Add phnxdeco with debian patch set (version 0.33-3).
[delutions.git] / tc / crypto / Aesopt.h
blob0761a2eade78341af4d80f4021ad1895067cdfbd
1 /*
2 ---------------------------------------------------------------------------
3 Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved.
5 LICENSE TERMS
7 The free distribution and use of this software is allowed (with or without
8 changes) provided that:
10 1. source code distributions include the above copyright notice, this
11 list of conditions and the following disclaimer;
13 2. binary distributions include the above copyright notice, this list
14 of conditions and the following disclaimer in their documentation;
16 3. the name of the copyright holder is not used to endorse products
17 built using this software without specific written permission.
19 DISCLAIMER
21 This software is provided 'as is' with no explicit or implied warranties
22 in respect of its properties, including, but not limited to, correctness
23 and/or fitness for purpose.
24 ---------------------------------------------------------------------------
25 Issue Date: 20/12/2007
27 This file contains the compilation options for AES (Rijndael) and code
28 that is common across encryption, key scheduling and table generation.
30 OPERATION
32 These source code files implement the AES algorithm Rijndael designed by
33 Joan Daemen and Vincent Rijmen. This version is designed for the standard
34 block size of 16 bytes and for key sizes of 128, 192 and 256 bits (16, 24
35 and 32 bytes).
37 This version is designed for flexibility and speed using operations on
38 32-bit words rather than operations on bytes. It can be compiled with
39 either big or little endian internal byte order but is faster when the
40 native byte order for the processor is used.
42 THE CIPHER INTERFACE
44 The cipher interface is implemented as an array of bytes in which lower
45 AES bit sequence indexes map to higher numeric significance within bytes.
47 uint_8t (an unsigned 8-bit type)
48 uint_32t (an unsigned 32-bit type)
49 struct aes_encrypt_ctx (structure for the cipher encryption context)
50 struct aes_decrypt_ctx (structure for the cipher decryption context)
51 AES_RETURN the function return type
53 C subroutine calls:
55 AES_RETURN aes_encrypt_key128(const unsigned char *key, aes_encrypt_ctx cx[1]);
56 AES_RETURN aes_encrypt_key192(const unsigned char *key, aes_encrypt_ctx cx[1]);
57 AES_RETURN aes_encrypt_key256(const unsigned char *key, aes_encrypt_ctx cx[1]);
58 AES_RETURN aes_encrypt(const unsigned char *in, unsigned char *out,
59 const aes_encrypt_ctx cx[1]);
61 AES_RETURN aes_decrypt_key128(const unsigned char *key, aes_decrypt_ctx cx[1]);
62 AES_RETURN aes_decrypt_key192(const unsigned char *key, aes_decrypt_ctx cx[1]);
63 AES_RETURN aes_decrypt_key256(const unsigned char *key, aes_decrypt_ctx cx[1]);
64 AES_RETURN aes_decrypt(const unsigned char *in, unsigned char *out,
65 const aes_decrypt_ctx cx[1]);
67 IMPORTANT NOTE: If you are using this C interface with dynamic tables make sure that
68 you call aes_init() before AES is used so that the tables are initialised.
