1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
5 * Copyright (C) 2006 by Magnus Lundin *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
11 * Copyright (C) 2009 by Dirk Behme *
12 * dirk.behme@gmail.com - copy from cortex_m3 *
14 * This program is free software; you can redistribute it and/or modify *
15 * it under the terms of the GNU General Public License as published by *
16 * the Free Software Foundation; either version 2 of the License, or *
17 * (at your option) any later version. *
19 * This program is distributed in the hope that it will be useful, *
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
22 * GNU General Public License for more details. *
24 * You should have received a copy of the GNU General Public License *
25 * along with this program; if not, write to the *
26 * Free Software Foundation, Inc., *
27 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
29 * Cortex-A8(tm) TRM, ARM DDI 0344H *
31 ***************************************************************************/
36 #include "breakpoints.h"
37 #include "cortex_a8.h"
39 #include "target_request.h"
40 #include "target_type.h"
42 static int cortex_a8_poll(struct target
*target
);
43 static int cortex_a8_debug_entry(struct target
*target
);
44 static int cortex_a8_restore_context(struct target
*target
);
45 static int cortex_a8_set_breakpoint(struct target
*target
,
46 struct breakpoint
*breakpoint
, uint8_t matchmode
);
47 static int cortex_a8_unset_breakpoint(struct target
*target
,
48 struct breakpoint
*breakpoint
);
49 static int cortex_a8_dap_read_coreregister_u32(struct target
*target
,
50 uint32_t *value
, int regnum
);
51 static int cortex_a8_dap_write_coreregister_u32(struct target
*target
,
52 uint32_t value
, int regnum
);
54 * FIXME do topology discovery using the ROM; don't
55 * assume this is an OMAP3.
57 #define swjdp_memoryap 0
58 #define swjdp_debugap 1
59 #define OMAP3530_DEBUG_BASE 0x54011000
62 * Cortex-A8 Basic debug access, very low level assumes state is saved
64 static int cortex_a8_init_debug_access(struct target
*target
)
66 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
67 struct swjdp_common
*swjdp
= &armv7a
->swjdp_info
;
74 /* Unlocking the debug registers for modification */
75 /* The debugport might be uninitialised so try twice */
76 retval
= mem_ap_write_atomic_u32(swjdp
, armv7a
->debug_base
+ CPUDBG_LOCKACCESS
, 0xC5ACCE55);
77 if (retval
!= ERROR_OK
)
78 mem_ap_write_atomic_u32(swjdp
, armv7a
->debug_base
+ CPUDBG_LOCKACCESS
, 0xC5ACCE55);
79 /* Clear Sticky Power Down status Bit in PRSR to enable access to
80 the registers in the Core Power Domain */
81 retval
= mem_ap_read_atomic_u32(swjdp
, armv7a
->debug_base
+ CPUDBG_PRSR
, &dummy
);
82 /* Enabling of instruction execution in debug mode is done in debug_entry code */
84 /* Resync breakpoint registers */
86 /* Since this is likley called from init or reset, update targtet state information*/
87 cortex_a8_poll(target
);
92 int cortex_a8_exec_opcode(struct target
*target
, uint32_t opcode
)
96 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
97 struct swjdp_common
*swjdp
= &armv7a
->swjdp_info
;
99 LOG_DEBUG("exec opcode 0x%08" PRIx32
, opcode
);
102 retval
= mem_ap_read_atomic_u32(swjdp
,
103 armv7a
->debug_base
+ CPUDBG_DSCR
, &dscr
);
104 if (retval
!= ERROR_OK
)
106 LOG_ERROR("Could not read DSCR register, opcode = 0x%08" PRIx32
, opcode
);
110 while ((dscr
& (1 << DSCR_INSTR_COMP
)) == 0); /* Wait for InstrCompl bit to be set */
112 mem_ap_write_u32(swjdp
, armv7a
->debug_base
+ CPUDBG_ITR
, opcode
);
116 retval
= mem_ap_read_atomic_u32(swjdp
,
117 armv7a
->debug_base
+ CPUDBG_DSCR
, &dscr
);
118 if (retval
!= ERROR_OK
)
120 LOG_ERROR("Could not read DSCR register");
124 while ((dscr
& (1 << DSCR_INSTR_COMP
)) == 0); /* Wait for InstrCompl bit to be set */
129 /**************************************************************************
130 Read core register with very few exec_opcode, fast but needs work_area.
131 This can cause problems with MMU active.
132 **************************************************************************/
133 static int cortex_a8_read_regs_through_mem(struct target
*target
, uint32_t address
,
136 int retval
= ERROR_OK
;
137 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
138 struct swjdp_common
*swjdp
= &armv7a
->swjdp_info
;
140 cortex_a8_dap_read_coreregister_u32(target
, regfile
, 0);
141 cortex_a8_dap_write_coreregister_u32(target
, address
, 0);
142 cortex_a8_exec_opcode(target
, ARMV4_5_STMIA(0, 0xFFFE, 0, 0));
143 dap_ap_select(swjdp
, swjdp_memoryap
);
144 mem_ap_read_buf_u32(swjdp
, (uint8_t *)(®file
[1]), 4*15, address
);
145 dap_ap_select(swjdp
, swjdp_debugap
);
150 static int cortex_a8_read_cp(struct target
*target
, uint32_t *value
, uint8_t CP
,
151 uint8_t op1
, uint8_t CRn
, uint8_t CRm
, uint8_t op2
)
154 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
155 struct swjdp_common
*swjdp
= &armv7a
->swjdp_info
;
157 cortex_a8_exec_opcode(target
, ARMV4_5_MRC(CP
, op1
, 0, CRn
, CRm
, op2
));
158 /* Move R0 to DTRTX */
159 cortex_a8_exec_opcode(target
, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
162 retval
= mem_ap_read_atomic_u32(swjdp
,
163 armv7a
->debug_base
+ CPUDBG_DTRTX
, value
);
168 static int cortex_a8_write_cp(struct target
*target
, uint32_t value
,
169 uint8_t CP
, uint8_t op1
, uint8_t CRn
, uint8_t CRm
, uint8_t op2
)
173 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
174 struct swjdp_common
*swjdp
= &armv7a
->swjdp_info
;
176 LOG_DEBUG("CP%i, CRn %i, value 0x%08" PRIx32
, CP
, CRn
, value
);
178 /* Check that DCCRX is not full */
179 retval
= mem_ap_read_atomic_u32(swjdp
,
180 armv7a
->debug_base
+ CPUDBG_DSCR
, &dscr
);
181 if (dscr
& (1 << DSCR_DTR_RX_FULL
))
183 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32
, dscr
);
184 /* Clear DCCRX with MCR(p14, 0, Rd, c0, c5, 0), opcode 0xEE000E15 */
185 cortex_a8_exec_opcode(target
, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
188 retval
= mem_ap_write_u32(swjdp
,
189 armv7a
->debug_base
+ CPUDBG_DTRRX
, value
);
190 /* Move DTRRX to r0 */
191 cortex_a8_exec_opcode(target
, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
193 cortex_a8_exec_opcode(target
, ARMV4_5_MCR(CP
, op1
, 0, CRn
, CRm
, op2
));
197 static int cortex_a8_read_cp15(struct target
*target
, uint32_t op1
, uint32_t op2
,
198 uint32_t CRn
, uint32_t CRm
, uint32_t *value
)
200 return cortex_a8_read_cp(target
, value
, 15, op1
, CRn
, CRm
, op2
);
203 static int cortex_a8_write_cp15(struct target
*target
, uint32_t op1
, uint32_t op2
,
204 uint32_t CRn
, uint32_t CRm
, uint32_t value
)
206 return cortex_a8_write_cp(target
, value
, 15, op1
, CRn
, CRm
, op2
);
209 static int cortex_a8_mrc(struct target
*target
, int cpnum
, uint32_t op1
, uint32_t op2
, uint32_t CRn
, uint32_t CRm
, uint32_t *value
)
213 LOG_ERROR("Only cp15 is supported");
216 return cortex_a8_read_cp15(target
, op1
, op2
, CRn
, CRm
, value
);
219 static int cortex_a8_mcr(struct target
*target
, int cpnum
, uint32_t op1
, uint32_t op2
, uint32_t CRn
, uint32_t CRm
, uint32_t value
)
223 LOG_ERROR("Only cp15 is supported");
226 return cortex_a8_write_cp15(target
, op1
, op2
, CRn
, CRm
, value
);
231 static int cortex_a8_dap_read_coreregister_u32(struct target
*target
,
232 uint32_t *value
, int regnum
)
234 int retval
= ERROR_OK
;
235 uint8_t reg
= regnum
&0xFF;
237 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
238 struct swjdp_common
*swjdp
= &armv7a
->swjdp_info
;
245 /* Rn to DCCTX, "MCR p14, 0, Rn, c0, c5, 0" 0xEE00nE15 */
246 cortex_a8_exec_opcode(target
, ARMV4_5_MCR(14, 0, reg
, 0, 5, 0));
250 /* "MOV r0, r15"; then move r0 to DCCTX */
251 cortex_a8_exec_opcode(target
, 0xE1A0000F);
252 cortex_a8_exec_opcode(target
, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
256 /* "MRS r0, CPSR" or "MRS r0, SPSR"
257 * then move r0 to DCCTX
259 cortex_a8_exec_opcode(target
, ARMV4_5_MRS(0, reg
& 1));
260 cortex_a8_exec_opcode(target
, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
266 retval
= mem_ap_read_atomic_u32(swjdp
,
267 armv7a
->debug_base
+ CPUDBG_DSCR
, &dscr
);
269 while ((dscr
& (1 << DSCR_DTR_TX_FULL
)) == 0); /* Wait for DTRRXfull */
271 retval
= mem_ap_read_atomic_u32(swjdp
,
272 armv7a
->debug_base
+ CPUDBG_DTRTX
, value
);
273 LOG_DEBUG("read DCC 0x%08" PRIx32
, *value
);
278 static int cortex_a8_dap_write_coreregister_u32(struct target
*target
,
279 uint32_t value
, int regnum
)
281 int retval
= ERROR_OK
;
282 uint8_t Rd
= regnum
&0xFF;
284 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
285 struct swjdp_common
*swjdp
= &armv7a
->swjdp_info
;
287 LOG_DEBUG("register %i, value 0x%08" PRIx32
, regnum
, value
);
289 /* Check that DCCRX is not full */
290 retval
= mem_ap_read_atomic_u32(swjdp
,
291 armv7a
->debug_base
+ CPUDBG_DSCR
, &dscr
);
292 if (dscr
& (1 << DSCR_DTR_RX_FULL
))
294 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32
, dscr
);
295 /* Clear DCCRX with MCR(p14, 0, Rd, c0, c5, 0), opcode 0xEE000E15 */
296 cortex_a8_exec_opcode(target
, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
303 LOG_DEBUG("write DCC 0x%08" PRIx32
, value
);
304 retval
= mem_ap_write_u32(swjdp
,
305 armv7a
->debug_base
+ CPUDBG_DTRRX
, value
);
309 /* DCCRX to Rn, "MCR p14, 0, Rn, c0, c5, 0", 0xEE00nE15 */
310 cortex_a8_exec_opcode(target
, ARMV4_5_MRC(14, 0, Rd
, 0, 5, 0));
314 /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15
317 cortex_a8_exec_opcode(target
, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
318 cortex_a8_exec_opcode(target
, 0xE1A0F000);
322 /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15
323 * then "MSR CPSR_cxsf, r0" or "MSR SPSR_cxsf, r0" (all fields)
325 cortex_a8_exec_opcode(target
, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
326 cortex_a8_exec_opcode(target
, ARMV4_5_MSR_GP(0, 0xF, Rd
& 1));
328 /* "Prefetch flush" after modifying execution status in CPSR */
330 cortex_a8_exec_opcode(target
,
331 ARMV4_5_MCR(15, 0, 0, 7, 5, 4));
337 /* Write to memory mapped registers directly with no cache or mmu handling */
338 static int cortex_a8_dap_write_memap_register_u32(struct target
*target
, uint32_t address
, uint32_t value
)
341 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
342 struct swjdp_common
*swjdp
= &armv7a
->swjdp_info
;
344 retval
= mem_ap_write_atomic_u32(swjdp
, address
, value
);
350 * Cortex-A8 Run control
353 static int cortex_a8_poll(struct target
*target
)
355 int retval
= ERROR_OK
;
357 struct cortex_a8_common
*cortex_a8
= target_to_cortex_a8(target
);
358 struct armv7a_common
*armv7a
= &cortex_a8
->armv7a_common
;
359 struct swjdp_common
*swjdp
= &armv7a
->swjdp_info
;
360 enum target_state prev_target_state
= target
->state
;
361 uint8_t saved_apsel
= dap_ap_get_select(swjdp
);
363 dap_ap_select(swjdp
, swjdp_debugap
);
364 retval
= mem_ap_read_atomic_u32(swjdp
,
365 armv7a
->debug_base
+ CPUDBG_DSCR
, &dscr
);
366 if (retval
!= ERROR_OK
)
368 dap_ap_select(swjdp
, saved_apsel
);
371 cortex_a8
->cpudbg_dscr
= dscr
;
373 if ((dscr
& 0x3) == 0x3)
375 if (prev_target_state
!= TARGET_HALTED
)
377 /* We have a halting debug event */
378 LOG_DEBUG("Target halted");
379 target
->state
= TARGET_HALTED
;
380 if ((prev_target_state
== TARGET_RUNNING
)
381 || (prev_target_state
== TARGET_RESET
))
383 retval
= cortex_a8_debug_entry(target
);
384 if (retval
!= ERROR_OK
)
387 target_call_event_callbacks(target
,
388 TARGET_EVENT_HALTED
);
390 if (prev_target_state
== TARGET_DEBUG_RUNNING
)
394 retval
= cortex_a8_debug_entry(target
);
395 if (retval
!= ERROR_OK
)
398 target_call_event_callbacks(target
,
399 TARGET_EVENT_DEBUG_HALTED
);
403 else if ((dscr
& 0x3) == 0x2)
405 target
->state
= TARGET_RUNNING
;
409 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32
, dscr
);
410 target
->state
= TARGET_UNKNOWN
;
413 dap_ap_select(swjdp
, saved_apsel
);
418 static int cortex_a8_halt(struct target
*target
)
420 int retval
= ERROR_OK
;
422 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
423 struct swjdp_common
*swjdp
= &armv7a
->swjdp_info
;
424 uint8_t saved_apsel
= dap_ap_get_select(swjdp
);
425 dap_ap_select(swjdp
, swjdp_debugap
);
428 * Tell the core to be halted by writing DRCR with 0x1
429 * and then wait for the core to be halted.
