The LDT fixes in particular fix some potentially random strange behaviour.
[davej-history.git] / drivers / net / defxx.c
blob37e4ba907f8ce54426f0b8230d36da16c29645ca
1 /*
2 * File Name:
3 * defxx.c
5 * Copyright Information:
6 * Copyright Digital Equipment Corporation 1996.
8 * This software may be used and distributed according to the terms of
9 * the GNU Public License, incorporated herein by reference.
11 * Abstract:
12 * A Linux device driver supporting the Digital Equipment Corporation
13 * FDDI EISA and PCI controller families. Supported adapters include:
15 * DEC FDDIcontroller/EISA (DEFEA)
16 * DEC FDDIcontroller/PCI (DEFPA)
18 * Maintainers:
19 * LVS Lawrence V. Stefani
21 * Contact:
22 * The author may be reached at:
24 * Inet: stefani@lkg.dec.com
25 * (NOTE! this address no longer works -jgarzik)
27 * Mail: Digital Equipment Corporation
28 * 550 King Street
29 * M/S: LKG1-3/M07
30 * Littleton, MA 01460
32 * Credits:
33 * I'd like to thank Patricia Cross for helping me get started with
34 * Linux, David Davies for a lot of help upgrading and configuring
35 * my development system and for answering many OS and driver
36 * development questions, and Alan Cox for recommendations and
37 * integration help on getting FDDI support into Linux. LVS
39 * Driver Architecture:
40 * The driver architecture is largely based on previous driver work
41 * for other operating systems. The upper edge interface and
42 * functions were largely taken from existing Linux device drivers
43 * such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C
44 * driver.
46 * Adapter Probe -
47 * The driver scans for supported EISA adapters by reading the
48 * SLOT ID register for each EISA slot and making a match
49 * against the expected value.
51 * Bus-Specific Initialization -
52 * This driver currently supports both EISA and PCI controller
53 * families. While the custom DMA chip and FDDI logic is similar
54 * or identical, the bus logic is very different. After
55 * initialization, the only bus-specific differences is in how the
56 * driver enables and disables interrupts. Other than that, the
57 * run-time critical code behaves the same on both families.
58 * It's important to note that both adapter families are configured
59 * to I/O map, rather than memory map, the adapter registers.
61 * Driver Open/Close -
62 * In the driver open routine, the driver ISR (interrupt service
63 * routine) is registered and the adapter is brought to an
64 * operational state. In the driver close routine, the opposite
65 * occurs; the driver ISR is deregistered and the adapter is
66 * brought to a safe, but closed state. Users may use consecutive
67 * commands to bring the adapter up and down as in the following
68 * example:
69 * ifconfig fddi0 up
70 * ifconfig fddi0 down
71 * ifconfig fddi0 up
73 * Driver Shutdown -
74 * Apparently, there is no shutdown or halt routine support under
75 * Linux. This routine would be called during "reboot" or
76 * "shutdown" to allow the driver to place the adapter in a safe
77 * state before a warm reboot occurs. To be really safe, the user
78 * should close the adapter before shutdown (eg. ifconfig fddi0 down)
79 * to ensure that the adapter DMA engine is taken off-line. However,
80 * the current driver code anticipates this problem and always issues
81 * a soft reset of the adapter at the beginning of driver initialization.
82 * A future driver enhancement in this area may occur in 2.1.X where
83 * Alan indicated that a shutdown handler may be implemented.
85 * Interrupt Service Routine -
86 * The driver supports shared interrupts, so the ISR is registered for
87 * each board with the appropriate flag and the pointer to that board's
88 * device structure. This provides the context during interrupt
89 * processing to support shared interrupts and multiple boards.
91 * Interrupt enabling/disabling can occur at many levels. At the host
92 * end, you can disable system interrupts, or disable interrupts at the
93 * PIC (on Intel systems). Across the bus, both EISA and PCI adapters
94 * have a bus-logic chip interrupt enable/disable as well as a DMA
95 * controller interrupt enable/disable.
97 * The driver currently enables and disables adapter interrupts at the
98 * bus-logic chip and assumes that Linux will take care of clearing or
99 * acknowledging any host-based interrupt chips.
101 * Control Functions -
102 * Control functions are those used to support functions such as adding
103 * or deleting multicast addresses, enabling or disabling packet
104 * reception filters, or other custom/proprietary commands. Presently,
105 * the driver supports the "get statistics", "set multicast list", and
106 * "set mac address" functions defined by Linux. A list of possible
107 * enhancements include:
109 * - Custom ioctl interface for executing port interface commands
110 * - Custom ioctl interface for adding unicast addresses to
111 * adapter CAM (to support bridge functions).
112 * - Custom ioctl interface for supporting firmware upgrades.
114 * Hardware (port interface) Support Routines -
115 * The driver function names that start with "dfx_hw_" represent
116 * low-level port interface routines that are called frequently. They
117 * include issuing a DMA or port control command to the adapter,
118 * resetting the adapter, or reading the adapter state. Since the
119 * driver initialization and run-time code must make calls into the
120 * port interface, these routines were written to be as generic and
121 * usable as possible.
123 * Receive Path -
124 * The adapter DMA engine supports a 256 entry receive descriptor block
125 * of which up to 255 entries can be used at any given time. The
126 * architecture is a standard producer, consumer, completion model in
127 * which the driver "produces" receive buffers to the adapter, the
128 * adapter "consumes" the receive buffers by DMAing incoming packet data,
129 * and the driver "completes" the receive buffers by servicing the
130 * incoming packet, then "produces" a new buffer and starts the cycle
131 * again. Receive buffers can be fragmented in up to 16 fragments
132 * (descriptor entries). For simplicity, this driver posts
133 * single-fragment receive buffers of 4608 bytes, then allocates a
134 * sk_buff, copies the data, then reposts the buffer. To reduce CPU
135 * utilization, a better approach would be to pass up the receive
136 * buffer (no extra copy) then allocate and post a replacement buffer.
137 * This is a performance enhancement that should be looked into at
138 * some point.
140 * Transmit Path -
141 * Like the receive path, the adapter DMA engine supports a 256 entry
142 * transmit descriptor block of which up to 255 entries can be used at
143 * any given time. Transmit buffers can be fragmented in up to 255
144 * fragments (descriptor entries). This driver always posts one
145 * fragment per transmit packet request.
147 * The fragment contains the entire packet from FC to end of data.
148 * Before posting the buffer to the adapter, the driver sets a three-byte
149 * packet request header (PRH) which is required by the Motorola MAC chip
150 * used on the adapters. The PRH tells the MAC the type of token to
151 * receive/send, whether or not to generate and append the CRC, whether
152 * synchronous or asynchronous framing is used, etc. Since the PRH
153 * definition is not necessarily consistent across all FDDI chipsets,
154 * the driver, rather than the common FDDI packet handler routines,
155 * sets these bytes.
157 * To reduce the amount of descriptor fetches needed per transmit request,
158 * the driver takes advantage of the fact that there are at least three
159 * bytes available before the skb->data field on the outgoing transmit
160 * request. This is guaranteed by having fddi_setup() in net_init.c set
161 * dev->hard_header_len to 24 bytes. 21 bytes accounts for the largest
162 * header in an 802.2 SNAP frame. The other 3 bytes are the extra "pad"
163 * bytes which we'll use to store the PRH.
165 * There's a subtle advantage to adding these pad bytes to the
166 * hard_header_len, it ensures that the data portion of the packet for
167 * an 802.2 SNAP frame is longword aligned. Other FDDI driver
168 * implementations may not need the extra padding and can start copying
169 * or DMAing directly from the FC byte which starts at skb->data. Should
170 * another driver implementation need ADDITIONAL padding, the net_init.c
171 * module should be updated and dev->hard_header_len should be increased.
172 * NOTE: To maintain the alignment on the data portion of the packet,
173 * dev->hard_header_len should always be evenly divisible by 4 and at
174 * least 24 bytes in size.
176 * Modification History:
177 * Date Name Description
178 * 16-Aug-96 LVS Created.
179 * 20-Aug-96 LVS Updated dfx_probe so that version information
180 * string is only displayed if 1 or more cards are
181 * found. Changed dfx_rcv_queue_process to copy
182 * 3 NULL bytes before FC to ensure that data is
183 * longword aligned in receive buffer.
184 * 09-Sep-96 LVS Updated dfx_ctl_set_multicast_list to enable
185 * LLC group promiscuous mode if multicast list
186 * is too large. LLC individual/group promiscuous
187 * mode is now disabled if IFF_PROMISC flag not set.
188 * dfx_xmt_queue_pkt no longer checks for NULL skb
189 * on Alan Cox recommendation. Added node address
190 * override support.
191 * 12-Sep-96 LVS Reset current address to factory address during
192 * device open. Updated transmit path to post a
193 * single fragment which includes PRH->end of data.
194 * Mar 2000 AC Did various cleanups for 2.3.x
195 * Jun 2000 jgarzik PCI and resource alloc cleanups
196 * Jul 2000 tjeerd Much cleanup and some bug fixes
197 * Sep 2000 tjeerd Fix leak on unload, cosmetic code cleanup
200 /* Include files */
202 #include <linux/module.h>
204 #include <linux/kernel.h>
205 #include <linux/sched.h>
206 #include <linux/string.h>
207 #include <linux/ptrace.h>
208 #include <linux/errno.h>
209 #include <linux/ioport.h>
210 #include <linux/malloc.h>
211 #include <linux/interrupt.h>
212 #include <linux/pci.h>
213 #include <linux/delay.h>
214 #include <linux/init.h>
215 #include <linux/netdevice.h>
216 #include <asm/byteorder.h>
217 #include <asm/bitops.h>
218 #include <asm/io.h>
220 #include <linux/fddidevice.h>
221 #include <linux/skbuff.h>
223 #include "defxx.h"
225 /* Version information string - should be updated prior to each new release!!! */
227 static char version[] __devinitdata =
228 "defxx.c:v1.05d 2000/09/05 Lawrence V. Stefani and others\n";
230 #define DYNAMIC_BUFFERS 1
232 #define SKBUFF_RX_COPYBREAK 200
234 * NEW_SKB_SIZE = PI_RCV_DATA_K_SIZE_MAX+128 to allow 128 byte
235 * alignment for compatibility with old EISA boards.
237 #define NEW_SKB_SIZE (PI_RCV_DATA_K_SIZE_MAX+128)
239 /* Define module-wide (static) routines */
241 static void dfx_bus_init(struct net_device *dev);
242 static void dfx_bus_config_check(DFX_board_t *bp);
244 static int dfx_driver_init(struct net_device *dev);
245 static int dfx_adap_init(DFX_board_t *bp);
247 static int dfx_open(struct net_device *dev);
248 static int dfx_close(struct net_device *dev);
250 static void dfx_int_pr_halt_id(DFX_board_t *bp);
251 static void dfx_int_type_0_process(DFX_board_t *bp);
252 static void dfx_int_common(struct net_device *dev);
253 static void dfx_interrupt(int irq, void *dev_id, struct pt_regs *regs);
255 static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev);
256 static void dfx_ctl_set_multicast_list(struct net_device *dev);
257 static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr);
258 static int dfx_ctl_update_cam(DFX_board_t *bp);
259 static int dfx_ctl_update_filters(DFX_board_t *bp);
261 static int dfx_hw_dma_cmd_req(DFX_board_t *bp);
262 static int dfx_hw_port_ctrl_req(DFX_board_t *bp, PI_UINT32 command, PI_UINT32 data_a, PI_UINT32 data_b, PI_UINT32 *host_data);
263 static void dfx_hw_adap_reset(DFX_board_t *bp, PI_UINT32 type);
264 static int dfx_hw_adap_state_rd(DFX_board_t *bp);
265 static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type);
267 static void dfx_rcv_init(DFX_board_t *bp);
268 static void dfx_rcv_queue_process(DFX_board_t *bp);
270 static int dfx_xmt_queue_pkt(struct sk_buff *skb, struct net_device *dev);
271 static int dfx_xmt_done(DFX_board_t *bp);
272 static void dfx_xmt_flush(DFX_board_t *bp);
274 /* Define module-wide (static) variables */
276 static struct net_device *root_dfx_eisa_dev;
280 * =======================
281 * = dfx_port_write_byte =
282 * = dfx_port_read_byte =
283 * = dfx_port_write_long =
284 * = dfx_port_read_long =
285 * =======================
287 * Overview:
288 * Routines for reading and writing values from/to adapter
290 * Returns:
291 * None
293 * Arguments:
294 * bp - pointer to board information
295 * offset - register offset from base I/O address
296 * data - for dfx_port_write_byte and dfx_port_write_long, this
297 * is a value to write.
298 * for dfx_port_read_byte and dfx_port_read_byte, this
299 * is a pointer to store the read value.
301 * Functional Description:
302 * These routines perform the correct operation to read or write
303 * the adapter register.
305 * EISA port block base addresses are based on the slot number in which the
306 * controller is installed. For example, if the EISA controller is installed
307 * in slot 4, the port block base address is 0x4000. If the controller is
308 * installed in slot 2, the port block base address is 0x2000, and so on.
309 * This port block can be used to access PDQ, ESIC, and DEFEA on-board
310 * registers using the register offsets defined in DEFXX.H.
