signal/ptrace: Add force_sig_ptrace_errno_trap and use it where needed
[cris-mirror.git] / kernel / signal.c
blobe549174c0831374be6ddf7af6ea5b4907a9ae90c
1 /*
2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/user.h>
18 #include <linux/sched/debug.h>
19 #include <linux/sched/task.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/sched/cputime.h>
22 #include <linux/fs.h>
23 #include <linux/tty.h>
24 #include <linux/binfmts.h>
25 #include <linux/coredump.h>
26 #include <linux/security.h>
27 #include <linux/syscalls.h>
28 #include <linux/ptrace.h>
29 #include <linux/signal.h>
30 #include <linux/signalfd.h>
31 #include <linux/ratelimit.h>
32 #include <linux/tracehook.h>
33 #include <linux/capability.h>
34 #include <linux/freezer.h>
35 #include <linux/pid_namespace.h>
36 #include <linux/nsproxy.h>
37 #include <linux/user_namespace.h>
38 #include <linux/uprobes.h>
39 #include <linux/compat.h>
40 #include <linux/cn_proc.h>
41 #include <linux/compiler.h>
42 #include <linux/posix-timers.h>
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/signal.h>
47 #include <asm/param.h>
48 #include <linux/uaccess.h>
49 #include <asm/unistd.h>
50 #include <asm/siginfo.h>
51 #include <asm/cacheflush.h>
52 #include "audit.h" /* audit_signal_info() */
55 * SLAB caches for signal bits.
58 static struct kmem_cache *sigqueue_cachep;
60 int print_fatal_signals __read_mostly;
62 static void __user *sig_handler(struct task_struct *t, int sig)
64 return t->sighand->action[sig - 1].sa.sa_handler;
67 static int sig_handler_ignored(void __user *handler, int sig)
69 /* Is it explicitly or implicitly ignored? */
70 return handler == SIG_IGN ||
71 (handler == SIG_DFL && sig_kernel_ignore(sig));
74 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
76 void __user *handler;
78 handler = sig_handler(t, sig);
80 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
81 handler == SIG_DFL && !(force && sig_kernel_only(sig)))
82 return 1;
84 return sig_handler_ignored(handler, sig);
87 static int sig_ignored(struct task_struct *t, int sig, bool force)
90 * Blocked signals are never ignored, since the
91 * signal handler may change by the time it is
92 * unblocked.
94 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
95 return 0;
98 * Tracers may want to know about even ignored signal unless it
99 * is SIGKILL which can't be reported anyway but can be ignored
100 * by SIGNAL_UNKILLABLE task.
102 if (t->ptrace && sig != SIGKILL)
103 return 0;
105 return sig_task_ignored(t, sig, force);
109 * Re-calculate pending state from the set of locally pending
110 * signals, globally pending signals, and blocked signals.
112 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
114 unsigned long ready;
115 long i;
117 switch (_NSIG_WORDS) {
118 default:
119 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
120 ready |= signal->sig[i] &~ blocked->sig[i];
121 break;
123 case 4: ready = signal->sig[3] &~ blocked->sig[3];
124 ready |= signal->sig[2] &~ blocked->sig[2];
125 ready |= signal->sig[1] &~ blocked->sig[1];
126 ready |= signal->sig[0] &~ blocked->sig[0];
127 break;
129 case 2: ready = signal->sig[1] &~ blocked->sig[1];
130 ready |= signal->sig[0] &~ blocked->sig[0];
131 break;
133 case 1: ready = signal->sig[0] &~ blocked->sig[0];
135 return ready != 0;
138 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
140 static int recalc_sigpending_tsk(struct task_struct *t)
142 if ((t->jobctl & JOBCTL_PENDING_MASK) ||
143 PENDING(&t->pending, &t->blocked) ||
144 PENDING(&t->signal->shared_pending, &t->blocked)) {
145 set_tsk_thread_flag(t, TIF_SIGPENDING);
146 return 1;
149 * We must never clear the flag in another thread, or in current
150 * when it's possible the current syscall is returning -ERESTART*.
151 * So we don't clear it here, and only callers who know they should do.
153 return 0;
157 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
158 * This is superfluous when called on current, the wakeup is a harmless no-op.
160 void recalc_sigpending_and_wake(struct task_struct *t)
162 if (recalc_sigpending_tsk(t))
163 signal_wake_up(t, 0);
166 void recalc_sigpending(void)
168 if (!recalc_sigpending_tsk(current) && !freezing(current))
169 clear_thread_flag(TIF_SIGPENDING);
173 /* Given the mask, find the first available signal that should be serviced. */
175 #define SYNCHRONOUS_MASK \
176 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
177 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
179 int next_signal(struct sigpending *pending, sigset_t *mask)
181 unsigned long i, *s, *m, x;
182 int sig = 0;
184 s = pending->signal.sig;
185 m = mask->sig;
188 * Handle the first word specially: it contains the
189 * synchronous signals that need to be dequeued first.
191 x = *s &~ *m;
192 if (x) {
193 if (x & SYNCHRONOUS_MASK)
194 x &= SYNCHRONOUS_MASK;
195 sig = ffz(~x) + 1;
196 return sig;
199 switch (_NSIG_WORDS) {
200 default:
201 for (i = 1; i < _NSIG_WORDS; ++i) {
202 x = *++s &~ *++m;
203 if (!x)
204 continue;
205 sig = ffz(~x) + i*_NSIG_BPW + 1;
206 break;
208 break;
210 case 2:
211 x = s[1] &~ m[1];
212 if (!x)
213 break;
214 sig = ffz(~x) + _NSIG_BPW + 1;
215 break;
217 case 1:
218 /* Nothing to do */
219 break;
222 return sig;
225 static inline void print_dropped_signal(int sig)
227 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
229 if (!print_fatal_signals)
230 return;
232 if (!__ratelimit(&ratelimit_state))
233 return;
235 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
236 current->comm, current->pid, sig);
240 * task_set_jobctl_pending - set jobctl pending bits
241 * @task: target task
242 * @mask: pending bits to set
244 * Clear @mask from @task->jobctl. @mask must be subset of
245 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
246 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
247 * cleared. If @task is already being killed or exiting, this function
248 * becomes noop.
250 * CONTEXT:
251 * Must be called with @task->sighand->siglock held.
253 * RETURNS:
254 * %true if @mask is set, %false if made noop because @task was dying.
256 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
258 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
259 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
260 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
262 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
263 return false;
265 if (mask & JOBCTL_STOP_SIGMASK)
266 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
268 task->jobctl |= mask;
269 return true;
273 * task_clear_jobctl_trapping - clear jobctl trapping bit
274 * @task: target task
276 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
277 * Clear it and wake up the ptracer. Note that we don't need any further
278 * locking. @task->siglock guarantees that @task->parent points to the
279 * ptracer.
281 * CONTEXT:
282 * Must be called with @task->sighand->siglock held.
284 void task_clear_jobctl_trapping(struct task_struct *task)
286 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
287 task->jobctl &= ~JOBCTL_TRAPPING;
288 smp_mb(); /* advised by wake_up_bit() */
289 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
294 * task_clear_jobctl_pending - clear jobctl pending bits
295 * @task: target task
296 * @mask: pending bits to clear
298 * Clear @mask from @task->jobctl. @mask must be subset of
299 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
300 * STOP bits are cleared together.
302 * If clearing of @mask leaves no stop or trap pending, this function calls
303 * task_clear_jobctl_trapping().
305 * CONTEXT:
306 * Must be called with @task->sighand->siglock held.
308 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
310 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
312 if (mask & JOBCTL_STOP_PENDING)
313 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
315 task->jobctl &= ~mask;
317 if (!(task->jobctl & JOBCTL_PENDING_MASK))
318 task_clear_jobctl_trapping(task);
322 * task_participate_group_stop - participate in a group stop
323 * @task: task participating in a group stop
325 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
326 * Group stop states are cleared and the group stop count is consumed if
327 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
328 * stop, the appropriate %SIGNAL_* flags are set.
330 * CONTEXT:
331 * Must be called with @task->sighand->siglock held.
333 * RETURNS:
334 * %true if group stop completion should be notified to the parent, %false
335 * otherwise.
337 static bool task_participate_group_stop(struct task_struct *task)
339 struct signal_struct *sig = task->signal;
340 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
342 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
344 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
346 if (!consume)
347 return false;
349 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
350 sig->group_stop_count--;
353 * Tell the caller to notify completion iff we are entering into a
354 * fresh group stop. Read comment in do_signal_stop() for details.
356 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
357 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
358 return true;
360 return false;
364 * allocate a new signal queue record
365 * - this may be called without locks if and only if t == current, otherwise an
366 * appropriate lock must be held to stop the target task from exiting
368 static struct sigqueue *
369 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
371 struct sigqueue *q = NULL;
372 struct user_struct *user;
375 * Protect access to @t credentials. This can go away when all
376 * callers hold rcu read lock.
378 rcu_read_lock();
379 user = get_uid(__task_cred(t)->user);
380 atomic_inc(&user->sigpending);
381 rcu_read_unlock();
383 if (override_rlimit ||
384 atomic_read(&user->sigpending) <=
385 task_rlimit(t, RLIMIT_SIGPENDING)) {
386 q = kmem_cache_alloc(sigqueue_cachep, flags);
387 } else {
388 print_dropped_signal(sig);
391 if (unlikely(q == NULL)) {
392 atomic_dec(&user->sigpending);
393 free_uid(user);
394 } else {
395 INIT_LIST_HEAD(&q->list);
396 q->flags = 0;
397 q->user = user;
400 return q;
403 static void __sigqueue_free(struct sigqueue *q)
405 if (q->flags & SIGQUEUE_PREALLOC)
406 return;
407 atomic_dec(&q->user->sigpending);
408 free_uid(q->user);
409 kmem_cache_free(sigqueue_cachep, q);
412 void flush_sigqueue(struct sigpending *queue)
414 struct sigqueue *q;
416 sigemptyset(&queue->signal);
417 while (!list_empty(&queue->list)) {
418 q = list_entry(queue->list.next, struct sigqueue , list);
419 list_del_init(&q->list);
420 __sigqueue_free(q);
425 * Flush all pending signals for this kthread.
427 void flush_signals(struct task_struct *t)
429 unsigned long flags;
431 spin_lock_irqsave(&t->sighand->siglock, flags);
432 clear_tsk_thread_flag(t, TIF_SIGPENDING);
433 flush_sigqueue(&t->pending);
434 flush_sigqueue(&t->signal->shared_pending);
435 spin_unlock_irqrestore(&t->sighand->siglock, flags);
438 #ifdef CONFIG_POSIX_TIMERS
439 static void __flush_itimer_signals(struct sigpending *pending)
441 sigset_t signal, retain;
442 struct sigqueue *q, *n;
444 signal = pending->signal;
445 sigemptyset(&retain);
447 list_for_each_entry_safe(q, n, &pending->list, list) {
448 int sig = q->info.si_signo;
450 if (likely(q->info.si_code != SI_TIMER)) {
451 sigaddset(&retain, sig);
452 } else {
453 sigdelset(&signal, sig);
454 list_del_init(&q->list);
455 __sigqueue_free(q);
459 sigorsets(&pending->signal, &signal, &retain);
462 void flush_itimer_signals(void)
464 struct task_struct *tsk = current;
465 unsigned long flags;
467 spin_lock_irqsave(&tsk->sighand->siglock, flags);
468 __flush_itimer_signals(&tsk->pending);
469 __flush_itimer_signals(&tsk->signal->shared_pending);
470 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
472 #endif
474 void ignore_signals(struct task_struct *t)
476 int i;
478 for (i = 0; i < _NSIG; ++i)
479 t->sighand->action[i].sa.sa_handler = SIG_IGN;
481 flush_signals(t);
485 * Flush all handlers for a task.
488 void
489 flush_signal_handlers(struct task_struct *t, int force_default)
491 int i;
492 struct k_sigaction *ka = &t->sighand->action[0];
493 for (i = _NSIG ; i != 0 ; i--) {
494 if (force_default || ka->sa.sa_handler != SIG_IGN)
495 ka->sa.sa_handler = SIG_DFL;
496 ka->sa.sa_flags = 0;
497 #ifdef __ARCH_HAS_SA_RESTORER
498 ka->sa.sa_restorer = NULL;
499 #endif
500 sigemptyset(&ka->sa.sa_mask);
501 ka++;
505 int unhandled_signal(struct task_struct *tsk, int sig)
507 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
508 if (is_global_init(tsk))
509 return 1;
510 if (handler != SIG_IGN && handler != SIG_DFL)
511 return 0;
512 /* if ptraced, let the tracer determine */
513 return !tsk->ptrace;
516 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info,
517 bool *resched_timer)
519 struct sigqueue *q, *first = NULL;
522 * Collect the siginfo appropriate to this signal. Check if
523 * there is another siginfo for the same signal.
525 list_for_each_entry(q, &list->list, list) {
526 if (q->info.si_signo == sig) {
527 if (first)
528 goto still_pending;
529 first = q;
533 sigdelset(&list->signal, sig);
535 if (first) {
536 still_pending:
537 list_del_init(&first->list);
538 copy_siginfo(info, &first->info);
540 *resched_timer =
541 (first->flags & SIGQUEUE_PREALLOC) &&
542 (info->si_code == SI_TIMER) &&
543 (info->si_sys_private);
545 __sigqueue_free(first);
546 } else {
548 * Ok, it wasn't in the queue. This must be
549 * a fast-pathed signal or we must have been
550 * out of queue space. So zero out the info.
552 clear_siginfo(info);
553 info->si_signo = sig;
554 info->si_errno = 0;
555 info->si_code = SI_USER;
556 info->si_pid = 0;
557 info->si_uid = 0;
561 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
562 siginfo_t *info, bool *resched_timer)
564 int sig = next_signal(pending, mask);
566 if (sig)
567 collect_signal(sig, pending, info, resched_timer);
568 return sig;
572 * Dequeue a signal and return the element to the caller, which is
573 * expected to free it.
575 * All callers have to hold the siglock.
