2 def adj_f(middle
, loc_h
):
3 return middle
+.5 == loc_h
or middle
-.5 == loc_h
4 def adj_f2(middle
, loc_h
):
5 return middle
-1 < loc_h
< middle
+1
6 def adj_p(middle
, loc_h
):
7 return middle
== loc_h
[0] or middle
== loc_h
[1]
10 print timeit
.Timer("junk.adj_f(1,0.5)","import junk").timeit(1000000)
12 print timeit
.Timer("junk.adj_p(1,[0,1])","import junk").timeit(1000000)
15 print timeit
.Timer("junk.adj_f2(1,0.5)","import junk").timeit(1000000)
17 # todo: some more testing on the Brown corpus:
18 # # first five sentences of the Brown corpus:
19 # g_brown = harmonic.initialize([['AT', 'NP-TL', 'NN-TL', 'JJ-TL', 'NN-TL', 'VBD', 'NR', 'AT', 'NN', 'IN', 'NP$', 'JJ', 'NN', 'NN', 'VBD', '``', 'AT', 'NN', "''", 'CS', 'DTI', 'NNS', 'VBD', 'NN', '.'], ['AT', 'NN', 'RBR', 'VBD', 'IN', 'NN', 'NNS', 'CS', 'AT', 'NN-TL', 'JJ-TL', 'NN-TL', ',', 'WDT', 'HVD', 'JJ', 'NN', 'IN', 'AT', 'NN', ',', '``', 'VBZ', 'AT', 'NN', 'CC', 'NNS', 'IN', 'AT', 'NN-TL', 'IN-TL', 'NP-TL', "''", 'IN', 'AT', 'NN', 'IN', 'WDT', 'AT', 'NN', 'BEDZ', 'VBN', '.'], ['AT', 'NP', 'NN', 'NN', 'HVD', 'BEN', 'VBN', 'IN', 'NP-TL', 'JJ-TL', 'NN-TL', 'NN-TL', 'NP', 'NP', 'TO', 'VB', 'NNS', 'IN', 'JJ', '``', 'NNS', "''", 'IN', 'AT', 'JJ', 'NN', 'WDT', 'BEDZ', 'VBN', 'IN', 'NN-TL', 'NP', 'NP', 'NP', '.'], ['``', 'RB', 'AT', 'JJ', 'NN', 'IN', 'JJ', 'NNS', 'BEDZ', 'VBN', "''", ',', 'AT', 'NN', 'VBD', ',', '``', 'IN', 'AT', 'JJ', 'NN', 'IN', 'AT', 'NN', ',', 'AT', 'NN', 'IN', 'NNS', 'CC', 'AT', 'NN', 'IN', 'DT', 'NN', "''", '.'], ['AT', 'NN', 'VBD', 'PPS', 'DOD', 'VB', 'CS', 'AP', 'IN', 'NP$', 'NN', 'CC', 'NN', 'NNS', '``', 'BER', 'JJ', 'CC', 'JJ', 'CC', 'RB', 'JJ', "''", '.'], ['PPS', 'VBD', 'CS', 'NP', 'NNS', 'VB', '``', 'TO', 'HV', 'DTS', 'NNS', 'VBN', 'CC', 'VBN', 'IN', 'AT', 'NN', 'IN', 'VBG', 'CC', 'VBG', 'PPO', "''", '.'], ['AT', 'JJ', 'NN', 'VBD', 'IN', 'AT', 'NN', 'IN', 'AP', 'NNS', ',', 'IN', 'PPO', 'AT', 'NP', 'CC', 'NP-TL', 'NN-TL', 'VBG', 'NNS', 'WDT', 'PPS', 'VBD', '``', 'BER', 'QL', 'VBN', 'CC', 'VB', 'RB', 'VBN', 'NNS', 'WDT', 'VB', 'IN', 'AT', 'JJT', 'NN', 'IN', 'ABX', 'NNS', "''", '.'], ['NN-HL', 'VBN-HL'], ['WRB', ',', 'AT', 'NN', 'VBD', 'PPS', 'VBZ', '``', 'DTS', 'CD', 'NNS', 'MD', 'BE', 'VBN', 'TO', 'VB', 'JJR', 'NN', 'CC', 'VB', 'AT', 'NN', 'IN', 'NN', "''", '.'], ['AT', 'NN-TL', 'VBG-TL', 'NN-TL', ',', 'AT', 'NN', 'VBD', ',', '``', 'BEZ', 'VBG', 'IN', 'VBN', 'JJ', 'NNS', 'CS', 'AT', 'NN', 'IN', 'NN', 'NNS', 'NNS', "''", '.']])