431 retval
= mem_ap_write_atomic_u32(swjdp
,
432 armv7a
->debug_base
+ CPUDBG_DRCR
, 0x1);
435 * enter halting debug mode
437 mem_ap_read_atomic_u32(swjdp
, armv7a
->debug_base
+ CPUDBG_DSCR
, &dscr
);
438 retval
= mem_ap_write_atomic_u32(swjdp
,
439 armv7a
->debug_base
+ CPUDBG_DSCR
, dscr
| (1 << DSCR_HALT_DBG_MODE
));
441 if (retval
!= ERROR_OK
)
445 mem_ap_read_atomic_u32(swjdp
,
446 armv7a
->debug_base
+ CPUDBG_DSCR
, &dscr
);
447 } while ((dscr
& (1 << DSCR_CORE_HALTED
)) == 0);
449 target
->debug_reason
= DBG_REASON_DBGRQ
;
452 dap_ap_select(swjdp
, saved_apsel
);
456 static int cortex_a8_resume(struct target
*target
, int current
,
457 uint32_t address
, int handle_breakpoints
, int debug_execution
)
459 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
460 struct arm
*armv4_5
= &armv7a
->armv4_5_common
;
461 struct swjdp_common
*swjdp
= &armv7a
->swjdp_info
;
463 // struct breakpoint *breakpoint = NULL;
464 uint32_t resume_pc
, dscr
;
466 uint8_t saved_apsel
= dap_ap_get_select(swjdp
);
467 dap_ap_select(swjdp
, swjdp_debugap
);
469 if (!debug_execution
)
471 target_free_all_working_areas(target
);
472 // cortex_m3_enable_breakpoints(target);
473 // cortex_m3_enable_watchpoints(target);
479 /* Disable interrupts */
480 /* We disable interrupts in the PRIMASK register instead of
481 * masking with C_MASKINTS,
482 * This is probably the same issue as Cortex-M3 Errata 377493:
483 * C_MASKINTS in parallel with disabled interrupts can cause
484 * local faults to not be taken. */
485 buf_set_u32(armv7m
->core_cache
->reg_list
[ARMV7M_PRIMASK
].value
, 0, 32, 1);
486 armv7m
->core_cache
->reg_list
[ARMV7M_PRIMASK
].dirty
= 1;
487 armv7m
->core_cache
->reg_list
[ARMV7M_PRIMASK
].valid
= 1;
489 /* Make sure we are in Thumb mode */
490 buf_set_u32(armv7m
->core_cache
->reg_list
[ARMV7M_xPSR
].value
, 0, 32,
491 buf_get_u32(armv7m
->core_cache
->reg_list
[ARMV7M_xPSR
].value
, 0, 32) | (1 << 24));
492 armv7m
->core_cache
->reg_list
[ARMV7M_xPSR
].dirty
= 1;
493 armv7m
->core_cache
->reg_list
[ARMV7M_xPSR
].valid
= 1;
497 /* current = 1: continue on current pc, otherwise continue at <address> */
498 resume_pc
= buf_get_u32(
499 armv4_5
->core_cache
->reg_list
[15].value
,
504 /* Make sure that the Armv7 gdb thumb fixups does not
505 * kill the return address
507 switch (armv4_5
->core_state
)
509 case ARMV4_5_STATE_ARM
:
510 resume_pc
&= 0xFFFFFFFC;
512 case ARMV4_5_STATE_THUMB
:
513 case ARM_STATE_THUMB_EE
:
514 /* When the return address is loaded into PC
515 * bit 0 must be 1 to stay in Thumb state
519 case ARMV4_5_STATE_JAZELLE
:
520 LOG_ERROR("How do I resume into Jazelle state??");
523 LOG_DEBUG("resume pc = 0x%08" PRIx32
, resume_pc
);
524 buf_set_u32(armv4_5
->core_cache
->reg_list
[15].value
,
526 armv4_5
->core_cache
->reg_list
[15].dirty
= 1;
527 armv4_5
->core_cache
->reg_list
[15].valid
= 1;
529 cortex_a8_restore_context(target
);
532 /* the front-end may request us not to handle breakpoints */
533 if (handle_breakpoints
)
535 /* Single step past breakpoint at current address */
536 if ((breakpoint
= breakpoint_find(target
, resume_pc
)))
538 LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint
->address
);
539 cortex_m3_unset_breakpoint(target
, breakpoint
);
540 cortex_m3_single_step_core(target
);
541 cortex_m3_set_breakpoint(target
, breakpoint
);
546 /* Restart core and wait for it to be started */
547 mem_ap_write_atomic_u32(swjdp
, armv7a
->debug_base
+ CPUDBG_DRCR
, 0x2);
550 mem_ap_read_atomic_u32(swjdp
,
551 armv7a
->debug_base
+ CPUDBG_DSCR
, &dscr
);
552 } while ((dscr
& (1 << DSCR_CORE_RESTARTED
)) == 0);
554 target
->debug_reason
= DBG_REASON_NOTHALTED
;
555 target
->state
= TARGET_RUNNING
;
557 /* registers are now invalid */
558 register_cache_invalidate(armv4_5
->core_cache
);
560 if (!debug_execution
)
562 target
->state
= TARGET_RUNNING
;
563 target_call_event_callbacks(target
, TARGET_EVENT_RESUMED
);
564 LOG_DEBUG("target resumed at 0x%" PRIx32
, resume_pc
);
568 target
->state
= TARGET_DEBUG_RUNNING
;
569 target_call_event_callbacks(target
, TARGET_EVENT_DEBUG_RESUMED
);
570 LOG_DEBUG("target debug resumed at 0x%" PRIx32
, resume_pc
);
573 dap_ap_select(swjdp
, saved_apsel
);
578 static int cortex_a8_debug_entry(struct target
*target
)
581 uint32_t regfile
[16], pc
, cpsr
, dscr
;
582 int retval
= ERROR_OK
;
583 struct working_area
*regfile_working_area
= NULL
;
584 struct cortex_a8_common
*cortex_a8
= target_to_cortex_a8(target
);
585 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
586 struct arm
*armv4_5
= &armv7a
->armv4_5_common
;
587 struct swjdp_common
*swjdp
= &armv7a
->swjdp_info
;
590 LOG_DEBUG("dscr = 0x%08" PRIx32
, cortex_a8
->cpudbg_dscr
);
592 /* Enable the ITR execution once we are in debug mode */
593 mem_ap_read_atomic_u32(swjdp
,
594 armv7a
->debug_base
+ CPUDBG_DSCR
, &dscr
);
595 dscr
|= (1 << DSCR_EXT_INT_EN
);
596 retval
= mem_ap_write_atomic_u32(swjdp
,
597 armv7a
->debug_base
+ CPUDBG_DSCR
, dscr
);
599 /* Examine debug reason */
600 switch ((cortex_a8
->cpudbg_dscr
>> 2)&0xF)
604 target
->debug_reason
= DBG_REASON_DBGRQ
;
608 target
->debug_reason
= DBG_REASON_BREAKPOINT
;
611 target
->debug_reason
= DBG_REASON_WATCHPOINT
;
614 target
->debug_reason
= DBG_REASON_UNDEFINED
;
618 /* Examine target state and mode */
619 if (cortex_a8
->fast_reg_read
)
620 target_alloc_working_area(target
, 64, ®file_working_area
);
622 /* First load register acessible through core debug port*/
623 if (!regfile_working_area
)
625 /* FIXME we don't actually need all these registers;
626 * reading them slows us down. Just R0, PC, CPSR...