577 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
579 bool resched_timer = false;
580 int signr;
582 /* We only dequeue private signals from ourselves, we don't let
583 * signalfd steal them
585 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
586 if (!signr) {
587 signr = __dequeue_signal(&tsk->signal->shared_pending,
588 mask, info, &resched_timer);
589 #ifdef CONFIG_POSIX_TIMERS
591 * itimer signal ?
593 * itimers are process shared and we restart periodic
594 * itimers in the signal delivery path to prevent DoS
595 * attacks in the high resolution timer case. This is
596 * compliant with the old way of self-restarting
597 * itimers, as the SIGALRM is a legacy signal and only
598 * queued once. Changing the restart behaviour to
599 * restart the timer in the signal dequeue path is
600 * reducing the timer noise on heavy loaded !highres
601 * systems too.
603 if (unlikely(signr == SIGALRM)) {
604 struct hrtimer *tmr = &tsk->signal->real_timer;
606 if (!hrtimer_is_queued(tmr) &&
607 tsk->signal->it_real_incr != 0) {
608 hrtimer_forward(tmr, tmr->base->get_time(),
609 tsk->signal->it_real_incr);
610 hrtimer_restart(tmr);
613 #endif
616 recalc_sigpending();
617 if (!signr)
618 return 0;
620 if (unlikely(sig_kernel_stop(signr))) {
622 * Set a marker that we have dequeued a stop signal. Our
623 * caller might release the siglock and then the pending
624 * stop signal it is about to process is no longer in the
625 * pending bitmasks, but must still be cleared by a SIGCONT
626 * (and overruled by a SIGKILL). So those cases clear this
627 * shared flag after we've set it. Note that this flag may
628 * remain set after the signal we return is ignored or
629 * handled. That doesn't matter because its only purpose
630 * is to alert stop-signal processing code when another
631 * processor has come along and cleared the flag.
633 current->jobctl |= JOBCTL_STOP_DEQUEUED;
635 #ifdef CONFIG_POSIX_TIMERS
636 if (resched_timer) {
638 * Release the siglock to ensure proper locking order
639 * of timer locks outside of siglocks. Note, we leave
640 * irqs disabled here, since the posix-timers code is
641 * about to disable them again anyway.
643 spin_unlock(&tsk->sighand->siglock);
644 posixtimer_rearm(info);
645 spin_lock(&tsk->sighand->siglock);
647 /* Don't expose the si_sys_private value to userspace */
648 info->si_sys_private = 0;
650 #endif
651 return signr;
655 * Tell a process that it has a new active signal..
657 * NOTE! we rely on the previous spin_lock to
658 * lock interrupts for us! We can only be called with
659 * "siglock" held, and the local interrupt must
660 * have been disabled when that got acquired!
662 * No need to set need_resched since signal event passing
663 * goes through ->blocked
665 void signal_wake_up_state(struct task_struct *t, unsigned int state)
667 set_tsk_thread_flag(t, TIF_SIGPENDING);
669 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
670 * case. We don't check t->state here because there is a race with it
671 * executing another processor and just now entering stopped state.
672 * By using wake_up_state, we ensure the process will wake up and
673 * handle its death signal.
675 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
676 kick_process(t);
680 * Remove signals in mask from the pending set and queue.
681 * Returns 1 if any signals were found.
683 * All callers must be holding the siglock.
685 static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
687 struct sigqueue *q, *n;
688 sigset_t m;
690 sigandsets(&m, mask, &s->signal);
691 if (sigisemptyset(&m))
692 return 0;
694 sigandnsets(&s->signal, &s->signal, mask);
695 list_for_each_entry_safe(q, n, &s->list, list) {
696 if (sigismember(mask, q->info.si_signo)) {
697 list_del_init(&q->list);
698 __sigqueue_free(q);
701 return 1;
704 static inline int is_si_special(const struct siginfo *info)
706 return info <= SEND_SIG_FORCED;
709 static inline bool si_fromuser(const struct siginfo *info)
711 return info == SEND_SIG_NOINFO ||
712 (!is_si_special(info) && SI_FROMUSER(info));
716 * called with RCU read lock from check_kill_permission()
718 static int kill_ok_by_cred(struct task_struct *t)
720 const struct cred *cred = current_cred();
721 const struct cred *tcred = __task_cred(t);
723 if (uid_eq(cred->euid, tcred->suid) ||
724 uid_eq(cred->euid, tcred->uid) ||
725 uid_eq(cred->uid, tcred->suid) ||
726 uid_eq(cred->uid, tcred->uid))
727 return 1;
729 if (ns_capable(tcred->user_ns, CAP_KILL))
730 return 1;
732 return 0;
736 * Bad permissions for sending the signal
737 * - the caller must hold the RCU read lock
739 static int check_kill_permission(int sig, struct siginfo *info,
740 struct task_struct *t)
742 struct pid *sid;
743 int error;
745 if (!valid_signal(sig))
746 return -EINVAL;
748 if (!si_fromuser(info))
749 return 0;
751 error = audit_signal_info(sig, t); /* Let audit system see the signal */
752 if (error)
753 return error;
755 if (!same_thread_group(current, t) &&
756 !kill_ok_by_cred(t)) {
757 switch (sig) {
758 case SIGCONT:
759 sid = task_session(t);
761 * We don't return the error if sid == NULL. The
762 * task was unhashed, the caller must notice this.
764 if (!sid || sid == task_session(current))
765 break;
766 default:
767 return -EPERM;
771 return security_task_kill(t, info, sig, 0);
775 * ptrace_trap_notify - schedule trap to notify ptracer
776 * @t: tracee wanting to notify tracer
778 * This function schedules sticky ptrace trap which is cleared on the next
779 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
780 * ptracer.
782 * If @t is running, STOP trap will be taken. If trapped for STOP and
783 * ptracer is listening for events, tracee is woken up so that it can
784 * re-trap for the new event. If trapped otherwise, STOP trap will be
785 * eventually taken without returning to userland after the existing traps
786 * are finished by PTRACE_CONT.
788 * CONTEXT:
789 * Must be called with @task->sighand->siglock held.
791 static void ptrace_trap_notify(struct task_struct *t)
793 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
794 assert_spin_locked(&t->sighand->siglock);
796 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
797 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
801 * Handle magic process-wide effects of stop/continue signals. Unlike
802 * the signal actions, these happen immediately at signal-generation
803 * time regardless of blocking, ignoring, or handling. This does the
804 * actual continuing for SIGCONT, but not the actual stopping for stop
805 * signals. The process stop is done as a signal action for SIG_DFL.
807 * Returns true if the signal should be actually delivered, otherwise
808 * it should be dropped.
810 static bool prepare_signal(int sig, struct task_struct *p, bool force)
812 struct signal_struct *signal = p->signal;
813 struct task_struct *t;
814 sigset_t flush;
816 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
817 if (!(signal->flags & SIGNAL_GROUP_EXIT))
818 return sig == SIGKILL;
820 * The process is in the middle of dying, nothing to do.
822 } else if (sig_kernel_stop(sig)) {
824 * This is a stop signal. Remove SIGCONT from all queues.
826 siginitset(&flush, sigmask(SIGCONT));
827 flush_sigqueue_mask(&flush, &signal->shared_pending);
828 for_each_thread(p, t)
829 flush_sigqueue_mask(&flush, &t->pending);
830 } else if (sig == SIGCONT) {
831 unsigned int why;
833 * Remove all stop signals from all queues, wake all threads.
835 siginitset(&flush, SIG_KERNEL_STOP_MASK);
836 flush_sigqueue_mask(&flush, &signal->shared_pending);
837 for_each_thread(p, t) {
838 flush_sigqueue_mask(&flush, &t->pending);
839 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
840 if (likely(!(t->ptrace & PT_SEIZED)))
841 wake_up_state(t, __TASK_STOPPED);
842 else
843 ptrace_trap_notify(t);
847 * Notify the parent with CLD_CONTINUED if we were stopped.
849 * If we were in the middle of a group stop, we pretend it
850 * was already finished, and then continued. Since SIGCHLD
851 * doesn't queue we report only CLD_STOPPED, as if the next
852 * CLD_CONTINUED was dropped.
854 why = 0;
855 if (signal->flags & SIGNAL_STOP_STOPPED)
856 why |= SIGNAL_CLD_CONTINUED;
857 else if (signal->group_stop_count)
858 why |= SIGNAL_CLD_STOPPED;
860 if (why) {
862 * The first thread which returns from do_signal_stop()
863 * will take ->siglock, notice SIGNAL_CLD_MASK, and
864 * notify its parent. See get_signal_to_deliver().
866 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
867 signal->group_stop_count = 0;
868 signal->group_exit_code = 0;
872 return !sig_ignored(p, sig, force);
876 * Test if P wants to take SIG. After we've checked all threads with this,
877 * it's equivalent to finding no threads not blocking SIG. Any threads not
878 * blocking SIG were ruled out because they are not running and already
879 * have pending signals. Such threads will dequeue from the shared queue
880 * as soon as they're available, so putting the signal on the shared queue
881 * will be equivalent to sending it to one such thread.
883 static inline int wants_signal(int sig, struct task_struct *p)
885 if (sigismember(&p->blocked, sig))
886 return 0;
887 if (p->flags & PF_EXITING)
888 return 0;
889 if (sig == SIGKILL)
890 return 1;
891 if (task_is_stopped_or_traced(p))
892 return 0;
893 return task_curr(p) || !signal_pending(p);
896 static void complete_signal(int sig, struct task_struct *p, int group)
898 struct signal_struct *signal = p->signal;
899 struct task_struct *t;
902 * Now find a thread we can wake up to take the signal off the queue.
904 * If the main thread wants the signal, it gets first crack.
905 * Probably the least surprising to the average bear.
907 if (wants_signal(sig, p))
908 t = p;
909 else if (!group || thread_group_empty(p))
911 * There is just one thread and it does not need to be woken.
912 * It will dequeue unblocked signals before it runs again.
914 return;
915 else {
917 * Otherwise try to find a suitable thread.
919 t = signal->curr_target;
920 while (!wants_signal(sig, t)) {
921 t = next_thread(t);
922 if (t == signal->curr_target)
924 * No thread needs to be woken.
925 * Any eligible threads will see
926 * the signal in the queue soon.
928 return;
930 signal->curr_target = t;
934 * Found a killable thread. If the signal will be fatal,
935 * then start taking the whole group down immediately.
937 if (sig_fatal(p, sig) &&
938 !(signal->flags & SIGNAL_GROUP_EXIT) &&
939 !sigismember(&t->real_blocked, sig) &&
940 (sig == SIGKILL || !p->ptrace)) {
942 * This signal will be fatal to the whole group.
944 if (!sig_kernel_coredump(sig)) {
946 * Start a group exit and wake everybody up.
947 * This way we don't have other threads
948 * running and doing things after a slower
949 * thread has the fatal signal pending.
951 signal->flags = SIGNAL_GROUP_EXIT;
952 signal->group_exit_code = sig;
953 signal->group_stop_count = 0;
954 t = p;
955 do {
956 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
957 sigaddset(&t->pending.signal, SIGKILL);
958 signal_wake_up(t, 1);
959 } while_each_thread(p, t);
960 return;
965 * The signal is already in the shared-pending queue.
966 * Tell the chosen thread to wake up and dequeue it.
968 signal_wake_up(t, sig == SIGKILL);
969 return;
972 static inline int legacy_queue(struct sigpending *signals, int sig)
974 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
977 #ifdef CONFIG_USER_NS
978 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
980 if (current_user_ns() == task_cred_xxx(t, user_ns))
981 return;
983 if (SI_FROMKERNEL(info))
984 return;
986 rcu_read_lock();
987 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
988 make_kuid(current_user_ns(), info->si_uid));
989 rcu_read_unlock();
991 #else
992 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
994 return;
996 #endif
998 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
999 int group, int from_ancestor_ns)
1001 struct sigpending *pending;
1002 struct sigqueue *q;
1003 int override_rlimit;
1004 int ret = 0, result;
1006 assert_spin_locked(&t->sighand->siglock);
1008 result = TRACE_SIGNAL_IGNORED;
1009 if (!prepare_signal(sig, t,
1010 from_ancestor_ns || (info == SEND_SIG_FORCED)))
1011 goto ret;
1013 pending = group ? &t->signal->shared_pending : &t->pending;
1015 * Short-circuit ignored signals and support queuing
1016 * exactly one non-rt signal, so that we can get more
1017 * detailed information about the cause of the signal.
1019 result = TRACE_SIGNAL_ALREADY_PENDING;
1020 if (legacy_queue(pending, sig))
1021 goto ret;
1023 result = TRACE_SIGNAL_DELIVERED;
1025 * fast-pathed signals for kernel-internal things like SIGSTOP
1026 * or SIGKILL.
1028 if (info == SEND_SIG_FORCED)
1029 goto out_set;
1032 * Real-time signals must be queued if sent by sigqueue, or
1033 * some other real-time mechanism. It is implementation
1034 * defined whether kill() does so. We attempt to do so, on
1035 * the principle of least surprise, but since kill is not
1036 * allowed to fail with EAGAIN when low on memory we just
1037 * make sure at least one signal gets delivered and don't
1038 * pass on the info struct.
1040 if (sig < SIGRTMIN)
1041 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1042 else
1043 override_rlimit = 0;
1045 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1046 if (q) {
1047 list_add_tail(&q->list, &pending->list);
1048 switch ((unsigned long) info) {
1049 case (unsigned long) SEND_SIG_NOINFO:
1050 clear_siginfo(&q->info);
1051 q->info.si_signo = sig;
1052 q->info.si_errno = 0;
1053 q->info.si_code = SI_USER;
1054 q->info.si_pid = task_tgid_nr_ns(current,
1055 task_active_pid_ns(t));
1056 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1057 break;
1058 case (unsigned long) SEND_SIG_PRIV:
1059 clear_siginfo(&q->info);
1060 q->info.si_signo = sig;
1061 q->info.si_errno = 0;
1062 q->info.si_code = SI_KERNEL;
1063 q->info.si_pid = 0;
1064 q->info.si_uid = 0;
1065 break;
1066 default:
1067 copy_siginfo(&q->info, info);
1068 if (from_ancestor_ns)
1069 q->info.si_pid = 0;
1070 break;
1073 userns_fixup_signal_uid(&q->info, t);
1075 } else if (!is_si_special(info)) {
1076 if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1078 * Queue overflow, abort. We may abort if the
1079 * signal was rt and sent by user using something
1080 * other than kill().
