2 * Copyright (c) 2003 Nate Lawson (SDG)
3 * Copyright (c) 2001 Michael Smith
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * $FreeBSD: src/sys/dev/acpica/acpi_cpu.c,v 1.41 2004/06/24 00:38:51 njl Exp $
28 * $DragonFly: src/sys/dev/acpica5/acpi_cpu.c,v 1.20 2007/03/21 22:19:00 y0netan1 Exp $
32 #include <sys/param.h>
34 #include <sys/kernel.h>
35 #include <sys/malloc.h>
36 #include <sys/globaldata.h>
37 #include <sys/power.h>
40 #include <sys/thread2.h>
42 #include <bus/pci/pcivar.h>
43 #include <machine/atomic.h>
44 #include <machine/globaldata.h>
45 #include <machine/md_var.h>
46 #include <machine/smp.h>
53 * Support for ACPI Processor devices, including ACPI 2.0 throttling
54 * and C[1-3] sleep states.
56 * TODO: implement scans of all CPUs to be sure all Cx states are
60 /* Hooks for the ACPI CA debugging infrastructure */
61 #define _COMPONENT ACPI_PROCESSOR
62 ACPI_MODULE_NAME("PROCESSOR")
65 struct resource
*p_lvlx
; /* Register to read to enter state. */
66 uint32_t type
; /* C1-3 (C4 and up treated as C3). */
67 uint32_t trans_lat
; /* Transition latency (usec). */
68 uint32_t power
; /* Power consumed (mW). */
70 #define MAX_CX_STATES 8
72 struct acpi_cpu_softc
{
74 ACPI_HANDLE cpu_handle
;
75 uint32_t acpi_id
; /* ACPI processor id */
76 uint32_t cpu_p_blk
; /* ACPI P_BLK location */
77 uint32_t cpu_p_blk_len
; /* P_BLK length (must be 6). */
78 struct resource
*cpu_p_cnt
; /* Throttling control register */
79 struct acpi_cx cpu_cx_states
[MAX_CX_STATES
];
80 int cpu_cx_count
; /* Number of valid Cx states. */
81 int cpu_prev_sleep
;/* Last idle sleep duration. */
84 #define CPU_GET_REG(reg, width) \
85 (bus_space_read_ ## width(rman_get_bustag((reg)), \
86 rman_get_bushandle((reg)), 0))
87 #define CPU_SET_REG(reg, width, val) \
88 (bus_space_write_ ## width(rman_get_bustag((reg)), \
89 rman_get_bushandle((reg)), 0, (val)))
92 * Speeds are stored in counts, from 1 to CPU_MAX_SPEED, and
93 * reported to the user in tenths of a percent.
95 static uint32_t cpu_duty_offset
;
96 static uint32_t cpu_duty_width
;
97 #define CPU_MAX_SPEED (1 << cpu_duty_width)
98 #define CPU_SPEED_PERCENT(x) ((1000 * (x)) / CPU_MAX_SPEED)
99 #define CPU_SPEED_PRINTABLE(x) (CPU_SPEED_PERCENT(x) / 10), \
100 (CPU_SPEED_PERCENT(x) % 10)
101 #define CPU_P_CNT_THT_EN (1<<4)
102 #define PM_USEC(x) ((x) >> 2) /* ~4 clocks per usec (3.57955 Mhz) */
104 #define ACPI_CPU_NOTIFY_PERF_STATES 0x80 /* _PSS changed. */
105 #define ACPI_CPU_NOTIFY_CX_STATES 0x81 /* _CST changed. */
107 #define CPU_QUIRK_NO_C3 (1<<0) /* C3-type states are not usable. */
108 #define CPU_QUIRK_NO_THROTTLE (1<<1) /* Throttling is not usable. */
109 #define CPU_QUIRK_NO_BM_CTRL (1<<2) /* No bus mastering control. */
111 #define PCI_VENDOR_INTEL 0x8086
112 #define PCI_DEVICE_82371AB_3 0x7113 /* PIIX4 chipset for quirks. */
113 #define PCI_REVISION_A_STEP 0
114 #define PCI_REVISION_B_STEP 1
115 #define PCI_REVISION_4E 2
116 #define PCI_REVISION_4M 3
118 /* Platform hardware resource information. */
119 static uint32_t cpu_smi_cmd
; /* Value to write to SMI_CMD. */
120 static uint8_t cpu_cst_cnt
; /* Indicate we are _CST aware. */
121 static int cpu_rid
; /* Driver-wide resource id. */
122 static int cpu_quirks
