added -y/--side-by-side option
[dfdiff.git] / lib / libm / src / s_cos.c
blob629a66e8fd1854764337bf9a293179c6a156c295
1 /* @(#)s_cos.c 5.1 93/09/24 */
2 /*
3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6 * Developed at SunPro, a Sun Microsystems, Inc. business.
7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice
9 * is preserved.
10 * ====================================================
12 * $NetBSD: s_cos.c,v 1.10 2002/05/26 22:01:54 wiz Exp $
13 * $DragonFly: src/lib/libm/src/s_cos.c,v 1.1 2005/07/26 21:15:20 joerg Exp $
16 /* cos(x)
17 * Return cosine function of x.
19 * kernel function:
20 * __kernel_sin ... sine function on [-pi/4,pi/4]
21 * __kernel_cos ... cosine function on [-pi/4,pi/4]
22 * __libm_rem_pio2 ... argument reduction routine
24 * Method.
25 * Let S,C and T denote the sin, cos and tan respectively on
26 * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
27 * in [-pi/4 , +pi/4], and let n = k mod 4.
28 * We have
30 * n sin(x) cos(x) tan(x)
31 * ----------------------------------------------------------
32 * 0 S C T
33 * 1 C -S -1/T
34 * 2 -S -C T
35 * 3 -C S -1/T
36 * ----------------------------------------------------------
38 * Special cases:
39 * Let trig be any of sin, cos, or tan.
40 * trig(+-INF) is NaN, with signals;
41 * trig(NaN) is that NaN;
43 * Accuracy:
44 * TRIG(x) returns trig(x) nearly rounded
47 #include <math.h>
48 #include "math_private.h"
50 double
51 cos(double x)
53 double y[2],z=0.0;
54 int32_t n, ix;
56 /* High word of x. */
57 GET_HIGH_WORD(ix,x);
59 /* |x| ~< pi/4 */
60 ix &= 0x7fffffff;
61 if(ix <= 0x3fe921fb) return __kernel_cos(x,z);
63 /* cos(Inf or NaN) is NaN */
64 else if (ix>=0x7ff00000) return x-x;
66 /* argument reduction needed */
67 else {
68 n = __libm_rem_pio2(x,y);
69 switch(n&3) {
70 case 0: return __kernel_cos(y[0],y[1]);
71 case 1: return -__kernel_sin(y[0],y[1],1);
72 case 2: return -__kernel_cos(y[0],y[1]);
73 default:
74 return __kernel_sin(y[0],y[1],1);