1082 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1083 ret = -EAGAIN;
1084 goto ret;
1085 } else {
1087 * This is a silent loss of information. We still
1088 * send the signal, but the *info bits are lost.
1090 result = TRACE_SIGNAL_LOSE_INFO;
1094 out_set:
1095 signalfd_notify(t, sig);
1096 sigaddset(&pending->signal, sig);
1097 complete_signal(sig, t, group);
1098 ret:
1099 trace_signal_generate(sig, info, t, group, result);
1100 return ret;
1103 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1104 int group)
1106 int from_ancestor_ns = 0;
1108 #ifdef CONFIG_PID_NS
1109 from_ancestor_ns = si_fromuser(info) &&
1110 !task_pid_nr_ns(current, task_active_pid_ns(t));
1111 #endif
1113 return __send_signal(sig, info, t, group, from_ancestor_ns);
1116 static void print_fatal_signal(int signr)
1118 struct pt_regs *regs = signal_pt_regs();
1119 pr_info("potentially unexpected fatal signal %d.\n", signr);
1121 #if defined(__i386__) && !defined(__arch_um__)
1122 pr_info("code at %08lx: ", regs->ip);
1124 int i;
1125 for (i = 0; i < 16; i++) {
1126 unsigned char insn;
1128 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1129 break;
1130 pr_cont("%02x ", insn);
1133 pr_cont("\n");
1134 #endif
1135 preempt_disable();
1136 show_regs(regs);
1137 preempt_enable();
1140 static int __init setup_print_fatal_signals(char *str)
1142 get_option (&str, &print_fatal_signals);
1144 return 1;
1147 __setup("print-fatal-signals=", setup_print_fatal_signals);
1150 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1152 return send_signal(sig, info, p, 1);
1155 static int
1156 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1158 return send_signal(sig, info, t, 0);
1161 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1162 bool group)
1164 unsigned long flags;
1165 int ret = -ESRCH;
1167 if (lock_task_sighand(p, &flags)) {
1168 ret = send_signal(sig, info, p, group);
1169 unlock_task_sighand(p, &flags);
1172 return ret;
1176 * Force a signal that the process can't ignore: if necessary
1177 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1179 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1180 * since we do not want to have a signal handler that was blocked
1181 * be invoked when user space had explicitly blocked it.
1183 * We don't want to have recursive SIGSEGV's etc, for example,
1184 * that is why we also clear SIGNAL_UNKILLABLE.
1187 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1189 unsigned long int flags;
1190 int ret, blocked, ignored;
1191 struct k_sigaction *action;
1193 spin_lock_irqsave(&t->sighand->siglock, flags);
1194 action = &t->sighand->action[sig-1];
1195 ignored = action->sa.sa_handler == SIG_IGN;
1196 blocked = sigismember(&t->blocked, sig);
1197 if (blocked || ignored) {
1198 action->sa.sa_handler = SIG_DFL;
1199 if (blocked) {
1200 sigdelset(&t->blocked, sig);
1201 recalc_sigpending_and_wake(t);
1205 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1206 * debugging to leave init killable.
1208 if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1209 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1210 ret = specific_send_sig_info(sig, info, t);
1211 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1213 return ret;
1217 * Nuke all other threads in the group.
1219 int zap_other_threads(struct task_struct *p)
1221 struct task_struct *t = p;
1222 int count = 0;
1224 p->signal->group_stop_count = 0;
1226 while_each_thread(p, t) {
1227 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1228 count++;
1230 /* Don't bother with already dead threads */
1231 if (t->exit_state)
1232 continue;
1233 sigaddset(&t->pending.signal, SIGKILL);
1234 signal_wake_up(t, 1);
1237 return count;
1240 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1241 unsigned long *flags)
1243 struct sighand_struct *sighand;
1245 for (;;) {
1247 * Disable interrupts early to avoid deadlocks.
1248 * See rcu_read_unlock() comment header for details.
1250 local_irq_save(*flags);
1251 rcu_read_lock();
1252 sighand = rcu_dereference(tsk->sighand);
1253 if (unlikely(sighand == NULL)) {
1254 rcu_read_unlock();
1255 local_irq_restore(*flags);
1256 break;
1259 * This sighand can be already freed and even reused, but
1260 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1261 * initializes ->siglock: this slab can't go away, it has
1262 * the same object type, ->siglock can't be reinitialized.
1264 * We need to ensure that tsk->sighand is still the same
1265 * after we take the lock, we can race with de_thread() or
1266 * __exit_signal(). In the latter case the next iteration
1267 * must see ->sighand == NULL.
1269 spin_lock(&sighand->siglock);
1270 if (likely(sighand == tsk->sighand)) {
1271 rcu_read_unlock();
1272 break;
1274 spin_unlock(&sighand->siglock);
1275 rcu_read_unlock();
1276 local_irq_restore(*flags);
1279 return sighand;
1283 * send signal info to all the members of a group
1285 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1287 int ret;
1289 rcu_read_lock();
1290 ret = check_kill_permission(sig, info, p);
1291 rcu_read_unlock();
1293 if (!ret && sig)
1294 ret = do_send_sig_info(sig, info, p, true);
1296 return ret;
1300 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1301 * control characters do (^C, ^Z etc)
1302 * - the caller must hold at least a readlock on tasklist_lock
1304 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1306 struct task_struct *p = NULL;
1307 int retval, success;
1309 success = 0;
1310 retval = -ESRCH;
1311 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1312 int err = group_send_sig_info(sig, info, p);
1313 success |= !err;
1314 retval = err;
1315 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1316 return success ? 0 : retval;
1319 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1321 int error = -ESRCH;
1322 struct task_struct *p;
1324 for (;;) {
1325 rcu_read_lock();
1326 p = pid_task(pid, PIDTYPE_PID);
1327 if (p)
1328 error = group_send_sig_info(sig, info, p);
1329 rcu_read_unlock();
1330 if (likely(!p || error != -ESRCH))
1331 return error;
1334 * The task was unhashed in between, try again. If it
1335 * is dead, pid_task() will return NULL, if we race with
1336 * de_thread() it will find the new leader.
1341 static int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1343 int error;
1344 rcu_read_lock();
1345 error = kill_pid_info(sig, info, find_vpid(pid));
1346 rcu_read_unlock();
1347 return error;
1350 static int kill_as_cred_perm(const struct cred *cred,
1351 struct task_struct *target)
1353 const struct cred *pcred = __task_cred(target);
1354 if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1355 !uid_eq(cred->uid, pcred->suid) && !uid_eq(cred->uid, pcred->uid))
1356 return 0;
1357 return 1;
1360 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1361 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1362 const struct cred *cred, u32 secid)
1364 int ret = -EINVAL;
1365 struct task_struct *p;
1366 unsigned long flags;
1368 if (!valid_signal(sig))
1369 return ret;
1371 rcu_read_lock();
1372 p = pid_task(pid, PIDTYPE_PID);
1373 if (!p) {
1374 ret = -ESRCH;
1375 goto out_unlock;
1377 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1378 ret = -EPERM;
1379 goto out_unlock;
1381 ret = security_task_kill(p, info, sig, secid);
1382 if (ret)
1383 goto out_unlock;
1385 if (sig) {
1386 if (lock_task_sighand(p, &flags)) {
1387 ret = __send_signal(sig, info, p, 1, 0);
1388 unlock_task_sighand(p, &flags);
1389 } else
1390 ret = -ESRCH;
1392 out_unlock:
1393 rcu_read_unlock();
1394 return ret;
1396 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1399 * kill_something_info() interprets pid in interesting ways just like kill(2).
1401 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1402 * is probably wrong. Should make it like BSD or SYSV.
1405 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1407 int ret;
1409 if (pid > 0) {
1410 rcu_read_lock();
1411 ret = kill_pid_info(sig, info, find_vpid(pid));
1412 rcu_read_unlock();
1413 return ret;
1416 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */
1417 if (pid == INT_MIN)
1418 return -ESRCH;
1420 read_lock(&tasklist_lock);
1421 if (pid != -1) {
1422 ret = __kill_pgrp_info(sig, info,
1423 pid ? find_vpid(-pid) : task_pgrp(current));
1424 } else {
1425 int retval = 0, count = 0;
1426 struct task_struct * p;
1428 for_each_process(p) {
1429 if (task_pid_vnr(p) > 1 &&
1430 !same_thread_group(p, current)) {
1431 int err = group_send_sig_info(sig, info, p);
1432 ++count;
1433 if (err != -EPERM)
1434 retval = err;
1437 ret = count ? retval : -ESRCH;
1439 read_unlock(&tasklist_lock);
1441 return ret;
1445 * These are for backward compatibility with the rest of the kernel source.
1448 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1451 * Make sure legacy kernel users don't send in bad values
1452 * (normal paths check this in check_kill_permission).
1454 if (!valid_signal(sig))
1455 return -EINVAL;
1457 return do_send_sig_info(sig, info, p, false);
1460 #define __si_special(priv) \
1461 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1464 send_sig(int sig, struct task_struct *p, int priv)
1466 return send_sig_info(sig, __si_special(priv), p);
1469 void
1470 force_sig(int sig, struct task_struct *p)
1472 force_sig_info(sig, SEND_SIG_PRIV, p);
1476 * When things go south during signal handling, we
1477 * will force a SIGSEGV. And if the signal that caused
1478 * the problem was already a SIGSEGV, we'll want to
1479 * make sure we don't even try to deliver the signal..
1482 force_sigsegv(int sig, struct task_struct *p)
1484 if (sig == SIGSEGV) {
1485 unsigned long flags;
1486 spin_lock_irqsave(&p->sighand->siglock, flags);
1487 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1488 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1490 force_sig(SIGSEGV, p);
1491 return 0;
1494 int force_sig_fault(int sig, int code, void __user *addr
1495 ___ARCH_SI_TRAPNO(int trapno)
1496 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1497 , struct task_struct *t)
1499 struct siginfo info;
1501 clear_siginfo(&info);
1502 info.si_signo = sig;
1503 info.si_errno = 0;
1504 info.si_code = code;
1505 info.si_addr = addr;
1506 #ifdef __ARCH_SI_TRAPNO
1507 info.si_trapno = trapno;
1508 #endif
1509 #ifdef __ia64__
1510 info.si_imm = imm;
1511 info.si_flags = flags;
1512 info.si_isr = isr;
1513 #endif
1514 return force_sig_info(info.si_signo, &info, t);
1517 int send_sig_fault(int sig, int code, void __user *addr
1518 ___ARCH_SI_TRAPNO(int trapno)
1519 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1520 , struct task_struct *t)
1522 struct siginfo info;
1524 clear_siginfo(&info);
1525 info.si_signo = sig;
1526 info.si_errno = 0;
1527 info.si_code = code;
1528 info.si_addr = addr;
1529 #ifdef __ARCH_SI_TRAPNO
1530 info.si_trapno = trapno;
1531 #endif
1532 #ifdef __ia64__
1533 info.si_imm = imm;
1534 info.si_flags = flags;
1535 info.si_isr = isr;
1536 #endif
1537 return send_sig_info(info.si_signo, &info, t);
1540 #if defined(BUS_MCEERR_AO) && defined(BUS_MCEERR_AR)
1541 int force_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1543 struct siginfo info;
1545 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1546 clear_siginfo(&info);
1547 info.si_signo = SIGBUS;
1548 info.si_errno = 0;
1549 info.si_code = code;
1550 info.si_addr = addr;
1551 info.si_addr_lsb = lsb;
1552 return force_sig_info(info.si_signo, &info, t);
1555 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1557 struct siginfo info;
1559 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1560 clear_siginfo(&info);
1561 info.si_signo = SIGBUS;
1562 info.si_errno = 0;
1563 info.si_code = code;
1564 info.si_addr = addr;
1565 info.si_addr_lsb = lsb;
1566 return send_sig_info(info.si_signo, &info, t);
1568 EXPORT_SYMBOL(send_sig_mceerr);
1569 #endif
1571 #ifdef SEGV_BNDERR
1572 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1574 struct siginfo info;
1576 clear_siginfo(&info);
1577 info.si_signo = SIGSEGV;
1578 info.si_errno = 0;
1579 info.si_code = SEGV_BNDERR;
1580 info.si_addr = addr;
1581 info.si_lower = lower;
1582 info.si_upper = upper;
1583 return force_sig_info(info.si_signo, &info, current);
1585 #endif
1587 #ifdef SEGV_PKUERR
1588 int force_sig_pkuerr(void __user *addr, u32 pkey)
1590 struct siginfo info;
1592 clear_siginfo(&info);
1593 info.si_signo = SIGSEGV;
1594 info.si_errno = 0;
1595 info.si_code = SEGV_PKUERR;
1596 info.si_addr = addr;
1597 info.si_pkey = pkey;
1598 return force_sig_info(info.si_signo, &info, current);
1600 #endif
1602 /* For the crazy architectures that include trap information in
1603 * the errno field, instead of an actual errno value.
1605 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1607 struct siginfo info;
1609 clear_siginfo(&info);
1610 info.si_signo = SIGTRAP;
1611 info.si_errno = errno;
1612 info.si_code = TRAP_HWBKPT;
1613 info.si_addr = addr;
1614 return force_sig_info(info.si_signo, &info, current);
1617 int kill_pgrp(struct pid *pid, int sig, int priv)
1619 int ret;
1621 read_lock(&tasklist_lock);
1622 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1623 read_unlock(&tasklist_lock);
1625 return ret;
1627 EXPORT_SYMBOL(kill_pgrp);
1629 int kill_pid(struct pid *pid, int sig, int priv)
1631 return kill_pid_info(sig, __si_special(priv), pid);
1633 EXPORT_SYMBOL(kill_pid);
1636 * These functions support sending signals using preallocated sigqueue
1637 * structures. This is needed "because realtime applications cannot
1638 * afford to lose notifications of asynchronous events, like timer
1639 * expirations or I/O completions". In the case of POSIX Timers
1640 * we allocate the sigqueue structure from the timer_create. If this
1641 * allocation fails we are able to report the failure to the application
1642 * with an EAGAIN error.