70 C++ aes class subroutines:
72 Class AESencrypt for encryption
74 Construtors:
75 AESencrypt(void)
76 AESencrypt(const unsigned char *key) - 128 bit key
77 Members:
78 AES_RETURN key128(const unsigned char *key)
79 AES_RETURN key192(const unsigned char *key)
80 AES_RETURN key256(const unsigned char *key)
81 AES_RETURN encrypt(const unsigned char *in, unsigned char *out) const
83 Class AESdecrypt for encryption
84 Construtors:
85 AESdecrypt(void)
86 AESdecrypt(const unsigned char *key) - 128 bit key
87 Members:
88 AES_RETURN key128(const unsigned char *key)
89 AES_RETURN key192(const unsigned char *key)
90 AES_RETURN key256(const unsigned char *key)
91 AES_RETURN decrypt(const unsigned char *in, unsigned char *out) const
94 /* Adapted for TrueCrypt by the TrueCrypt Foundation */
96 #if !defined( _AESOPT_H )
97 #define _AESOPT_H
99 #ifdef TC_WINDOWS_BOOT
100 #define ASM_X86_V2
101 #endif
103 #if defined( __cplusplus )
104 #include "Aescpp.h"
105 #else
106 #include "Aes.h"
107 #endif
110 #include "Common/Endian.h"
111 #define IS_LITTLE_ENDIAN 1234 /* byte 0 is least significant (i386) */
112 #define IS_BIG_ENDIAN 4321 /* byte 0 is most significant (mc68k) */
114 #if BYTE_ORDER == LITTLE_ENDIAN
115 # define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
116 #endif
118 #if BYTE_ORDER == BIG_ENDIAN
119 # define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
120 #endif
123 /* CONFIGURATION - THE USE OF DEFINES
125 Later in this section there are a number of defines that control the
126 operation of the code. In each section, the purpose of each define is
127 explained so that the relevant form can be included or excluded by
128 setting either 1's or 0's respectively on the branches of the related
129 #if clauses. The following local defines should not be changed.
132 #define ENCRYPTION_IN_C 1
133 #define DECRYPTION_IN_C 2
134 #define ENC_KEYING_IN_C 4
135 #define DEC_KEYING_IN_C 8
137 #define NO_TABLES 0
138 #define ONE_TABLE 1
139 #define FOUR_TABLES 4
140 #define NONE 0
141 #define PARTIAL 1
142 #define FULL 2
144 /* --- START OF USER CONFIGURED OPTIONS --- */
146 /* 1. BYTE ORDER WITHIN 32 BIT WORDS
148 The fundamental data processing units in Rijndael are 8-bit bytes. The
149 input, output and key input are all enumerated arrays of bytes in which
150 bytes are numbered starting at zero and increasing to one less than the
151 number of bytes in the array in question. This enumeration is only used
152 for naming bytes and does not imply any adjacency or order relationship
153 from one byte to another. When these inputs and outputs are considered
154 as bit sequences, bits 8*n to 8*n+7 of the bit sequence are mapped to
155 byte[n] with bit 8n+i in the sequence mapped to bit 7-i within the byte.
156 In this implementation bits are numbered from 0 to 7 starting at the
157 numerically least significant end of each byte (bit n represents 2^n).
159 However, Rijndael can be implemented more efficiently using 32-bit
160 words by packing bytes into words so that bytes 4*n to 4*n+3 are placed
161 into word[n]. While in principle these bytes can be assembled into words
162 in any positions, this implementation only supports the two formats in
163 which bytes in adjacent positions within words also have adjacent byte
164 numbers. This order is called big-endian if the lowest numbered bytes
165 in words have the highest numeric significance and little-endian if the
166 opposite applies.
168 This code can work in either order irrespective of the order used by the
169 machine on which it runs. Normally the internal byte order will be set
170 to the order of the processor on which the code is to be run but this
171 define can be used to reverse this in special situations
173 WARNING: Assembler code versions rely on PLATFORM_BYTE_ORDER being set.
174 This define will hence be redefined later (in section 4) if necessary
177 #if 1
178 #define ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER
179 #elif 0
180 #define ALGORITHM_BYTE_ORDER IS_LITTLE_ENDIAN
181 #elif 0
182 #define ALGORITHM_BYTE_ORDER IS_BIG_ENDIAN
183 #else
184 #error The algorithm byte order is not defined
185 #endif
187 /* 2. VIA ACE SUPPORT
189 Define this option if support for the VIA ACE is required. This uses
190 inline assembler instructions and is only implemented for the Microsoft,
191 Intel and GCC compilers. If VIA ACE is known to be present, then defining
192 ASSUME_VIA_ACE_PRESENT will remove the ordinary encryption/decryption
193 code. If USE_VIA_ACE_IF_PRESENT is defined then VIA ACE will be used if
194 it is detected (both present and enabled) but the normal AES code will
195 also be present.
