wmclockmon: update change-log
[dockapps.git] / wmglobe / src / sunpos.c
blob1582fdb539298c4327d3be10b8a35d84a5d3608b
1 /* WMGlobe 1.3 - All the Earth on a WMaker Icon
2 * copyright (C) 1998,99,2000,01 Jerome Dumonteil <jerome.dumonteil@linuxfr.org>
3 * sunpos.c is taken from Xearth 1.0 (and part of 1.1):
4 */
5 /*
6 * sunpos.c
7 * kirk johnson
8 * july 1993
10 * code for calculating the position on the earth's surface for which
11 * the sun is directly overhead (adapted from _practical astronomy
12 * with your calculator, third edition_, peter duffett-smith,
13 * cambridge university press, 1988.)
16 * Copyright (C) 1989, 1990, 1993, 1994, 1995 Kirk Lauritz Johnson
18 * Parts of the source code (as marked) are:
19 * Copyright (C) 1989, 1990, 1991 by Jim Frost
20 * Copyright (C) 1992 by Jamie Zawinski <jwz@lucid.com>
22 * Permission to use, copy, modify and freely distribute xearth for
23 * non-commercial and not-for-profit purposes is hereby granted
24 * without fee, provided that both the above copyright notice and this
25 * permission notice appear in all copies and in supporting
26 * documentation.
28 * Unisys Corporation holds worldwide patent rights on the Lempel Zev
29 * Welch (LZW) compression technique employed in the CompuServe GIF
30 * image file format as well as in other formats. Unisys has made it
31 * clear, however, that it does not require licensing or fees to be
32 * paid for freely distributed, non-commercial applications (such as
33 * xearth) that employ LZW/GIF technology. Those wishing further
34 * information about licensing the LZW patent should contact Unisys
35 * directly at (lzw_info@unisys.com) or by writing to
37 * Unisys Corporation
38 * Welch Licensing Department
39 * M/S-C1SW19
40 * P.O. Box 500
41 * Blue Bell, PA 19424
43 * The author makes no representations about the suitability of this
44 * software for any purpose. It is provided "as is" without express or
45 * implied warranty.
47 * THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
48 * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS,
49 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, INDIRECT
50 * OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
51 * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
52 * NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
53 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
56 /*************************************************************************/
58 #include <math.h>
59 #include <time.h>
61 #ifndef PI
62 #define PI 3.141592653
63 #endif
64 #define TWOPI (2*PI)
65 #define DegsToRads(x) ((x)*(TWOPI/360))
68 * the epoch upon which these astronomical calculations are based is
69 * 1990 january 0.0, 631065600 seconds since the beginning of the
70 * "unix epoch" (00:00:00 GMT, Jan. 1, 1970)
72 * given a number of seconds since the start of the unix epoch,
73 * DaysSinceEpoch() computes the number of days since the start of the
74 * astronomical epoch (1990 january 0.0)
77 #define EpochStart (631065600)
78 #define DaysSinceEpoch(secs) (((secs)-EpochStart)*(1.0/(24*3600)))
81 * assuming the apparent orbit of the sun about the earth is circular,
82 * the rate at which the orbit progresses is given by RadsPerDay --
83 * TWOPI radians per orbit divided by 365.242191 days per year:
86 #define RadsPerDay (TWOPI/365.242191)
89 * details of sun's apparent orbit at epoch 1990.0 (after
90 * duffett-smith, table 6, section 46)
92 * Epsilon_g (ecliptic longitude at epoch 1990.0) 279.403303 degrees