1644 struct sigqueue *sigqueue_alloc(void)
1646 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1648 if (q)
1649 q->flags |= SIGQUEUE_PREALLOC;
1651 return q;
1654 void sigqueue_free(struct sigqueue *q)
1656 unsigned long flags;
1657 spinlock_t *lock = &current->sighand->siglock;
1659 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1661 * We must hold ->siglock while testing q->list
1662 * to serialize with collect_signal() or with
1663 * __exit_signal()->flush_sigqueue().
1665 spin_lock_irqsave(lock, flags);
1666 q->flags &= ~SIGQUEUE_PREALLOC;
1668 * If it is queued it will be freed when dequeued,
1669 * like the "regular" sigqueue.
1671 if (!list_empty(&q->list))
1672 q = NULL;
1673 spin_unlock_irqrestore(lock, flags);
1675 if (q)
1676 __sigqueue_free(q);
1679 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1681 int sig = q->info.si_signo;
1682 struct sigpending *pending;
1683 unsigned long flags;
1684 int ret, result;
1686 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1688 ret = -1;
1689 if (!likely(lock_task_sighand(t, &flags)))
1690 goto ret;
1692 ret = 1; /* the signal is ignored */
1693 result = TRACE_SIGNAL_IGNORED;
1694 if (!prepare_signal(sig, t, false))
1695 goto out;
1697 ret = 0;
1698 if (unlikely(!list_empty(&q->list))) {
1700 * If an SI_TIMER entry is already queue just increment
1701 * the overrun count.
1703 BUG_ON(q->info.si_code != SI_TIMER);
1704 q->info.si_overrun++;
1705 result = TRACE_SIGNAL_ALREADY_PENDING;
1706 goto out;
1708 q->info.si_overrun = 0;
1710 signalfd_notify(t, sig);
1711 pending = group ? &t->signal->shared_pending : &t->pending;
1712 list_add_tail(&q->list, &pending->list);
1713 sigaddset(&pending->signal, sig);
1714 complete_signal(sig, t, group);
1715 result = TRACE_SIGNAL_DELIVERED;
1716 out:
1717 trace_signal_generate(sig, &q->info, t, group, result);
1718 unlock_task_sighand(t, &flags);
1719 ret:
1720 return ret;
1724 * Let a parent know about the death of a child.
1725 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1727 * Returns true if our parent ignored us and so we've switched to
1728 * self-reaping.
1730 bool do_notify_parent(struct task_struct *tsk, int sig)
1732 struct siginfo info;
1733 unsigned long flags;
1734 struct sighand_struct *psig;
1735 bool autoreap = false;
1736 u64 utime, stime;
1738 BUG_ON(sig == -1);
1740 /* do_notify_parent_cldstop should have been called instead. */
1741 BUG_ON(task_is_stopped_or_traced(tsk));
1743 BUG_ON(!tsk->ptrace &&
1744 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1746 if (sig != SIGCHLD) {
1748 * This is only possible if parent == real_parent.
1749 * Check if it has changed security domain.
1751 if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1752 sig = SIGCHLD;
1755 clear_siginfo(&info);
1756 info.si_signo = sig;
1757 info.si_errno = 0;
1759 * We are under tasklist_lock here so our parent is tied to
1760 * us and cannot change.
1762 * task_active_pid_ns will always return the same pid namespace
1763 * until a task passes through release_task.
1765 * write_lock() currently calls preempt_disable() which is the
1766 * same as rcu_read_lock(), but according to Oleg, this is not
1767 * correct to rely on this
1769 rcu_read_lock();
1770 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1771 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1772 task_uid(tsk));
1773 rcu_read_unlock();
1775 task_cputime(tsk, &utime, &stime);
1776 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1777 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1779 info.si_status = tsk->exit_code & 0x7f;
1780 if (tsk->exit_code & 0x80)
1781 info.si_code = CLD_DUMPED;
1782 else if (tsk->exit_code & 0x7f)
1783 info.si_code = CLD_KILLED;
1784 else {
1785 info.si_code = CLD_EXITED;
1786 info.si_status = tsk->exit_code >> 8;
1789 psig = tsk->parent->sighand;
1790 spin_lock_irqsave(&psig->siglock, flags);
1791 if (!tsk->ptrace && sig == SIGCHLD &&
1792 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1793 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1795 * We are exiting and our parent doesn't care. POSIX.1
1796 * defines special semantics for setting SIGCHLD to SIG_IGN
1797 * or setting the SA_NOCLDWAIT flag: we should be reaped
1798 * automatically and not left for our parent's wait4 call.
1799 * Rather than having the parent do it as a magic kind of
1800 * signal handler, we just set this to tell do_exit that we
1801 * can be cleaned up without becoming a zombie. Note that
1802 * we still call __wake_up_parent in this case, because a
1803 * blocked sys_wait4 might now return -ECHILD.
1805 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1806 * is implementation-defined: we do (if you don't want
1807 * it, just use SIG_IGN instead).
1809 autoreap = true;
1810 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1811 sig = 0;
1813 if (valid_signal(sig) && sig)
1814 __group_send_sig_info(sig, &info, tsk->parent);
1815 __wake_up_parent(tsk, tsk->parent);
1816 spin_unlock_irqrestore(&psig->siglock, flags);
1818 return autoreap;
1822 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1823 * @tsk: task reporting the state change
1824 * @for_ptracer: the notification is for ptracer
1825 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1827 * Notify @tsk's parent that the stopped/continued state has changed. If
1828 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1829 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1831 * CONTEXT:
1832 * Must be called with tasklist_lock at least read locked.
1834 static void do_notify_parent_cldstop(struct task_struct *tsk,
1835 bool for_ptracer, int why)
1837 struct siginfo info;
1838 unsigned long flags;
1839 struct task_struct *parent;
1840 struct sighand_struct *sighand;
1841 u64 utime, stime;
1843 if (for_ptracer) {
1844 parent = tsk->parent;
1845 } else {
1846 tsk = tsk->group_leader;
1847 parent = tsk->real_parent;
1850 clear_siginfo(&info);
1851 info.si_signo = SIGCHLD;
1852 info.si_errno = 0;
1854 * see comment in do_notify_parent() about the following 4 lines
1856 rcu_read_lock();
1857 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1858 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1859 rcu_read_unlock();
1861 task_cputime(tsk, &utime, &stime);
1862 info.si_utime = nsec_to_clock_t(utime);
1863 info.si_stime = nsec_to_clock_t(stime);
1865 info.si_code = why;
1866 switch (why) {
1867 case CLD_CONTINUED:
1868 info.si_status = SIGCONT;
1869 break;
1870 case CLD_STOPPED:
1871 info.si_status = tsk->signal->group_exit_code & 0x7f;
1872 break;
1873 case CLD_TRAPPED:
1874 info.si_status = tsk->exit_code & 0x7f;
1875 break;
1876 default:
1877 BUG();
1880 sighand = parent->sighand;
1881 spin_lock_irqsave(&sighand->siglock, flags);
1882 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1883 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1884 __group_send_sig_info(SIGCHLD, &info, parent);
1886 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1888 __wake_up_parent(tsk, parent);
1889 spin_unlock_irqrestore(&sighand->siglock, flags);
1892 static inline int may_ptrace_stop(void)
1894 if (!likely(current->ptrace))
1895 return 0;
1897 * Are we in the middle of do_coredump?
1898 * If so and our tracer is also part of the coredump stopping
1899 * is a deadlock situation, and pointless because our tracer
1900 * is dead so don't allow us to stop.
1901 * If SIGKILL was already sent before the caller unlocked
1902 * ->siglock we must see ->core_state != NULL. Otherwise it
1903 * is safe to enter schedule().
1905 * This is almost outdated, a task with the pending SIGKILL can't
1906 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1907 * after SIGKILL was already dequeued.
1909 if (unlikely(current->mm->core_state) &&
1910 unlikely(current->mm == current->parent->mm))
1911 return 0;
1913 return 1;
1917 * Return non-zero if there is a SIGKILL that should be waking us up.
1918 * Called with the siglock held.
1920 static int sigkill_pending(struct task_struct *tsk)
1922 return sigismember(&tsk->pending.signal, SIGKILL) ||
1923 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1927 * This must be called with current->sighand->siglock held.
1929 * This should be the path for all ptrace stops.
1930 * We always set current->last_siginfo while stopped here.
1931 * That makes it a way to test a stopped process for
1932 * being ptrace-stopped vs being job-control-stopped.
1934 * If we actually decide not to stop at all because the tracer
1935 * is gone, we keep current->exit_code unless clear_code.
1937 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1938 __releases(&current->sighand->siglock)
1939 __acquires(&current->sighand->siglock)
1941 bool gstop_done = false;
1943 if (arch_ptrace_stop_needed(exit_code, info)) {
1945 * The arch code has something special to do before a
1946 * ptrace stop. This is allowed to block, e.g. for faults
1947 * on user stack pages. We can't keep the siglock while
1948 * calling arch_ptrace_stop, so we must release it now.
1949 * To preserve proper semantics, we must do this before
1950 * any signal bookkeeping like checking group_stop_count.
1951 * Meanwhile, a SIGKILL could come in before we retake the
1952 * siglock. That must prevent us from sleeping in TASK_TRACED.
1953 * So after regaining the lock, we must check for SIGKILL.
1955 spin_unlock_irq(&current->sighand->siglock);
1956 arch_ptrace_stop(exit_code, info);
1957 spin_lock_irq(&current->sighand->siglock);
1958 if (sigkill_pending(current))
1959 return;
1963 * We're committing to trapping. TRACED should be visible before
1964 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1965 * Also, transition to TRACED and updates to ->jobctl should be
1966 * atomic with respect to siglock and should be done after the arch
1967 * hook as siglock is released and regrabbed across it.
1969 set_current_state(TASK_TRACED);
1971 current->last_siginfo = info;
1972 current->exit_code = exit_code;
1975 * If @why is CLD_STOPPED, we're trapping to participate in a group
1976 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
1977 * across siglock relocks since INTERRUPT was scheduled, PENDING
1978 * could be clear now. We act as if SIGCONT is received after
1979 * TASK_TRACED is entered - ignore it.
1981 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1982 gstop_done = task_participate_group_stop(current);
1984 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1985 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1986 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1987 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1989 /* entering a trap, clear TRAPPING */
1990 task_clear_jobctl_trapping(current);
1992 spin_unlock_irq(&current->sighand->siglock);
1993 read_lock(&tasklist_lock);
1994 if (may_ptrace_stop()) {
1996 * Notify parents of the stop.
1998 * While ptraced, there are two parents - the ptracer and
1999 * the real_parent of the group_leader. The ptracer should
2000 * know about every stop while the real parent is only
2001 * interested in the completion of group stop. The states
2002 * for the two don't interact with each other. Notify
2003 * separately unless they're gonna be duplicates.
2005 do_notify_parent_cldstop(current, true, why);
2006 if (gstop_done && ptrace_reparented(current))
2007 do_notify_parent_cldstop(current, false, why);
2010 * Don't want to allow preemption here, because
2011 * sys_ptrace() needs this task to be inactive.
2013 * XXX: implement read_unlock_no_resched().
2015 preempt_disable();
2016 read_unlock(&tasklist_lock);
2017 preempt_enable_no_resched();
2018 freezable_schedule();
2019 } else {
2021 * By the time we got the lock, our tracer went away.
2022 * Don't drop the lock yet, another tracer may come.
2024 * If @gstop_done, the ptracer went away between group stop
2025 * completion and here. During detach, it would have set
2026 * JOBCTL_STOP_PENDING on us and we'll re-enter
2027 * TASK_STOPPED in do_signal_stop() on return, so notifying
2028 * the real parent of the group stop completion is enough.
2030 if (gstop_done)
2031 do_notify_parent_cldstop(current, false, why);
2033 /* tasklist protects us from ptrace_freeze_traced() */
2034 __set_current_state(TASK_RUNNING);
2035 if (clear_code)
2036 current->exit_code = 0;
2037 read_unlock(&tasklist_lock);
2041 * We are back. Now reacquire the siglock before touching
2042 * last_siginfo, so that we are sure to have synchronized with
2043 * any signal-sending on another CPU that wants to examine it.
2045 spin_lock_irq(&current->sighand->siglock);
2046 current->last_siginfo = NULL;
2048 /* LISTENING can be set only during STOP traps, clear it */
2049 current->jobctl &= ~JOBCTL_LISTENING;
2052 * Queued signals ignored us while we were stopped for tracing.
2053 * So check for any that we should take before resuming user mode.
2054 * This sets TIF_SIGPENDING, but never clears it.
2056 recalc_sigpending_tsk(current);
2059 static void ptrace_do_notify(int signr, int exit_code, int why)
2061 siginfo_t info;
2063 clear_siginfo(&info);
2064 info.si_signo = signr;
2065 info.si_code = exit_code;
2066 info.si_pid = task_pid_vnr(current);
2067 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2069 /* Let the debugger run. */
2070 ptrace_stop(exit_code, why, 1, &info);
2073 void ptrace_notify(int exit_code)
2075 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2076 if (unlikely(current->task_works))
2077 task_work_run();
2079 spin_lock_irq(&current->sighand->siglock);
2080 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2081 spin_unlock_irq(&current->sighand->siglock);
2085 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2086 * @signr: signr causing group stop if initiating
2088 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2089 * and participate in it. If already set, participate in the existing
2090 * group stop. If participated in a group stop (and thus slept), %true is
2091 * returned with siglock released.