20 # # 36:'AT' in g_brown.numtag, 40:'NP-TL'
23 # test_brown = inner(0,2, (LRBAR,36), g_brown, ['AT', 'NP-TL' ,'NN-TL','JJ-TL'], {})
25 # for r in g_brown.rules((2,36)) + g_brown.rules((1,36)) + g_brown.rules((0,36)):
28 # if head(L) in [36,40,-2] and head(R) in [36,40,-2]:
30 # print "Brown-test gives: %.8f" % test_brown
34 # this will give the tag sequences of all the 6218 Brown corpus
35 # sentences of length < 7:
36 # [[tag for (w, tag) in sent]
37 # for sent in nltk.corpus.brown.tagged_sents() if len(sent) < 7]
41 # ##############################
43 # ##############################
44 # def prune2(s,t,LHS,loc_h, ichart,tree):
47 # def prune2_helper(s,t,LHS,loc_h):
48 # newichart[(s,t,LHS,loc_h)] = ichart[(s,t,LHS,loc_h)]
49 # for d in tree[s,t,LHS,loc_h]:
50 # prune2_helper(d[0],d[1],d[2],d[3])
52 # prune2_helper(s,t,LHS,loc_h)
55 # def prune(s,t,LHS, g, sent_nums, ichart):
56 # '''Removes unused subtrees with positive probability from the
59 # Unused := any and all mothers (or grandmothers etc.) have
61 # def prune_helper(keep,s,t,LHS,loc_h):
62 # keep = keep and ichart[(s,t,LHS,loc_h)] > 0.0
63 # for rule in g.sent_rules(LHS, sent_nums):
67 # if (s,t,L,loc_h) in ichart:
68 # prune_helper(keep, s,t, L,loc_h)
70 # if (s,t,R,loc_h) in ichart:
71 # prune_helper(keep, s,t, R,loc_h)
73 # for r in xrange(s,t):
74 # for loc_L in locs(head(L), sent_nums, s, r):
75 # if (s,r,rule.L(),loc_L) in ichart:
76 # prune_helper(keep, s ,r,rule.L(),loc_L)
77 # for loc_R in locs(head(R), sent_nums, r+1, t):
78 # if (r+1,t,rule.R(),loc_R) in ichart:
79 # prune_helper(keep,r+1,t,rule.R(),loc_R)
81 # if not (s,t,LHS,loc_h) in keepichart:
82 # keepichart[(s,t,LHS,loc_h)] = keep
83 # else: # eg. if previously some parent rule had 0.0, but then a
84 # # later rule said "No, I've got a use for this subtree"
85 # keepichart[(s,t,LHS,loc_h)] += keep
89 # for loc_h,h in enumerate(sent_nums):
90 # keep = ichart[(s,t,LHS,loc_h)] > 0.0
91 # keepichart[(s,t,LHS,loc_h)] = keep
92 # prune_helper(keep,s,t,LHS,loc_h)
94 # for (s,t,LHS,loc_h),v in keepichart.iteritems():
96 # if 'PRUNE' in io.DEBUG:
97 # print "popping s:%d t:%d LHS:%s loc_h:%d" % (s,t,LHS,loc_h)
98 # ichart.pop((s,t,LHS,loc_h))
99 # # end prune(s,t,LHS,loc_h, g, sent_nums, ichart)
101 # def prune_sent(g, sent_nums, ichart):
102 # return prune(0, len(sent_nums)-1, ROOT, g, sent_nums, ichart)
106 # def P_STOP(STOP, h, dir, adj, g, corpus):
109 # h_tag = g.numtag(h)
110 # for sent in corpus:
112 # locs_h = locs(h_tag, sent)
