wmclockmon: update change-log
[dockapps.git] / wmmoonclock / src / CalcEphem.c
blob281f4a0a769e0fa531e588a21eb642b075b0f06c
1 #include "CalcEphem.h"
2 #include <math.h>
3 #include <string.h>
5 void CalcEphem(date, UT, c)
6 long int date; /* integer containing the date (e.g. 960829) */
7 double UT; /* Universal Time */
8 CTrans *c; /* structure containing all the relevent coord trans info */
11 int year, month, day;
12 double TU, TU2, TU3, T0;
13 double varep, varpi;
14 double eccen, epsilon;
15 double days, M, E, nu, lambnew;
16 double r0, earth_sun_distance;
17 double RA, DEC, RA_Moon, DEC_Moon;
18 double TDT, AGE, LambdaMoon, BetaMoon, R;
19 double jd(), hour24(), angle2pi(), angle360(), kepler(), Moon(), NewMoon();
20 double Ta, Tb, Tc, frac();
21 double SinGlat, CosGlat, Tau, lmst, x, y, z;
22 double SinTau, CosTau, SinDec, CosDec;
28 c->UT = UT;
29 year = (int)(date/10000);
30 month = (int)( (date - year*10000)/100 );
31 day = (int)( date - year*10000 - month*100 );
32 c->year = year;
33 c->month = month;
34 c->day = day;
36 c->doy = DayofYear(year, month, day);
37 c->dow = DayofWeek(year, month, day, c->dowstr);
42 * Compute Greenwich Mean Sidereal Time (gmst)
43 * The TU here is number of Julian centuries
44 * since 2000 January 1.5
45 * From the 1996 astronomical almanac
47 TU = (jd(year, month, day, 0.0) - 2451545.0)/36525.0;
48 TU2 = TU*TU;
49 TU3 = TU2*TU;
50 T0 = (6.0 + 41.0/60.0 + 50.54841/3600.0) + 8640184.812866/3600.0*TU
51 + 0.093104/3600.0*TU2 - 6.2e-6/3600.0*TU3;
52 T0 = hour24(T0);
53 c->gmst = hour24(T0 + UT*1.002737909);
55 lmst = 24.0*frac( (c->gmst - c->Glon/15.0) / 24.0 );
64 * Construct Transformation Matrix from GEI to GSE systems
67 * First compute:
68 * mean ecliptic longitude of sun at epoch TU (varep)
69 * elciptic longitude of perigee at epoch TU (varpi)
70 * eccentricity of orbit at epoch TU (eccen)
72 * The TU here is the number of Julian centuries since
73 * 1900 January 0.0 (= 2415020.0)
75 TDT = UT + 59.0/3600.0;
76 TU = (jd(year, month, day, TDT) - 2415020.0)/36525.0;
77 varep = (279.6966778 + 36000.76892*TU + 0.0003025*TU*TU)*RadPerDeg;
78 varpi = (281.2208444 + 1.719175*TU + 0.000452778*TU*TU)*RadPerDeg;
79 eccen = 0.01675104 - 0.0000418*TU - 0.000000126*TU*TU;
80 c->eccentricity = eccen;
85 * Compute the Obliquity of the Ecliptic at epoch TU
86 * The TU in this formula is the number of Julian
87 * centuries since epoch 2000 January 1.5
89 TU = (jd(year, month, day, TDT) - jd(2000, 1, 1, 12.0))/36525.0;
90 epsilon = (23.43929167 - 0.013004166*TU - 1.6666667e-7*TU*TU
91 - 5.0277777778e-7*TU*TU*TU)*RadPerDeg;
92 c->epsilon = epsilon;
96 * Compute:
97 * Number of Days since epoch 1990.0 (days)
98 * The Mean Anomaly (M)
99 * The True Anomaly (nu)
100 * The Eccentric Anomaly via Keplers equation (E)
104 days = jd(year, month, day, TDT) - jd(year, month, day, TDT);
105 M = angle2pi(2.0*M_PI/365.242191*days + varep - varpi);
106 E = kepler(M, eccen);
107 nu = 2.0*atan( sqrt((1.0+eccen)/(1.0-eccen))*tan(E/2.0) );
108 lambnew = angle2pi(nu + varpi);
109 c->lambda_sun = lambnew;
113 * Compute distance from earth to the sun
115 r0 = 1.495985e8; /* in km */
116 earth_sun_distance = r0*(1-eccen*eccen)/(1.0 + eccen*cos(nu))/6371.2;
117 c->earth_sun_dist = earth_sun_distance;
124 * Compute Right Ascension and Declination of the Sun
126 RA = angle360(atan2(sin(lambnew)*cos(epsilon), cos(lambnew))*180.0/M_PI);
127 DEC = asin(sin(epsilon)*sin(lambnew))*180.0/M_PI;
128 c->RA_sun = RA;
129 c->DEC_sun = DEC;
137 * Compute Moon Phase and AGE Stuff. The AGE that comes out of Moon()
138 * is actually the Phase converted to days. Since AGE is actually defined
139 * to be time since last NewMoon, we need to figure out what the JD of the
140 * last new moon was. Thats done below....