93 * OmegaBar_g (ecliptic longitude of perigee) 282.768422 degrees
94 * Eccentricity (eccentricity of orbit) 0.016713
97 #define Epsilon_g (DegsToRads(279.403303))
98 #define OmegaBar_g (DegsToRads(282.768422))
99 #define Eccentricity (0.016713)
102 * MeanObliquity gives the mean obliquity of the earth's axis at epoch
103 * 1990.0 (computed as 23.440592 degrees according to the method given
104 * in duffett-smith, section 27)
106 #define MeanObliquity (DegsToRads(23.440592))
109 * Lunar parameters, epoch January 0, 1990.0 (from Xearth 1.1)
111 #define MoonMeanLongitude DegsToRads(318.351648)
112 #define MoonMeanLongitudePerigee DegsToRads( 36.340410)
113 #define MoonMeanLongitudeNode DegsToRads(318.510107)
114 #define MoonInclination DegsToRads( 5.145396)
116 #define SideralMonth (27.3217)
119 * Force an angular value into the range [-PI, +PI]
121 #define Normalize(x) \
122 do { \
123 if ((x) < -PI) \
124 do (x) += TWOPI; while ((x) < -PI); \
125 else if ((x) > PI) \
126 do (x) -= TWOPI; while ((x) > PI); \
127 } while (0)
129 static double solve_keplers_equation(double M);
130 static double mean_sun(double D);
131 static double sun_ecliptic_longitude(time_t ssue);
132 static void ecliptic_to_equatorial(double lambda, double beta,
133 double *alpha, double *delta);
134 static double julian_date(int y, int m, int d);
135 static double GST(time_t ssue);
138 * solve Kepler's equation via Newton's method
139 * (after duffett-smith, section 47)
141 static double solve_keplers_equation(double M)
143 double E;
144 double delta;
146 E = M;
147 while (1) {
148 delta = E - Eccentricity * sin(E) - M;
149 if (fabs(delta) <= 1e-10)
150 break;
151 E -= delta / (1 - Eccentricity * cos(E));
153 return E;
157 * Calculate the position of the mean sun: where the sun would
158 * be if the earth's orbit were circular instead of ellipictal.
161 static double mean_sun(double D)
162 /* double D; days since ephemeris epoch */
164 double N, M;
166 N = RadsPerDay * D;
167 N = fmod(N, TWOPI);
168 if (N < 0)
169 N += TWOPI;
171 M = N + Epsilon_g - OmegaBar_g;
172 if (M < 0)
173 M += TWOPI;
174 return M;
178 * compute ecliptic longitude of sun (in radians)
179 * (after duffett-smith, section 47)
181 static double sun_ecliptic_longitude(time_t ssue)
182 /* seconds since unix epoch */
184 double D, N;
185 double M_sun, E;
186 double v;
188 D = DaysSinceEpoch(ssue);
190 N = RadsPerDay * D;
191 M_sun = mean_sun(D);
192 E = solve_keplers_equation(M_sun);
193 v = 2 * atan(sqrt((1 + Eccentricity) / (1 - Eccentricity)) *
194 tan(E / 2));
196 return (v + OmegaBar_g);
201 * convert from ecliptic to equatorial coordinates
202 * (after duffett-smith, section 27)
204 static void ecliptic_to_equatorial(double lambda, double beta,
205 double *alpha, double *delta)
207 * double lambda; ecliptic longitude
208 * double beta; ecliptic latitude
209 * double *alpha; (return) right ascension
210 * double *delta; (return) declination
213 double sin_e, cos_e;
215 sin_e = sin(MeanObliquity);
216 cos_e = cos(MeanObliquity);
218 *alpha = atan2(sin(lambda) * cos_e - tan(beta) * sin_e, cos(lambda));
219 *delta = asin(sin(beta) * cos_e + cos(beta) * sin_e * sin(lambda));
224 * computing julian dates (assuming gregorian calendar, thus this is
225 * only valid for dates of 1582 oct 15 or later)
226 * (after duffett-smith, section 4)
228 static double julian_date(int y, int m, int d)
230 * int y; year (e.g. 19xx)
231 * int m; month (jan=1, feb=2, ...)