312 * PCI port block base addresses are assigned by the PCI BIOS or system
313 * firmware. There is one 128 byte port block which can be accessed. It
314 * allows for I/O mapping of both PDQ and PFI registers using the register
315 * offsets defined in DEFXX.H.
317 * Return Codes:
318 * None
320 * Assumptions:
321 * bp->base_addr is a valid base I/O address for this adapter.
322 * offset is a valid register offset for this adapter.
324 * Side Effects:
325 * Rather than produce macros for these functions, these routines
326 * are defined using "inline" to ensure that the compiler will
327 * generate inline code and not waste a procedure call and return.
328 * This provides all the benefits of macros, but with the
329 * advantage of strict data type checking.
332 static inline void dfx_port_write_byte(
333 DFX_board_t *bp,
334 int offset,
335 u8 data
339 u16 port = bp->base_addr + offset;
341 outb(data, port);
342 return;
345 static inline void dfx_port_read_byte(
346 DFX_board_t *bp,
347 int offset,
348 u8 *data
352 u16 port = bp->base_addr + offset;
354 *data = inb(port);
355 return;
358 static inline void dfx_port_write_long(
359 DFX_board_t *bp,
360 int offset,
361 u32 data
365 u16 port = bp->base_addr + offset;
367 outl(data, port);
368 return;
371 static inline void dfx_port_read_long(
372 DFX_board_t *bp,
373 int offset,
374 u32 *data
378 u16 port = bp->base_addr + offset;
380 *data = inl(port);
381 return;
386 * =============
387 * = dfx_init_one_pci_or_eisa =
388 * =============
390 * Overview:
391 * Initializes a supported FDDI EISA or PCI controller
393 * Returns:
394 * Condition code
396 * Arguments:
397 * pdev - pointer to pci device information (NULL for EISA)
399 * Functional Description:
401 * Return Codes:
402 * 0 - This device (fddi0, fddi1, etc) configured successfully
403 * -EBUSY - Failed to get resources, or dfx_driver_init failed.
405 * Assumptions:
406 * It compiles so it should work :-( (PCI cards do :-)
408 * Side Effects:
409 * Device structures for FDDI adapters (fddi0, fddi1, etc) are
410 * initialized and the board resources are read and stored in
411 * the device structure.
413 static int __devinit dfx_init_one_pci_or_eisa(struct pci_dev *pdev, long ioaddr)
415 struct net_device *dev;
416 DFX_board_t *bp; /* board pointer */
417 static int version_disp;
419 if (!version_disp) /* display version info if adapter is found */
421 version_disp = 1; /* set display flag to TRUE so that */
422 printk(version); /* we only display this string ONCE */
426 * init_fddidev() allocates a device structure with private data, clears the device structure and private data,
427 * and calls fddi_setup() and register_netdev(). Not much left to do for us here.
429 dev = init_fddidev( NULL, sizeof(*bp));
431 if (!dev) {
432 printk (KERN_ERR "defxx: unable to allocate fddidev, aborting\n");
433 return -ENOMEM;
436 bp = (DFX_board_t*)dev->priv;
438 if (!request_region (ioaddr, pdev ? PFI_K_CSR_IO_LEN : PI_ESIC_K_CSR_IO_LEN, dev->name)) {
439 printk (KERN_ERR "%s: Cannot reserve I/O resource 0x%x @ 0x%lx, aborting\n",
440 dev->name, PFI_K_CSR_IO_LEN, ioaddr);
441 goto err_out;
444 /* Initialize new device structure */
446 dev->base_addr = ioaddr; /* save port (I/O) base address */
448 dev->get_stats = dfx_ctl_get_stats;
449 dev->open = dfx_open;
450 dev->stop = dfx_close;
451 dev->hard_start_xmit = dfx_xmt_queue_pkt;
452 dev->set_multicast_list = dfx_ctl_set_multicast_list;
453 dev->set_mac_address = dfx_ctl_set_mac_address;
455 if (pdev == NULL) {
456 /* EISA board */
457 bp->bus_type = DFX_BUS_TYPE_EISA;
458 bp->next = root_dfx_eisa_dev;
459 root_dfx_eisa_dev = dev;
460 } else {
461 /* PCI board */
462 bp->bus_type = DFX_BUS_TYPE_PCI;
463 bp->pci_dev = pdev;
464 pdev->driver_data = dev;
465 if (pci_enable_device (pdev))
466 goto err_out_region;
467 pci_set_master (pdev);
470 if (dfx_driver_init(dev) != DFX_K_SUCCESS)
471 goto err_out_region;
473 return 0;
475 err_out_region:
476 release_region(ioaddr, pdev ? PFI_K_CSR_IO_LEN : PI_ESIC_K_CSR_IO_LEN);
477 err_out:
478 unregister_netdev(dev);
479 kfree(dev);
480 return -ENODEV;
483 static int __devinit dfx_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
485 return dfx_init_one_pci_or_eisa(pdev, pci_resource_start (pdev, 1));
488 static int __init dfx_eisa_init(void)
490 int rc = -NODEV;
491 int i; /* used in for loops */
492 u16 port; /* temporary I/O (port) address */
493 u32 slot_id; /* EISA hardware (slot) ID read from adapter */
495 DBG_printk("In dfx_eisa_init...\n");
497 /* Scan for FDDI EISA controllers */
499 for (i=0; i < DFX_MAX_EISA_SLOTS; i++) /* only scan for up to 16 EISA slots */
501 port = (i << 12) + PI_ESIC_K_SLOT_ID; /* port = I/O address for reading slot ID */
502 slot_id = inl(port); /* read EISA HW (slot) ID */
503 if ((slot_id & 0xF0FFFFFF) == DEFEA_PRODUCT_ID)
505 port = (i << 12); /* recalc base addr */
507 if (dfx_init_one_pci_or_eisa(NULL, port) == 0) rc = 0;
510 return rc;
514 * ================
515 * = dfx_bus_init =
516 * ================
518 * Overview:
519 * Initializes EISA and PCI controller bus-specific logic.
521 * Returns:
522 * None
524 * Arguments:
525 * dev - pointer to device information
527 * Functional Description:
528 * Determine and save adapter IRQ in device table,
529 * then perform bus-specific logic initialization.
531 * Return Codes:
532 * None
534 * Assumptions:
535 * dev->base_addr has already been set with the proper
536 * base I/O address for this device.
538 * Side Effects:
539 * Interrupts are enabled at the adapter bus-specific logic.
540 * Note: Interrupts at the DMA engine (PDQ chip) are not
541 * enabled yet.
544 static void __devinit dfx_bus_init(struct net_device *dev)
546 DFX_board_t *bp = (DFX_board_t *)dev->priv;
547 u8 val; /* used for I/O read/writes */
549 DBG_printk("In dfx_bus_init...\n");
552 * Initialize base I/O address field in bp structure
554 * Note: bp->base_addr is the same as dev->base_addr.
555 * It's useful because often we'll need to read
556 * or write registers where we already have the
557 * bp pointer instead of the dev pointer. Having
558 * the base address in the bp structure will
559 * save a pointer dereference.
561 * IMPORTANT!! This field must be defined before
562 * any of the dfx_port_* inline functions are
563 * called.
566 bp->base_addr = dev->base_addr;
568 /* And a pointer back to the net_device struct */
569 bp->dev = dev;
571 /* Initialize adapter based on bus type */
573 if (bp->bus_type == DFX_BUS_TYPE_EISA)
575 /* Get the interrupt level from the ESIC chip */
577 dfx_port_read_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, &val);
578 switch ((val & PI_CONFIG_STAT_0_M_IRQ) >> PI_CONFIG_STAT_0_V_IRQ)
580 case PI_CONFIG_STAT_0_IRQ_K_9:
581 dev->irq = 9;
582 break;
584 case PI_CONFIG_STAT_0_IRQ_K_10:
585 dev->irq = 10;
586 break;
588 case PI_CONFIG_STAT_0_IRQ_K_11:
589 dev->irq = 11;
590 break;
592 case PI_CONFIG_STAT_0_IRQ_K_15:
593 dev->irq = 15;
594 break;
597 /* Enable access to I/O on the board by writing 0x03 to Function Control Register */
599 dfx_port_write_byte(bp, PI_ESIC_K_FUNCTION_CNTRL, PI_ESIC_K_FUNCTION_CNTRL_IO_ENB);
601 /* Set the I/O decode range of the board */
603 val = ((dev->base_addr >> 12) << PI_IO_CMP_V_SLOT);
604 dfx_port_write_byte(bp, PI_ESIC_K_IO_CMP_0_1, val);
605 dfx_port_write_byte(bp, PI_ESIC_K_IO_CMP_1_1, val);
607 /* Enable access to rest of module (including PDQ and packet memory) */
609 dfx_port_write_byte(bp, PI_ESIC_K_SLOT_CNTRL, PI_SLOT_CNTRL_M_ENB);
612 * Map PDQ registers into I/O space. This is done by clearing a bit
613 * in Burst Holdoff register.
616 dfx_port_read_byte(bp, PI_ESIC_K_BURST_HOLDOFF, &val);
617 dfx_port_write_byte(bp, PI_ESIC_K_BURST_HOLDOFF, (val & ~PI_BURST_HOLDOFF_M_MEM_MAP));
619 /* Enable interrupts at EISA bus interface chip (ESIC) */
621 dfx_port_read_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, &val);
622 dfx_port_write_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, (val | PI_CONFIG_STAT_0_M_INT_ENB));
624 else
626 struct pci_dev *pdev = bp->pci_dev;
628 /* Get the interrupt level from the PCI Configuration Table */
630 dev->irq = pdev->irq;
632 /* Check Latency Timer and set if less than minimal */
634 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &val);
635 if (val < PFI_K_LAT_TIMER_MIN) /* if less than min, override with default */
637 val = PFI_K_LAT_TIMER_DEF;
638 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, val);
641 /* Enable interrupts at PCI bus interface chip (PFI) */
643 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, (PFI_MODE_M_PDQ_INT_ENB | PFI_MODE_M_DMA_ENB));
645 return;
650 * ========================
651 * = dfx_bus_config_check =
652 * ========================
654 * Overview:
655 * Checks the configuration (burst size, full-duplex, etc.) If any parameters
656 * are illegal, then this routine will set new defaults.
658 * Returns:
659 * None
661 * Arguments:
662 * bp - pointer to board information
664 * Functional Description:
665 * For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later
666 * PDQ, and all FDDI PCI controllers, all values are legal.
668 * Return Codes:
669 * None
671 * Assumptions:
672 * dfx_adap_init has NOT been called yet so burst size and other items have
673 * not been set.
675 * Side Effects:
676 * None
679 static void __devinit dfx_bus_config_check(DFX_board_t *bp)
681 int status; /* return code from adapter port control call */
682 u32 slot_id; /* EISA-bus hardware id (DEC3001, DEC3002,...) */
683 u32 host_data; /* LW data returned from port control call */
685 DBG_printk("In dfx_bus_config_check...\n");
687 /* Configuration check only valid for EISA adapter */
689 if (bp->bus_type == DFX_BUS_TYPE_EISA)
691 dfx_port_read_long(bp, PI_ESIC_K_SLOT_ID, &slot_id);
694 * First check if revision 2 EISA controller. Rev. 1 cards used
695 * PDQ revision B, so no workaround needed in this case. Rev. 3
696 * cards used PDQ revision E, so no workaround needed in this
697 * case, either. Only Rev. 2 cards used either Rev. D or E
698 * chips, so we must verify the chip revision on Rev. 2 cards.
701 if (slot_id == DEFEA_PROD_ID_2)
704 * Revision 2 FDDI EISA controller found, so let's check PDQ
705 * revision of adapter.
708 status = dfx_hw_port_ctrl_req(bp,
709 PI_PCTRL_M_SUB_CMD,
710 PI_SUB_CMD_K_PDQ_REV_GET,
712 &host_data);
713 if ((status != DFX_K_SUCCESS) || (host_data == 2))
716 * Either we couldn't determine the PDQ revision, or
717 * we determined that it is at revision D. In either case,
718 * we need to implement the workaround.
721 /* Ensure that the burst size is set to 8 longwords or less */
723 switch (bp->burst_size)
725 case PI_PDATA_B_DMA_BURST_SIZE_32:
726 case PI_PDATA_B_DMA_BURST_SIZE_16:
727 bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_8;
728 break;
730 default:
731 break;
734 /* Ensure that full-duplex mode is not enabled */
736 bp->full_duplex_enb = PI_SNMP_K_FALSE;
740 return;
745 * ===================
746 * = dfx_driver_init =
747 * ===================
749 * Overview:
750 * Initializes remaining adapter board structure information
751 * and makes sure adapter is in a safe state prior to dfx_open().
753 * Returns:
754 * Condition code
756 * Arguments:
757 * dev - pointer to device information
759 * Functional Description:
760 * This function allocates additional resources such as the host memory
761 * blocks needed by the adapter (eg. descriptor and consumer blocks).
762 * Remaining bus initialization steps are also completed. The adapter
763 * is also reset so that it is in the DMA_UNAVAILABLE state. The OS
764 * must call dfx_open() to open the adapter and bring it on-line.