2093 * If ptraced, this function doesn't handle stop itself. Instead,
2094 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2095 * untouched. The caller must ensure that INTERRUPT trap handling takes
2096 * places afterwards.
2098 * CONTEXT:
2099 * Must be called with @current->sighand->siglock held, which is released
2100 * on %true return.
2102 * RETURNS:
2103 * %false if group stop is already cancelled or ptrace trap is scheduled.
2104 * %true if participated in group stop.
2106 static bool do_signal_stop(int signr)
2107 __releases(&current->sighand->siglock)
2109 struct signal_struct *sig = current->signal;
2111 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2112 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2113 struct task_struct *t;
2115 /* signr will be recorded in task->jobctl for retries */
2116 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2118 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2119 unlikely(signal_group_exit(sig)))
2120 return false;
2122 * There is no group stop already in progress. We must
2123 * initiate one now.
2125 * While ptraced, a task may be resumed while group stop is
2126 * still in effect and then receive a stop signal and
2127 * initiate another group stop. This deviates from the
2128 * usual behavior as two consecutive stop signals can't
2129 * cause two group stops when !ptraced. That is why we
2130 * also check !task_is_stopped(t) below.
2132 * The condition can be distinguished by testing whether
2133 * SIGNAL_STOP_STOPPED is already set. Don't generate
2134 * group_exit_code in such case.
2136 * This is not necessary for SIGNAL_STOP_CONTINUED because
2137 * an intervening stop signal is required to cause two
2138 * continued events regardless of ptrace.
2140 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2141 sig->group_exit_code = signr;
2143 sig->group_stop_count = 0;
2145 if (task_set_jobctl_pending(current, signr | gstop))
2146 sig->group_stop_count++;
2148 t = current;
2149 while_each_thread(current, t) {
2151 * Setting state to TASK_STOPPED for a group
2152 * stop is always done with the siglock held,
2153 * so this check has no races.
2155 if (!task_is_stopped(t) &&
2156 task_set_jobctl_pending(t, signr | gstop)) {
2157 sig->group_stop_count++;
2158 if (likely(!(t->ptrace & PT_SEIZED)))
2159 signal_wake_up(t, 0);
2160 else
2161 ptrace_trap_notify(t);
2166 if (likely(!current->ptrace)) {
2167 int notify = 0;
2170 * If there are no other threads in the group, or if there
2171 * is a group stop in progress and we are the last to stop,
2172 * report to the parent.
2174 if (task_participate_group_stop(current))
2175 notify = CLD_STOPPED;
2177 __set_current_state(TASK_STOPPED);
2178 spin_unlock_irq(&current->sighand->siglock);
2181 * Notify the parent of the group stop completion. Because
2182 * we're not holding either the siglock or tasklist_lock
2183 * here, ptracer may attach inbetween; however, this is for
2184 * group stop and should always be delivered to the real
2185 * parent of the group leader. The new ptracer will get
2186 * its notification when this task transitions into
2187 * TASK_TRACED.
2189 if (notify) {
2190 read_lock(&tasklist_lock);
2191 do_notify_parent_cldstop(current, false, notify);
2192 read_unlock(&tasklist_lock);
2195 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2196 freezable_schedule();
2197 return true;
2198 } else {
2200 * While ptraced, group stop is handled by STOP trap.
2201 * Schedule it and let the caller deal with it.
2203 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2204 return false;
2209 * do_jobctl_trap - take care of ptrace jobctl traps
2211 * When PT_SEIZED, it's used for both group stop and explicit
2212 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2213 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2214 * the stop signal; otherwise, %SIGTRAP.
2216 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2217 * number as exit_code and no siginfo.
2219 * CONTEXT:
2220 * Must be called with @current->sighand->siglock held, which may be
2221 * released and re-acquired before returning with intervening sleep.
2223 static void do_jobctl_trap(void)
2225 struct signal_struct *signal = current->signal;
2226 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2228 if (current->ptrace & PT_SEIZED) {
2229 if (!signal->group_stop_count &&
2230 !(signal->flags & SIGNAL_STOP_STOPPED))
2231 signr = SIGTRAP;
2232 WARN_ON_ONCE(!signr);
2233 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2234 CLD_STOPPED);
2235 } else {
2236 WARN_ON_ONCE(!signr);
2237 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2238 current->exit_code = 0;
2242 static int ptrace_signal(int signr, siginfo_t *info)
2245 * We do not check sig_kernel_stop(signr) but set this marker
2246 * unconditionally because we do not know whether debugger will
2247 * change signr. This flag has no meaning unless we are going
2248 * to stop after return from ptrace_stop(). In this case it will
2249 * be checked in do_signal_stop(), we should only stop if it was
2250 * not cleared by SIGCONT while we were sleeping. See also the
2251 * comment in dequeue_signal().
2253 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2254 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2256 /* We're back. Did the debugger cancel the sig? */
2257 signr = current->exit_code;
2258 if (signr == 0)
2259 return signr;
2261 current->exit_code = 0;
2264 * Update the siginfo structure if the signal has
2265 * changed. If the debugger wanted something
2266 * specific in the siginfo structure then it should
2267 * have updated *info via PTRACE_SETSIGINFO.
2269 if (signr != info->si_signo) {
2270 clear_siginfo(info);
2271 info->si_signo = signr;
2272 info->si_errno = 0;
2273 info->si_code = SI_USER;
2274 rcu_read_lock();
2275 info->si_pid = task_pid_vnr(current->parent);
2276 info->si_uid = from_kuid_munged(current_user_ns(),
2277 task_uid(current->parent));
2278 rcu_read_unlock();
2281 /* If the (new) signal is now blocked, requeue it. */
2282 if (sigismember(&current->blocked, signr)) {
2283 specific_send_sig_info(signr, info, current);
2284 signr = 0;
2287 return signr;
2290 int get_signal(struct ksignal *ksig)
2292 struct sighand_struct *sighand = current->sighand;
2293 struct signal_struct *signal = current->signal;
2294 int signr;
2296 if (unlikely(current->task_works))
2297 task_work_run();
2299 if (unlikely(uprobe_deny_signal()))
2300 return 0;
2303 * Do this once, we can't return to user-mode if freezing() == T.
2304 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2305 * thus do not need another check after return.
2307 try_to_freeze();
2309 relock:
2310 spin_lock_irq(&sighand->siglock);
2312 * Every stopped thread goes here after wakeup. Check to see if
2313 * we should notify the parent, prepare_signal(SIGCONT) encodes
2314 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2316 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2317 int why;
2319 if (signal->flags & SIGNAL_CLD_CONTINUED)
2320 why = CLD_CONTINUED;
2321 else
2322 why = CLD_STOPPED;
2324 signal->flags &= ~SIGNAL_CLD_MASK;
2326 spin_unlock_irq(&sighand->siglock);
2329 * Notify the parent that we're continuing. This event is
2330 * always per-process and doesn't make whole lot of sense
2331 * for ptracers, who shouldn't consume the state via
2332 * wait(2) either, but, for backward compatibility, notify
2333 * the ptracer of the group leader too unless it's gonna be
2334 * a duplicate.
2336 read_lock(&tasklist_lock);
2337 do_notify_parent_cldstop(current, false, why);
2339 if (ptrace_reparented(current->group_leader))
2340 do_notify_parent_cldstop(current->group_leader,
2341 true, why);
2342 read_unlock(&tasklist_lock);
2344 goto relock;
2347 for (;;) {
2348 struct k_sigaction *ka;
2350 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2351 do_signal_stop(0))
2352 goto relock;
2354 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2355 do_jobctl_trap();
2356 spin_unlock_irq(&sighand->siglock);
2357 goto relock;
2360 signr = dequeue_signal(current, &current->blocked, &ksig->info);
2362 if (!signr)
2363 break; /* will return 0 */
2365 if (unlikely(current->ptrace) && signr != SIGKILL) {
2366 signr = ptrace_signal(signr, &ksig->info);
2367 if (!signr)
2368 continue;
2371 ka = &sighand->action[signr-1];
2373 /* Trace actually delivered signals. */
2374 trace_signal_deliver(signr, &ksig->info, ka);
2376 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2377 continue;
2378 if (ka->sa.sa_handler != SIG_DFL) {
2379 /* Run the handler. */
2380 ksig->ka = *ka;
2382 if (ka->sa.sa_flags & SA_ONESHOT)
2383 ka->sa.sa_handler = SIG_DFL;
2385 break; /* will return non-zero "signr" value */
2389 * Now we are doing the default action for this signal.
2391 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2392 continue;
2395 * Global init gets no signals it doesn't want.
2396 * Container-init gets no signals it doesn't want from same
2397 * container.
2399 * Note that if global/container-init sees a sig_kernel_only()
2400 * signal here, the signal must have been generated internally
2401 * or must have come from an ancestor namespace. In either
2402 * case, the signal cannot be dropped.
2404 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2405 !sig_kernel_only(signr))
2406 continue;
2408 if (sig_kernel_stop(signr)) {
2410 * The default action is to stop all threads in
2411 * the thread group. The job control signals
2412 * do nothing in an orphaned pgrp, but SIGSTOP
2413 * always works. Note that siglock needs to be
2414 * dropped during the call to is_orphaned_pgrp()
2415 * because of lock ordering with tasklist_lock.
2416 * This allows an intervening SIGCONT to be posted.
2417 * We need to check for that and bail out if necessary.
2419 if (signr != SIGSTOP) {
2420 spin_unlock_irq(&sighand->siglock);
2422 /* signals can be posted during this window */
2424 if (is_current_pgrp_orphaned())
2425 goto relock;
2427 spin_lock_irq(&sighand->siglock);
2430 if (likely(do_signal_stop(ksig->info.si_signo))) {
2431 /* It released the siglock. */
2432 goto relock;
2436 * We didn't actually stop, due to a race
2437 * with SIGCONT or something like that.
2439 continue;
2442 spin_unlock_irq(&sighand->siglock);
2445 * Anything else is fatal, maybe with a core dump.
2447 current->flags |= PF_SIGNALED;
2449 if (sig_kernel_coredump(signr)) {
2450 if (print_fatal_signals)
2451 print_fatal_signal(ksig->info.si_signo);
2452 proc_coredump_connector(current);
2454 * If it was able to dump core, this kills all
2455 * other threads in the group and synchronizes with
2456 * their demise. If we lost the race with another
2457 * thread getting here, it set group_exit_code
2458 * first and our do_group_exit call below will use
2459 * that value and ignore the one we pass it.
2461 do_coredump(&ksig->info);
2465 * Death signals, no core dump.
2467 do_group_exit(ksig->info.si_signo);
2468 /* NOTREACHED */
2470 spin_unlock_irq(&sighand->siglock);
2472 ksig->sig = signr;
2473 return ksig->sig > 0;
2477 * signal_delivered -
2478 * @ksig: kernel signal struct
2479 * @stepping: nonzero if debugger single-step or block-step in use
2481 * This function should be called when a signal has successfully been
2482 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2483 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2484 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
2486 static void signal_delivered(struct ksignal *ksig, int stepping)
2488 sigset_t blocked;
2490 /* A signal was successfully delivered, and the
2491 saved sigmask was stored on the signal frame,
2492 and will be restored by sigreturn. So we can
2493 simply clear the restore sigmask flag. */
2494 clear_restore_sigmask();
2496 sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2497 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2498 sigaddset(&blocked, ksig->sig);
2499 set_current_blocked(&blocked);
2500 tracehook_signal_handler(stepping);
2503 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2505 if (failed)
2506 force_sigsegv(ksig->sig, current);
2507 else
2508 signal_delivered(ksig, stepping);
2512 * It could be that complete_signal() picked us to notify about the
2513 * group-wide signal. Other threads should be notified now to take
2514 * the shared signals in @which since we will not.
2516 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2518 sigset_t retarget;
2519 struct task_struct *t;
2521 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2522 if (sigisemptyset(&retarget))
2523 return;
2525 t = tsk;
2526 while_each_thread(tsk, t) {
2527 if (t->flags & PF_EXITING)
2528 continue;
2530 if (!has_pending_signals(&retarget, &t->blocked))
2531 continue;
2532 /* Remove the signals this thread can handle. */
2533 sigandsets(&retarget, &retarget, &t->blocked);
2535 if (!signal_pending(t))
2536 signal_wake_up(t, 0);
2538 if (sigisemptyset(&retarget))
2539 break;
2543 void exit_signals(struct task_struct *tsk)
2545 int group_stop = 0;
2546 sigset_t unblocked;
2549 * @tsk is about to have PF_EXITING set - lock out users which
2550 * expect stable threadgroup.
2552 cgroup_threadgroup_change_begin(tsk);
2554 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2555 tsk->flags |= PF_EXITING;
2556 cgroup_threadgroup_change_end(tsk);
2557 return;
2560 spin_lock_irq(&tsk->sighand->siglock);
2562 * From now this task is not visible for group-wide signals,
2563 * see wants_signal(), do_signal_stop().
2565 tsk->flags |= PF_EXITING;
2567 cgroup_threadgroup_change_end(tsk);
2569 if (!signal_pending(tsk))
2570 goto out;
2572 unblocked = tsk->blocked;
2573 signotset(&unblocked);
2574 retarget_shared_pending(tsk, &unblocked);
2576 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2577 task_participate_group_stop(tsk))
2578 group_stop = CLD_STOPPED;
2579 out:
2580 spin_unlock_irq(&tsk->sighand->siglock);
2583 * If group stop has completed, deliver the notification. This
2584 * should always go to the real parent of the group leader.
2586 if (unlikely(group_stop)) {
2587 read_lock(&tasklist_lock);
2588 do_notify_parent_cldstop(tsk, false, group_stop);
2589 read_unlock(&tasklist_lock);
2593 EXPORT_SYMBOL(recalc_sigpending);
2594 EXPORT_SYMBOL_GPL(dequeue_signal);
2595 EXPORT_SYMBOL(flush_signals);
2596 EXPORT_SYMBOL(force_sig);
2597 EXPORT_SYMBOL(send_sig);
2598 EXPORT_SYMBOL(send_sig_info);
2599 EXPORT_SYMBOL(sigprocmask);
2602 * System call entry points.