197 When VIA ACE is to be used, all AES encryption contexts MUST be 16 byte
198 aligned; other input/output buffers do not need to be 16 byte aligned
199 but there are very large performance gains if this can be arranged.
200 VIA ACE also requires the decryption key schedule to be in reverse
201 order (which later checks below ensure).
204 #if 0 && !defined( USE_VIA_ACE_IF_PRESENT )
205 # define USE_VIA_ACE_IF_PRESENT
206 #endif
208 #if 0 && !defined( ASSUME_VIA_ACE_PRESENT )
209 # define ASSUME_VIA_ACE_PRESENT
210 # endif
212 #if defined ( _WIN64 ) || defined( _WIN32_WCE ) || \
213 defined( _MSC_VER ) && ( _MSC_VER <= 800 )
214 # if defined( USE_VIA_ACE_IF_PRESENT )
215 # undef USE_VIA_ACE_IF_PRESENT
216 # endif
217 # if defined( ASSUME_VIA_ACE_PRESENT )
218 # undef ASSUME_VIA_ACE_PRESENT
219 # endif
220 #endif
222 /* 3. ASSEMBLER SUPPORT
224 This define (which can be on the command line) enables the use of the
225 assembler code routines for encryption, decryption and key scheduling
226 as follows:
228 ASM_X86_V1C uses the assembler (aes_x86_v1.asm) with large tables for
229 encryption and decryption and but with key scheduling in C
230 ASM_X86_V2 uses assembler (aes_x86_v2.asm) with compressed tables for
231 encryption, decryption and key scheduling
232 ASM_X86_V2C uses assembler (aes_x86_v2.asm) with compressed tables for
233 encryption and decryption and but with key scheduling in C
234 ASM_AMD64_C uses assembler (aes_amd64.asm) with compressed tables for
235 encryption and decryption and but with key scheduling in C
237 Change one 'if 0' below to 'if 1' to select the version or define
238 as a compilation option.
241 #if 0 && !defined( ASM_X86_V1C )
242 # define ASM_X86_V1C
243 #elif 0 && !defined( ASM_X86_V2 )
244 # define ASM_X86_V2
245 #elif 0 && !defined( ASM_X86_V2C )
246 # define ASM_X86_V2C
247 #elif 0 && !defined( ASM_AMD64_C )
248 # define ASM_AMD64_C
249 #endif
251 #if (defined ( ASM_X86_V1C ) || defined( ASM_X86_V2 ) || defined( ASM_X86_V2C )) \
252 && !defined( _M_IX86 ) || defined( ASM_AMD64_C ) && !defined( _M_X64 )
253 //# error Assembler code is only available for x86 and AMD64 systems
254 #endif
256 /* 4. FAST INPUT/OUTPUT OPERATIONS.
258 On some machines it is possible to improve speed by transferring the
259 bytes in the input and output arrays to and from the internal 32-bit
260 variables by addressing these arrays as if they are arrays of 32-bit
261 words. On some machines this will always be possible but there may
262 be a large performance penalty if the byte arrays are not aligned on
263 the normal word boundaries. On other machines this technique will
264 lead to memory access errors when such 32-bit word accesses are not
265 properly aligned. The option SAFE_IO avoids such problems but will
266 often be slower on those machines that support misaligned access
267 (especially so if care is taken to align the input and output byte
268 arrays on 32-bit word boundaries). If SAFE_IO is not defined it is
269 assumed that access to byte arrays as if they are arrays of 32-bit
270 words will not cause problems when such accesses are misaligned.
272 #if 1 && !defined( _MSC_VER )
273 #define SAFE_IO
274 #endif
276 /* 5. LOOP UNROLLING
278 The code for encryption and decrytpion cycles through a number of rounds
279 that can be implemented either in a loop or by expanding the code into a
280 long sequence of instructions, the latter producing a larger program but
281 one that will often be much faster. The latter is called loop unrolling.