628 for (i
= 0; i
<= 15; i
++)
629 cortex_a8_dap_read_coreregister_u32(target
,
634 dap_ap_select(swjdp
, swjdp_memoryap
);
635 cortex_a8_read_regs_through_mem(target
,
636 regfile_working_area
->address
, regfile
);
637 dap_ap_select(swjdp
, swjdp_memoryap
);
638 target_free_working_area(target
, regfile_working_area
);
641 /* read Current PSR */
642 cortex_a8_dap_read_coreregister_u32(target
, &cpsr
, 16);
644 dap_ap_select(swjdp
, swjdp_debugap
);
645 LOG_DEBUG("cpsr: %8.8" PRIx32
, cpsr
);
647 arm_set_cpsr(armv4_5
, cpsr
);
650 for (i
= 0; i
<= ARM_PC
; i
++)
652 reg
= arm_reg_current(armv4_5
, i
);
654 buf_set_u32(reg
->value
, 0, 32, regfile
[i
]);
659 /* Fixup PC Resume Address */
662 // T bit set for Thumb or ThumbEE state
663 regfile
[ARM_PC
] -= 4;
668 regfile
[ARM_PC
] -= 8;
671 reg
= armv4_5
->core_cache
->reg_list
+ 15;
672 buf_set_u32(reg
->value
, 0, 32, regfile
[ARM_PC
]);
673 reg
->dirty
= reg
->valid
;
674 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5
->core_mode
, 15)
675 .dirty
= ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
,
676 armv4_5
->core_mode
, 15).valid
;
679 /* TODO, Move this */
680 uint32_t cp15_control_register
, cp15_cacr
, cp15_nacr
;
681 cortex_a8_read_cp(target
, &cp15_control_register
, 15, 0, 1, 0, 0);
682 LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register
);
684 cortex_a8_read_cp(target
, &cp15_cacr
, 15, 0, 1, 0, 2);
685 LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr
);
687 cortex_a8_read_cp(target
, &cp15_nacr
, 15, 0, 1, 1, 2);
688 LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr
);
691 /* Are we in an exception handler */
692 // armv4_5->exception_number = 0;
693 if (armv7a
->post_debug_entry
)
694 armv7a
->post_debug_entry(target
);
702 static void cortex_a8_post_debug_entry(struct target
*target
)
704 struct cortex_a8_common
*cortex_a8
= target_to_cortex_a8(target
);
705 struct armv7a_common
*armv7a
= &cortex_a8
->armv7a_common
;
707 // cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
708 /* examine cp15 control reg */
709 armv7a
->read_cp15(target
, 0, 0, 1, 0, &cortex_a8
->cp15_control_reg
);
710 jtag_execute_queue();
711 LOG_DEBUG("cp15_control_reg: %8.8" PRIx32
, cortex_a8
->cp15_control_reg
);
713 if (armv7a
->armv4_5_mmu
.armv4_5_cache
.ctype
== -1)
715 uint32_t cache_type_reg
;
716 /* identify caches */
717 armv7a
->read_cp15(target
, 0, 1, 0, 0, &cache_type_reg
);
718 jtag_execute_queue();
719 /* FIXME the armv4_4 cache info DOES NOT APPLY to Cortex-A8 */
720 armv4_5_identify_cache(cache_type_reg
,
721 &armv7a
->armv4_5_mmu
.armv4_5_cache
);
724 armv7a
->armv4_5_mmu
.mmu_enabled
=
725 (cortex_a8
->cp15_control_reg
& 0x1U
) ? 1 : 0;
726 armv7a
->armv4_5_mmu
.armv4_5_cache
.d_u_cache_enabled
=
727 (cortex_a8
->cp15_control_reg
& 0x4U
) ? 1 : 0;
728 armv7a
->armv4_5_mmu
.armv4_5_cache
.i_cache_enabled
=
729 (cortex_a8
->cp15_control_reg
& 0x1000U
) ? 1 : 0;
734 static int cortex_a8_step(struct target
*target
, int current
, uint32_t address
,
735 int handle_breakpoints
)
737 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
738 struct arm
*armv4_5
= &armv7a
->armv4_5_common
;
739 struct breakpoint
*breakpoint
= NULL
;
740 struct breakpoint stepbreakpoint
;
744 if (target
->state
!= TARGET_HALTED
)
746 LOG_WARNING("target not halted");
747 return ERROR_TARGET_NOT_HALTED
;
750 /* current = 1: continue on current pc, otherwise continue at <address> */
753 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
,
754 armv4_5
->core_mode
, ARM_PC
).value
,
759 address
= buf_get_u32(ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
,
760 armv4_5
->core_mode
, ARM_PC
).value
,
764 /* The front-end may request us not to handle breakpoints.
765 * But since Cortex-A8 uses breakpoint for single step,
766 * we MUST handle breakpoints.
768 handle_breakpoints
= 1;
769 if (handle_breakpoints
) {
770 breakpoint
= breakpoint_find(target
,
771 buf_get_u32(ARMV4_5_CORE_REG_MODE(
773 armv4_5
->core_mode
, 15).value
,
776 cortex_a8_unset_breakpoint(target
, breakpoint
);
779 /* Setup single step breakpoint */
780 stepbreakpoint
.address
= address
;
781 stepbreakpoint
.length
= (armv4_5
->core_state
== ARMV4_5_STATE_THUMB
)
783 stepbreakpoint
.type
= BKPT_HARD
;
784 stepbreakpoint
.set
= 0;
786 /* Break on IVA mismatch */
787 cortex_a8_set_breakpoint(target
, &stepbreakpoint
, 0x04);
789 target
->debug_reason
= DBG_REASON_SINGLESTEP
;
791 cortex_a8_resume(target
, 1, address
, 0, 0);
793 while (target
->state
!= TARGET_HALTED
)
795 cortex_a8_poll(target
);
798 LOG_WARNING("timeout waiting for target halt");
803 cortex_a8_unset_breakpoint(target
, &stepbreakpoint
);
804 if (timeout
> 0) target
->debug_reason
= DBG_REASON_BREAKPOINT
;
807 cortex_a8_set_breakpoint(target
, breakpoint
, 0);
809 if (target
->state
!= TARGET_HALTED
)
810 LOG_DEBUG("target stepped");
815 static int cortex_a8_restore_context(struct target
*target
)
818 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
819 struct reg_cache
*cache
= armv7a
->armv4_5_common
.core_cache
;
820 unsigned max
= cache
->num_regs
;
822 bool flushed
, flush_cpsr
= false;
826 if (armv7a
->pre_restore_context
)
827 armv7a
->pre_restore_context(target
);
829 /* Flush all dirty registers from the cache, one mode at a time so
830 * that we write CPSR as little as possible. Save CPSR and R0 for
831 * last; they're used to change modes and write other registers.
833 * REVISIT be smarter: save eventual mode for last loop, don't
834 * need to write CPSR an extra time.
837 enum armv4_5_mode mode
= ARMV4_5_MODE_ANY
;
842 /* write dirty non-{R0,CPSR} registers sharing the same mode */
843 for (i
= max
- 1, r
= cache
->reg_list
+ 1; i
> 0; i
--, r
++) {
846 if (!r
->dirty
|| r
== armv7a
->armv4_5_common
.cpsr
)
850 /* TODO Check return values */
852 /* Pick a mode and update CPSR; else ignore this
853 * register if it's for a different mode than what
854 * we're handling on this pass.
856 * REVISIT don't distinguish SYS and USR modes.
858 * FIXME if we restore from FIQ mode, R8..R12 will
859 * get wrongly flushed onto FIQ shadows...
861 if (mode
== ARMV4_5_MODE_ANY
) {
863 if (mode
!= ARMV4_5_MODE_ANY
) {
864 cortex_a8_dap_write_coreregister_u32(
868 } else if (mode
!= reg
->mode
)
871 /* Write this register */
872 value
= buf_get_u32(r
->value
, 0, 32);
873 cortex_a8_dap_write_coreregister_u32(target
, value
,
874 (reg
->num
== 16) ? 17 : reg
->num
);
881 /* now flush CPSR if needed ... */
882 r
= armv7a
->armv4_5_common
.cpsr
;
883 if (flush_cpsr
|| r
->dirty
) {
884 value
= buf_get_u32(r
->value
, 0, 32);
885 cortex_a8_dap_write_coreregister_u32(target
, value
, 16);
889 /* ... and R0 always (it was dirtied when we saved context) */
890 r
= cache
->reg_list
+ 0;
891 value
= buf_get_u32(r
->value
, 0, 32);
892 cortex_a8_dap_write_coreregister_u32(target
, value
, 0);
895 if (armv7a
->post_restore_context
)
896 armv7a
->post_restore_context(target
);
904 * Cortex-A8 Core register functions
906 static int cortex_a8_load_core_reg_u32(struct target
*target
, int num
,
907 armv4_5_mode_t mode
, uint32_t * value
)
910 struct arm
*armv4_5
= target_to_armv4_5(target
);
912 if ((num
<= ARM_CPSR
))
914 /* read a normal core register */
915 retval
= cortex_a8_dap_read_coreregister_u32(target
, value
, num
);
917 if (retval
!= ERROR_OK
)
919 LOG_ERROR("JTAG failure %i", retval
);
920 return ERROR_JTAG_DEVICE_ERROR
;
922 LOG_DEBUG("load from core reg %i value 0x%" PRIx32
, num
, *value
);
926 return ERROR_INVALID_ARGUMENTS
;
929 /* Register other than r0 - r14 uses r0 for access */
931 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
,
932 armv4_5
->core_mode
, 0).dirty
=
933 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
,
934 armv4_5
->core_mode
, 0).valid
;
935 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
,
936 armv4_5
->core_mode
, 15).dirty
=
937 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
,
938 armv4_5
->core_mode
, 15).valid
;
943 static int cortex_a8_store_core_reg_u32(struct target
*target
, int num
,
944 armv4_5_mode_t mode
, uint32_t value
)
948 struct arm
*armv4_5
= target_to_armv4_5(target
);
950 #ifdef ARMV7_GDB_HACKS
951 /* If the LR register is being modified, make sure it will put us
952 * in "thumb" mode, or an INVSTATE exception will occur. This is a
953 * hack to deal with the fact that gdb will sometimes "forge"
954 * return addresses, and doesn't set the LSB correctly (i.e., when
955 * printing expressions containing function calls, it sets LR=0.) */
961 if ((num
<= ARM_CPSR
))
963 retval
= cortex_a8_dap_write_coreregister_u32(target
, value
, num
);
964 if (retval
!= ERROR_OK
)
966 LOG_ERROR("JTAG failure %i", retval
);
967 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
,
968 armv4_5
->core_mode
, num
).dirty
=
969 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
,
970 armv4_5
->core_mode
, num
).valid
;
971 return ERROR_JTAG_DEVICE_ERROR
;
973 LOG_DEBUG("write core reg %i value 0x%" PRIx32
, num
, value
);
977 return ERROR_INVALID_ARGUMENTS
;
985 static int cortex_a8_write_core_reg(struct target
*target
, struct reg
*r
,
986 int num
, enum armv4_5_mode mode
, uint32_t value
);
988 static int cortex_a8_read_core_reg(struct target
*target
, struct reg
*r
,
989 int num
, enum armv4_5_mode mode
)
993 struct arm
*armv4_5
= target_to_armv4_5(target
);
994 struct reg
*cpsr_r
= NULL
;
996 unsigned cookie
= num
;
998 /* avoid some needless mode changes
999 * FIXME move some of these to shared ARM code...
1001 if (mode
!= armv4_5
->core_mode
) {
1002 if ((armv4_5
->core_mode
== ARMV4_5_MODE_SYS
)
1003 && (mode
== ARMV4_5_MODE_USR
))
1004 mode
= ARMV4_5_MODE_ANY
;
1005 else if ((mode
!= ARMV4_5_MODE_FIQ
) && (num
<= 12))
1006 mode
= ARMV4_5_MODE_ANY
;
1008 if (mode
!= ARMV4_5_MODE_ANY
) {
1009 cpsr_r
= armv4_5
->cpsr
;
1010 cpsr
= buf_get_u32(cpsr_r
->value
, 0, 32);
1011 cortex_a8_write_core_reg(target
, cpsr_r
,
1012 16, ARMV4_5_MODE_ANY
, mode
);
1018 case ARMV4_5_MODE_USR
:
1019 case ARMV4_5_MODE_SYS
:
1020 case ARMV4_5_MODE_ANY
:
1030 cortex_a8_dap_read_coreregister_u32(target
, &value
, cookie
);
1031 retval
= jtag_execute_queue();
1032 if (retval
== ERROR_OK
) {
1035 buf_set_u32(r
->value
, 0, 32, value
);
1039 cortex_a8_write_core_reg(target
, cpsr_r
,
1040 16, ARMV4_5_MODE_ANY
, cpsr
);
1044 static int cortex_a8_write_core_reg(struct target
*target
, struct reg
*r
,
1045 int num
, enum armv4_5_mode mode
, uint32_t value
)
1048 struct arm
*armv4_5
= target_to_armv4_5(target
);
1049 struct reg
*cpsr_r
= NULL
;
1051 unsigned cookie
= num
;
1053 /* avoid some needless mode changes
1054 * FIXME move some of these to shared ARM code...
1056 if (mode
!= armv4_5
->core_mode
) {
1057 if ((armv4_5
->core_mode
== ARMV4_5_MODE_SYS
)
1058 && (mode
== ARMV4_5_MODE_USR
))
1059 mode
= ARMV4_5_MODE_ANY
;
1060 else if ((mode
!= ARMV4_5_MODE_FIQ
) && (num
<= 12))
1061 mode
= ARMV4_5_MODE_ANY
;
1063 if (mode
!= ARMV4_5_MODE_ANY
) {
1064 cpsr_r
= armv4_5
->cpsr
;
1065 cpsr
= buf_get_u32(cpsr_r
->value
, 0, 32);
1066 cortex_a8_write_core_reg(target
, cpsr_r
,
1067 16, ARMV4_5_MODE_ANY
, mode
);
1074 case ARMV4_5_MODE_USR
:
1075 case ARMV4_5_MODE_SYS
:
1076 case ARMV4_5_MODE_ANY
:
1086 cortex_a8_dap_write_coreregister_u32(target
, value
, cookie
);
1087 if ((retval
= jtag_execute_queue()) == ERROR_OK
) {
1088 buf_set_u32(r
->value
, 0, 32, value
);
1094 cortex_a8_write_core_reg(target
, cpsr_r
,
1095 16, ARMV4_5_MODE_ANY
, cpsr
);
1101 * Cortex-A8 Breakpoint and watchpoint fuctions
1104 /* Setup hardware Breakpoint Register Pair */
1105 static int cortex_a8_set_breakpoint(struct target
*target
,
1106 struct breakpoint
*breakpoint
, uint8_t matchmode
)
1111 uint8_t byte_addr_select
= 0x0F;
1112 struct cortex_a8_common
*cortex_a8
= target_to_cortex_a8(target
);
1113 struct armv7a_common
*armv7a
= &cortex_a8
->armv7a_common
;
1114 struct cortex_a8_brp
* brp_list
= cortex_a8
->brp_list
;
1116 if (breakpoint
->set
)
1118 LOG_WARNING("breakpoint already set");
1122 if (breakpoint
->type
== BKPT_HARD
)
1124 while (brp_list
[brp_i
].used
&& (brp_i
< cortex_a8
->brp_num
))
1126 if (brp_i
>= cortex_a8
->brp_num
)
1128 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1131 breakpoint
->set
= brp_i
+ 1;
1132 if (breakpoint
->length
== 2)
1134 byte_addr_select
= (3 << (breakpoint
->address
& 0x02));
1136 control
= ((matchmode
& 0x7) << 20)
1137 | (byte_addr_select
<< 5)
1139 brp_list
[brp_i
].used
= 1;
1140 brp_list
[brp_i
].value
= (breakpoint
->address
& 0xFFFFFFFC);
1141 brp_list
[brp_i
].control
= control
;
1142 cortex_a8_dap_write_memap_register_u32(target
, armv7a
->debug_base
1143 + CPUDBG_BVR_BASE
+ 4 * brp_list
[brp_i
].BRPn
,
1144 brp_list
[brp_i
].value
);
1145 cortex_a8_dap_write_memap_register_u32(target
, armv7a
->debug_base
1146 + CPUDBG_BCR_BASE
+ 4 * brp_list
[brp_i
].BRPn
,
1147 brp_list
[brp_i
].control
);
1148 LOG_DEBUG("brp %i control 0x%0" PRIx32
" value 0x%0" PRIx32
, brp_i
,
1149 brp_list
[brp_i
].control
,
1150 brp_list
[brp_i
].value
);
1152 else if (breakpoint
->type
== BKPT_SOFT
)
1155 if (breakpoint
->length
== 2)
1157 buf_set_u32(code
, 0, 32, ARMV5_T_BKPT(0x11));
1161 buf_set_u32(code
, 0, 32, ARMV5_BKPT(0x11));
1163 retval
= target
->type
->read_memory(target
,
1164 breakpoint
->address
& 0xFFFFFFFE,
1165 breakpoint
->length
, 1,
1166 breakpoint
->orig_instr
);
1167 if (retval
!= ERROR_OK
)
1169 retval
= target
->type
->write_memory(target
,
1170 breakpoint
->address
& 0xFFFFFFFE,
1171 breakpoint
->length
, 1, code
);
1172 if (retval
!= ERROR_OK
)
1174 breakpoint
->set
= 0x11; /* Any nice value but 0 */
1180 static int cortex_a8_unset_breakpoint(struct target
*target
, struct breakpoint
*breakpoint
)
1183 struct cortex_a8_common
*cortex_a8
= target_to_cortex_a8(target
);
1184 struct armv7a_common
*armv7a
= &cortex_a8
->armv7a_common
;
1185 struct cortex_a8_brp
* brp_list
= cortex_a8
->brp_list
;
1187 if (!breakpoint
->set
)
1189 LOG_WARNING("breakpoint not set");
1193 if (breakpoint
->type
== BKPT_HARD
)
1195 int brp_i
= breakpoint
->set
- 1;
1196 if ((brp_i
< 0) || (brp_i
>= cortex_a8
->brp_num
))
1198 LOG_DEBUG("Invalid BRP number in breakpoint");
1201 LOG_DEBUG("rbp %i control 0x%0" PRIx32
" value 0x%0" PRIx32
, brp_i
,
1202 brp_list
[brp_i
].control
, brp_list
[brp_i
].value
);
1203 brp_list
[brp_i
].used
= 0;
1204 brp_list
[brp_i
].value
= 0;
1205 brp_list
[brp_i
].control
= 0;
1206 cortex_a8_dap_write_memap_register_u32(target
, armv7a
->debug_base
1207 + CPUDBG_BCR_BASE
+ 4 * brp_list
[brp_i
].BRPn
,
1208 brp_list
[brp_i
].control
);
1209 cortex_a8_dap_write_memap_register_u32(target
, armv7a
->debug_base
1210 + CPUDBG_BVR_BASE
+ 4 * brp_list
[brp_i
].BRPn
,
1211 brp_list
[brp_i
].value
);
1215 /* restore original instruction (kept in target endianness) */
1216 if (breakpoint
->length
== 4)
1218 retval
= target
->type
->write_memory(target
,
1219 breakpoint
->address
& 0xFFFFFFFE,
1220 4, 1, breakpoint
->orig_instr
);
1221 if (retval
!= ERROR_OK
)
1226 retval
= target
->type
->write_memory(target
,
1227 breakpoint
->address
& 0xFFFFFFFE,
1228 2, 1, breakpoint
->orig_instr
);
1229 if (retval
!= ERROR_OK
)
1233 breakpoint
->set
= 0;
1238 int cortex_a8_add_breakpoint(struct target
*target
, struct breakpoint
*breakpoint
)
1240 struct cortex_a8_common
*cortex_a8
= target_to_cortex_a8(target
);
1242 if ((breakpoint
->type
== BKPT_HARD
) && (cortex_a8
->brp_num_available
< 1))
1244 LOG_INFO("no hardware breakpoint available");
1245 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
1248 if (breakpoint
->type
== BKPT_HARD
)
1249 cortex_a8
->brp_num_available
--;
1250 cortex_a8_set_breakpoint(target
, breakpoint
, 0x00); /* Exact match */
1255 static int cortex_a8_remove_breakpoint(struct target
*target
, struct breakpoint
*breakpoint
)
1257 struct cortex_a8_common
*cortex_a8
= target_to_cortex_a8(target
);
1260 /* It is perfectly possible to remove brakpoints while the taget is running */
1261 if (target
->state
!= TARGET_HALTED
)
1263 LOG_WARNING("target not halted");
1264 return ERROR_TARGET_NOT_HALTED
;
1268 if (breakpoint
->set
)
1270 cortex_a8_unset_breakpoint(target
, breakpoint
);
1271 if (breakpoint
->type
== BKPT_HARD
)
1272 cortex_a8
->brp_num_available
++ ;
1282 * Cortex-A8 Reset fuctions
1285 static int cortex_a8_assert_reset(struct target
*target
)
1287 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
1291 /* registers are now invalid */
1292 register_cache_invalidate(armv7a
->armv4_5_common
.core_cache
);
1294 target
->state
= TARGET_RESET
;
1299 static int cortex_a8_deassert_reset(struct target
*target
)
1304 if (target
->reset_halt
)
1307 if ((retval
= target_halt(target
)) != ERROR_OK
)
1315 * Cortex-A8 Memory access
1317 * This is same Cortex M3 but we must also use the correct
1318 * ap number for every access.
1321 static int cortex_a8_read_memory(struct target
*target
, uint32_t address
,
1322 uint32_t size
, uint32_t count
, uint8_t *buffer
)
1324 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
1325 struct swjdp_common
*swjdp
= &armv7a
->swjdp_info
;
1326 int retval
= ERROR_INVALID_ARGUMENTS
;
1328 /* cortex_a8 handles unaligned memory access */
1330 // ??? dap_ap_select(swjdp, swjdp_memoryap);
1332 if (count
&& buffer
) {
1335 retval
= mem_ap_read_buf_u32(swjdp
, buffer
, 4 * count
, address
);
1338 retval
= mem_ap_read_buf_u16(swjdp
, buffer
, 2 * count
, address
);
1341 retval
= mem_ap_read_buf_u8(swjdp
, buffer
, count
, address
);
1349 int cortex_a8_write_memory(struct target
*target
, uint32_t address
,
1350 uint32_t size
, uint32_t count
, uint8_t *buffer
)
1352 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
1353 struct swjdp_common
*swjdp
= &armv7a
->swjdp_info
;
1354 int retval
= ERROR_INVALID_ARGUMENTS
;
1356 // ??? dap_ap_select(swjdp, swjdp_memoryap);
1358 if (count
&& buffer
) {
1361 retval
= mem_ap_write_buf_u32(swjdp
, buffer
, 4 * count
, address
);
1364 retval
= mem_ap_write_buf_u16(swjdp
, buffer
, 2 * count
, address
);
1367 retval
= mem_ap_write_buf_u8(swjdp
, buffer
, count
, address
);
1372 if (retval
== ERROR_OK
&& target
->state
== TARGET_HALTED
)
1374 /* The Cache handling will NOT work with MMU active, the wrong addresses will be invalidated */
1375 /* invalidate I-Cache */
1376 if (armv7a
->armv4_5_mmu
.armv4_5_cache
.i_cache_enabled
)
1378 /* Invalidate ICache single entry with MVA, repeat this for all cache
1379 lines in the address range, Cortex-A8 has fixed 64 byte line length */
1380 /* Invalidate Cache single entry with MVA to PoU */
1381 for (uint32_t cacheline
=address
; cacheline
<address
+size
*count
; cacheline
+=64)
1382 armv7a
->write_cp15(target
, 0, 1, 7, 5, cacheline
); /* I-Cache to PoU */
1384 /* invalidate D-Cache */
1385 if (armv7a
->armv4_5_mmu
.armv4_5_cache
.d_u_cache_enabled
)
1387 /* Invalidate Cache single entry with MVA to PoC */
1388 for (uint32_t cacheline
=address
; cacheline
<address
+size
*count
; cacheline
+=64)
1389 armv7a
->write_cp15(target
, 0, 1, 7, 6, cacheline
); /* U/D cache to PoC */
1396 static int cortex_a8_bulk_write_memory(struct target
*target
, uint32_t address
,
1397 uint32_t count
, uint8_t *buffer
)
1399 return cortex_a8_write_memory(target
, address
, 4, count
, buffer
);
1403 static int cortex_a8_dcc_read(struct swjdp_common
*swjdp
, uint8_t *value
, uint8_t *ctrl
)
1408 mem_ap_read_buf_u16(swjdp
, (uint8_t*)&dcrdr
, 1, DCB_DCRDR
);
1409 *ctrl
= (uint8_t)dcrdr
;
1410 *value
= (uint8_t)(dcrdr
>> 8);
1412 LOG_DEBUG("data 0x%x ctrl 0x%x", *value
, *ctrl
);
1414 /* write ack back to software dcc register
1415 * signify we have read data */
1416 if (dcrdr
& (1 << 0))
1419 mem_ap_write_buf_u16(swjdp
, (uint8_t*)&dcrdr
, 1, DCB_DCRDR
);
1426 static int cortex_a8_handle_target_request(void *priv
)
1428 struct target
*target
= priv
;
1429 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
1430 struct swjdp_common
*swjdp
= &armv7a
->swjdp_info
;
1432 if (!target_was_examined(target
))
1434 if (!target
->dbg_msg_enabled
)
1437 if (target
->state
== TARGET_RUNNING
)
1442 cortex_a8_dcc_read(swjdp
, &data
, &ctrl
);
1444 /* check if we have data */
1445 if (ctrl
& (1 << 0))
1449 /* we assume target is quick enough */
1451 cortex_a8_dcc_read(swjdp
, &data
, &ctrl
);
1452 request
|= (data
<< 8);
1453 cortex_a8_dcc_read(swjdp
, &data
, &ctrl
);
1454 request
|= (data
<< 16);
1455 cortex_a8_dcc_read(swjdp
, &data
, &ctrl
);
1456 request
|= (data
<< 24);
1457 target_request(target
, request
);
1465 * Cortex-A8 target information and configuration
1468 static int cortex_a8_examine_first(struct target
*target
)
1470 struct cortex_a8_common
*cortex_a8
= target_to_cortex_a8(target
);
1471 struct armv7a_common
*armv7a
= &cortex_a8
->armv7a_common
;
1472 struct swjdp_common
*swjdp
= &armv7a
->swjdp_info
;
1474 int retval
= ERROR_OK
;
1475 uint32_t didr
, ctypr
, ttypr
, cpuid
;
1479 /* Here we shall insert a proper ROM Table scan */
1480 armv7a
->debug_base
= OMAP3530_DEBUG_BASE
;
1482 /* We do one extra read to ensure DAP is configured,
1483 * we call ahbap_debugport_init(swjdp) instead
1485 ahbap_debugport_init(swjdp
);
1486 mem_ap_read_atomic_u32(swjdp
, armv7a
->debug_base
+ CPUDBG_CPUID
, &cpuid
);
1487 if ((retval
= mem_ap_read_atomic_u32(swjdp
,
1488 armv7a
->debug_base
+ CPUDBG_CPUID
, &cpuid
)) != ERROR_OK
)
1490 LOG_DEBUG("Examine failed");
1494 if ((retval
= mem_ap_read_atomic_u32(swjdp
,
1495 armv7a
->debug_base
+ CPUDBG_CTYPR
, &ctypr
)) != ERROR_OK
)
1497 LOG_DEBUG("Examine failed");
1501 if ((retval
= mem_ap_read_atomic_u32(swjdp
,
1502 armv7a
->debug_base
+ CPUDBG_TTYPR
, &ttypr
)) != ERROR_OK
)
1504 LOG_DEBUG("Examine failed");
1508 if ((retval
= mem_ap_read_atomic_u32(swjdp
,
1509 armv7a
->debug_base
+ CPUDBG_DIDR
, &didr
)) != ERROR_OK
)
1511 LOG_DEBUG("Examine failed");
1515 LOG_DEBUG("cpuid = 0x%08" PRIx32
, cpuid
);
1516 LOG_DEBUG("ctypr = 0x%08" PRIx32
, ctypr
);
1517 LOG_DEBUG("ttypr = 0x%08" PRIx32
, ttypr
);
1518 LOG_DEBUG("didr = 0x%08" PRIx32
, didr
);
1520 /* Setup Breakpoint Register Pairs */
1521 cortex_a8
->brp_num
= ((didr
>> 24) & 0x0F) + 1;
1522 cortex_a8
->brp_num_context
= ((didr
>> 20) & 0x0F) + 1;
1523 cortex_a8
->brp_num_available
= cortex_a8
->brp_num
;
1524 cortex_a8
->brp_list
= calloc(cortex_a8
->brp_num
, sizeof(struct cortex_a8_brp
));
1525 // cortex_a8->brb_enabled = ????;
1526 for (i
= 0; i
< cortex_a8
->brp_num
; i
++)
1528 cortex_a8
->brp_list
[i
].used
= 0;
1529 if (i
< (cortex_a8
->brp_num
-cortex_a8
->brp_num_context
))
1530 cortex_a8
->brp_list
[i
].type
= BRP_NORMAL
;
1532 cortex_a8
->brp_list
[i
].type
= BRP_CONTEXT
;
1533 cortex_a8
->brp_list
[i
].value
= 0;
1534 cortex_a8
->brp_list
[i
].control
= 0;
1535 cortex_a8
->brp_list
[i
].BRPn
= i
;
1538 /* Setup Watchpoint Register Pairs */
1539 cortex_a8
->wrp_num
= ((didr
>> 28) & 0x0F) + 1;
1540 cortex_a8
->wrp_num_available