766 * Return Codes:
767 * DFX_K_SUCCESS - initialization succeeded
768 * DFX_K_FAILURE - initialization failed - could not allocate memory
769 * or read adapter MAC address
771 * Assumptions:
772 * Memory allocated from kmalloc() call is physically contiguous, locked
773 * memory whose physical address equals its virtual address.
775 * Side Effects:
776 * Adapter is reset and should be in DMA_UNAVAILABLE state before
777 * returning from this routine.
780 static int __devinit dfx_driver_init(struct net_device *dev)
782 DFX_board_t *bp = (DFX_board_t *)dev->priv;
783 int alloc_size; /* total buffer size needed */
784 char *top_v, *curr_v; /* virtual addrs into memory block */
785 u32 top_p, curr_p; /* physical addrs into memory block */
786 u32 data; /* host data register value */
788 DBG_printk("In dfx_driver_init...\n");
790 /* Initialize bus-specific hardware registers */
792 dfx_bus_init(dev);
795 * Initialize default values for configurable parameters
797 * Note: All of these parameters are ones that a user may
798 * want to customize. It'd be nice to break these
799 * out into Space.c or someplace else that's more
800 * accessible/understandable than this file.
803 bp->full_duplex_enb = PI_SNMP_K_FALSE;
804 bp->req_ttrt = 8 * 12500; /* 8ms in 80 nanosec units */
805 bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_DEF;
806 bp->rcv_bufs_to_post = RCV_BUFS_DEF;
809 * Ensure that HW configuration is OK
811 * Note: Depending on the hardware revision, we may need to modify
812 * some of the configurable parameters to workaround hardware
813 * limitations. We'll perform this configuration check AFTER
814 * setting the parameters to their default values.
817 dfx_bus_config_check(bp);
819 /* Disable PDQ interrupts first */
821 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
823 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
825 (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
827 /* Read the factory MAC address from the adapter then save it */
829 if (dfx_hw_port_ctrl_req(bp,
830 PI_PCTRL_M_MLA,
831 PI_PDATA_A_MLA_K_LO,
833 &data) != DFX_K_SUCCESS)
835 printk("%s: Could not read adapter factory MAC address!\n", dev->name);
836 return(DFX_K_FAILURE);
838 memcpy(&bp->factory_mac_addr[0], &data, sizeof(u32));
840 if (dfx_hw_port_ctrl_req(bp,
841 PI_PCTRL_M_MLA,
842 PI_PDATA_A_MLA_K_HI,
844 &data) != DFX_K_SUCCESS)
846 printk("%s: Could not read adapter factory MAC address!\n", dev->name);
847 return(DFX_K_FAILURE);
849 memcpy(&bp->factory_mac_addr[4], &data, sizeof(u16));
852 * Set current address to factory address
854 * Note: Node address override support is handled through
855 * dfx_ctl_set_mac_address.
858 memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
859 if (bp->bus_type == DFX_BUS_TYPE_EISA)
860 printk("%s: DEFEA at I/O addr = 0x%lX, IRQ = %d, Hardware addr = %02X-%02X-%02X-%02X-%02X-%02X\n",
861 dev->name,
862 dev->base_addr,
863 dev->irq,
864 dev->dev_addr[0],
865 dev->dev_addr[1],
866 dev->dev_addr[2],
867 dev->dev_addr[3],
868 dev->dev_addr[4],
869 dev->dev_addr[5]);
870 else
871 printk("%s: DEFPA at I/O addr = 0x%lX, IRQ = %d, Hardware addr = %02X-%02X-%02X-%02X-%02X-%02X\n",
872 dev->name,
873 dev->base_addr,
874 dev->irq,
875 dev->dev_addr[0],
876 dev->dev_addr[1],
877 dev->dev_addr[2],
878 dev->dev_addr[3],
879 dev->dev_addr[4],
880 dev->dev_addr[5]);
883 * Get memory for descriptor block, consumer block, and other buffers
884 * that need to be DMA read or written to by the adapter.
887 alloc_size = sizeof(PI_DESCR_BLOCK) +
888 PI_CMD_REQ_K_SIZE_MAX +
889 PI_CMD_RSP_K_SIZE_MAX +
890 #ifndef DYNAMIC_BUFFERS
891 (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
892 #endif
893 sizeof(PI_CONSUMER_BLOCK) +
894 (PI_ALIGN_K_DESC_BLK - 1);
895 bp->kmalloced = top_v = (char *) kmalloc(alloc_size, GFP_KERNEL);
896 if (top_v == NULL)
898 printk("%s: Could not allocate memory for host buffers and structures!\n", dev->name);
899 return(DFX_K_FAILURE);
901 memset(top_v, 0, alloc_size); /* zero out memory before continuing */
902 top_p = virt_to_bus(top_v); /* get physical address of buffer */
905 * To guarantee the 8K alignment required for the descriptor block, 8K - 1
906 * plus the amount of memory needed was allocated. The physical address
907 * is now 8K aligned. By carving up the memory in a specific order,
908 * we'll guarantee the alignment requirements for all other structures.
910 * Note: If the assumptions change regarding the non-paged, non-cached,
911 * physically contiguous nature of the memory block or the address
912 * alignments, then we'll need to implement a different algorithm
913 * for allocating the needed memory.
916 curr_p = (u32) (ALIGN(top_p, PI_ALIGN_K_DESC_BLK));
917 curr_v = top_v + (curr_p - top_p);
919 /* Reserve space for descriptor block */
921 bp->descr_block_virt = (PI_DESCR_BLOCK *) curr_v;
922 bp->descr_block_phys = curr_p;
923 curr_v += sizeof(PI_DESCR_BLOCK);
924 curr_p += sizeof(PI_DESCR_BLOCK);
926 /* Reserve space for command request buffer */
928 bp->cmd_req_virt = (PI_DMA_CMD_REQ *) curr_v;
929 bp->cmd_req_phys = curr_p;
930 curr_v += PI_CMD_REQ_K_SIZE_MAX;
931 curr_p += PI_CMD_REQ_K_SIZE_MAX;
933 /* Reserve space for command response buffer */
935 bp->cmd_rsp_virt = (PI_DMA_CMD_RSP *) curr_v;
936 bp->cmd_rsp_phys = curr_p;
937 curr_v += PI_CMD_RSP_K_SIZE_MAX;
938 curr_p += PI_CMD_RSP_K_SIZE_MAX;
940 /* Reserve space for the LLC host receive queue buffers */
942 bp->rcv_block_virt = curr_v;
943 bp->rcv_block_phys = curr_p;
945 #ifndef DYNAMIC_BUFFERS
946 curr_v += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
947 curr_p += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
948 #endif
950 /* Reserve space for the consumer block */
952 bp->cons_block_virt = (PI_CONSUMER_BLOCK *) curr_v;
953 bp->cons_block_phys = curr_p;
955 /* Display virtual and physical addresses if debug driver */
957 DBG_printk("%s: Descriptor block virt = %0lX, phys = %0X\n", dev->name, (long)bp->descr_block_virt, bp->descr_block_phys);
958 DBG_printk("%s: Command Request buffer virt = %0lX, phys = %0X\n", dev->name, (long)bp->cmd_req_virt, bp->cmd_req_phys);
959 DBG_printk("%s: Command Response buffer virt = %0lX, phys = %0X\n", dev->name, (long)bp->cmd_rsp_virt, bp->cmd_rsp_phys);
960 DBG_printk("%s: Receive buffer block virt = %0lX, phys = %0X\n", dev->name, (long)bp->rcv_block_virt, bp->rcv_block_phys);
961 DBG_printk("%s: Consumer block virt = %0lX, phys = %0X\n", dev->name, (long)bp->cons_block_virt, bp->cons_block_phys);
963 return(DFX_K_SUCCESS);
968 * =================
969 * = dfx_adap_init =
970 * =================
972 * Overview:
973 * Brings the adapter to the link avail/link unavailable state.
975 * Returns:
976 * Condition code
978 * Arguments:
979 * bp - pointer to board information
981 * Functional Description:
982 * Issues the low-level firmware/hardware calls necessary to bring
983 * the adapter up, or to properly reset and restore adapter during
984 * run-time.
986 * Return Codes:
987 * DFX_K_SUCCESS - Adapter brought up successfully
988 * DFX_K_FAILURE - Adapter initialization failed
990 * Assumptions:
991 * bp->reset_type should be set to a valid reset type value before
992 * calling this routine.
994 * Side Effects:
995 * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
996 * upon a successful return of this routine.
999 static int dfx_adap_init(DFX_board_t *bp)
1001 DBG_printk("In dfx_adap_init...\n");
1003 /* Disable PDQ interrupts first */
1005 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1007 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1009 if (dfx_hw_dma_uninit(bp, bp->reset_type) != DFX_K_SUCCESS)
1011 printk("%s: Could not uninitialize/reset adapter!\n", bp->dev->name);
1012 return(DFX_K_FAILURE);
1016 * When the PDQ is reset, some false Type 0 interrupts may be pending,
1017 * so we'll acknowledge all Type 0 interrupts now before continuing.
1020 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, PI_HOST_INT_K_ACK_ALL_TYPE_0);
1023 * Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state
1025 * Note: We only need to clear host copies of these registers. The PDQ reset
1026 * takes care of the on-board register values.
1029 bp->cmd_req_reg.lword = 0;
1030 bp->cmd_rsp_reg.lword = 0;
1031 bp->rcv_xmt_reg.lword = 0;
1033 /* Clear consumer block before going to DMA_AVAILABLE state */
1035 memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1037 /* Initialize the DMA Burst Size */
1039 if (dfx_hw_port_ctrl_req(bp,
1040 PI_PCTRL_M_SUB_CMD,
1041 PI_SUB_CMD_K_BURST_SIZE_SET,
1042 bp->burst_size,
1043 NULL) != DFX_K_SUCCESS)
1045 printk("%s: Could not set adapter burst size!\n", bp->dev->name);
1046 return(DFX_K_FAILURE);
1050 * Set base address of Consumer Block
1052 * Assumption: 32-bit physical address of consumer block is 64 byte
1053 * aligned. That is, bits 0-5 of the address must be zero.
1056 if (dfx_hw_port_ctrl_req(bp,
1057 PI_PCTRL_M_CONS_BLOCK,
1058 bp->cons_block_phys,
1060 NULL) != DFX_K_SUCCESS)
1062 printk("%s: Could not set consumer block address!\n", bp->dev->name);
1063 return(DFX_K_FAILURE);
1067 * Set base address of Descriptor Block and bring adapter to DMA_AVAILABLE state
1069 * Note: We also set the literal and data swapping requirements in this
1070 * command. Since this driver presently runs on Intel platforms
1071 * which are Little Endian, we'll tell the adapter to byte swap
1072 * data only. This code will need to change when we support
1073 * Big Endian systems (eg. PowerPC).
1075 * Assumption: 32-bit physical address of descriptor block is 8Kbyte
1076 * aligned. That is, bits 0-12 of the address must be zero.
1079 if (dfx_hw_port_ctrl_req(bp,
1080 PI_PCTRL_M_INIT,
1081 (u32) (bp->descr_block_phys | PI_PDATA_A_INIT_M_BSWAP_DATA),
1083 NULL) != DFX_K_SUCCESS)
1085 printk("%s: Could not set descriptor block address!\n", bp->dev->name);
1086 return(DFX_K_FAILURE);
1089 /* Set transmit flush timeout value */
1091 bp->cmd_req_virt->cmd_type = PI_CMD_K_CHARS_SET;
1092 bp->cmd_req_virt->char_set.item[0].item_code = PI_ITEM_K_FLUSH_TIME;
1093 bp->cmd_req_virt->char_set.item[0].value = 3; /* 3 seconds */
1094 bp->cmd_req_virt->char_set.item[0].item_index = 0;
1095 bp->cmd_req_virt->char_set.item[1].item_code = PI_ITEM_K_EOL;
1096 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1098 printk("%s: DMA command request failed!\n", bp->dev->name);
1099 return(DFX_K_FAILURE);
1102 /* Set the initial values for eFDXEnable and MACTReq MIB objects */
1104 bp->cmd_req_virt->cmd_type = PI_CMD_K_SNMP_SET;
1105 bp->cmd_req_virt->snmp_set.item[0].item_code = PI_ITEM_K_FDX_ENB_DIS;
1106 bp->cmd_req_virt->snmp_set.item[0].value = bp->full_duplex_enb;
1107 bp->cmd_req_virt->snmp_set.item[0].item_index = 0;
1108 bp->cmd_req_virt->snmp_set.item[1].item_code = PI_ITEM_K_MAC_T_REQ;
1109 bp->cmd_req_virt->snmp_set.item[1].value = bp->req_ttrt;
1110 bp->cmd_req_virt->snmp_set.item[1].item_index = 0;
1111 bp->cmd_req_virt->snmp_set.item[2].item_code = PI_ITEM_K_EOL;
1112 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1114 printk("%s: DMA command request failed!\n", bp->dev->name);
1115 return(DFX_K_FAILURE);
1118 /* Initialize adapter CAM */
1120 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
1122 printk("%s: Adapter CAM update failed!\n", bp->dev->name);
1123 return(DFX_K_FAILURE);
1126 /* Initialize adapter filters */
1128 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
1130 printk("%s: Adapter filters update failed!\n", bp->dev->name);
1131 return(DFX_K_FAILURE);
1134 /* Initialize receive descriptor block and produce buffers */
1136 dfx_rcv_init(bp);
1138 /* Issue START command and bring adapter to LINK_(UN)AVAILABLE state */
1140 bp->cmd_req_virt->cmd_type = PI_CMD_K_START;
1141 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1143 printk("%s: Start command failed\n", bp->dev->name);
1144 return(DFX_K_FAILURE);
1147 /* Initialization succeeded, reenable PDQ interrupts */
1149 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_ENABLE_DEF_INTS);
1150 return(DFX_K_SUCCESS);
1155 * ============
1156 * = dfx_open =
1157 * ============
1159 * Overview:
1160 * Opens the adapter
1162 * Returns:
1163 * Condition code
1165 * Arguments:
1166 * dev - pointer to device information
1168 * Functional Description:
1169 * This function brings the adapter to an operational state.