2606 * sys_restart_syscall - restart a system call
2608 SYSCALL_DEFINE0(restart_syscall)
2610 struct restart_block *restart = &current->restart_block;
2611 return restart->fn(restart);
2614 long do_no_restart_syscall(struct restart_block *param)
2616 return -EINTR;
2619 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2621 if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2622 sigset_t newblocked;
2623 /* A set of now blocked but previously unblocked signals. */
2624 sigandnsets(&newblocked, newset, &current->blocked);
2625 retarget_shared_pending(tsk, &newblocked);
2627 tsk->blocked = *newset;
2628 recalc_sigpending();
2632 * set_current_blocked - change current->blocked mask
2633 * @newset: new mask
2635 * It is wrong to change ->blocked directly, this helper should be used
2636 * to ensure the process can't miss a shared signal we are going to block.
2638 void set_current_blocked(sigset_t *newset)
2640 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2641 __set_current_blocked(newset);
2644 void __set_current_blocked(const sigset_t *newset)
2646 struct task_struct *tsk = current;
2649 * In case the signal mask hasn't changed, there is nothing we need
2650 * to do. The current->blocked shouldn't be modified by other task.
2652 if (sigequalsets(&tsk->blocked, newset))
2653 return;
2655 spin_lock_irq(&tsk->sighand->siglock);
2656 __set_task_blocked(tsk, newset);
2657 spin_unlock_irq(&tsk->sighand->siglock);
2661 * This is also useful for kernel threads that want to temporarily
2662 * (or permanently) block certain signals.
2664 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2665 * interface happily blocks "unblockable" signals like SIGKILL
2666 * and friends.
2668 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2670 struct task_struct *tsk = current;
2671 sigset_t newset;
2673 /* Lockless, only current can change ->blocked, never from irq */
2674 if (oldset)
2675 *oldset = tsk->blocked;
2677 switch (how) {
2678 case SIG_BLOCK:
2679 sigorsets(&newset, &tsk->blocked, set);
2680 break;
2681 case SIG_UNBLOCK:
2682 sigandnsets(&newset, &tsk->blocked, set);
2683 break;
2684 case SIG_SETMASK:
2685 newset = *set;
2686 break;
2687 default:
2688 return -EINVAL;
2691 __set_current_blocked(&newset);
2692 return 0;
2696 * sys_rt_sigprocmask - change the list of currently blocked signals
2697 * @how: whether to add, remove, or set signals
2698 * @nset: stores pending signals
2699 * @oset: previous value of signal mask if non-null
2700 * @sigsetsize: size of sigset_t type
2702 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2703 sigset_t __user *, oset, size_t, sigsetsize)
2705 sigset_t old_set, new_set;
2706 int error;
2708 /* XXX: Don't preclude handling different sized sigset_t's. */
2709 if (sigsetsize != sizeof(sigset_t))
2710 return -EINVAL;
2712 old_set = current->blocked;
2714 if (nset) {
2715 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2716 return -EFAULT;
2717 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2719 error = sigprocmask(how, &new_set, NULL);
2720 if (error)
2721 return error;
2724 if (oset) {
2725 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2726 return -EFAULT;
2729 return 0;
2732 #ifdef CONFIG_COMPAT
2733 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2734 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2736 sigset_t old_set = current->blocked;
2738 /* XXX: Don't preclude handling different sized sigset_t's. */
2739 if (sigsetsize != sizeof(sigset_t))
2740 return -EINVAL;
2742 if (nset) {
2743 sigset_t new_set;
2744 int error;
2745 if (get_compat_sigset(&new_set, nset))
2746 return -EFAULT;
2747 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2749 error = sigprocmask(how, &new_set, NULL);
2750 if (error)
2751 return error;
2753 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
2755 #endif
2757 static int do_sigpending(sigset_t *set)
2759 spin_lock_irq(&current->sighand->siglock);
2760 sigorsets(set, &current->pending.signal,
2761 &current->signal->shared_pending.signal);
2762 spin_unlock_irq(&current->sighand->siglock);
2764 /* Outside the lock because only this thread touches it. */
2765 sigandsets(set, &current->blocked, set);
2766 return 0;
2770 * sys_rt_sigpending - examine a pending signal that has been raised
2771 * while blocked
2772 * @uset: stores pending signals
2773 * @sigsetsize: size of sigset_t type or larger
2775 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2777 sigset_t set;
2778 int err;
2780 if (sigsetsize > sizeof(*uset))
2781 return -EINVAL;
2783 err = do_sigpending(&set);
2784 if (!err && copy_to_user(uset, &set, sigsetsize))
2785 err = -EFAULT;
2786 return err;
2789 #ifdef CONFIG_COMPAT
2790 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2791 compat_size_t, sigsetsize)
2793 sigset_t set;
2794 int err;
2796 if (sigsetsize > sizeof(*uset))
2797 return -EINVAL;
2799 err = do_sigpending(&set);
2800 if (!err)
2801 err = put_compat_sigset(uset, &set, sigsetsize);
2802 return err;
2804 #endif
2806 enum siginfo_layout siginfo_layout(int sig, int si_code)
2808 enum siginfo_layout layout = SIL_KILL;
2809 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
2810 static const struct {
2811 unsigned char limit, layout;
2812 } filter[] = {
2813 [SIGILL] = { NSIGILL, SIL_FAULT },
2814 [SIGFPE] = { NSIGFPE, SIL_FAULT },
2815 [SIGSEGV] = { NSIGSEGV, SIL_FAULT },
2816 [SIGBUS] = { NSIGBUS, SIL_FAULT },
2817 [SIGTRAP] = { NSIGTRAP, SIL_FAULT },
2818 #if defined(SIGEMT) && defined(NSIGEMT)
2819 [SIGEMT] = { NSIGEMT, SIL_FAULT },
2820 #endif
2821 [SIGCHLD] = { NSIGCHLD, SIL_CHLD },
2822 [SIGPOLL] = { NSIGPOLL, SIL_POLL },
2823 [SIGSYS] = { NSIGSYS, SIL_SYS },
2825 if ((sig < ARRAY_SIZE(filter)) && (si_code <= filter[sig].limit))
2826 layout = filter[sig].layout;
2827 else if (si_code <= NSIGPOLL)
2828 layout = SIL_POLL;
2829 } else {
2830 if (si_code == SI_TIMER)
2831 layout = SIL_TIMER;
2832 else if (si_code == SI_SIGIO)
2833 layout = SIL_POLL;
2834 else if (si_code < 0)
2835 layout = SIL_RT;
2836 /* Tests to support buggy kernel ABIs */
2837 #ifdef TRAP_FIXME
2838 if ((sig == SIGTRAP) && (si_code == TRAP_FIXME))
2839 layout = SIL_FAULT;
2840 #endif
2841 #ifdef FPE_FIXME
2842 if ((sig == SIGFPE) && (si_code == FPE_FIXME))
2843 layout = SIL_FAULT;
2844 #endif
2845 #ifdef BUS_FIXME
2846 if ((sig == SIGBUS) && (si_code == BUS_FIXME))
2847 layout = SIL_FAULT;
2848 #endif
2850 return layout;
2853 int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2855 int err;
2857 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2858 return -EFAULT;
2859 if (from->si_code < 0)
2860 return __copy_to_user(to, from, sizeof(siginfo_t))
2861 ? -EFAULT : 0;
2863 * If you change siginfo_t structure, please be sure
2864 * this code is fixed accordingly.
2865 * Please remember to update the signalfd_copyinfo() function
2866 * inside fs/signalfd.c too, in case siginfo_t changes.
2867 * It should never copy any pad contained in the structure
2868 * to avoid security leaks, but must copy the generic
2869 * 3 ints plus the relevant union member.
2871 err = __put_user(from->si_signo, &to->si_signo);
2872 err |= __put_user(from->si_errno, &to->si_errno);
2873 err |= __put_user(from->si_code, &to->si_code);
2874 switch (siginfo_layout(from->si_signo, from->si_code)) {
2875 case SIL_KILL:
2876 err |= __put_user(from->si_pid, &to->si_pid);
2877 err |= __put_user(from->si_uid, &to->si_uid);
2878 break;
2879 case SIL_TIMER:
2880 /* Unreached SI_TIMER is negative */
2881 break;
2882 case SIL_POLL:
2883 err |= __put_user(from->si_band, &to->si_band);
2884 err |= __put_user(from->si_fd, &to->si_fd);
2885 break;
2886 case SIL_FAULT:
2887 err |= __put_user(from->si_addr, &to->si_addr);
2888 #ifdef __ARCH_SI_TRAPNO
2889 err |= __put_user(from->si_trapno, &to->si_trapno);
2890 #endif
2891 #ifdef __ia64__
2892 err |= __put_user(from->si_imm, &to->si_imm);
2893 err |= __put_user(from->si_flags, &to->si_flags);
2894 err |= __put_user(from->si_isr, &to->si_isr);
2895 #endif
2897 * Other callers might not initialize the si_lsb field,
2898 * so check explicitly for the right codes here.
2900 #ifdef BUS_MCEERR_AR
2901 if (from->si_signo == SIGBUS && from->si_code == BUS_MCEERR_AR)
2902 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2903 #endif
2904 #ifdef BUS_MCEERR_AO
2905 if (from->si_signo == SIGBUS && from->si_code == BUS_MCEERR_AO)
2906 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2907 #endif
2908 #ifdef SEGV_BNDERR
2909 if (from->si_signo == SIGSEGV && from->si_code == SEGV_BNDERR) {
2910 err |= __put_user(from->si_lower, &to->si_lower);
2911 err |= __put_user(from->si_upper, &to->si_upper);
2913 #endif
2914 #ifdef SEGV_PKUERR
2915 if (from->si_signo == SIGSEGV && from->si_code == SEGV_PKUERR)
2916 err |= __put_user(from->si_pkey, &to->si_pkey);
2917 #endif
2918 break;
2919 case SIL_CHLD:
2920 err |= __put_user(from->si_pid, &to->si_pid);
2921 err |= __put_user(from->si_uid, &to->si_uid);
2922 err |= __put_user(from->si_status, &to->si_status);
2923 err |= __put_user(from->si_utime, &to->si_utime);
2924 err |= __put_user(from->si_stime, &to->si_stime);
2925 break;
2926 case SIL_RT:
2927 err |= __put_user(from->si_pid, &to->si_pid);
2928 err |= __put_user(from->si_uid, &to->si_uid);
2929 err |= __put_user(from->si_ptr, &to->si_ptr);
2930 break;
2931 case SIL_SYS:
2932 err |= __put_user(from->si_call_addr, &to->si_call_addr);
2933 err |= __put_user(from->si_syscall, &to->si_syscall);
2934 err |= __put_user(from->si_arch, &to->si_arch);
2935 break;
2937 return err;
2940 #ifdef CONFIG_COMPAT
2941 int copy_siginfo_to_user32(struct compat_siginfo __user *to,
2942 const struct siginfo *from)
2943 #if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION)
2945 return __copy_siginfo_to_user32(to, from, in_x32_syscall());
2947 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
2948 const struct siginfo *from, bool x32_ABI)
2949 #endif
2951 struct compat_siginfo new;
2952 memset(&new, 0, sizeof(new));
2954 new.si_signo = from->si_signo;
2955 new.si_errno = from->si_errno;
2956 new.si_code = from->si_code;
2957 switch(siginfo_layout(from->si_signo, from->si_code)) {
2958 case SIL_KILL:
2959 new.si_pid = from->si_pid;
2960 new.si_uid = from->si_uid;
2961 break;
2962 case SIL_TIMER:
2963 new.si_tid = from->si_tid;
2964 new.si_overrun = from->si_overrun;
2965 new.si_int = from->si_int;
2966 break;
2967 case SIL_POLL:
2968 new.si_band = from->si_band;
2969 new.si_fd = from->si_fd;
2970 break;
2971 case SIL_FAULT:
2972 new.si_addr = ptr_to_compat(from->si_addr);
2973 #ifdef __ARCH_SI_TRAPNO
2974 new.si_trapno = from->si_trapno;
2975 #endif
2976 #ifdef BUS_MCEERR_AR
2977 if ((from->si_signo == SIGBUS) && (from->si_code == BUS_MCEERR_AR))
2978 new.si_addr_lsb = from->si_addr_lsb;
2979 #endif
2980 #ifdef BUS_MCEERR_AO
2981 if ((from->si_signo == SIGBUS) && (from->si_code == BUS_MCEERR_AO))
2982 new.si_addr_lsb = from->si_addr_lsb;
2983 #endif
2984 #ifdef SEGV_BNDERR
2985 if ((from->si_signo == SIGSEGV) &&
2986 (from->si_code == SEGV_BNDERR)) {
2987 new.si_lower = ptr_to_compat(from->si_lower);
2988 new.si_upper = ptr_to_compat(from->si_upper);
2990 #endif
2991 #ifdef SEGV_PKUERR
2992 if ((from->si_signo == SIGSEGV) &&
2993 (from->si_code == SEGV_PKUERR))
2994 new.si_pkey = from->si_pkey;
2995 #endif
2997 break;
2998 case SIL_CHLD:
2999 new.si_pid = from->si_pid;
3000 new.si_uid = from->si_uid;
3001 new.si_status = from->si_status;
3002 #ifdef CONFIG_X86_X32_ABI
3003 if (x32_ABI) {
3004 new._sifields._sigchld_x32._utime = from->si_utime;
3005 new._sifields._sigchld_x32._stime = from->si_stime;
3006 } else
3007 #endif
3009 new.si_utime = from->si_utime;
3010 new.si_stime = from->si_stime;
3012 break;
3013 case SIL_RT:
3014 new.si_pid = from->si_pid;
3015 new.si_uid = from->si_uid;
3016 new.si_int = from->si_int;
3017 break;
3018 case SIL_SYS:
3019 new.si_call_addr = ptr_to_compat(from->si_call_addr);
3020 new.si_syscall = from->si_syscall;
3021 new.si_arch = from->si_arch;
3022 break;
3025 if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3026 return -EFAULT;
3028 return 0;
3031 int copy_siginfo_from_user32(struct siginfo *to,
3032 const struct compat_siginfo __user *ufrom)
3034 struct compat_siginfo from;
3036 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3037 return -EFAULT;
3039 clear_siginfo(to);
3040 to->si_signo = from.si_signo;
3041 to->si_errno = from.si_errno;
3042 to->si_code = from.si_code;
3043 switch(siginfo_layout(from.si_signo, from.si_code)) {
3044 case SIL_KILL:
3045 to->si_pid = from.si_pid;
3046 to->si_uid = from.si_uid;
3047 break;
3048 case SIL_TIMER:
3049 to->si_tid = from.si_tid;
3050 to->si_overrun = from.si_overrun;
3051 to->si_int = from.si_int;
3052 break;
3053 case SIL_POLL:
3054 to->si_band = from.si_band;
3055 to->si_fd = from.si_fd;
3056 break;
3057 case SIL_FAULT:
3058 to->si_addr = compat_ptr(from.si_addr);
3059 #ifdef __ARCH_SI_TRAPNO
3060 to->si_trapno = from.si_trapno;
3061 #endif
3062 #ifdef BUS_MCEERR_AR
3063 if ((from.si_signo == SIGBUS) && (from.si_code == BUS_MCEERR_AR))
3064 to->si_addr_lsb = from.si_addr_lsb;
3065 #endif
3066 #ifdef BUS_MCEER_AO
3067 if ((from.si_signo == SIGBUS) && (from.si_code == BUS_MCEERR_AO))
3068 to->si_addr_lsb = from.si_addr_lsb;
3069 #endif
3070 #ifdef SEGV_BNDERR
3071 if ((from.si_signo == SIGSEGV) && (from.si_code == SEGV_BNDERR)) {
3072 to->si_lower = compat_ptr(from.si_lower);
3073 to->si_upper = compat_ptr(from.si_upper);
3075 #endif
3076 #ifdef SEGV_PKUERR
3077 if ((from.si_signo == SIGSEGV) && (from.si_code == SEGV_PKUERR))
3078 to->si_pkey = from.si_pkey;
3079 #endif
3080 break;
3081 case SIL_CHLD:
3082 to->si_pid = from.si_pid;
3083 to->si_uid = from.si_uid;
3084 to->si_status = from.si_status;
3085 #ifdef CONFIG_X86_X32_ABI
3086 if (in_x32_syscall()) {
3087 to->si_utime = from._sifields._sigchld_x32._utime;
3088 to->si_stime = from._sifields._sigchld_x32._stime;
3089 } else
3090 #endif
3092 to->si_utime = from.si_utime;
3093 to->si_stime = from.si_stime;
3095 break;
3096 case SIL_RT:
3097 to->si_pid = from.si_pid;
3098 to->si_uid = from.si_uid;
3099 to->si_int = from.si_int;
3100 break;
3101 case SIL_SYS:
3102 to->si_call_addr = compat_ptr(from.si_call_addr);
3103 to->si_syscall = from.si_syscall;
3104 to->si_arch = from.si_arch;
3105 break;
3107 return 0;
3109 #endif /* CONFIG_COMPAT */
3112 * do_sigtimedwait - wait for queued signals specified in @which
3113 * @which: queued signals to wait for
3114 * @info: if non-null, the signal's siginfo is returned here
3115 * @ts: upper bound on process time suspension
3117 static int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
3118 const struct timespec *ts)
3120 ktime_t *to = NULL, timeout = KTIME_MAX;
3121 struct task_struct *tsk = current;
3122 sigset_t mask = *which;
3123 int sig, ret = 0;
3125 if (ts) {
3126 if (!timespec_valid(ts))
3127 return -EINVAL;
3128 timeout = timespec_to_ktime(*ts);
3129 to = &timeout;
3133 * Invert the set of allowed signals to get those we want to block.