; /* Indicate any hardware bugs. */
125 static int cpu_cx_count
; /* Number of valid states */
126 static int cpu_non_c3
; /* Index of lowest non-C3 state. */
127 static u_int cpu_cx_stats
[MAX_CX_STATES
];/* Cx usage history. */
129 /* Values for sysctl. */
130 static uint32_t cpu_throttle_state
;
131 static uint32_t cpu_throttle_max
;
132 static uint32_t cpu_throttle_performance
;
133 static uint32_t cpu_throttle_economy
;
134 static int cpu_cx_lowest
;
135 static char cpu_cx_supported
[64];
137 static device_t
*cpu_devices
;
138 static int cpu_ndevices
;
139 static struct acpi_cpu_softc
**cpu_softc
;
141 static struct sysctl_ctx_list acpi_cpu_sysctl_ctx
;
142 static struct sysctl_oid
*acpi_cpu_sysctl_tree
;
144 static int acpi_cpu_probe(device_t dev
);
145 static int acpi_cpu_attach(device_t dev
);
146 static int acpi_pcpu_get_id(uint32_t idx
, uint32_t *acpi_id
,
148 static int acpi_cpu_shutdown(device_t dev
);
149 static int acpi_cpu_throttle_probe(struct acpi_cpu_softc
*sc
);
150 static void acpi_cpu_power_profile(void *arg
);
151 static int acpi_cpu_cx_probe(struct acpi_cpu_softc
*sc
);
152 static int acpi_cpu_cx_cst(struct acpi_cpu_softc
*sc
);
153 static void acpi_cpu_startup(void *arg
);
154 static void acpi_cpu_startup_throttling(void);
155 static void acpi_cpu_startup_cx(void);
156 static void acpi_cpu_throttle_set(uint32_t speed
);
157 static void acpi_cpu_idle(void);
158 static void acpi_cpu_c1(void);
159 static void acpi_cpu_notify(ACPI_HANDLE h
, UINT32 notify
, void *context
);
160 static int acpi_cpu_quirks(struct acpi_cpu_softc
*sc
);
161 static int acpi_cpu_throttle_sysctl(SYSCTL_HANDLER_ARGS
);
162 static int acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS
);
163 static int acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS
);
165 static device_method_t acpi_cpu_methods
[] = {
166 /* Device interface */
167 DEVMETHOD(device_probe
, acpi_cpu_probe
),
168 DEVMETHOD(device_attach
, acpi_cpu_attach
),
169 DEVMETHOD(device_shutdown
, acpi_cpu_shutdown
),
174 static driver_t acpi_cpu_driver
= {
177 sizeof(struct acpi_cpu_softc
),
180 static devclass_t acpi_cpu_devclass
;
181 DRIVER_MODULE(cpu
, acpi
, acpi_cpu_driver
, acpi_cpu_devclass
, 0, 0);
182 MODULE_DEPEND(cpu
, acpi
, 1, 1, 1);
185 acpi_cpu_probe(device_t dev
)
187 int acpi_id
, cpu_id
, cx_count
;
194 if (acpi_disabled("cpu") || acpi_get_type(dev
) != ACPI_TYPE_PROCESSOR
)
197 handle
= acpi_get_handle(dev
);
198 if (cpu_softc
== NULL
)
199 cpu_softc
= kmalloc(sizeof(struct acpi_cpu_softc
*) *
200 SMP_MAXCPU
, M_TEMP
/* XXX */, M_INTWAIT
| M_ZERO
);
202 /* Get our Processor object. */
204 buf
.Length
= ACPI_ALLOCATE_BUFFER
;
205 status
= AcpiEvaluateObject(handle
, NULL
, NULL
, &buf
);
206 if (ACPI_FAILURE(status
)) {
207 device_printf(dev
, "probe failed to get Processor obj - %s\n",
208 AcpiFormatException(status
));
211 obj
= (ACPI_OBJECT
*)buf
.Pointer
;
212 if (obj
->Type
!= ACPI_TYPE_PROCESSOR
) {
213 device_printf(dev
, "Processor object has bad type %d\n", obj
->Type
);
219 * Find the processor associated with our unit. We could use the
220 * ProcId as a key, however, some boxes do not have the same values
221 * in their Processor object as the ProcId values in the MADT.