1171 * Return Codes:
1172 * 0 - Adapter was successfully opened
1173 * -EAGAIN - Could not register IRQ or adapter initialization failed
1175 * Assumptions:
1176 * This routine should only be called for a device that was
1177 * initialized successfully.
1179 * Side Effects:
1180 * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1181 * if the open is successful.
1184 static int dfx_open(struct net_device *dev)
1186 DFX_board_t *bp = (DFX_board_t *)dev->priv;
1188 DBG_printk("In dfx_open...\n");
1190 MOD_INC_USE_COUNT;
1192 /* Register IRQ - support shared interrupts by passing device ptr */
1194 if (request_irq(dev->irq, (void *)dfx_interrupt, SA_SHIRQ, dev->name, dev))
1196 printk(KERN_ERR "%s: Requested IRQ %d is busy\n", dev->name, dev->irq);
1197 MOD_DEC_USE_COUNT;
1198 return -EAGAIN;
1202 * Set current address to factory MAC address
1204 * Note: We've already done this step in dfx_driver_init.
1205 * However, it's possible that a user has set a node
1206 * address override, then closed and reopened the
1207 * adapter. Unless we reset the device address field
1208 * now, we'll continue to use the existing modified
1209 * address.
1212 memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1214 /* Clear local unicast/multicast address tables and counts */
1216 memset(bp->uc_table, 0, sizeof(bp->uc_table));
1217 memset(bp->mc_table, 0, sizeof(bp->mc_table));
1218 bp->uc_count = 0;
1219 bp->mc_count = 0;
1221 /* Disable promiscuous filter settings */
1223 bp->ind_group_prom = PI_FSTATE_K_BLOCK;
1224 bp->group_prom = PI_FSTATE_K_BLOCK;
1226 spin_lock_init(&bp->lock);
1228 /* Reset and initialize adapter */
1230 bp->reset_type = PI_PDATA_A_RESET_M_SKIP_ST; /* skip self-test */
1231 if (dfx_adap_init(bp) != DFX_K_SUCCESS)
1233 printk(KERN_ERR "%s: Adapter open failed!\n", dev->name);
1234 free_irq(dev->irq, dev);
1235 MOD_DEC_USE_COUNT;
1236 return -EAGAIN;
1239 /* Set device structure info */
1240 netif_start_queue(dev);
1241 return(0);
1246 * =============
1247 * = dfx_close =
1248 * =============
1250 * Overview:
1251 * Closes the device/module.
1253 * Returns:
1254 * Condition code
1256 * Arguments:
1257 * dev - pointer to device information
1259 * Functional Description:
1260 * This routine closes the adapter and brings it to a safe state.
1261 * The interrupt service routine is deregistered with the OS.
1262 * The adapter can be opened again with another call to dfx_open().
1264 * Return Codes:
1265 * Always return 0.
1267 * Assumptions:
1268 * No further requests for this adapter are made after this routine is
1269 * called. dfx_open() can be called to reset and reinitialize the
1270 * adapter.
1272 * Side Effects:
1273 * Adapter should be in DMA_UNAVAILABLE state upon completion of this
1274 * routine.
1277 static int dfx_close(struct net_device *dev)
1279 DFX_board_t *bp = (DFX_board_t *)dev->priv;
1281 DBG_printk("In dfx_close...\n");
1283 /* Disable PDQ interrupts first */
1285 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1287 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1289 (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1292 * Flush any pending transmit buffers
1294 * Note: It's important that we flush the transmit buffers
1295 * BEFORE we clear our copy of the Type 2 register.
1296 * Otherwise, we'll have no idea how many buffers
1297 * we need to free.
1300 dfx_xmt_flush(bp);
1303 * Clear Type 1 and Type 2 registers after adapter reset
1305 * Note: Even though we're closing the adapter, it's
1306 * possible that an interrupt will occur after
1307 * dfx_close is called. Without some assurance to
1308 * the contrary we want to make sure that we don't
1309 * process receive and transmit LLC frames and update
1310 * the Type 2 register with bad information.
1313 bp->cmd_req_reg.lword = 0;
1314 bp->cmd_rsp_reg.lword = 0;
1315 bp->rcv_xmt_reg.lword = 0;
1317 /* Clear consumer block for the same reason given above */
1319 memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1321 /* Clear device structure flags */
1323 netif_stop_queue(dev);
1325 /* Deregister (free) IRQ */
1327 free_irq(dev->irq, dev);
1329 MOD_DEC_USE_COUNT;
1330 return(0);
1335 * ======================
1336 * = dfx_int_pr_halt_id =
1337 * ======================
1339 * Overview:
1340 * Displays halt id's in string form.
1342 * Returns:
1343 * None
1345 * Arguments:
1346 * bp - pointer to board information
1348 * Functional Description:
1349 * Determine current halt id and display appropriate string.
1351 * Return Codes:
1352 * None
1354 * Assumptions:
1355 * None
1357 * Side Effects:
1358 * None
1361 static void dfx_int_pr_halt_id(DFX_board_t *bp)
1363 PI_UINT32 port_status; /* PDQ port status register value */
1364 PI_UINT32 halt_id; /* PDQ port status halt ID */
1366 /* Read the latest port status */
1368 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1370 /* Display halt state transition information */
1372 halt_id = (port_status & PI_PSTATUS_M_HALT_ID) >> PI_PSTATUS_V_HALT_ID;
1373 switch (halt_id)
1375 case PI_HALT_ID_K_SELFTEST_TIMEOUT:
1376 printk("%s: Halt ID: Selftest Timeout\n", bp->dev->name);
1377 break;
1379 case PI_HALT_ID_K_PARITY_ERROR:
1380 printk("%s: Halt ID: Host Bus Parity Error\n", bp->dev->name);
1381 break;
1383 case PI_HALT_ID_K_HOST_DIR_HALT:
1384 printk("%s: Halt ID: Host-Directed Halt\n", bp->dev->name);
1385 break;
1387 case PI_HALT_ID_K_SW_FAULT:
1388 printk("%s: Halt ID: Adapter Software Fault\n", bp->dev->name);
1389 break;
1391 case PI_HALT_ID_K_HW_FAULT:
1392 printk("%s: Halt ID: Adapter Hardware Fault\n", bp->dev->name);
1393 break;
1395 case PI_HALT_ID_K_PC_TRACE:
1396 printk("%s: Halt ID: FDDI Network PC Trace Path Test\n", bp->dev->name);
1397 break;
1399 case PI_HALT_ID_K_DMA_ERROR:
1400 printk("%s: Halt ID: Adapter DMA Error\n", bp->dev->name);
1401 break;
1403 case PI_HALT_ID_K_IMAGE_CRC_ERROR:
1404 printk("%s: Halt ID: Firmware Image CRC Error\n", bp->dev->name);
1405 break;
1407 case PI_HALT_ID_K_BUS_EXCEPTION:
1408 printk("%s: Halt ID: 68000 Bus Exception\n", bp->dev->name);
1409 break;
1411 default:
1412 printk("%s: Halt ID: Unknown (code = %X)\n", bp->dev->name, halt_id);
1413 break;
1415 return;
1420 * ==========================
1421 * = dfx_int_type_0_process =
1422 * ==========================
1424 * Overview:
1425 * Processes Type 0 interrupts.
1427 * Returns:
1428 * None
1430 * Arguments:
1431 * bp - pointer to board information
1433 * Functional Description:
1434 * Processes all enabled Type 0 interrupts. If the reason for the interrupt
1435 * is a serious fault on the adapter, then an error message is displayed
1436 * and the adapter is reset.
1438 * One tricky potential timing window is the rapid succession of "link avail"
1439 * "link unavail" state change interrupts. The acknowledgement of the Type 0
1440 * interrupt must be done before reading the state from the Port Status
1441 * register. This is true because a state change could occur after reading
1442 * the data, but before acknowledging the interrupt. If this state change
1443 * does happen, it would be lost because the driver is using the old state,
1444 * and it will never know about the new state because it subsequently
1445 * acknowledges the state change interrupt.
1447 * INCORRECT CORRECT
1448 * read type 0 int reasons read type 0 int reasons
1449 * read adapter state ack type 0 interrupts
1450 * ack type 0 interrupts read adapter state
1451 * ... process interrupt ... ... process interrupt ...
1453 * Return Codes:
1454 * None
1456 * Assumptions:
1457 * None
1459 * Side Effects:
1460 * An adapter reset may occur if the adapter has any Type 0 error interrupts
1461 * or if the port status indicates that the adapter is halted. The driver
1462 * is responsible for reinitializing the adapter with the current CAM
1463 * contents and adapter filter settings.
1466 static void dfx_int_type_0_process(DFX_board_t *bp)
1469 PI_UINT32 type_0_status; /* Host Interrupt Type 0 register */
1470 PI_UINT32 state; /* current adap state (from port status) */
1473 * Read host interrupt Type 0 register to determine which Type 0
1474 * interrupts are pending. Immediately write it back out to clear
1475 * those interrupts.
1478 dfx_port_read_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, &type_0_status);
1479 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, type_0_status);
1481 /* Check for Type 0 error interrupts */
1483 if (type_0_status & (PI_TYPE_0_STAT_M_NXM |
1484 PI_TYPE_0_STAT_M_PM_PAR_ERR |
1485 PI_TYPE_0_STAT_M_BUS_PAR_ERR))
1487 /* Check for Non-Existent Memory error */
1489 if (type_0_status & PI_TYPE_0_STAT_M_NXM)
1490 printk("%s: Non-Existent Memory Access Error\n", bp->dev->name);
1492 /* Check for Packet Memory Parity error */
1494 if (type_0_status & PI_TYPE_0_STAT_M_PM_PAR_ERR)
1495 printk("%s: Packet Memory Parity Error\n", bp->dev->name);
1497 /* Check for Host Bus Parity error */
1499 if (type_0_status & PI_TYPE_0_STAT_M_BUS_PAR_ERR)
1500 printk("%s: Host Bus Parity Error\n", bp->dev->name);
1502 /* Reset adapter and bring it back on-line */
1504 bp->link_available = PI_K_FALSE; /* link is no longer available */
1505 bp->reset_type = 0; /* rerun on-board diagnostics */
1506 printk("%s: Resetting adapter...\n", bp->dev->name);
1507 if (dfx_adap_init(bp) != DFX_K_SUCCESS)
1509 printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp->dev->name);
1510 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1511 return;
1513 printk("%s: Adapter reset successful!\n", bp->dev->name);
1514 return;
1517 /* Check for transmit flush interrupt */
1519 if (type_0_status & PI_TYPE_0_STAT_M_XMT_FLUSH)
1521 /* Flush any pending xmt's and acknowledge the flush interrupt */
1523 bp->link_available = PI_K_FALSE; /* link is no longer available */
1524 dfx_xmt_flush(bp); /* flush any outstanding packets */
1525 (void) dfx_hw_port_ctrl_req(bp,
1526 PI_PCTRL_M_XMT_DATA_FLUSH_DONE,
1529 NULL);
1532 /* Check for adapter state change */
1534 if (type_0_status & PI_TYPE_0_STAT_M_STATE_CHANGE)
1536 /* Get latest adapter state */
1538 state = dfx_hw_adap_state_rd(bp); /* get adapter state */
1539 if (state == PI_STATE_K_HALTED)
1542 * Adapter has transitioned to HALTED state, try to reset
1543 * adapter to bring it back on-line. If reset fails,
1544 * leave the adapter in the broken state.
1547 printk("%s: Controller has transitioned to HALTED state!\n", bp->dev->name);
1548 dfx_int_pr_halt_id(bp); /* display halt id as string */
1550 /* Reset adapter and bring it back on-line */
1552 bp->link_available = PI_K_FALSE; /* link is no longer available */
1553 bp->reset_type = 0; /* rerun on-board diagnostics */
1554 printk("%s: Resetting adapter...\n", bp->dev->name);
1555 if (dfx_adap_init(bp) != DFX_K_SUCCESS)
1557 printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp->dev->name);
1558 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1559 return;
1561 printk("%s: Adapter reset successful!\n", bp->dev->name);
1563 else if (state == PI_STATE_K_LINK_AVAIL)
1565 bp->link_available = PI_K_TRUE; /* set link available flag */
1568 return;
1573 * ==================
1574 * = dfx_int_common =
1575 * ==================
1577 * Overview:
1578 * Interrupt service routine (ISR)
1580 * Returns:
1581 * None
1583 * Arguments:
1584 * bp - pointer to board information
1586 * Functional Description:
1587 * This is the ISR which processes incoming adapter interrupts.