142 TU = (jd(year, month, day, TDT) - 2451545.0)/36525.0;
143 c->MoonPhase = Moon(TU, &LambdaMoon, &BetaMoon, &R, &AGE);
144 LambdaMoon *= RadPerDeg;
145 BetaMoon *= RadPerDeg;
148 RA_Moon = angle360(atan2(sin(LambdaMoon)*cos(epsilon)-tan(BetaMoon)*sin(epsilon), cos(LambdaMoon))*DegPerRad);
149 DEC_Moon = asin( sin(BetaMoon)*cos(epsilon) + cos(BetaMoon)*sin(epsilon)*sin(LambdaMoon))*DegPerRad;
150 c->RA_moon = RA_Moon;
151 c->DEC_moon = DEC_Moon;
155 * Compute Alt/Az coords
157 Tau = (15.0*lmst - RA_Moon)*RadPerDeg;
158 CosGlat = cos(c->Glat*RadPerDeg); SinGlat = sin(c->Glat*RadPerDeg);
159 CosTau = cos(Tau); SinTau = sin(Tau);
160 SinDec = sin(DEC_Moon*RadPerDeg); CosDec = cos(DEC_Moon*RadPerDeg);
161 x = CosDec*CosTau*SinGlat - SinDec*CosGlat;
162 y = CosDec*SinTau;
163 z = CosDec*CosTau*CosGlat + SinDec*SinGlat;
164 c->A_moon = DegPerRad*atan2(y, x);
165 c->h_moon = DegPerRad*asin(z);
166 c->Visible = (c->h_moon < 0.0) ? 0 : 1;
171 * Compute accurate AGE of the Moon
173 Tb = TU - AGE/36525.0; /* should be very close to minimum */
174 Ta = Tb - 0.4/36525.0;
175 Tc = Tb + 0.4/36525.0;
176 c->MoonAge = (TU - NewMoon(Ta, Tb, Tc))*36525.0;
181 * Compute Earth-Moon distance
183 c->EarthMoonDistance = R;
193 double kepler(M, e)
194 double M, e;
196 int n=0;
197 double E, Eold, eps = 1.0e-8;
201 E = M + e*sin(M);
203 Eold = E;
204 E = Eold + (M-Eold+e*sin(Eold))
205 /(1.0-e*cos(Eold));
206 ++n;
207 }while((fabs(E-Eold) > eps) && (n < 100));
208 return(E);
214 int DayofYear(year, month, day)
215 int year, month, day;
217 double jd();
218 return((int)(jd(year, month, day, 0.0) - jd(year, 1, 0, 0.0)));
224 int DayofWeek(year, month, day, dowstr)
225 int year, month, day;
226 char dowstr[];
228 double JD, A, Afrac, jd();
229 int n, iA;
231 JD = jd(year, month, day, 0.0);
232 A = (JD + 1.5)/7.0;
233 iA = (int)A;
234 Afrac = A - (double)iA;
235 n = (int)(Afrac*7.0 + 0.5);
236 switch(n){
237 case 0:
238 strcpy(dowstr, "Sunday");
239 break;
240 case 1:
241 strcpy(dowstr, "Monday");
242 break;
243 case 2:
244 strcpy(dowstr, "Tuesday");
245 break;
246 case 3:
247 strcpy(dowstr, "Wednesday");
248 break;
249 case 4:
250 strcpy(dowstr, "Thursday");
251 break;
252 case 5:
253 strcpy(dowstr, "Friday");
254 break;
255 case 6:
256 strcpy(dowstr, "Saturday");
257 break;
259 return(n);
267 * Compute the Julian Day number for the given date.
268 * Julian Date is the number of days since noon of Jan 1 4713 B.C.
270 double jd(ny, nm, nd, UT)
271 int ny, nm, nd;
272 double UT;
274 double A, B, C, D, JD, day;
276 day = nd + UT/24.0;
279 if ((nm == 1) || (nm == 2)){
280 ny = ny - 1;
281 nm = nm + 12;
284 if (((double)ny+nm/12.0+day/365.25)>=(1582.0+10.0/12.0+15.0/365.25)){
285 A = ((int)(ny / 100.0));
286 B = 2.0 - A + (int)(A/4.0);
288 else{
289 B = 0.0;
292 if (ny < 0.0){
293 C = (int)((365.25*(double)ny) - 0.75);
295 else{
296 C = (int)(365.25*(double)ny);
299 D = (int)(30.6001*(double)(nm+1));
302 JD = B + C + D + day + 1720994.5;
303 return(JD);
307 double hour24(hour)
308 double hour;
310 int n;
312 if (hour < 0.0){
313 n = (int)(hour/24.0) - 1;
314 return(hour-n*24.0);
316 else if (hour > 24.0){
317 n = (int)(hour/24.0);
318 return(hour-n*24.0);
320 else{
321 return(hour);
325 double angle2pi(angle)
326 double angle;
328 int n;
329 double a;
330 a = 2.0*M_PI;
332 if (angle < 0.0){
333 n = (int)(angle/a) - 1;
334 return(angle-n*a);
336 else if (angle > a){
337 n = (int)(angle/a);
338 return(angle-n*a);
340 else{
341 return(angle);
345 double angle360(angle)
346 double angle;
348 int n;
350 if (angle < 0.0){
351 n = (int)(angle/360.0) - 1;
352 return(angle-n*360.0);
354 else if (angle > 360.0){
355 n = (int)(angle/360.0);
356 return(angle-n*360.0);
358 else{
359 return(angle);
364 void Radec_to_Cart(ra, dec, r)
365 double ra, dec; /* RA and DEC */
366 Vector *r; /* returns corresponding cartesian unit vector */
370 * Convert ra/dec from degrees to radians
372 ra *= RadPerDeg;
373 dec *= RadPerDeg;
377 * Compute cartesian coordinates (in GEI)
379 r->x = cos(dec) * cos(ra);
380 r->y = cos(dec) * sin(ra);
381 r->z = sin(dec);
389 int LeapYear(year)
390 int year;
392 if ((year%100 == 0)&&(year%400 != 0)) return(0);
393 else if (year%4 == 0) return(1);
394 else return(0);