223 acpi_id
= obj
->Processor
.ProcId
;
225 if (acpi_pcpu_get_id(device_get_unit(dev
), &acpi_id
, &cpu_id
) != 0)
229 * Check if we already probed this processor. We scan the bus twice
230 * so it's possible we've already seen this one.
232 if (cpu_softc
[cpu_id
] != NULL
)
235 /* Get a count of Cx states for our device string. */
238 buf
.Length
= ACPI_ALLOCATE_BUFFER
;
239 status
= AcpiEvaluateObject(handle
, "_CST", NULL
, &buf
);
240 if (ACPI_SUCCESS(status
)) {
241 obj
= (ACPI_OBJECT
*)buf
.Pointer
;
242 if (ACPI_PKG_VALID(obj
, 2))
243 acpi_PkgInt32(obj
, 0, &cx_count
);
246 if (AcpiGbl_FADT
.C2Latency
<= 100)
248 if (AcpiGbl_FADT
.C3Latency
<= 1000)
254 ksnprintf(msg
, sizeof(msg
), "ACPI CPU (%d Cx states)", cx_count
);
256 strlcpy(msg
, "ACPI CPU", sizeof(msg
));
257 device_set_desc_copy(dev
, msg
);
259 /* Mark this processor as in-use and save our derived id for attach. */
260 cpu_softc
[cpu_id
] = (void *)1;
261 acpi_set_magic(dev
, cpu_id
);
267 acpi_cpu_attach(device_t dev
)
271 struct acpi_cpu_softc
*sc
;
272 struct acpi_softc
*acpi_sc
;
276 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__
);
280 sc
= device_get_softc(dev
);
282 sc
->cpu_handle
= acpi_get_handle(dev
);
283 cpu_softc
[acpi_get_magic(dev
)] = sc
;
286 buf
.Length
= ACPI_ALLOCATE_BUFFER
;
287 status
= AcpiEvaluateObject(sc
->cpu_handle
, NULL
, NULL
, &buf
);
288 if (ACPI_FAILURE(status
)) {
289 device_printf(dev
, "attach failed to get Processor obj - %s\n",
290 AcpiFormatException(status
));
293 obj
= (ACPI_OBJECT
*)buf
.Pointer
;
294 sc
->cpu_p_blk
= obj
->Processor
.PblkAddress
;
295 sc
->cpu_p_blk_len
= obj
->Processor
.PblkLength
;
296 sc
->acpi_id
= obj
->Processor
.ProcId
;
298 ACPI_DEBUG_PRINT((ACPI_DB_INFO
, "acpi_cpu%d: P_BLK at %#x/%d\n",
299 device_get_unit(dev
), sc
->cpu_p_blk
, sc
->cpu_p_blk_len
));
301 acpi_sc
= acpi_device_get_parent_softc(dev
);
302 sysctl_ctx_init(&acpi_cpu_sysctl_ctx
);
303 acpi_cpu_sysctl_tree
= SYSCTL_ADD_NODE(&acpi_cpu_sysctl_ctx
,
304 SYSCTL_CHILDREN(acpi_sc
->acpi_sysctl_tree
),
305 OID_AUTO
, "cpu", CTLFLAG_RD
, 0, "");
307 /* If this is the first device probed, check for quirks. */
308 if (device_get_unit(dev
) == 0)
312 * Probe for throttling and Cx state support.
313 * If none of these is present, free up unused resources.
315 thr_ret
= acpi_cpu_throttle_probe(sc
);
316 cx_ret
= acpi_cpu_cx_probe(sc
);
317 if (thr_ret
== 0 || cx_ret
== 0) {
318 status
= AcpiInstallNotifyHandler(sc
->cpu_handle
, ACPI_DEVICE_NOTIFY
,
319 acpi_cpu_notify
, sc
);
320 if (device_get_unit(dev
) == 0)
321 AcpiOsExecute(OSL_NOTIFY_HANDLER
, acpi_cpu_startup
, NULL
);
323 sysctl_ctx_free(&acpi_cpu_sysctl_ctx
);
330 * Find the nth present CPU and return its pc_cpuid as well as set the
331 * pc_acpi_id from the most reliable source.