1589 * Return Codes:
1590 * None
1592 * Assumptions:
1593 * This routine assumes PDQ interrupts have not been disabled.
1594 * When interrupts are disabled at the PDQ, the Port Status register
1595 * is automatically cleared. This routine uses the Port Status
1596 * register value to determine whether a Type 0 interrupt occurred,
1597 * so it's important that adapter interrupts are not normally
1598 * enabled/disabled at the PDQ.
1600 * It's vital that this routine is NOT reentered for the
1601 * same board and that the OS is not in another section of
1602 * code (eg. dfx_xmt_queue_pkt) for the same board on a
1603 * different thread.
1605 * Side Effects:
1606 * Pending interrupts are serviced. Depending on the type of
1607 * interrupt, acknowledging and clearing the interrupt at the
1608 * PDQ involves writing a register to clear the interrupt bit
1609 * or updating completion indices.
1612 static void dfx_int_common(struct net_device *dev)
1614 DFX_board_t *bp = (DFX_board_t *) dev->priv;
1615 PI_UINT32 port_status; /* Port Status register */
1617 /* Process xmt interrupts - frequent case, so always call this routine */
1619 if(dfx_xmt_done(bp)) /* free consumed xmt packets */
1620 netif_wake_queue(dev);
1622 /* Process rcv interrupts - frequent case, so always call this routine */
1624 dfx_rcv_queue_process(bp); /* service received LLC frames */
1627 * Transmit and receive producer and completion indices are updated on the
1628 * adapter by writing to the Type 2 Producer register. Since the frequent
1629 * case is that we'll be processing either LLC transmit or receive buffers,
1630 * we'll optimize I/O writes by doing a single register write here.
1633 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
1635 /* Read PDQ Port Status register to find out which interrupts need processing */
1637 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1639 /* Process Type 0 interrupts (if any) - infrequent, so only call when needed */
1641 if (port_status & PI_PSTATUS_M_TYPE_0_PENDING)
1642 dfx_int_type_0_process(bp); /* process Type 0 interrupts */
1643 return;
1648 * =================
1649 * = dfx_interrupt =
1650 * =================
1652 * Overview:
1653 * Interrupt processing routine
1655 * Returns:
1656 * None
1658 * Arguments:
1659 * irq - interrupt vector
1660 * dev_id - pointer to device information
1661 * regs - pointer to registers structure
1663 * Functional Description:
1664 * This routine calls the interrupt processing routine for this adapter. It
1665 * disables and reenables adapter interrupts, as appropriate. We can support
1666 * shared interrupts since the incoming dev_id pointer provides our device
1667 * structure context.
1669 * Return Codes:
1670 * None
1672 * Assumptions:
1673 * The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
1674 * on Intel-based systems) is done by the operating system outside this
1675 * routine.
1677 * System interrupts are enabled through this call.
1679 * Side Effects:
1680 * Interrupts are disabled, then reenabled at the adapter.
1683 static void dfx_interrupt(int irq, void *dev_id, struct pt_regs *regs)
1685 struct net_device *dev = (struct net_device *) dev_id;
1686 DFX_board_t *bp; /* private board structure pointer */
1687 u8 tmp; /* used for disabling/enabling ints */
1689 /* Get board pointer only if device structure is valid */
1691 bp = (DFX_board_t *) dev->priv;
1693 spin_lock(&bp->lock);
1695 /* See if we're already servicing an interrupt */
1697 /* Service adapter interrupts */
1699 if (bp->bus_type == DFX_BUS_TYPE_PCI)
1701 /* Disable PDQ-PFI interrupts at PFI */
1703 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, PFI_MODE_M_DMA_ENB);
1705 /* Call interrupt service routine for this adapter */
1707 dfx_int_common(dev);
1709 /* Clear PDQ interrupt status bit and reenable interrupts */
1711 dfx_port_write_long(bp, PFI_K_REG_STATUS, PFI_STATUS_M_PDQ_INT);
1712 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1713 (PFI_MODE_M_PDQ_INT_ENB + PFI_MODE_M_DMA_ENB));
1715 else
1717 /* Disable interrupts at the ESIC */
1719 dfx_port_read_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, &tmp);
1720 tmp &= ~PI_CONFIG_STAT_0_M_INT_ENB;
1721 dfx_port_write_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, tmp);
1723 /* Call interrupt service routine for this adapter */
1725 dfx_int_common(dev);
1727 /* Reenable interrupts at the ESIC */
1729 dfx_port_read_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, &tmp);
1730 tmp |= PI_CONFIG_STAT_0_M_INT_ENB;
1731 dfx_port_write_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, tmp);
1734 spin_unlock(&bp->lock);
1735 return;
1740 * =====================
1741 * = dfx_ctl_get_stats =
1742 * =====================
1744 * Overview:
1745 * Get statistics for FDDI adapter
1747 * Returns:
1748 * Pointer to FDDI statistics structure
1750 * Arguments:
1751 * dev - pointer to device information
1753 * Functional Description:
1754 * Gets current MIB objects from adapter, then
1755 * returns FDDI statistics structure as defined
1756 * in if_fddi.h.
1758 * Note: Since the FDDI statistics structure is
1759 * still new and the device structure doesn't
1760 * have an FDDI-specific get statistics handler,
1761 * we'll return the FDDI statistics structure as
1762 * a pointer to an Ethernet statistics structure.
1763 * That way, at least the first part of the statistics
1764 * structure can be decoded properly, and it allows
1765 * "smart" applications to perform a second cast to
1766 * decode the FDDI-specific statistics.
1768 * We'll have to pay attention to this routine as the
1769 * device structure becomes more mature and LAN media
1770 * independent.
1772 * Return Codes:
1773 * None
1775 * Assumptions:
1776 * None
1778 * Side Effects:
1779 * None
1782 static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev)
1784 DFX_board_t *bp = (DFX_board_t *)dev->priv;
1786 /* Fill the bp->stats structure with driver-maintained counters */
1788 bp->stats.rx_packets = bp->rcv_total_frames;
1789 bp->stats.tx_packets = bp->xmt_total_frames;
1790 bp->stats.rx_bytes = bp->rcv_total_bytes;
1791 bp->stats.tx_bytes = bp->xmt_total_bytes;
1792 bp->stats.rx_errors = (u32)(bp->rcv_crc_errors + bp->rcv_frame_status_errors + bp->rcv_length_errors);
1793 bp->stats.tx_errors = bp->xmt_length_errors;
1794 bp->stats.rx_dropped = bp->rcv_discards;
1795 bp->stats.tx_dropped = bp->xmt_discards;
1796 bp->stats.multicast = bp->rcv_multicast_frames;
1797 bp->stats.transmit_collision = 0; /* always zero (0) for FDDI */
1799 /* Get FDDI SMT MIB objects */
1801 bp->cmd_req_virt->cmd_type = PI_CMD_K_SMT_MIB_GET;
1802 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1803 return((struct net_device_stats *) &bp->stats);
1805 /* Fill the bp->stats structure with the SMT MIB object values */
1807 memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
1808 bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
1809 bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
1810 bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
1811 memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
1812 bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
1813 bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
1814 bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
1815 bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
1816 bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
1817 bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
1818 bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
1819 bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
1820 bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
1821 bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
1822 bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
1823 bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
1824 bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
1825 bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
1826 bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
1827 bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
1828 bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
1829 bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
1830 bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
1831 bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
1832 bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
1833 bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
1834 bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
1835 bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
1836 memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
1837 memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
1838 memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
1839 memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
1840 bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
1841 bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
1842 bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
1843 memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
1844 bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
1845 bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
1846 bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
1847 bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
1848 bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
1849 bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
1850 bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
1851 bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
1852 bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
1853 bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
1854 bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
1855 bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
1856 bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
1857 bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
1858 bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
1859 bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
1860 memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
1861 bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
1862 bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
1863 bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
1864 bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
1865 bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
1866 bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
1867 bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
1868 bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
1869 bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
1870 bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
1871 memcpy(&bp->stats.port_requested_paths[0*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
1872 memcpy(&bp->stats.port_requested_paths[1*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
1873 bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
1874 bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
1875 bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
1876 bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
1877 bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
1878 bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
1879 bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
1880 bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
1881 bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
1882 bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
1883 bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
1884 bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
1885 bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
1886 bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
1887 bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
1888 bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
1889 bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
1890 bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
1891 bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
1892 bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
1893 bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
1894 bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
1895 bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
1896 bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
1897 bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
1898 bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
1900 /* Get FDDI counters */
1902 bp->cmd_req_virt->cmd_type = PI_CMD_K_CNTRS_GET;
1903 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1904 return((struct net_device_stats *) &bp->stats);
1906 /* Fill the bp->stats structure with the FDDI counter values */
1908 bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
1909 bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
1910 bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
1911 bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
1912 bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
1913 bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
1914 bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
1915 bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
1916 bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
1917 bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
1918 bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
1920 return((struct net_device_stats *) &bp->stats);
1925 * ==============================
1926 * = dfx_ctl_set_multicast_list =
1927 * ==============================
1929 * Overview:
1930 * Enable/Disable LLC frame promiscuous mode reception
1931 * on the adapter and/or update multicast address table.
1933 * Returns:
1934 * None
1936 * Arguments:
1937 * dev - pointer to device information
1939 * Functional Description:
1940 * This routine follows a fairly simple algorithm for setting the
1941 * adapter filters and CAM:
1943 * if IFF_PROMISC flag is set
1944 * enable LLC individual/group promiscuous mode
1945 * else
1946 * disable LLC individual/group promiscuous mode
1947 * if number of incoming multicast addresses >
1948 * (CAM max size - number of unicast addresses in CAM)
1949 * enable LLC group promiscuous mode
1950 * set driver-maintained multicast address count to zero
1951 * else
1952 * disable LLC group promiscuous mode
1953 * set driver-maintained multicast address count to incoming count
1954 * update adapter CAM
1955 * update adapter filters
1957 * Return Codes:
1958 * None
1960 * Assumptions:
1961 * Multicast addresses are presented in canonical (LSB) format.
1963 * Side Effects:
1964 * On-board adapter CAM and filters are updated.
1967 static void dfx_ctl_set_multicast_list(struct net_device *dev)
1969 DFX_board_t *bp = (DFX_board_t *)dev->priv;
1970 int i; /* used as index in for loop */
1971 struct dev_mc_list *dmi; /* ptr to multicast addr entry */
1973 /* Enable LLC frame promiscuous mode, if necessary */
1975 if (dev->flags & IFF_PROMISC)
1976 bp->ind_group_prom = PI_FSTATE_K_PASS; /* Enable LLC ind/group prom mode */
1978 /* Else, update multicast address table */
1980 else
1982 bp->ind_group_prom = PI_FSTATE_K_BLOCK; /* Disable LLC ind/group prom mode */
1984 * Check whether incoming multicast address count exceeds table size
1986 * Note: The adapters utilize an on-board 64 entry CAM for
1987 * supporting perfect filtering of multicast packets
1988 * and bridge functions when adding unicast addresses.
1989 * There is no hash function available. To support
1990 * additional multicast addresses, the all multicast
1991 * filter (LLC group promiscuous mode) must be enabled.
1993 * The firmware reserves two CAM entries for SMT-related
1994 * multicast addresses, which leaves 62 entries available.
1995 * The following code ensures that we're not being asked
1996 * to add more than 62 addresses to the CAM. If we are,
1997 * the driver will enable the all multicast filter.
1998 * Should the number of multicast addresses drop below
1999 * the high water mark, the filter will be disabled and
2000 * perfect filtering will be used.
2003 if (dev->mc_count > (PI_CMD_ADDR_FILTER_K_SIZE - bp->uc_count))
2005 bp->group_prom = PI_FSTATE_K_PASS; /* Enable LLC group prom mode */
2006 bp->mc_count = 0; /* Don't add mc addrs to CAM */
2008 else
2010 bp->group_prom = PI_FSTATE_K_BLOCK; /* Disable LLC group prom mode */
2011 bp->mc_count = dev->mc_count; /* Add mc addrs to CAM */
2014 /* Copy addresses to multicast address table, then update adapter CAM */
2016 dmi = dev->mc_list; /* point to first multicast addr */
2017 for (i=0; i < bp->mc_count; i++)
2019 memcpy(&bp->mc_table[i*FDDI_K_ALEN], dmi->dmi_addr, FDDI_K_ALEN);
2020 dmi = dmi->next; /* point to next multicast addr */
2022 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2024 DBG_printk("%s: Could not update multicast address table!\n", dev->name);
2026 else
2028 DBG_printk("%s: Multicast address table updated! Added %d addresses.\n", dev->name, bp->mc_count);
2032 /* Update adapter filters */
2034 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2036 DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2038 else
2040 DBG_printk("%s: Adapter filters updated!\n", dev->name);
2042 return;
2047 * ===========================
2048 * = dfx_ctl_set_mac_address =
2049 * ===========================
2051 * Overview:
2052 * Add node address override (unicast address) to adapter
2053 * CAM and update dev_addr field in device table.