282 There are also potential speed advantages in expanding two iterations in
283 a loop with half the number of iterations, which is called partial loop
284 unrolling. The following options allow partial or full loop unrolling
285 to be set independently for encryption and decryption
287 #if 1
288 #define ENC_UNROLL FULL
289 #elif 0
290 #define ENC_UNROLL PARTIAL
291 #else
292 #define ENC_UNROLL NONE
293 #endif
295 #if 1
296 #define DEC_UNROLL FULL
297 #elif 0
298 #define DEC_UNROLL PARTIAL
299 #else
300 #define DEC_UNROLL NONE
301 #endif
303 /* 6. FAST FINITE FIELD OPERATIONS
305 If this section is included, tables are used to provide faster finite
306 field arithmetic (this has no effect if FIXED_TABLES is defined).
308 #if !defined (TC_WINDOWS_BOOT)
309 #define FF_TABLES
310 #endif
312 /* 7. INTERNAL STATE VARIABLE FORMAT
314 The internal state of Rijndael is stored in a number of local 32-bit
315 word varaibles which can be defined either as an array or as individual
316 names variables. Include this section if you want to store these local
317 varaibles in arrays. Otherwise individual local variables will be used.
319 #if 1
320 #define ARRAYS
321 #endif
323 /* 8. FIXED OR DYNAMIC TABLES
325 When this section is included the tables used by the code are compiled
326 statically into the binary file. Otherwise the subroutine aes_init()
327 must be called to compute them before the code is first used.
329 #if !defined (TC_WINDOWS_BOOT) && !(defined( _MSC_VER ) && ( _MSC_VER <= 800 ))
330 #define FIXED_TABLES
331 #endif
333 /* 9. TABLE ALIGNMENT
335 On some sytsems speed will be improved by aligning the AES large lookup
336 tables on particular boundaries. This define should be set to a power of
337 two giving the desired alignment. It can be left undefined if alignment
338 is not needed. This option is specific to the Microsft VC++ compiler -
339 it seems to sometimes cause trouble for the VC++ version 6 compiler.
342 #if 1 && defined( _MSC_VER ) && ( _MSC_VER >= 1300 )
343 #define TABLE_ALIGN 32
344 #endif
346 /* 10. TABLE OPTIONS
348 This cipher proceeds by repeating in a number of cycles known as 'rounds'
349 which are implemented by a round function which can optionally be speeded
350 up using tables. The basic tables are each 256 32-bit words, with either
351 one or four tables being required for each round function depending on
352 how much speed is required. The encryption and decryption round functions
353 are different and the last encryption and decrytpion round functions are
354 different again making four different round functions in all.
356 This means that:
357 1. Normal encryption and decryption rounds can each use either 0, 1
358 or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
359 2. The last encryption and decryption rounds can also use either 0, 1
360 or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
362 Include or exclude the appropriate definitions below to set the number
363 of tables used by this implementation.
366 #if 1 /* set tables for the normal encryption round */
367 #define ENC_ROUND FOUR_TABLES
368 #elif 0
369 #define ENC_ROUND ONE_TABLE
370 #else
371 #define ENC_ROUND NO_TABLES
372 #endif
374 #if 1 /* set tables for the last encryption round */
375 #define LAST_ENC_ROUND FOUR_TABLES
376 #elif 0
377 #define LAST_ENC_ROUND ONE_TABLE
378 #else
379 #define LAST_ENC_ROUND NO_TABLES
380 #endif
382 #if 1 /* set tables for the normal decryption round */
383 #define DEC_ROUND FOUR_TABLES
384 #elif 0
385 #define DEC_ROUND ONE_TABLE
386 #else
387 #define DEC_ROUND NO_TABLES
388 #endif
390 #if 1 /* set tables for the last decryption round */
391 #define LAST_DEC_ROUND FOUR_TABLES
392 #elif 0
393 #define LAST_DEC_ROUND ONE_TABLE
394 #else
395 #define LAST_DEC_ROUND NO_TABLES
396 #endif
398 /* The decryption key schedule can be speeded up with tables in the same
399 way that the round functions can. Include or exclude the following
400 defines to set this requirement.
402 #if 1
403 #define KEY_SCHED FOUR_TABLES
404 #elif 0
405 #define KEY_SCHED ONE_TABLE
406 #else
407 #define KEY_SCHED NO_TABLES
408 #endif
410 /* ---- END OF USER CONFIGURED OPTIONS ---- */
412 /* VIA ACE support is only available for VC++ and GCC */
414 #if !defined( _MSC_VER ) && !defined( __GNUC__ )
415 # if defined( ASSUME_VIA_ACE_PRESENT )
416 # undef ASSUME_VIA_ACE_PRESENT
417 # endif
418 # if defined( USE_VIA_ACE_IF_PRESENT )
419 # undef USE_VIA_ACE_IF_PRESENT
420 # endif
421 #endif
423 #if defined( ASSUME_VIA_ACE_PRESENT ) && !defined( USE_VIA_ACE_IF_PRESENT )
424 #define USE_VIA_ACE_IF_PRESENT
425 #endif
427 #if defined( USE_VIA_ACE_IF_PRESENT ) && !defined ( AES_REV_DKS )
428 #define AES_REV_DKS
429 #endif
431 /* Assembler support requires the use of platform byte order */
433 #if ( defined( ASM_X86_V1C ) || defined( ASM_X86_V2C ) || defined( ASM_AMD64_C ) ) \
434 && (ALGORITHM_BYTE_ORDER != PLATFORM_BYTE_ORDER)
435 #undef ALGORITHM_BYTE_ORDER
436 #define ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER
437 #endif
439 /* In this implementation the columns of the state array are each held in
440 32-bit words. The state array can be held in various ways: in an array
441 of words, in a number of individual word variables or in a number of
442 processor registers. The following define maps a variable name x and
443 a column number c to the way the state array variable is to be held.
444 The first define below maps the state into an array x[c] whereas the
445 second form maps the state into a number of individual variables x0,
446 x1, etc. Another form could map individual state colums to machine
447 register names.
450 #if defined( ARRAYS )
451 #define s(x,c) x[c]
452 #else
453 #define s(x,c) x##c
454 #endif
456 /* This implementation provides subroutines for encryption, decryption
457 and for setting the three key lengths (separately) for encryption
458 and decryption. Since not all functions are needed, masks are set
459 up here to determine which will be implemented in C
462 #if !defined( AES_ENCRYPT )
463 # define EFUNCS_IN_C 0
464 #elif defined( ASSUME_VIA_ACE_PRESENT ) || defined( ASM_X86_V1C ) \
465 || defined( ASM_X86_V2C ) || defined( ASM_AMD64_C )
466 # define EFUNCS_IN_C ENC_KEYING_IN_C
467 #elif !defined( ASM_X86_V2 )
468 # define EFUNCS_IN_C ( ENCRYPTION_IN_C | ENC_KEYING_IN_C )
469 #else
470 # define EFUNCS_IN_C 0
471 #endif
473 #if !defined( AES_DECRYPT )
474 # define DFUNCS_IN_C 0
475 #elif defined( ASSUME_VIA_ACE_PRESENT ) || defined( ASM_X86_V1C ) \
476 || defined( ASM_X86_V2C ) || defined( ASM_AMD64_C )
477 # define DFUNCS_IN_C DEC_KEYING_IN_C
478 #elif !defined( ASM_X86_V2 )
479 # define DFUNCS_IN_C ( DECRYPTION_IN_C | DEC_KEYING_IN_C )
480 #else
481 # define DFUNCS_IN_C 0
482 #endif
484 #define FUNCS_IN_C ( EFUNCS_IN_C | DFUNCS_IN_C )
486 /* END OF CONFIGURATION OPTIONS */
488 #define RC_LENGTH (5 * (AES_BLOCK_SIZE / 4 - 2))
490 /* Disable or report errors on some combinations of options */
492 #if ENC_ROUND == NO_TABLES && LAST_ENC_ROUND != NO_TABLES
493 #undef LAST_ENC_ROUND
494 #define LAST_ENC_ROUND NO_TABLES
495 #elif ENC_ROUND == ONE_TABLE && LAST_ENC_ROUND == FOUR_TABLES
496 #undef LAST_ENC_ROUND
497 #define LAST_ENC_ROUND ONE_TABLE
498 #endif
500 #if ENC_ROUND == NO_TABLES && ENC_UNROLL != NONE
501 #undef ENC_UNROLL
502 #define ENC_UNROLL NONE
503 #endif
505 #if DEC_ROUND == NO_TABLES && LAST_DEC_ROUND != NO_TABLES
506 #undef LAST_DEC_ROUND
507 #define LAST_DEC_ROUND NO_TABLES
508 #elif DEC_ROUND == ONE_TABLE && LAST_DEC_ROUND == FOUR_TABLES
509 #undef LAST_DEC_ROUND
510 #define LAST_DEC_ROUND ONE_TABLE
511 #endif
513 #if DEC_ROUND == NO_TABLES && DEC_UNROLL != NONE
514 #undef DEC_UNROLL
515 #define DEC_UNROLL NONE
516 #endif
518 #if defined( bswap32 )
519 #define aes_sw32 bswap32
520 #elif defined( bswap_32 )
521 #define aes_sw32 bswap_32
522 #else
523 #define brot(x,n) (((uint_32t)(x) << n) | ((uint_32t)(x) >> (32 - n)))
524 #define aes_sw32(x) ((brot((x),8) & 0x00ff00ff) | (brot((x),24) & 0xff00ff00))
525 #endif
527 /* upr(x,n): rotates bytes within words by n positions, moving bytes to
528 higher index positions with wrap around into low positions
529 ups(x,n): moves bytes by n positions to higher index positions in
530 words but without wrap around
531 bval(x,n): extracts a byte from a word
533 WARNING: The definitions given here are intended only for use with
534 unsigned variables and with shift counts that are compile
535 time constants
538 #if ( ALGORITHM_BYTE_ORDER == IS_LITTLE_ENDIAN )
539 #define upr(x,n) (((uint_32t)(x) << (8 * (n))) | ((uint_32t)(x) >> (32 - 8 * (n))))
540 #define ups(x,n) ((uint_32t) (x) << (8 * (n)))
541 #define bval(x,n) ((uint_8t)((x) >> (8 * (n))))
542 #define bytes2word(b0, b1, b2, b3) \
543 (((uint_32t)(b3) << 24) | ((uint_32t)(b2) << 16) | ((uint_32t)(b1) << 8) | (b0))
544 #endif
546 #if ( ALGORITHM_BYTE_ORDER == IS_BIG_ENDIAN )
547 #define upr(x,n) (((uint_32t)(x) >> (8 * (n))) | ((uint_32t)(x) << (32 - 8 * (n))))
548 #define ups(x,n) ((uint_32t) (x) >> (8 * (n)))
549 #define bval(x,n) ((uint_8t)((x) >> (24 - 8 * (n))))
550 #define bytes2word(b0, b1, b2, b3) \
551 (((uint_32t)(b0) << 24) | ((uint_32t)(b1) << 16) | ((uint_32t)(b2) << 8) | (b3))
552 #endif
554 #if defined( SAFE_IO )
556 #define word_in(x,c) bytes2word(((const uint_8t*)(x)+4*c)[0], ((const uint_8t*)(x)+4*c)[1], \
557 ((const uint_8t*)(x)+4*c)[2], ((const uint_8t*)(x)+4*c)[3])
558 #define word_out(x,c,v) { ((uint_8t*)(x)+4*c)[0] = bval(v,0); ((uint_8t*)(x)+4*c)[1] = bval(v,1); \
559 ((uint_8t*)(x)+4*c)[2] = bval(v,2); ((uint_8t*)(x)+4*c)[3] = bval(v,3); }
561 #elif ( ALGORITHM_BYTE_ORDER == PLATFORM_BYTE_ORDER )
563 #define word_in(x,c) (*((uint_32t*)(x)+(c)))
564 #define word_out(x,c,v) (*((uint_32t*)(x)+(c)) = (v))
566 #else
568 #define word_in(x,c) aes_sw32(*((uint_32t*)(x)+(c)))
569 #define word_out(x,c,v) (*((uint_32t*)(x)+(c)) = aes_sw32(v))
571 #endif
573 /* the finite field modular polynomial and elements */
575 #define WPOLY 0x011b
576 #define BPOLY 0x1b
578 /* multiply four bytes in GF(2^8) by 'x' {02} in parallel */
580 #define m1 0x80808080
581 #define m2 0x7f7f7f7f
582 #define gf_mulx(x) ((((x) & m2) << 1) ^ ((((x) & m1) >> 7) * BPOLY))
584 /* The following defines provide alternative definitions of gf_mulx that might
585 give improved performance if a fast 32-bit multiply is not available. Note
586 that a temporary variable u needs to be defined where gf_mulx is used.
588 #define gf_mulx(x) (u = (x) & m1, u |= (u >> 1), ((x) & m2) << 1) ^ ((u >> 3) | (u >> 6))
589 #define m4 (0x01010101 * BPOLY)
590 #define gf_mulx(x) (u = (x) & m1, ((x) & m2) << 1) ^ ((u - (u >> 7)) & m4)
593 /* Work out which tables are needed for the different options */
595 #if defined( ASM_X86_V1C )
596 #if defined( ENC_ROUND )
597 #undef ENC_ROUND
598 #endif
599 #define ENC_ROUND FOUR_TABLES
600 #if defined( LAST_ENC_ROUND )
601 #undef LAST_ENC_ROUND
602 #endif
603 #define LAST_ENC_ROUND FOUR_TABLES
604 #if defined( DEC_ROUND )
605 #undef DEC_ROUND
606 #endif
607 #define DEC_ROUND FOUR_TABLES
608 #if defined( LAST_DEC_ROUND )
609 #undef LAST_DEC_ROUND
610 #endif
611 #define LAST_DEC_ROUND FOUR_TABLES
612 #if defined( KEY_SCHED )
613 #undef KEY_SCHED
614 #define KEY_SCHED FOUR_TABLES
615 #endif
616 #endif
618 #if ( FUNCS_IN_C & ENCRYPTION_IN_C ) || defined( ASM_X86_V1C )
619 #if ENC_ROUND == ONE_TABLE
620 #define FT1_SET
621 #elif ENC_ROUND == FOUR_TABLES
622 #define FT4_SET
623 #else
624 #define SBX_SET
625 #endif
626 #if LAST_ENC_ROUND == ONE_TABLE
627 #define FL1_SET
628 #elif LAST_ENC_ROUND == FOUR_TABLES
629 #define FL4_SET
630 #elif !defined( SBX_SET )
631 #define SBX_SET
632 #endif
633 #endif
635 #if ( FUNCS_IN_C & DECRYPTION_IN_C ) || defined( ASM_X86_V1C )
636 #if DEC_ROUND == ONE_TABLE
637 #define IT1_SET
638 #elif DEC_ROUND == FOUR_TABLES
639 #define IT4_SET
640 #else
641 #define ISB_SET
642 #endif
643 #if LAST_DEC_ROUND == ONE_TABLE
644 #define IL1_SET
645 #elif LAST_DEC_ROUND == FOUR_TABLES
646 #define IL4_SET
647 #elif !defined(ISB_SET)
648 #define ISB_SET
649 #endif
650 #endif
652 #if (FUNCS_IN_C & ENC_KEYING_IN_C) || (FUNCS_IN_C & DEC_KEYING_IN_C)
653 #if KEY_SCHED == ONE_TABLE
654 #define LS1_SET
655 #elif KEY_SCHED == FOUR_TABLES
656 #define LS4_SET
657 #elif !defined( SBX_SET )
658 #define SBX_SET
659 #endif
660 #endif
662 #if (FUNCS_IN_C & DEC_KEYING_IN_C)
663 #if KEY_SCHED == ONE_TABLE
664 #define IM1_SET
665 #elif KEY_SCHED == FOUR_TABLES
666 #define IM4_SET
667 #elif !defined( SBX_SET )
668 #define SBX_SET
669 #endif
670 #endif
672 /* generic definitions of Rijndael macros that use tables */