3135 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3136 signotset(&mask);
3138 spin_lock_irq(&tsk->sighand->siglock);
3139 sig = dequeue_signal(tsk, &mask, info);
3140 if (!sig && timeout) {
3142 * None ready, temporarily unblock those we're interested
3143 * while we are sleeping in so that we'll be awakened when
3144 * they arrive. Unblocking is always fine, we can avoid
3145 * set_current_blocked().
3147 tsk->real_blocked = tsk->blocked;
3148 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3149 recalc_sigpending();
3150 spin_unlock_irq(&tsk->sighand->siglock);
3152 __set_current_state(TASK_INTERRUPTIBLE);
3153 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3154 HRTIMER_MODE_REL);
3155 spin_lock_irq(&tsk->sighand->siglock);
3156 __set_task_blocked(tsk, &tsk->real_blocked);
3157 sigemptyset(&tsk->real_blocked);
3158 sig = dequeue_signal(tsk, &mask, info);
3160 spin_unlock_irq(&tsk->sighand->siglock);
3162 if (sig)
3163 return sig;
3164 return ret ? -EINTR : -EAGAIN;
3168 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
3169 * in @uthese
3170 * @uthese: queued signals to wait for
3171 * @uinfo: if non-null, the signal's siginfo is returned here
3172 * @uts: upper bound on process time suspension
3173 * @sigsetsize: size of sigset_t type
3175 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3176 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
3177 size_t, sigsetsize)
3179 sigset_t these;
3180 struct timespec ts;
3181 siginfo_t info;
3182 int ret;
3184 /* XXX: Don't preclude handling different sized sigset_t's. */
3185 if (sigsetsize != sizeof(sigset_t))
3186 return -EINVAL;
3188 if (copy_from_user(&these, uthese, sizeof(these)))
3189 return -EFAULT;
3191 if (uts) {
3192 if (copy_from_user(&ts, uts, sizeof(ts)))
3193 return -EFAULT;
3196 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3198 if (ret > 0 && uinfo) {
3199 if (copy_siginfo_to_user(uinfo, &info))
3200 ret = -EFAULT;
3203 return ret;
3206 #ifdef CONFIG_COMPAT
3207 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait, compat_sigset_t __user *, uthese,
3208 struct compat_siginfo __user *, uinfo,
3209 struct compat_timespec __user *, uts, compat_size_t, sigsetsize)
3211 sigset_t s;
3212 struct timespec t;
3213 siginfo_t info;
3214 long ret;
3216 if (sigsetsize != sizeof(sigset_t))
3217 return -EINVAL;
3219 if (get_compat_sigset(&s, uthese))
3220 return -EFAULT;
3222 if (uts) {
3223 if (compat_get_timespec(&t, uts))
3224 return -EFAULT;
3227 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3229 if (ret > 0 && uinfo) {
3230 if (copy_siginfo_to_user32(uinfo, &info))
3231 ret = -EFAULT;
3234 return ret;
3236 #endif
3239 * sys_kill - send a signal to a process
3240 * @pid: the PID of the process
3241 * @sig: signal to be sent
3243 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3245 struct siginfo info;
3247 clear_siginfo(&info);
3248 info.si_signo = sig;
3249 info.si_errno = 0;
3250 info.si_code = SI_USER;
3251 info.si_pid = task_tgid_vnr(current);
3252 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3254 return kill_something_info(sig, &info, pid);
3257 static int
3258 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
3260 struct task_struct *p;
3261 int error = -ESRCH;
3263 rcu_read_lock();
3264 p = find_task_by_vpid(pid);
3265 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3266 error = check_kill_permission(sig, info, p);
3268 * The null signal is a permissions and process existence
3269 * probe. No signal is actually delivered.
3271 if (!error && sig) {
3272 error = do_send_sig_info(sig, info, p, false);
3274 * If lock_task_sighand() failed we pretend the task
3275 * dies after receiving the signal. The window is tiny,
3276 * and the signal is private anyway.
3278 if (unlikely(error == -ESRCH))
3279 error = 0;
3282 rcu_read_unlock();
3284 return error;
3287 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3289 struct siginfo info;
3291 clear_siginfo(&info);
3292 info.si_signo = sig;
3293 info.si_errno = 0;
3294 info.si_code = SI_TKILL;
3295 info.si_pid = task_tgid_vnr(current);
3296 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3298 return do_send_specific(tgid, pid, sig, &info);
3302 * sys_tgkill - send signal to one specific thread
3303 * @tgid: the thread group ID of the thread
3304 * @pid: the PID of the thread
3305 * @sig: signal to be sent
3307 * This syscall also checks the @tgid and returns -ESRCH even if the PID
3308 * exists but it's not belonging to the target process anymore. This
3309 * method solves the problem of threads exiting and PIDs getting reused.
3311 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3313 /* This is only valid for single tasks */
3314 if (pid <= 0 || tgid <= 0)
3315 return -EINVAL;
3317 return do_tkill(tgid, pid, sig);
3321 * sys_tkill - send signal to one specific task
3322 * @pid: the PID of the task
3323 * @sig: signal to be sent
3325 * Send a signal to only one task, even if it's a CLONE_THREAD task.
3327 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3329 /* This is only valid for single tasks */
3330 if (pid <= 0)
3331 return -EINVAL;
3333 return do_tkill(0, pid, sig);
3336 static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
3338 /* Not even root can pretend to send signals from the kernel.
3339 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3341 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3342 (task_pid_vnr(current) != pid))
3343 return -EPERM;
3345 info->si_signo = sig;
3347 /* POSIX.1b doesn't mention process groups. */
3348 return kill_proc_info(sig, info, pid);
3352 * sys_rt_sigqueueinfo - send signal information to a signal
3353 * @pid: the PID of the thread
3354 * @sig: signal to be sent
3355 * @uinfo: signal info to be sent
3357 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3358 siginfo_t __user *, uinfo)
3360 siginfo_t info;
3361 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3362 return -EFAULT;
3363 return do_rt_sigqueueinfo(pid, sig, &info);
3366 #ifdef CONFIG_COMPAT
3367 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3368 compat_pid_t, pid,
3369 int, sig,
3370 struct compat_siginfo __user *, uinfo)
3372 siginfo_t info;
3373 int ret = copy_siginfo_from_user32(&info, uinfo);
3374 if (unlikely(ret))
3375 return ret;
3376 return do_rt_sigqueueinfo(pid, sig, &info);
3378 #endif
3380 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
3382 /* This is only valid for single tasks */
3383 if (pid <= 0 || tgid <= 0)
3384 return -EINVAL;
3386 /* Not even root can pretend to send signals from the kernel.
3387 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3389 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3390 (task_pid_vnr(current) != pid))
3391 return -EPERM;
3393 info->si_signo = sig;
3395 return do_send_specific(tgid, pid, sig, info);
3398 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3399 siginfo_t __user *, uinfo)
3401 siginfo_t info;
3403 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3404 return -EFAULT;
3406 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3409 #ifdef CONFIG_COMPAT
3410 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3411 compat_pid_t, tgid,
3412 compat_pid_t, pid,
3413 int, sig,
3414 struct compat_siginfo __user *, uinfo)
3416 siginfo_t info;
3418 if (copy_siginfo_from_user32(&info, uinfo))
3419 return -EFAULT;
3420 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3422 #endif
3425 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3427 void kernel_sigaction(int sig, __sighandler_t action)
3429 spin_lock_irq(&current->sighand->siglock);
3430 current->sighand->action[sig - 1].sa.sa_handler = action;
3431 if (action == SIG_IGN) {
3432 sigset_t mask;
3434 sigemptyset(&mask);
3435 sigaddset(&mask, sig);
3437 flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3438 flush_sigqueue_mask(&mask, &current->pending);
3439 recalc_sigpending();
3441 spin_unlock_irq(&current->sighand->siglock);
3443 EXPORT_SYMBOL(kernel_sigaction);
3445 void __weak sigaction_compat_abi(struct k_sigaction *act,
3446 struct k_sigaction *oact)
3450 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3452 struct task_struct *p = current, *t;
3453 struct k_sigaction *k;
3454 sigset_t mask;
3456 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3457 return -EINVAL;
3459 k = &p->sighand->action[sig-1];
3461 spin_lock_irq(&p->sighand->siglock);
3462 if (oact)
3463 *oact = *k;
3465 sigaction_compat_abi(act, oact);
3467 if (act) {
3468 sigdelsetmask(&act->sa.sa_mask,
3469 sigmask(SIGKILL) | sigmask(SIGSTOP));
3470 *k = *act;
3472 * POSIX 3.3.1.3:
3473 * "Setting a signal action to SIG_IGN for a signal that is
3474 * pending shall cause the pending signal to be discarded,
3475 * whether or not it is blocked."