2055 * Returns:
2056 * None
2058 * Arguments:
2059 * dev - pointer to device information
2060 * addr - pointer to sockaddr structure containing unicast address to add
2062 * Functional Description:
2063 * The adapter supports node address overrides by adding one or more
2064 * unicast addresses to the adapter CAM. This is similar to adding
2065 * multicast addresses. In this routine we'll update the driver and
2066 * device structures with the new address, then update the adapter CAM
2067 * to ensure that the adapter will copy and strip frames destined and
2068 * sourced by that address.
2070 * Return Codes:
2071 * Always returns zero.
2073 * Assumptions:
2074 * The address pointed to by addr->sa_data is a valid unicast
2075 * address and is presented in canonical (LSB) format.
2077 * Side Effects:
2078 * On-board adapter CAM is updated. On-board adapter filters
2079 * may be updated.
2082 static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr)
2084 DFX_board_t *bp = (DFX_board_t *)dev->priv;
2085 struct sockaddr *p_sockaddr = (struct sockaddr *)addr;
2087 /* Copy unicast address to driver-maintained structs and update count */
2089 memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN); /* update device struct */
2090 memcpy(&bp->uc_table[0], p_sockaddr->sa_data, FDDI_K_ALEN); /* update driver struct */
2091 bp->uc_count = 1;
2094 * Verify we're not exceeding the CAM size by adding unicast address
2096 * Note: It's possible that before entering this routine we've
2097 * already filled the CAM with 62 multicast addresses.
2098 * Since we need to place the node address override into
2099 * the CAM, we have to check to see that we're not
2100 * exceeding the CAM size. If we are, we have to enable
2101 * the LLC group (multicast) promiscuous mode filter as
2102 * in dfx_ctl_set_multicast_list.
2105 if ((bp->uc_count + bp->mc_count) > PI_CMD_ADDR_FILTER_K_SIZE)
2107 bp->group_prom = PI_FSTATE_K_PASS; /* Enable LLC group prom mode */
2108 bp->mc_count = 0; /* Don't add mc addrs to CAM */
2110 /* Update adapter filters */
2112 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2114 DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2116 else
2118 DBG_printk("%s: Adapter filters updated!\n", dev->name);
2122 /* Update adapter CAM with new unicast address */
2124 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2126 DBG_printk("%s: Could not set new MAC address!\n", dev->name);
2128 else
2130 DBG_printk("%s: Adapter CAM updated with new MAC address\n", dev->name);
2132 return(0); /* always return zero */
2137 * ======================
2138 * = dfx_ctl_update_cam =
2139 * ======================
2141 * Overview:
2142 * Procedure to update adapter CAM (Content Addressable Memory)
2143 * with desired unicast and multicast address entries.
2145 * Returns:
2146 * Condition code
2148 * Arguments:
2149 * bp - pointer to board information
2151 * Functional Description:
2152 * Updates adapter CAM with current contents of board structure
2153 * unicast and multicast address tables. Since there are only 62
2154 * free entries in CAM, this routine ensures that the command
2155 * request buffer is not overrun.
2157 * Return Codes:
2158 * DFX_K_SUCCESS - Request succeeded
2159 * DFX_K_FAILURE - Request failed
2161 * Assumptions:
2162 * All addresses being added (unicast and multicast) are in canonical
2163 * order.
2165 * Side Effects:
2166 * On-board adapter CAM is updated.
2169 static int dfx_ctl_update_cam(DFX_board_t *bp)
2171 int i; /* used as index */
2172 PI_LAN_ADDR *p_addr; /* pointer to CAM entry */
2175 * Fill in command request information
2177 * Note: Even though both the unicast and multicast address
2178 * table entries are stored as contiguous 6 byte entries,
2179 * the firmware address filter set command expects each
2180 * entry to be two longwords (8 bytes total). We must be
2181 * careful to only copy the six bytes of each unicast and
2182 * multicast table entry into each command entry. This
2183 * is also why we must first clear the entire command
2184 * request buffer.
2187 memset(bp->cmd_req_virt, 0, PI_CMD_REQ_K_SIZE_MAX); /* first clear buffer */
2188 bp->cmd_req_virt->cmd_type = PI_CMD_K_ADDR_FILTER_SET;
2189 p_addr = &bp->cmd_req_virt->addr_filter_set.entry[0];
2191 /* Now add unicast addresses to command request buffer, if any */
2193 for (i=0; i < (int)bp->uc_count; i++)
2195 if (i < PI_CMD_ADDR_FILTER_K_SIZE)
2197 memcpy(p_addr, &bp->uc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2198 p_addr++; /* point to next command entry */
2202 /* Now add multicast addresses to command request buffer, if any */
2204 for (i=0; i < (int)bp->mc_count; i++)
2206 if ((i + bp->uc_count) < PI_CMD_ADDR_FILTER_K_SIZE)
2208 memcpy(p_addr, &bp->mc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2209 p_addr++; /* point to next command entry */
2213 /* Issue command to update adapter CAM, then return */
2215 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2216 return(DFX_K_FAILURE);
2217 return(DFX_K_SUCCESS);
2222 * ==========================
2223 * = dfx_ctl_update_filters =
2224 * ==========================
2226 * Overview:
2227 * Procedure to update adapter filters with desired
2228 * filter settings.
2230 * Returns:
2231 * Condition code
2233 * Arguments:
2234 * bp - pointer to board information
2236 * Functional Description:
2237 * Enables or disables filter using current filter settings.
2239 * Return Codes:
2240 * DFX_K_SUCCESS - Request succeeded.
2241 * DFX_K_FAILURE - Request failed.
2243 * Assumptions:
2244 * We must always pass up packets destined to the broadcast
2245 * address (FF-FF-FF-FF-FF-FF), so we'll always keep the
2246 * broadcast filter enabled.
2248 * Side Effects:
2249 * On-board adapter filters are updated.
2252 static int dfx_ctl_update_filters(DFX_board_t *bp)
2254 int i = 0; /* used as index */
2256 /* Fill in command request information */
2258 bp->cmd_req_virt->cmd_type = PI_CMD_K_FILTERS_SET;
2260 /* Initialize Broadcast filter - * ALWAYS ENABLED * */
2262 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_BROADCAST;
2263 bp->cmd_req_virt->filter_set.item[i++].value = PI_FSTATE_K_PASS;
2265 /* Initialize LLC Individual/Group Promiscuous filter */
2267 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_IND_GROUP_PROM;
2268 bp->cmd_req_virt->filter_set.item[i++].value = bp->ind_group_prom;
2270 /* Initialize LLC Group Promiscuous filter */
2272 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_GROUP_PROM;
2273 bp->cmd_req_virt->filter_set.item[i++].value = bp->group_prom;
2275 /* Terminate the item code list */
2277 bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_EOL;
2279 /* Issue command to update adapter filters, then return */
2281 if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2282 return(DFX_K_FAILURE);
2283 return(DFX_K_SUCCESS);
2288 * ======================
2289 * = dfx_hw_dma_cmd_req =
2290 * ======================
2292 * Overview:
2293 * Sends PDQ DMA command to adapter firmware
2295 * Returns:
2296 * Condition code
2298 * Arguments:
2299 * bp - pointer to board information
2301 * Functional Description:
2302 * The command request and response buffers are posted to the adapter in the manner
2303 * described in the PDQ Port Specification:
2305 * 1. Command Response Buffer is posted to adapter.
2306 * 2. Command Request Buffer is posted to adapter.
2307 * 3. Command Request consumer index is polled until it indicates that request
2308 * buffer has been DMA'd to adapter.
2309 * 4. Command Response consumer index is polled until it indicates that response
2310 * buffer has been DMA'd from adapter.
2312 * This ordering ensures that a response buffer is already available for the firmware
2313 * to use once it's done processing the request buffer.
2315 * Return Codes:
2316 * DFX_K_SUCCESS - DMA command succeeded
2317 * DFX_K_OUTSTATE - Adapter is NOT in proper state
2318 * DFX_K_HW_TIMEOUT - DMA command timed out
2320 * Assumptions:
2321 * Command request buffer has already been filled with desired DMA command.
2323 * Side Effects:
2324 * None
2327 static int dfx_hw_dma_cmd_req(DFX_board_t *bp)
2329 int status; /* adapter status */
2330 int timeout_cnt; /* used in for loops */
2332 /* Make sure the adapter is in a state that we can issue the DMA command in */
2334 status = dfx_hw_adap_state_rd(bp);
2335 if ((status == PI_STATE_K_RESET) ||
2336 (status == PI_STATE_K_HALTED) ||
2337 (status == PI_STATE_K_DMA_UNAVAIL) ||
2338 (status == PI_STATE_K_UPGRADE))
2339 return(DFX_K_OUTSTATE);
2341 /* Put response buffer on the command response queue */
2343 bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2344 ((PI_CMD_RSP_K_SIZE_MAX / PI_ALIGN_K_CMD_RSP_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2345 bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_1 = bp->cmd_rsp_phys;
2347 /* Bump (and wrap) the producer index and write out to register */
2349 bp->cmd_rsp_reg.index.prod += 1;
2350 bp->cmd_rsp_reg.index.prod &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2351 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2353 /* Put request buffer on the command request queue */
2355 bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_0 = (u32) (PI_XMT_DESCR_M_SOP |
2356 PI_XMT_DESCR_M_EOP | (PI_CMD_REQ_K_SIZE_MAX << PI_XMT_DESCR_V_SEG_LEN));
2357 bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_1 = bp->cmd_req_phys;
2359 /* Bump (and wrap) the producer index and write out to register */
2361 bp->cmd_req_reg.index.prod += 1;
2362 bp->cmd_req_reg.index.prod &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2363 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2366 * Here we wait for the command request consumer index to be equal
2367 * to the producer, indicating that the adapter has DMAed the request.
2370 for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2372 if (bp->cmd_req_reg.index.prod == (u8)(bp->cons_block_virt->cmd_req))
2373 break;
2374 udelay(100); /* wait for 100 microseconds */
2376 if (timeout_cnt == 0)
2377 return(DFX_K_HW_TIMEOUT);
2379 /* Bump (and wrap) the completion index and write out to register */
2381 bp->cmd_req_reg.index.comp += 1;
2382 bp->cmd_req_reg.index.comp &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2383 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2386 * Here we wait for the command response consumer index to be equal
2387 * to the producer, indicating that the adapter has DMAed the response.
2390 for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2392 if (bp->cmd_rsp_reg.index.prod == (u8)(bp->cons_block_virt->cmd_rsp))
2393 break;
2394 udelay(100); /* wait for 100 microseconds */
2396 if (timeout_cnt == 0)
2397 return(DFX_K_HW_TIMEOUT);
2399 /* Bump (and wrap) the completion index and write out to register */
2401 bp->cmd_rsp_reg.index.comp += 1;
2402 bp->cmd_rsp_reg.index.comp &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2403 dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2404 return(DFX_K_SUCCESS);
2409 * ========================
2410 * = dfx_hw_port_ctrl_req =
2411 * ========================
2413 * Overview:
2414 * Sends PDQ port control command to adapter firmware
2416 * Returns:
2417 * Host data register value in host_data if ptr is not NULL
2419 * Arguments:
2420 * bp - pointer to board information
2421 * command - port control command
2422 * data_a - port data A register value
2423 * data_b - port data B register value
2424 * host_data - ptr to host data register value
2426 * Functional Description:
2427 * Send generic port control command to adapter by writing
2428 * to various PDQ port registers, then polling for completion.
2430 * Return Codes:
2431 * DFX_K_SUCCESS - port control command succeeded
2432 * DFX_K_HW_TIMEOUT - port control command timed out
2434 * Assumptions:
2435 * None
2437 * Side Effects:
2438 * None
2441 static int dfx_hw_port_ctrl_req(
2442 DFX_board_t *bp,
2443 PI_UINT32 command,
2444 PI_UINT32 data_a,
2445 PI_UINT32 data_b,
2446 PI_UINT32 *host_data
2450 PI_UINT32 port_cmd; /* Port Control command register value */
2451 int timeout_cnt; /* used in for loops */
2453 /* Set Command Error bit in command longword */
2455 port_cmd = (PI_UINT32) (command | PI_PCTRL_M_CMD_ERROR);
2457 /* Issue port command to the adapter */
2459 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, data_a);
2460 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_B, data_b);
2461 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_CTRL, port_cmd);
2463 /* Now wait for command to complete */
2465 if (command == PI_PCTRL_M_BLAST_FLASH)
2466 timeout_cnt = 600000; /* set command timeout count to 60 seconds */
2467 else
2468 timeout_cnt = 20000; /* set command timeout count to 2 seconds */
2470 for (; timeout_cnt > 0; timeout_cnt--)
2472 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_CTRL, &port_cmd);
2473 if (!(port_cmd & PI_PCTRL_M_CMD_ERROR))
2474 break;
2475 udelay(100); /* wait for 100 microseconds */
2477 if (timeout_cnt == 0)
2478 return(DFX_K_HW_TIMEOUT);
2481 * If the address of host_data is non-zero, assume caller has supplied a
2482 * non NULL pointer, and return the contents of the HOST_DATA register in
2483 * it.