334 acpi_pcpu_get_id(uint32_t idx
, uint32_t *acpi_id
, uint32_t *cpu_id
)
336 struct mdglobaldata
*md
;
339 KASSERT(acpi_id
!= NULL
, ("Null acpi_id"));
340 KASSERT(cpu_id
!= NULL
, ("Null cpu_id"));
341 for (i
= 0; i
< ncpus
; i
++) {
342 if ((smp_active_mask
& (1 << i
)) == 0)
344 md
= (struct mdglobaldata
*)globaldata_find(i
);
345 KASSERT(md
!= NULL
, ("no pcpu data for %d", i
));
348 * If pc_acpi_id was not initialized (e.g., a non-APIC UP box)
349 * override it with the value from the ASL. Otherwise, if the
350 * two don't match, prefer the MADT-derived value. Finally,
351 * return the pc_cpuid to reference this processor.
353 if (md
->gd_acpi_id
== 0xffffffff)
354 md
->gd_acpi_id
= *acpi_id
;
355 else if (md
->gd_acpi_id
!= *acpi_id
)
356 *acpi_id
= md
->gd_acpi_id
;
357 *cpu_id
= md
->mi
.gd_cpuid
;
366 acpi_cpu_shutdown(device_t dev
)
368 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__
);
370 /* Disable any entry to the idle function. */
373 /* Signal and wait for all processors to exit acpi_cpu_idle(). */
375 if (mycpu
->gd_cpuid
== 0)
376 lwkt_cpusync_simple(0, NULL
, NULL
);
384 acpi_cpu_throttle_probe(struct acpi_cpu_softc
*sc
)
389 ACPI_GENERIC_ADDRESS gas
;
392 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__
);
396 /* Get throttling parameters from the FADT. 0 means not supported. */
397 if (device_get_unit(sc
->cpu_dev
) == 0) {
398 cpu_smi_cmd
= AcpiGbl_FADT
.SmiCommand
;
399 cpu_cst_cnt
= AcpiGbl_FADT
.CstControl
;
400 cpu_duty_offset
= AcpiGbl_FADT
.DutyOffset
;
401 cpu_duty_width
= AcpiGbl_FADT
.DutyWidth
;
403 if (cpu_duty_width
== 0 || (cpu_quirks
& CPU_QUIRK_NO_THROTTLE
) != 0)
406 /* Validate the duty offset/width. */
407 duty_end
= cpu_duty_offset
+ cpu_duty_width
- 1;
409 device_printf(sc
->cpu_dev
, "CLK_VAL field overflows P_CNT register\n");
412 if (cpu_duty_offset
<= 4 && duty_end
>= 4) {
413 device_printf(sc
->cpu_dev
, "CLK_VAL field overlaps THT_EN bit\n");
418 * If not present, fall back to using the processor's P_BLK to find
419 * the P_CNT register.
421 * Note that some systems seem to duplicate the P_BLK pointer
422 * across multiple CPUs, so not getting the resource is not fatal.
425 buf
.Length
= sizeof(obj
);
426 status
= AcpiEvaluateObject(sc
->cpu_handle
, "_PTC", NULL
, &buf
);
427 if (ACPI_SUCCESS(status
)) {
428 if (obj
.Buffer
.Length
< sizeof(ACPI_GENERIC_ADDRESS
) + 3) {
429 device_printf(sc
->cpu_dev
, "_PTC buffer too small\n");
432 memcpy(&gas
, obj
.Buffer
.Pointer
+ 3, sizeof(gas
));
433 sc
->cpu_p_cnt
= acpi_bus_alloc_gas(sc
->cpu_dev
, &cpu_rid
, &gas
);
434 if (sc
->cpu_p_cnt
!= NULL
) {
435 ACPI_DEBUG_PRINT((ACPI_DB_INFO
, "acpi_cpu%d: P_CNT from _PTC\n",
436 device_get_unit(sc
->cpu_dev
)));
440 /* If _PTC not present or other failure, try the P_BLK. */
441 if (sc
->cpu_p_cnt
== NULL
) {
443 * The spec says P_BLK must be 6 bytes long. However, some
444 * systems use it to indicate a fractional set of features
445 * present so we take anything >= 4.