= cortex_a8
->wrp_num
;
1541 cortex_a8
->wrp_list
= calloc(cortex_a8
->wrp_num
, sizeof(struct cortex_a8_wrp
));
1542 for (i
= 0; i
< cortex_a8
->wrp_num
; i
++)
1544 cortex_a8
->wrp_list
[i
].used
= 0;
1545 cortex_a8
->wrp_list
[i
].type
= 0;
1546 cortex_a8
->wrp_list
[i
].value
= 0;
1547 cortex_a8
->wrp_list
[i
].control
= 0;
1548 cortex_a8
->wrp_list
[i
].WRPn
= i
;
1550 LOG_DEBUG("Configured %i hw breakpoint pairs and %i hw watchpoint pairs",
1551 cortex_a8
->brp_num
, cortex_a8
->wrp_num
);
1553 target_set_examined(target
);
1557 static int cortex_a8_examine(struct target
*target
)
1559 int retval
= ERROR_OK
;
1561 /* don't re-probe hardware after each reset */
1562 if (!target_was_examined(target
))
1563 retval
= cortex_a8_examine_first(target
);
1565 /* Configure core debug access */
1566 if (retval
== ERROR_OK
)
1567 retval
= cortex_a8_init_debug_access(target
);
1573 * Cortex-A8 target creation and initialization
1576 static void cortex_a8_build_reg_cache(struct target
*target
)
1578 struct reg_cache
**cache_p
= register_get_last_cache_p(&target
->reg_cache
);
1579 struct arm
*armv4_5
= target_to_armv4_5(target
);
1581 armv4_5
->core_type
= ARM_MODE_MON
;
1583 (*cache_p
) = armv4_5_build_reg_cache(target
, armv4_5
);
1587 static int cortex_a8_init_target(struct command_context
*cmd_ctx
,
1588 struct target
*target
)
1590 cortex_a8_build_reg_cache(target
);
1594 int cortex_a8_init_arch_info(struct target
*target
,
1595 struct cortex_a8_common
*cortex_a8
, struct jtag_tap
*tap
)
1597 struct armv7a_common
*armv7a
= &cortex_a8
->armv7a_common
;
1598 struct arm
*armv4_5
= &armv7a
->armv4_5_common
;
1599 struct swjdp_common
*swjdp
= &armv7a
->swjdp_info
;
1601 /* Setup struct cortex_a8_common */
1602 cortex_a8
->common_magic
= CORTEX_A8_COMMON_MAGIC
;
1603 armv4_5
->arch_info
= armv7a
;
1605 /* prepare JTAG information for the new target */
1606 cortex_a8
->jtag_info
.tap
= tap
;
1607 cortex_a8
->jtag_info
.scann_size
= 4;
1609 swjdp
->dp_select_value
= -1;
1610 swjdp
->ap_csw_value
= -1;
1611 swjdp
->ap_tar_value
= -1;
1612 swjdp
->jtag_info
= &cortex_a8
->jtag_info
;
1613 swjdp
->memaccess_tck
= 80;
1615 /* Number of bits for tar autoincrement, impl. dep. at least 10 */
1616 swjdp
->tar_autoincr_block
= (1 << 10);
1618 cortex_a8
->fast_reg_read
= 0;
1621 /* register arch-specific functions */
1622 armv7a
->examine_debug_reason
= NULL
;
1624 armv7a
->post_debug_entry
= cortex_a8_post_debug_entry
;
1626 armv7a
->pre_restore_context
= NULL
;
1627 armv7a
->post_restore_context
= NULL
;
1628 armv7a
->armv4_5_mmu
.armv4_5_cache
.ctype
= -1;
1629 // armv7a->armv4_5_mmu.get_ttb = armv7a_get_ttb;
1630 armv7a
->armv4_5_mmu
.read_memory
= cortex_a8_read_memory
;
1631 armv7a
->armv4_5_mmu
.write_memory
= cortex_a8_write_memory
;
1632 // armv7a->armv4_5_mmu.disable_mmu_caches = armv7a_disable_mmu_caches;
1633 // armv7a->armv4_5_mmu.enable_mmu_caches = armv7a_enable_mmu_caches;
1634 armv7a
->armv4_5_mmu
.has_tiny_pages
= 1;
1635 armv7a
->armv4_5_mmu
.mmu_enabled
= 0;
1636 armv7a
->read_cp15
= cortex_a8_read_cp15
;
1637 armv7a
->write_cp15
= cortex_a8_write_cp15
;
1640 // arm7_9->handle_target_request = cortex_a8_handle_target_request;
1642 armv4_5
->read_core_reg
= cortex_a8_read_core_reg
;
1643 armv4_5
->write_core_reg
= cortex_a8_write_core_reg
;
1645 /* REVISIT v7a setup should be in a v7a-specific routine */
1646 armv4_5_init_arch_info(target
, armv4_5
);
1647 armv7a
->common_magic
= ARMV7_COMMON_MAGIC
;
1649 target_register_timer_callback(cortex_a8_handle_target_request
, 1, 1, target
);
1654 static int cortex_a8_target_create(struct target
*target
, Jim_Interp
*interp
)
1656 struct cortex_a8_common
*cortex_a8
= calloc(1, sizeof(struct cortex_a8_common
));
1658 cortex_a8_init_arch_info(target
, cortex_a8
, target
->tap
);
1663 COMMAND_HANDLER(cortex_a8_handle_cache_info_command
)
1665 struct target
*target
= get_current_target(CMD_CTX
);
1666 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
1668 return armv4_5_handle_cache_info_command(CMD_CTX
,
1669 &armv7a
->armv4_5_mmu
.armv4_5_cache
);
1673 COMMAND_HANDLER(cortex_a8_handle_dbginit_command
)
1675 struct target
*target
= get_current_target(CMD_CTX
);
1677 cortex_a8_init_debug_access(target
);
1683 static int cortex_a8_register_commands(struct command_context
*cmd_ctx
)
1685 struct command
*cortex_a8_cmd
;
1686 int retval
= ERROR_OK
;
1688 armv4_5_register_commands(cmd_ctx
);
1689 armv7a_register_commands(cmd_ctx
);
1691 cortex_a8_cmd
= register_command(cmd_ctx
, NULL
, "cortex_a8",
1693 "cortex_a8 specific commands");
1695 register_command(cmd_ctx
, cortex_a8_cmd
, "cache_info",
1696 cortex_a8_handle_cache_info_command
, COMMAND_EXEC
,
1697 "display information about target caches");
1699 register_command(cmd_ctx
, cortex_a8_cmd
, "dbginit",
1700 cortex_a8_handle_dbginit_command
, COMMAND_EXEC
,
1701 "Initialize core debug");
1706 struct target_type cortexa8_target
= {
1707 .name
= "cortex_a8",
1709 .poll
= cortex_a8_poll
,
1710 .arch_state
= armv7a_arch_state
,
1712 .target_request_data
= NULL
,
1714 .halt
= cortex_a8_halt
,
1715 .resume
= cortex_a8_resume
,
1716 .step
= cortex_a8_step
,
1718 .assert_reset
= cortex_a8_assert_reset
,
1719 .deassert_reset
= cortex_a8_deassert_reset
,
1720 .soft_reset_halt
= NULL
,
1722 .get_gdb_reg_list
= armv4_5_get_gdb_reg_list
,
1724 .read_memory
= cortex_a8_read_memory
,
1725 .write_memory
= cortex_a8_write_memory
,
1726 .bulk_write_memory
= cortex_a8_bulk_write_memory
,
1728 .checksum_memory
= arm_checksum_memory
,
1729 .blank_check_memory
= arm_blank_check_memory
,
1731 .run_algorithm
= armv4_5_run_algorithm
,
1733 .add_breakpoint
= cortex_a8_add_breakpoint
,
1734 .remove_breakpoint
= cortex_a8_remove_breakpoint
,
1735 .add_watchpoint
= NULL
,
1736 .remove_watchpoint
= NULL
,
1738 .register_commands
= cortex_a8_register_commands
,
1739 .target_create
= cortex_a8_target_create
,
1740 .init_target
= cortex_a8_init_target
,
1741 .examine
= cortex_a8_examine
,
1742 .mrc
= cortex_a8_mrc
,
1743 .mcr
= cortex_a8_mcr
,