2486 if (host_data != NULL)
2487 dfx_port_read_long(bp, PI_PDQ_K_REG_HOST_DATA, host_data);
2488 return(DFX_K_SUCCESS);
2493 * =====================
2494 * = dfx_hw_adap_reset =
2495 * =====================
2497 * Overview:
2498 * Resets adapter
2500 * Returns:
2501 * None
2503 * Arguments:
2504 * bp - pointer to board information
2505 * type - type of reset to perform
2507 * Functional Description:
2508 * Issue soft reset to adapter by writing to PDQ Port Reset
2509 * register. Use incoming reset type to tell adapter what
2510 * kind of reset operation to perform.
2512 * Return Codes:
2513 * None
2515 * Assumptions:
2516 * This routine merely issues a soft reset to the adapter.
2517 * It is expected that after this routine returns, the caller
2518 * will appropriately poll the Port Status register for the
2519 * adapter to enter the proper state.
2521 * Side Effects:
2522 * Internal adapter registers are cleared.
2525 static void dfx_hw_adap_reset(
2526 DFX_board_t *bp,
2527 PI_UINT32 type
2531 /* Set Reset type and assert reset */
2533 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, type); /* tell adapter type of reset */
2534 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, PI_RESET_M_ASSERT_RESET);
2536 /* Wait for at least 1 Microsecond according to the spec. We wait 20 just to be safe */
2538 udelay(20);
2540 /* Deassert reset */
2542 dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, 0);
2543 return;
2548 * ========================
2549 * = dfx_hw_adap_state_rd =
2550 * ========================
2552 * Overview:
2553 * Returns current adapter state
2555 * Returns:
2556 * Adapter state per PDQ Port Specification
2558 * Arguments:
2559 * bp - pointer to board information
2561 * Functional Description:
2562 * Reads PDQ Port Status register and returns adapter state.
2564 * Return Codes:
2565 * None
2567 * Assumptions:
2568 * None
2570 * Side Effects:
2571 * None
2574 static int dfx_hw_adap_state_rd(DFX_board_t *bp)
2576 PI_UINT32 port_status; /* Port Status register value */
2578 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
2579 return((port_status & PI_PSTATUS_M_STATE) >> PI_PSTATUS_V_STATE);
2584 * =====================
2585 * = dfx_hw_dma_uninit =
2586 * =====================
2588 * Overview:
2589 * Brings adapter to DMA_UNAVAILABLE state
2591 * Returns:
2592 * Condition code
2594 * Arguments:
2595 * bp - pointer to board information
2596 * type - type of reset to perform
2598 * Functional Description:
2599 * Bring adapter to DMA_UNAVAILABLE state by performing the following:
2600 * 1. Set reset type bit in Port Data A Register then reset adapter.
2601 * 2. Check that adapter is in DMA_UNAVAILABLE state.
2603 * Return Codes:
2604 * DFX_K_SUCCESS - adapter is in DMA_UNAVAILABLE state
2605 * DFX_K_HW_TIMEOUT - adapter did not reset properly
2607 * Assumptions:
2608 * None
2610 * Side Effects:
2611 * Internal adapter registers are cleared.
2614 static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type)
2616 int timeout_cnt; /* used in for loops */
2618 /* Set reset type bit and reset adapter */
2620 dfx_hw_adap_reset(bp, type);
2622 /* Now wait for adapter to enter DMA_UNAVAILABLE state */
2624 for (timeout_cnt = 100000; timeout_cnt > 0; timeout_cnt--)
2626 if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_DMA_UNAVAIL)
2627 break;
2628 udelay(100); /* wait for 100 microseconds */
2630 if (timeout_cnt == 0)
2631 return(DFX_K_HW_TIMEOUT);
2632 return(DFX_K_SUCCESS);
2637 * Align an sk_buff to a boundary power of 2
2641 static void my_skb_align(struct sk_buff *skb, int n)
2643 u32 x=(u32)skb->data; /* We only want the low bits .. */
2644 u32 v;
2646 v=(x+n-1)&~(n-1); /* Where we want to be */
2648 skb_reserve(skb, v-x);
2653 * ================
2654 * = dfx_rcv_init =
2655 * ================
2657 * Overview:
2658 * Produces buffers to adapter LLC Host receive descriptor block
2660 * Returns:
2661 * None
2663 * Arguments:
2664 * bp - pointer to board information
2666 * Functional Description:
2667 * This routine can be called during dfx_adap_init() or during an adapter
2668 * reset. It initializes the descriptor block and produces all allocated
2669 * LLC Host queue receive buffers.
2671 * Return Codes:
2672 * None
2674 * Assumptions:
2675 * The PDQ has been reset and the adapter and driver maintained Type 2
2676 * register indices are cleared.
2678 * Side Effects:
2679 * Receive buffers are posted to the adapter LLC queue and the adapter
2680 * is notified.
2683 static void dfx_rcv_init(DFX_board_t *bp)
2685 int i, j; /* used in for loop */
2688 * Since each receive buffer is a single fragment of same length, initialize
2689 * first longword in each receive descriptor for entire LLC Host descriptor
2690 * block. Also initialize second longword in each receive descriptor with
2691 * physical address of receive buffer. We'll always allocate receive
2692 * buffers in powers of 2 so that we can easily fill the 256 entry descriptor
2693 * block and produce new receive buffers by simply updating the receive
2694 * producer index.
2696 * Assumptions:
2697 * To support all shipping versions of PDQ, the receive buffer size
2698 * must be mod 128 in length and the physical address must be 128 byte
2699 * aligned. In other words, bits 0-6 of the length and address must
2700 * be zero for the following descriptor field entries to be correct on
2701 * all PDQ-based boards. We guaranteed both requirements during
2702 * driver initialization when we allocated memory for the receive buffers.
2705 #ifdef DYNAMIC_BUFFERS
2706 for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
2707 for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
2709 struct sk_buff *newskb;
2710 bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2711 ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2712 newskb = dev_alloc_skb(NEW_SKB_SIZE);
2714 * align to 128 bytes for compatibility with
2715 * the old EISA boards.
2718 my_skb_align(newskb,128);
2719 bp->descr_block_virt->rcv_data[i+j].long_1 = virt_to_bus(newskb->data);
2721 * p_rcv_buff_va is only used inside the
2722 * kernel so we put the skb pointer here.
2724 bp->p_rcv_buff_va[i+j] = (char *) newskb;
2726 #else
2727 for (i=0; i < (int)(bp->rcv_bufs_to_post); i++)
2728 for (j=0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
2730 bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2731 ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2732 bp->descr_block_virt->rcv_data[i+j].long_1 = (u32) (bp->rcv_block_phys + (i * PI_RCV_DATA_K_SIZE_MAX));
2733 bp->p_rcv_buff_va[i+j] = (char *) (bp->rcv_block_virt + (i * PI_RCV_DATA_K_SIZE_MAX));
2735 #endif
2737 /* Update receive producer and Type 2 register */
2739 bp->rcv_xmt_reg.index.rcv_prod = bp->rcv_bufs_to_post;
2740 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
2741 return;
2746 * =========================
2747 * = dfx_rcv_queue_process =
2748 * =========================
2750 * Overview:
2751 * Process received LLC frames.
2753 * Returns:
2754 * None
2756 * Arguments:
2757 * bp - pointer to board information
2759 * Functional Description:
2760 * Received LLC frames are processed until there are no more consumed frames.
2761 * Once all frames are processed, the receive buffers are returned to the
2762 * adapter. Note that this algorithm fixes the length of time that can be spent
2763 * in this routine, because there are a fixed number of receive buffers to
2764 * process and buffers are not produced until this routine exits and returns
2765 * to the ISR.
2767 * Return Codes:
2768 * None
2770 * Assumptions:
2771 * None
2773 * Side Effects:
2774 * None
2777 static void dfx_rcv_queue_process(
2778 DFX_board_t *bp
2782 PI_TYPE_2_CONSUMER *p_type_2_cons; /* ptr to rcv/xmt consumer block register */
2783 char *p_buff; /* ptr to start of packet receive buffer (FMC descriptor) */
2784 u32 descr, pkt_len; /* FMC descriptor field and packet length */
2785 struct sk_buff *skb; /* pointer to a sk_buff to hold incoming packet data */
2787 /* Service all consumed LLC receive frames */
2789 p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
2790 while (bp->rcv_xmt_reg.index.rcv_comp != p_type_2_cons->index.rcv_cons)
2792 /* Process any errors */
2794 int entry;
2796 entry = bp->rcv_xmt_reg.index.rcv_comp;
2797 #ifdef DYNAMIC_BUFFERS
2798 p_buff = (char *) (((struct sk_buff *)bp->p_rcv_buff_va[entry])->data);
2799 #else
2800 p_buff = (char *) bp->p_rcv_buff_va[entry];
2801 #endif
2802 memcpy(&descr, p_buff + RCV_BUFF_K_DESCR, sizeof(u32));
2804 if (descr & PI_FMC_DESCR_M_RCC_FLUSH)
2806 if (descr & PI_FMC_DESCR_M_RCC_CRC)
2807 bp->rcv_crc_errors++;
2808 else
2809 bp->rcv_frame_status_errors++;
2811 else
2813 int rx_in_place = 0;
2815 /* The frame was received without errors - verify packet length */
2817 pkt_len = (u32)((descr & PI_FMC_DESCR_M_LEN) >> PI_FMC_DESCR_V_LEN);
2818 pkt_len -= 4; /* subtract 4 byte CRC */
2819 if (!IN_RANGE(pkt_len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
2820 bp->rcv_length_errors++;
2821 else{
2822 #ifdef DYNAMIC_BUFFERS
2823 if (pkt_len > SKBUFF_RX_COPYBREAK) {
2824 struct sk_buff *newskb;
2826 newskb = dev_alloc_skb(NEW_SKB_SIZE);
2827 if (newskb){
2828 rx_in_place = 1;
2830 my_skb_align(newskb, 128);
2831 skb = (struct sk_buff *)bp->p_rcv_buff_va[entry];
2832 skb_reserve(skb, RCV_BUFF_K_PADDING);
2833 bp->p_rcv_buff_va[entry] = (char *)newskb;
2834 bp->descr_block_virt->rcv_data[entry].long_1 = virt_to_bus(newskb->data);
2835 } else
2836 skb = 0;
2837 } else
2838 #endif
2839 skb = dev_alloc_skb(pkt_len+3); /* alloc new buffer to pass up, add room for PRH */
2840 if (skb == NULL)
2842 printk("%s: Could not allocate receive buffer. Dropping packet.\n", bp->dev->name);
2843 bp->rcv_discards++;
2844 break;
2846 else {
2847 #ifndef DYNAMIC_BUFFERS
2848 if (! rx_in_place)
2849 #endif
2851 /* Receive buffer allocated, pass receive packet up */
2853 memcpy(skb->data, p_buff + RCV_BUFF_K_PADDING, pkt_len+3);
2856 skb_reserve(skb,3); /* adjust data field so that it points to FC byte */
2857 skb_put(skb, pkt_len); /* pass up packet length, NOT including CRC */
2858 skb->dev = bp->dev; /* pass up device pointer */
2860 skb->protocol = fddi_type_trans(skb, bp->dev);
2861 netif_rx(skb);
2863 /* Update the rcv counters */
2865 bp->rcv_total_frames++;
2866 if (*(p_buff + RCV_BUFF_K_DA) & 0x01)
2867 bp->rcv_multicast_frames++;
2869 bp->rcv_total_bytes += skb->len;
2875 * Advance the producer (for recycling) and advance the completion
2876 * (for servicing received frames). Note that it is okay to
2877 * advance the producer without checking that it passes the
2878 * completion index because they are both advanced at the same
2879 * rate.
2882 bp->rcv_xmt_reg.index.rcv_prod += 1;
2883 bp->rcv_xmt_reg.index.rcv_comp += 1;
2885 return;
2890 * =====================
2891 * = dfx_xmt_queue_pkt =
2892 * =====================
2894 * Overview:
2895 * Queues packets for transmission
2897 * Returns:
2898 * Condition code
2900 * Arguments:
2901 * skb - pointer to sk_buff to queue for transmission
2902 * dev - pointer to device information
2904 * Functional Description:
2905 * Here we assume that an incoming skb transmit request
2906 * is contained in a single physically contiguous buffer
2907 * in which the virtual address of the start of packet
2908 * (skb->data) can be converted to a physical address
2909 * by using virt_to_bus().
2911 * Since the adapter architecture requires a three byte
2912 * packet request header to prepend the start of packet,
2913 * we'll write the three byte field immediately prior to
2914 * the FC byte. This assumption is valid because we've
2915 * ensured that dev->hard_header_len includes three pad
2916 * bytes. By posting a single fragment to the adapter,
2917 * we'll reduce the number of descriptor fetches and
2918 * bus traffic needed to send the request.
2920 * Also, we can't free the skb until after it's been DMA'd
2921 * out by the adapter, so we'll queue it in the driver and
2922 * return it in dfx_xmt_done.
2924 * Return Codes:
2925 * 0 - driver queued packet, link is unavailable, or skbuff was bad
2926 * 1 - caller should requeue the sk_buff for later transmission
2928 * Assumptions:
2929 * First and foremost, we assume the incoming skb pointer
2930 * is NOT NULL and is pointing to a valid sk_buff structure.