3477 * "Setting a signal action to SIG_DFL for a signal that is
3478 * pending and whose default action is to ignore the signal
3479 * (for example, SIGCHLD), shall cause the pending signal to
3480 * be discarded, whether or not it is blocked"
3482 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3483 sigemptyset(&mask);
3484 sigaddset(&mask, sig);
3485 flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3486 for_each_thread(p, t)
3487 flush_sigqueue_mask(&mask, &t->pending);
3491 spin_unlock_irq(&p->sighand->siglock);
3492 return 0;
3495 static int
3496 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp)
3498 struct task_struct *t = current;
3500 if (oss) {
3501 memset(oss, 0, sizeof(stack_t));
3502 oss->ss_sp = (void __user *) t->sas_ss_sp;
3503 oss->ss_size = t->sas_ss_size;
3504 oss->ss_flags = sas_ss_flags(sp) |
3505 (current->sas_ss_flags & SS_FLAG_BITS);
3508 if (ss) {
3509 void __user *ss_sp = ss->ss_sp;
3510 size_t ss_size = ss->ss_size;
3511 unsigned ss_flags = ss->ss_flags;
3512 int ss_mode;
3514 if (unlikely(on_sig_stack(sp)))
3515 return -EPERM;
3517 ss_mode = ss_flags & ~SS_FLAG_BITS;
3518 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
3519 ss_mode != 0))
3520 return -EINVAL;
3522 if (ss_mode == SS_DISABLE) {
3523 ss_size = 0;
3524 ss_sp = NULL;
3525 } else {
3526 if (unlikely(ss_size < MINSIGSTKSZ))
3527 return -ENOMEM;
3530 t->sas_ss_sp = (unsigned long) ss_sp;
3531 t->sas_ss_size = ss_size;
3532 t->sas_ss_flags = ss_flags;
3534 return 0;
3537 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3539 stack_t new, old;
3540 int err;
3541 if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
3542 return -EFAULT;
3543 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
3544 current_user_stack_pointer());
3545 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
3546 err = -EFAULT;
3547 return err;
3550 int restore_altstack(const stack_t __user *uss)
3552 stack_t new;
3553 if (copy_from_user(&new, uss, sizeof(stack_t)))
3554 return -EFAULT;
3555 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer());
3556 /* squash all but EFAULT for now */
3557 return 0;
3560 int __save_altstack(stack_t __user *uss, unsigned long sp)
3562 struct task_struct *t = current;
3563 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3564 __put_user(t->sas_ss_flags, &uss->ss_flags) |
3565 __put_user(t->sas_ss_size, &uss->ss_size);
3566 if (err)
3567 return err;
3568 if (t->sas_ss_flags & SS_AUTODISARM)
3569 sas_ss_reset(t);
3570 return 0;
3573 #ifdef CONFIG_COMPAT
3574 COMPAT_SYSCALL_DEFINE2(sigaltstack,
3575 const compat_stack_t __user *, uss_ptr,
3576 compat_stack_t __user *, uoss_ptr)
3578 stack_t uss, uoss;
3579 int ret;
3581 if (uss_ptr) {
3582 compat_stack_t uss32;
3583 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3584 return -EFAULT;
3585 uss.ss_sp = compat_ptr(uss32.ss_sp);
3586 uss.ss_flags = uss32.ss_flags;
3587 uss.ss_size = uss32.ss_size;
3589 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
3590 compat_user_stack_pointer());
3591 if (ret >= 0 && uoss_ptr) {
3592 compat_stack_t old;
3593 memset(&old, 0, sizeof(old));
3594 old.ss_sp = ptr_to_compat(uoss.ss_sp);
3595 old.ss_flags = uoss.ss_flags;
3596 old.ss_size = uoss.ss_size;
3597 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
3598 ret = -EFAULT;
3600 return ret;
3603 int compat_restore_altstack(const compat_stack_t __user *uss)
3605 int err = compat_sys_sigaltstack(uss, NULL);
3606 /* squash all but -EFAULT for now */
3607 return err == -EFAULT ? err : 0;
3610 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3612 int err;
3613 struct task_struct *t = current;
3614 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
3615 &uss->ss_sp) |
3616 __put_user(t->sas_ss_flags, &uss->ss_flags) |
3617 __put_user(t->sas_ss_size, &uss->ss_size);
3618 if (err)
3619 return err;
3620 if (t->sas_ss_flags & SS_AUTODISARM)
3621 sas_ss_reset(t);
3622 return 0;
3624 #endif
3626 #ifdef __ARCH_WANT_SYS_SIGPENDING
3629 * sys_sigpending - examine pending signals
3630 * @set: where mask of pending signal is returned
3632 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3634 return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t));
3637 #ifdef CONFIG_COMPAT
3638 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
3640 sigset_t set;
3641 int err = do_sigpending(&set);
3642 if (!err)
3643 err = put_user(set.sig[0], set32);
3644 return err;
3646 #endif
3648 #endif
3650 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3652 * sys_sigprocmask - examine and change blocked signals
3653 * @how: whether to add, remove, or set signals
3654 * @nset: signals to add or remove (if non-null)
3655 * @oset: previous value of signal mask if non-null
3657 * Some platforms have their own version with special arguments;
3658 * others support only sys_rt_sigprocmask.
3661 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3662 old_sigset_t __user *, oset)
3664 old_sigset_t old_set, new_set;
3665 sigset_t new_blocked;
3667 old_set = current->blocked.sig[0];
3669 if (nset) {
3670 if (copy_from_user(&new_set, nset, sizeof(*nset)))
3671 return -EFAULT;
3673 new_blocked = current->blocked;
3675 switch (how) {
3676 case SIG_BLOCK:
3677 sigaddsetmask(&new_blocked, new_set);
3678 break;
3679 case SIG_UNBLOCK:
3680 sigdelsetmask(&new_blocked, new_set);
3681 break;
3682 case SIG_SETMASK:
3683 new_blocked.sig[0] = new_set;
3684 break;
3685 default:
3686 return -EINVAL;
3689 set_current_blocked(&new_blocked);
3692 if (oset) {
3693 if (copy_to_user(oset, &old_set, sizeof(*oset)))
3694 return -EFAULT;
3697 return 0;
3699 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3701 #ifndef CONFIG_ODD_RT_SIGACTION
3703 * sys_rt_sigaction - alter an action taken by a process
3704 * @sig: signal to be sent
3705 * @act: new sigaction
3706 * @oact: used to save the previous sigaction
3707 * @sigsetsize: size of sigset_t type
3709 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3710 const struct sigaction __user *, act,
3711 struct sigaction __user *, oact,
3712 size_t, sigsetsize)
3714 struct k_sigaction new_sa, old_sa;
3715 int ret = -EINVAL;
3717 /* XXX: Don't preclude handling different sized sigset_t's. */
3718 if (sigsetsize != sizeof(sigset_t))
3719 goto out;
3721 if (act) {
3722 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3723 return -EFAULT;
3726 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3728 if (!ret && oact) {
3729 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3730 return -EFAULT;
3732 out:
3733 return ret;
3735 #ifdef CONFIG_COMPAT
3736 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3737 const struct compat_sigaction __user *, act,
3738 struct compat_sigaction __user *, oact,
3739 compat_size_t, sigsetsize)
3741 struct k_sigaction new_ka, old_ka;
3742 #ifdef __ARCH_HAS_SA_RESTORER
3743 compat_uptr_t restorer;
3744 #endif
3745 int ret;
3747 /* XXX: Don't preclude handling different sized sigset_t's. */
3748 if (sigsetsize != sizeof(compat_sigset_t))
3749 return -EINVAL;
3751 if (act) {
3752 compat_uptr_t handler;
3753 ret = get_user(handler, &act->sa_handler);
3754 new_ka.sa.sa_handler = compat_ptr(handler);
3755 #ifdef __ARCH_HAS_SA_RESTORER
3756 ret |= get_user(restorer, &act->sa_restorer);
3757 new_ka.sa.sa_restorer = compat_ptr(restorer);
3758 #endif
3759 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
3760 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3761 if (ret)
3762 return -EFAULT;
3765 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3766 if (!ret && oact) {
3767 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
3768 &oact->sa_handler);
3769 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
3770 sizeof(oact->sa_mask));
3771 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3772 #ifdef __ARCH_HAS_SA_RESTORER
3773 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3774 &oact->sa_restorer);
3775 #endif
3777 return ret;
3779 #endif
3780 #endif /* !CONFIG_ODD_RT_SIGACTION */
3782 #ifdef CONFIG_OLD_SIGACTION
3783 SYSCALL_DEFINE3(sigaction, int, sig,
3784 const struct old_sigaction __user *, act,
3785 struct old_sigaction __user *, oact)
3787 struct k_sigaction new_ka, old_ka;
3788 int ret;
3790 if (act) {
3791 old_sigset_t mask;
3792 if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3793 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3794 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3795 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3796 __get_user(mask, &act->sa_mask))
3797 return -EFAULT;
3798 #ifdef __ARCH_HAS_KA_RESTORER
3799 new_ka.ka_restorer = NULL;
3800 #endif
3801 siginitset(&new_ka.sa.sa_mask, mask);
3804 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3806 if (!ret && oact) {
3807 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3808 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3809 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3810 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3811 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3812 return -EFAULT;
3815 return ret;
3817 #endif
3818 #ifdef CONFIG_COMPAT_OLD_SIGACTION
3819 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3820 const struct compat_old_sigaction __user *, act,
3821 struct compat_old_sigaction __user *, oact)
3823 struct k_sigaction new_ka, old_ka;
3824 int ret;
3825 compat_old_sigset_t mask;
3826 compat_uptr_t handler, restorer;
3828 if (act) {
3829 if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3830 __get_user(handler, &act->sa_handler) ||
3831 __get_user(restorer, &act->sa_restorer) ||
3832 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3833 __get_user(mask, &act->sa_mask))
3834 return -EFAULT;
3836 #ifdef __ARCH_HAS_KA_RESTORER
3837 new_ka.ka_restorer = NULL;
3838 #endif
3839 new_ka.sa.sa_handler = compat_ptr(handler);
3840 new_ka.sa.sa_restorer = compat_ptr(restorer);
3841 siginitset(&new_ka.sa.sa_mask, mask);
3844 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3846 if (!ret && oact) {
3847 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3848 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3849 &oact->sa_handler) ||
3850 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3851 &oact->sa_restorer) ||
3852 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3853 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3854 return -EFAULT;
3856 return ret;
3858 #endif
3860 #ifdef CONFIG_SGETMASK_SYSCALL
3863 * For backwards compatibility. Functionality superseded by sigprocmask.
3865 SYSCALL_DEFINE0(sgetmask)
3867 /* SMP safe */
3868 return current->blocked.sig[0];
3871 SYSCALL_DEFINE1(ssetmask, int, newmask)
3873 int old = current->blocked.sig[0];
3874 sigset_t newset;
3876 siginitset(&newset, newmask);
3877 set_current_blocked(&newset);
3879 return old;
3881 #endif /* CONFIG_SGETMASK_SYSCALL */
3883 #ifdef __ARCH_WANT_SYS_SIGNAL
3885 * For backwards compatibility. Functionality superseded by sigaction.
3887 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3889 struct k_sigaction new_sa, old_sa;
3890 int ret;
3892 new_sa.sa.sa_handler = handler;
3893 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3894 sigemptyset(&new_sa.sa.sa_mask);
3896 ret = do_sigaction(sig, &new_sa, &old_sa);
3898 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3900 #endif /* __ARCH_WANT_SYS_SIGNAL */
3902 #ifdef __ARCH_WANT_SYS_PAUSE
3904 SYSCALL_DEFINE0(pause)
3906 while (!signal_pending(current)) {
3907 __set_current_state(TASK_INTERRUPTIBLE);
3908 schedule();
3910 return -ERESTARTNOHAND;
3913 #endif
3915 static int sigsuspend(sigset_t *set)
3917 current->saved_sigmask = current->blocked;
3918 set_current_blocked(set);
3920 while (!signal_pending(current)) {
3921 __set_current_state(TASK_INTERRUPTIBLE);
3922 schedule();
3924 set_restore_sigmask();
3925 return -ERESTARTNOHAND;
3929 * sys_rt_sigsuspend - replace the signal mask for a value with the
3930 * @unewset value until a signal is received
3931 * @unewset: new signal mask value
3932 * @sigsetsize: size of sigset_t type
3934 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3936 sigset_t newset;
3938 /* XXX: Don't preclude handling different sized sigset_t's. */
3939 if (sigsetsize != sizeof(sigset_t))
3940 return -EINVAL;
3942 if (copy_from_user(&newset, unewset, sizeof(newset)))
3943 return -EFAULT;
3944 return sigsuspend(&newset);
3947 #ifdef CONFIG_COMPAT
3948 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3950 sigset_t newset;
3952 /* XXX: Don't preclude handling different sized sigset_t's. */
3953 if (sigsetsize != sizeof(sigset_t))
3954 return -EINVAL;
3956 if (get_compat_sigset(&newset, unewset))
3957 return -EFAULT;
3958 return sigsuspend(&newset);
3960 #endif
3962 #ifdef CONFIG_OLD_SIGSUSPEND
3963 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3965 sigset_t blocked;
3966 siginitset(&blocked, mask);
3967 return sigsuspend(&blocked);
3969 #endif
3970 #ifdef CONFIG_OLD_SIGSUSPEND3
3971 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3973 sigset_t blocked;
3974 siginitset(&blocked, mask);
3975 return sigsuspend(&blocked);
3977 #endif
3979 __weak const char *arch_vma_name(struct vm_area_struct *vma)
3981 return NULL;
3984 void __init signals_init(void)
3986 /* If this check fails, the __ARCH_SI_PREAMBLE_SIZE value is wrong! */
3987 BUILD_BUG_ON(__ARCH_SI_PREAMBLE_SIZE
3988 != offsetof(struct siginfo, _sifields._pad));
3989 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
3991 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3994 #ifdef CONFIG_KGDB_KDB
3995 #include <linux/kdb.h>
3997 * kdb_send_sig - Allows kdb to send signals without exposing
3998 * signal internals. This function checks if the required locks are
3999 * available before calling the main signal code, to avoid kdb
4000 * deadlocks.
4002 void kdb_send_sig(struct task_struct *t, int sig)
4004 static struct task_struct *kdb_prev_t;
4005 int new_t, ret;
4006 if (!spin_trylock(&t->sighand->siglock)) {
4007 kdb_printf("Can't do kill command now.\n"
4008 "The sigmask lock is held somewhere else in "
4009 "kernel, try again later\n");
4010 return;
4012 new_t = kdb_prev_t != t;
4013 kdb_prev_t = t;
4014 if (t->state != TASK_RUNNING && new_t) {
4015 spin_unlock(&t->sighand->siglock);
4016 kdb_printf("Process is not RUNNING, sending a signal from "
4017 "kdb risks deadlock\n"
4018 "on the run queue locks. "
4019 "The signal has _not_ been sent.\n"
4020 "Reissue the kill command if you want to risk "
4021 "the deadlock.\n");
4022 return;
4024 ret = send_signal(sig, SEND_SIG_PRIV, t, false);
4025 spin_unlock(&t->sighand->siglock);
4026 if (ret)
4027 kdb_printf("Fail to deliver Signal %d to process %d.\n",
4028 sig, t->pid);
4029 else
4030 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4032 #endif /* CONFIG_KGDB_KDB */