1 /* @(#)s_cos.c 5.1 93/09/24 */
3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6 * Developed at SunPro, a Sun Microsystems, Inc. business.
7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice
10 * ====================================================
12 * $NetBSD: s_cos.c,v 1.10 2002/05/26 22:01:54 wiz Exp $
13 * $DragonFly: src/lib/libm/src/s_cos.c,v 1.1 2005/07/26 21:15:20 joerg Exp $
17 * Return cosine function of x.
20 * __kernel_sin ... sine function on [-pi/4,pi/4]
21 * __kernel_cos ... cosine function on [-pi/4,pi/4]
22 * __libm_rem_pio2 ... argument reduction routine
25 * Let S,C and T denote the sin, cos and tan respectively on
26 * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
27 * in [-pi/4 , +pi/4], and let n = k mod 4.
30 * n sin(x) cos(x) tan(x)
31 * ----------------------------------------------------------
36 * ----------------------------------------------------------
39 * Let trig be any of sin, cos, or tan.
40 * trig(+-INF) is NaN, with signals;
41 * trig(NaN) is that NaN;
44 * TRIG(x) returns trig(x) nearly rounded
48 #include "math_private.h"
61 if(ix
<= 0x3fe921fb) return __kernel_cos(x
,z
);
63 /* cos(Inf or NaN) is NaN */
64 else if (ix
>=0x7ff00000) return x
-x
;
66 /* argument reduction needed */
68 n
= __libm_rem_pio2(x
,y
);
70 case 0: return __kernel_cos(y
[0],y
[1]);
71 case 1: return -__kernel_sin(y
[0],y
[1],1);
72 case 2: return -__kernel_cos(y
[0],y
[1]);
74 return __kernel_sin(y
[0],y
[1],1);