2932 * The outgoing packet is complete, starting with the
2933 * frame control byte including the last byte of data,
2934 * but NOT including the 4 byte CRC. We'll let the
2935 * adapter hardware generate and append the CRC.
2937 * The entire packet is stored in one physically
2938 * contiguous buffer which is not cached and whose
2939 * 32-bit physical address can be determined.
2941 * It's vital that this routine is NOT reentered for the
2942 * same board and that the OS is not in another section of
2943 * code (eg. dfx_int_common) for the same board on a
2944 * different thread.
2946 * Side Effects:
2947 * None
2950 static int dfx_xmt_queue_pkt(
2951 struct sk_buff *skb,
2952 struct net_device *dev
2956 DFX_board_t *bp = (DFX_board_t *) dev->priv;
2957 u8 prod; /* local transmit producer index */
2958 PI_XMT_DESCR *p_xmt_descr; /* ptr to transmit descriptor block entry */
2959 XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */
2960 unsigned long flags;
2962 netif_stop_queue(dev);
2965 * Verify that incoming transmit request is OK
2967 * Note: The packet size check is consistent with other
2968 * Linux device drivers, although the correct packet
2969 * size should be verified before calling the
2970 * transmit routine.
2973 if (!IN_RANGE(skb->len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
2975 printk("%s: Invalid packet length - %u bytes\n",
2976 dev->name, skb->len);
2977 bp->xmt_length_errors++; /* bump error counter */
2978 netif_wake_queue(dev);
2979 dev_kfree_skb(skb);
2980 return(0); /* return "success" */
2983 * See if adapter link is available, if not, free buffer
2985 * Note: If the link isn't available, free buffer and return 0
2986 * rather than tell the upper layer to requeue the packet.
2987 * The methodology here is that by the time the link
2988 * becomes available, the packet to be sent will be
2989 * fairly stale. By simply dropping the packet, the
2990 * higher layer protocols will eventually time out
2991 * waiting for response packets which it won't receive.
2994 if (bp->link_available == PI_K_FALSE)
2996 if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_LINK_AVAIL) /* is link really available? */
2997 bp->link_available = PI_K_TRUE; /* if so, set flag and continue */
2998 else
3000 bp->xmt_discards++; /* bump error counter */
3001 dev_kfree_skb(skb); /* free sk_buff now */
3002 netif_wake_queue(dev);
3003 return(0); /* return "success" */
3007 spin_lock_irqsave(&bp->lock, flags);
3009 /* Get the current producer and the next free xmt data descriptor */
3011 prod = bp->rcv_xmt_reg.index.xmt_prod;
3012 p_xmt_descr = &(bp->descr_block_virt->xmt_data[prod]);
3015 * Get pointer to auxiliary queue entry to contain information
3016 * for this packet.
3018 * Note: The current xmt producer index will become the
3019 * current xmt completion index when we complete this
3020 * packet later on. So, we'll get the pointer to the
3021 * next auxiliary queue entry now before we bump the
3022 * producer index.
3025 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[prod++]); /* also bump producer index */
3027 /* Write the three PRH bytes immediately before the FC byte */
3029 skb_push(skb,3);
3030 skb->data[0] = DFX_PRH0_BYTE; /* these byte values are defined */
3031 skb->data[1] = DFX_PRH1_BYTE; /* in the Motorola FDDI MAC chip */
3032 skb->data[2] = DFX_PRH2_BYTE; /* specification */
3035 * Write the descriptor with buffer info and bump producer
3037 * Note: Since we need to start DMA from the packet request
3038 * header, we'll add 3 bytes to the DMA buffer length,
3039 * and we'll determine the physical address of the
3040 * buffer from the PRH, not skb->data.
3042 * Assumptions:
3043 * 1. Packet starts with the frame control (FC) byte
3044 * at skb->data.
3045 * 2. The 4-byte CRC is not appended to the buffer or
3046 * included in the length.
3047 * 3. Packet length (skb->len) is from FC to end of
3048 * data, inclusive.
3049 * 4. The packet length does not exceed the maximum
3050 * FDDI LLC frame length of 4491 bytes.
3051 * 5. The entire packet is contained in a physically
3052 * contiguous, non-cached, locked memory space
3053 * comprised of a single buffer pointed to by
3054 * skb->data.
3055 * 6. The physical address of the start of packet
3056 * can be determined from the virtual address
3057 * by using virt_to_bus() and is only 32-bits
3058 * wide.
3061 p_xmt_descr->long_0 = (u32) (PI_XMT_DESCR_M_SOP | PI_XMT_DESCR_M_EOP | ((skb->len) << PI_XMT_DESCR_V_SEG_LEN));
3062 p_xmt_descr->long_1 = (u32) virt_to_bus(skb->data);
3065 * Verify that descriptor is actually available
3067 * Note: If descriptor isn't available, return 1 which tells
3068 * the upper layer to requeue the packet for later
3069 * transmission.
3071 * We need to ensure that the producer never reaches the
3072 * completion, except to indicate that the queue is empty.
3075 if (prod == bp->rcv_xmt_reg.index.xmt_comp)
3077 skb_pull(skb,3);
3078 spin_unlock_irqrestore(&bp->lock, flags);
3079 return(1); /* requeue packet for later */
3083 * Save info for this packet for xmt done indication routine
3085 * Normally, we'd save the producer index in the p_xmt_drv_descr
3086 * structure so that we'd have it handy when we complete this
3087 * packet later (in dfx_xmt_done). However, since the current
3088 * transmit architecture guarantees a single fragment for the
3089 * entire packet, we can simply bump the completion index by
3090 * one (1) for each completed packet.
3092 * Note: If this assumption changes and we're presented with
3093 * an inconsistent number of transmit fragments for packet
3094 * data, we'll need to modify this code to save the current
3095 * transmit producer index.
3098 p_xmt_drv_descr->p_skb = skb;
3100 /* Update Type 2 register */
3102 bp->rcv_xmt_reg.index.xmt_prod = prod;
3103 dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
3104 spin_unlock_irqrestore(&bp->lock, flags);
3105 netif_wake_queue(dev);
3106 return(0); /* packet queued to adapter */
3111 * ================
3112 * = dfx_xmt_done =
3113 * ================
3115 * Overview:
3116 * Processes all frames that have been transmitted.
3118 * Returns:
3119 * None
3121 * Arguments:
3122 * bp - pointer to board information
3124 * Functional Description:
3125 * For all consumed transmit descriptors that have not
3126 * yet been completed, we'll free the skb we were holding
3127 * onto using dev_kfree_skb and bump the appropriate
3128 * counters.
3130 * Return Codes:
3131 * None
3133 * Assumptions:
3134 * The Type 2 register is not updated in this routine. It is
3135 * assumed that it will be updated in the ISR when dfx_xmt_done
3136 * returns.
3138 * Side Effects:
3139 * None
3142 static int dfx_xmt_done(DFX_board_t *bp)
3144 XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */
3145 PI_TYPE_2_CONSUMER *p_type_2_cons; /* ptr to rcv/xmt consumer block register */
3146 int freed = 0; /* buffers freed */
3148 /* Service all consumed transmit frames */
3150 p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3151 while (bp->rcv_xmt_reg.index.xmt_comp != p_type_2_cons->index.xmt_cons)
3153 /* Get pointer to the transmit driver descriptor block information */
3155 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3157 /* Increment transmit counters */
3159 bp->xmt_total_frames++;
3160 bp->xmt_total_bytes += p_xmt_drv_descr->p_skb->len;
3162 /* Return skb to operating system */
3164 dev_kfree_skb_irq(p_xmt_drv_descr->p_skb);
3167 * Move to start of next packet by updating completion index
3169 * Here we assume that a transmit packet request is always
3170 * serviced by posting one fragment. We can therefore
3171 * simplify the completion code by incrementing the
3172 * completion index by one. This code will need to be
3173 * modified if this assumption changes. See comments
3174 * in dfx_xmt_queue_pkt for more details.
3177 bp->rcv_xmt_reg.index.xmt_comp += 1;
3178 freed++;
3180 return freed;
3185 * =================
3186 * = dfx_xmt_flush =
3187 * =================
3189 * Overview:
3190 * Processes all frames whether they've been transmitted
3191 * or not.
3193 * Returns:
3194 * None
3196 * Arguments:
3197 * bp - pointer to board information
3199 * Functional Description:
3200 * For all produced transmit descriptors that have not
3201 * yet been completed, we'll free the skb we were holding
3202 * onto using dev_kfree_skb and bump the appropriate
3203 * counters. Of course, it's possible that some of
3204 * these transmit requests actually did go out, but we
3205 * won't make that distinction here. Finally, we'll
3206 * update the consumer index to match the producer.
3208 * Return Codes:
3209 * None
3211 * Assumptions:
3212 * This routine does NOT update the Type 2 register. It
3213 * is assumed that this routine is being called during a
3214 * transmit flush interrupt, or a shutdown or close routine.
3216 * Side Effects:
3217 * None
3220 static void dfx_xmt_flush( DFX_board_t *bp )
3222 u32 prod_cons; /* rcv/xmt consumer block longword */
3223 XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */
3225 /* Flush all outstanding transmit frames */
3227 while (bp->rcv_xmt_reg.index.xmt_comp != bp->rcv_xmt_reg.index.xmt_prod)
3229 /* Get pointer to the transmit driver descriptor block information */
3231 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3233 /* Return skb to operating system */
3235 dev_kfree_skb(p_xmt_drv_descr->p_skb);
3237 /* Increment transmit error counter */
3239 bp->xmt_discards++;
3242 * Move to start of next packet by updating completion index
3244 * Here we assume that a transmit packet request is always
3245 * serviced by posting one fragment. We can therefore
3246 * simplify the completion code by incrementing the
3247 * completion index by one. This code will need to be
3248 * modified if this assumption changes. See comments
3249 * in dfx_xmt_queue_pkt for more details.
3252 bp->rcv_xmt_reg.index.xmt_comp += 1;
3255 /* Update the transmit consumer index in the consumer block */
3257 prod_cons = (u32)(bp->cons_block_virt->xmt_rcv_data & ~PI_CONS_M_XMT_INDEX);
3258 prod_cons |= (u32)(bp->rcv_xmt_reg.index.xmt_prod << PI_CONS_V_XMT_INDEX);
3259 bp->cons_block_virt->xmt_rcv_data = prod_cons;
3260 return;
3263 static void __devexit dfx_remove_one_pci_or_eisa(struct pci_dev *pdev, struct net_device *dev)
3265 DFX_board_t *bp = (DFX_board_t*)dev->priv;
3267 unregister_netdev(dev);
3268 release_region(dev->base_addr, pdev ? PFI_K_CSR_IO_LEN : PI_ESIC_K_CSR_IO_LEN );
3269 if (bp->kmalloced) kfree(bp->kmalloced);
3270 kfree(dev);
3273 static void __devexit dfx_remove_one (struct pci_dev *pdev)
3275 struct net_device *dev = pdev->driver_data;
3277 dfx_remove_one_pci_or_eisa(pdev, dev);
3280 static struct pci_device_id dfx_pci_tbl[] __devinitdata = {
3281 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_FDDI, PCI_ANY_ID, PCI_ANY_ID, },
3282 { 0, }
3284 MODULE_DEVICE_TABLE(pci, dfx_pci_tbl);
3286 static struct pci_driver dfx_driver = {
3287 name: "defxx",
3288 probe: dfx_init_one,
3289 remove: dfx_remove_one,
3290 id_table: dfx_pci_tbl,
3293 static int dfx_have_pci;
3294 static int dfx_have_eisa;
3297 static void __exit dfx_eisa_cleanup(void)
3299 struct net_device *dev = root_dfx_eisa_dev;
3301 while (dev)
3303 struct net_device *tmp;
3304 DFX_board_t *bp;
3306 bp = (DFX_board_t*)dev->priv;
3307 tmp = bp->next;
3308 dfx_remove_one_pci_or_eisa(NULL, dev);
3309 dev = tmp;
3313 static int __init dfx_init(void)
3315 int rc_pci, rc_eisa;
3317 rc_pci = pci_module_init(&dfx_driver);
3318 if (rc_pci >= 0) dfx_have_pci = 1;
3320 rc_eisa = dfx_eisa_init();
3321 if (rc_eisa >= 0) dfx_have_eisa = 1;
3323 return ((rc_eisa < 0) ? 0 : rc_eisa) + ((rc_pci < 0) ? 0 : rc_pci);
3326 static void __exit dfx_cleanup(void)
3328 if (dfx_have_pci)
3329 pci_unregister_driver(&dfx_driver);
3330 if (dfx_have_eisa)
3331 dfx_eisa_cleanup();
3335 module_init(dfx_init);
3336 module_exit(dfx_cleanup);
3340 * Local variables:
3341 * kernel-compile-command: "gcc -D__KERNEL__ -I/root/linux/include -Wall -Wstrict-prototypes -O2 -pipe -fomit-frame-pointer -fno-strength-reduce -m486 -malign-loops=2 -malign-jumps=2 -malign-functions=2 -c defxx.c"
3342 * End: