update_codel_params(sta, thr);