113 # io.debug( "locs_h:%s, sent:%s"%(locs_h,sent) , 'PSTOP')
114 # for loc_h in locs_h:
115 # inner(0, len(sent)-1, ROOT, loc_h, g, sent, chart)
116 # for s in range(loc_h): # s<loc(h), range gives strictly less
117 # for t in range(loc_h, len(sent)):
118 # io.debug( "s:%s t:%s loc:%d"%(s,t,loc_h) , 'PSTOP')
119 # if (s, t, (LRBAR,h), loc_h) in chart:
120 # io.debug( "num+=%s"%chart[(s, t, (LRBAR,h), loc_h)] , 'PSTOP')
121 # P_STOP_num += chart[(s, t, (LRBAR,h), loc_h)]
122 # if (s, t, (RBAR,h), loc_h) in chart:
123 # io.debug( "den+=%s"%chart[(s, t, (RBAR,h), loc_h)] , 'PSTOP')
124 # P_STOP_den += chart[(s, t, (RBAR,h), loc_h)]
126 # io.debug( "num/den: %s / %s"%(P_STOP_num, P_STOP_den) , 'PSTOP')
127 # if P_STOP_den > 0.0:
128 # io.debug( "num/den: %s / %s = %s"%(P_STOP_num, P_STOP_den,P_STOP_num / P_STOP_den) , 'PSTOP')
129 # return P_STOP_num / P_STOP_den # upside down in article
135 # '''Here it seems like they store rule information on a per-head (per
136 # direction) basis, in deps_D(h, dir) which gives us a list. '''
139 # for dir in ['l', 'r']:
140 # for a in deps(h, dir):
143 # P_STOP (0, h, dir, adj) * \
144 # P_CHOOSE (a, h, dir) * \
146 # P_STOP (STOP | h, dir, adj)
148 # return P_h(root(sent))
151 # if __name__ == "__main__": # from dmv.py
152 # # these are not Real rules, just testing the classes. todo: make
153 # # a rule-set to test inner() on.
155 # s = DMV_Rule((LRBAR,0), (NOBAR,1),(NOBAR,2), 1.0, 0.0) # s->np vp
156 # np = DMV_Rule((NOBAR,1), (NOBAR,3),(NOBAR,4), 0.3, 0.0) # np->n p
157 # b[(NOBAR,1), 'n'] = 0.7 # np->'n'
158 # b[(NOBAR,3), 'n'] = 1.0 # n->'n'
159 # b[(NOBAR,4), 'p'] = 1.0 # p->'p'
160 # vp = DMV_Rule((NOBAR,2), (NOBAR,5),(NOBAR,1), 0.1, 0.0) # vp->v np (two parses use this rule)
161 # vp2 = DMV_Rule((NOBAR,2), (NOBAR,2),(NOBAR,4), 0.9, 0.0) # vp->vp p
162 # b[(NOBAR,5), 'v'] = 1.0 # v->'v'
164 # g = DMV_Grammar([s,np,vp,vp2], b, "todo","todo", "todo")
167 # test1 = io.inner(0,0, (NOBAR,1), g, ['n'], {})
168 # if test1[0] != 0.7:
169 # print "should be 0.70 : %.2f" % test1[0]
172 # test2 = io.inner(0,2, (NOBAR,2), g, ['v','n','p'], {})
173 # if "%.2f" % test2[0] != "0.09": # 0.092999 etc, don't care about that
174 # print "should be 0.09 if the io.py-test is right : %.2f" % test2[0]
175 # # the following should manage to look stuff up in the chart:
176 # test2 = io.inner(0,2, (NOBAR,2), g, ['v','n','p'], test2[1])
177 # if "%.2f" % test2[0] != "0.09":
178 # print "should be 0.09 if the io.py-test is right : %.2f" % test2[0]