232 * int d; day of month
235 int A, B, C, D;
236 double JD;
238 /* lazy test to ensure gregorian calendar */
240 * ASSERT(y >= 1583);
243 if ((m == 1) || (m == 2)) {
244 y -= 1;
245 m += 12;
247 A = y / 100;
248 B = 2 - A + (A / 4);
249 C = (int) (365.25 * y);
250 D = (int) (30.6001 * (m + 1));
252 JD = B + C + D + d + 1720994.5;
254 return JD;
259 * compute greenwich mean sidereal time (GST) corresponding to a given
260 * number of seconds since the unix epoch
261 * (after duffett-smith, section 12)
263 static double GST(time_t ssue)
264 /*time_t ssue; seconds since unix epoch */
266 double JD;
267 double T, T0;
268 double UT;
269 struct tm *tm;
271 tm = gmtime(&ssue);
273 JD = julian_date(tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday);
274 T = (JD - 2451545) / 36525;
276 T0 = ((T + 2.5862e-5) * T + 2400.051336) * T + 6.697374558;
278 T0 = fmod(T0, 24.0);
279 if (T0 < 0)
280 T0 += 24;
282 UT = tm->tm_hour + (tm->tm_min + tm->tm_sec / 60.0) / 60.0;
284 T0 += UT * 1.002737909;
285 T0 = fmod(T0, 24.0);
286 if (T0 < 0)
287 T0 += 24;
289 return T0;
294 * given a particular time (expressed in seconds since the unix
295 * epoch), compute position on the earth (lat, lon) such that sun is
296 * directly overhead.
298 void sun_position(time_t ssue, double *lat, double *lon)
299 /* time_t ssue; seconds since unix epoch */
300 /* double *lat; (return) latitude in rad */
301 /* double *lon; (return) longitude in rad */
303 double lambda;
304 double alpha, delta;
305 double tmp;
307 lambda = sun_ecliptic_longitude(ssue);
308 ecliptic_to_equatorial(lambda, 0.0, &alpha, &delta);
310 tmp = alpha - (TWOPI / 24) * GST(ssue);
311 Normalize(tmp);
312 *lon = tmp;
313 *lat = delta;
317 * given a particular time (expressed in seconds since the unix
318 * epoch), compute position on the earth (lat, lon) such that the
319 * moon is directly overhead.
321 * Based on duffett-smith **2nd ed** section 61; combines some steps
322 * into single expressions to reduce the number of extra variables.
324 void moon_position(time_t ssue, double *lat, double *lon)
325 /* time_t ssue; seconds since unix epoch */
326 /* double *lat; (return) latitude in ra */
327 /* double *lon; (return) longitude in ra */
329 double lambda, beta;
330 double D, L, Ms, Mm, N, Ev, Ae, Ec, alpha, delta;
332 D = DaysSinceEpoch(ssue);
333 lambda = sun_ecliptic_longitude(ssue);
334 Ms = mean_sun(D);
336 L = fmod(D / SideralMonth, 1.0) * TWOPI + MoonMeanLongitude;
337 Normalize(L);
338 Mm = L - DegsToRads(0.1114041 * D) - MoonMeanLongitudePerigee;
339 Normalize(Mm);
340 N = MoonMeanLongitudeNode - DegsToRads(0.0529539 * D);
341 Normalize(N);
342 Ev = DegsToRads(1.2739) * sin(2.0 * (L - lambda) - Mm);
343 Ae = DegsToRads(0.1858) * sin(Ms);
344 Mm += Ev - Ae - DegsToRads(0.37) * sin(Ms);
345 Ec = DegsToRads(6.2886) * sin(Mm);
346 L += Ev + Ec - Ae + DegsToRads(0.214) * sin(2.0 * Mm);
347 L += DegsToRads(0.6583) * sin(2.0 * (L - lambda));
348 N -= DegsToRads(0.16) * sin(Ms);
350 L -= N;
351 lambda = (fabs(cos(L)) < 1e-12) ?
352 (N + sin(L) * cos(MoonInclination) * PI / 2) :
353 (N + atan2(sin(L) * cos(MoonInclination), cos(L)));
354 Normalize(lambda);
355 beta = asin(sin(L) * sin(MoonInclination));
356 ecliptic_to_equatorial(lambda, beta, &alpha, &delta);
357 alpha -= (TWOPI / 24) * GST(ssue);
358 Normalize(alpha);
359 *lon = alpha;
360 *lat = delta;