674 #define no_table(x,box,vf,rf,c) bytes2word( \
675 box[bval(vf(x,0,c),rf(0,c))], \
676 box[bval(vf(x,1,c),rf(1,c))], \
677 box[bval(vf(x,2,c),rf(2,c))], \
678 box[bval(vf(x,3,c),rf(3,c))])
680 #define one_table(x,op,tab,vf,rf,c) \
681 ( tab[bval(vf(x,0,c),rf(0,c))] \
682 ^ op(tab[bval(vf(x,1,c),rf(1,c))],1) \
683 ^ op(tab[bval(vf(x,2,c),rf(2,c))],2) \
684 ^ op(tab[bval(vf(x,3,c),rf(3,c))],3))
686 #define four_tables(x,tab,vf,rf,c) \
687 ( tab[0][bval(vf(x,0,c),rf(0,c))] \
688 ^ tab[1][bval(vf(x,1,c),rf(1,c))] \
689 ^ tab[2][bval(vf(x,2,c),rf(2,c))] \
690 ^ tab[3][bval(vf(x,3,c),rf(3,c))])
692 #define vf1(x,r,c) (x)
693 #define rf1(r,c) (r)
694 #define rf2(r,c) ((8+r-c)&3)
696 /* perform forward and inverse column mix operation on four bytes in long word x in */
697 /* parallel. NOTE: x must be a simple variable, NOT an expression in these macros. */
699 #if defined( FM4_SET ) /* not currently used */
700 #define fwd_mcol(x) four_tables(x,t_use(f,m),vf1,rf1,0)
701 #elif defined( FM1_SET ) /* not currently used */
702 #define fwd_mcol(x) one_table(x,upr,t_use(f,m),vf1,rf1,0)
703 #else
704 #define dec_fmvars uint_32t g2
705 #define fwd_mcol(x) (g2 = gf_mulx(x), g2 ^ upr((x) ^ g2, 3) ^ upr((x), 2) ^ upr((x), 1))
706 #endif
708 #if defined( IM4_SET )
709 #define inv_mcol(x) four_tables(x,t_use(i,m),vf1,rf1,0)
710 #elif defined( IM1_SET )
711 #define inv_mcol(x) one_table(x,upr,t_use(i,m),vf1,rf1,0)
712 #else
713 #define dec_imvars uint_32t g2, g4, g9
714 #define inv_mcol(x) (g2 = gf_mulx(x), g4 = gf_mulx(g2), g9 = (x) ^ gf_mulx(g4), g4 ^= g9, \
715 (x) ^ g2 ^ g4 ^ upr(g2 ^ g9, 3) ^ upr(g4, 2) ^ upr(g9, 1))
716 #endif
718 #if defined( FL4_SET )
719 #define ls_box(x,c) four_tables(x,t_use(f,l),vf1,rf2,c)
720 #elif defined( LS4_SET )
721 #define ls_box(x,c) four_tables(x,t_use(l,s),vf1,rf2,c)
722 #elif defined( FL1_SET )
723 #define ls_box(x,c) one_table(x,upr,t_use(f,l),vf1,rf2,c)
724 #elif defined( LS1_SET )
725 #define ls_box(x,c) one_table(x,upr,t_use(l,s),vf1,rf2,c)
726 #else
727 #define ls_box(x,c) no_table(x,t_use(s,box),vf1,rf2,c)
728 #endif
730 #if defined( ASM_X86_V1C ) && defined( AES_DECRYPT ) && !defined( ISB_SET )
731 #define ISB_SET
732 #endif
734 #endif