447 if (sc
->cpu_p_blk_len
< 4)
449 gas
.Address
= sc
->cpu_p_blk
;
450 gas
.SpaceId
= ACPI_ADR_SPACE_SYSTEM_IO
;
452 sc
->cpu_p_cnt
= acpi_bus_alloc_gas(sc
->cpu_dev
, &cpu_rid
, &gas
);
453 if (sc
->cpu_p_cnt
!= NULL
) {
454 ACPI_DEBUG_PRINT((ACPI_DB_INFO
, "acpi_cpu%d: P_CNT from P_BLK\n",
455 device_get_unit(sc
->cpu_dev
)));
457 device_printf(sc
->cpu_dev
, "Failed to attach throttling P_CNT\n");
467 acpi_cpu_cx_probe(struct acpi_cpu_softc
*sc
)
469 ACPI_GENERIC_ADDRESS gas
;
470 struct acpi_cx
*cx_ptr
;
473 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__
);
476 * Bus mastering arbitration control is needed to keep caches coherent
477 * while sleeping in C3. If it's not present but a working flush cache
478 * instruction is present, flush the caches before entering C3 instead.
479 * Otherwise, just disable C3 completely.
481 if (AcpiGbl_FADT
.Pm2ControlBlock
== 0 || AcpiGbl_FADT
.Pm2ControlLength
== 0) {
482 if ((AcpiGbl_FADT
.Flags
& ACPI_FADT_WBINVD
) != 0 &&
483 (AcpiGbl_FADT
.Flags
& ACPI_FADT_WBINVD_FLUSH
) == 0) {
484 cpu_quirks
|= CPU_QUIRK_NO_BM_CTRL
;
485 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
486 "acpi_cpu%d: no BM control, using flush cache method\n",
487 device_get_unit(sc
->cpu_dev
)));
489 cpu_quirks
|= CPU_QUIRK_NO_C3
;
490 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
491 "acpi_cpu%d: no BM control, C3 not available\n",
492 device_get_unit(sc
->cpu_dev
)));
497 * First, check for the ACPI 2.0 _CST sleep states object.
498 * If not usable, fall back to the P_BLK's P_LVL2 and P_LVL3.
500 sc
->cpu_cx_count
= 0;
501 error
= acpi_cpu_cx_cst(sc
);
503 cx_ptr
= sc
->cpu_cx_states
;
505 /* C1 has been required since just after ACPI 1.0 */
506 cx_ptr
->type
= ACPI_STATE_C1
;
507 cx_ptr
->trans_lat
= 0;
513 * The spec says P_BLK must be 6 bytes long. However, some systems
514 * use it to indicate a fractional set of features present so we
515 * take 5 as C2. Some may also have a value of 7 to indicate
516 * another C3 but most use _CST for this (as required) and having
517 * "only" C1-C3 is not a hardship.
519 if (sc
->cpu_p_blk_len
< 5)
522 /* Validate and allocate resources for C2 (P_LVL2). */
523 gas
.SpaceId
= ACPI_ADR_SPACE_SYSTEM_IO
;
525 if (AcpiGbl_FADT
.C2Latency
<= 100) {
526 gas
.Address
= sc
->cpu_p_blk
+ 4;
527 cx_ptr
->p_lvlx
= acpi_bus_alloc_gas(sc
->cpu_dev
, &cpu_rid
, &gas
);
528 if (cx_ptr
->p_lvlx
!= NULL
) {
530 cx_ptr
->type
= ACPI_STATE_C2
;
531 cx_ptr
->trans_lat
= AcpiGbl_FADT
.C2Latency
;
537 if (sc
->cpu_p_blk_len
< 6)
540 /* Validate and allocate resources for C3 (P_LVL3). */
541 if (AcpiGbl_FADT
.C3Latency
<= 1000 &&
542 (cpu_quirks
& CPU_QUIRK_NO_C3
) == 0) {
544 gas
.Address
= sc
->cpu_p_blk
+ 5;
545 cx_ptr
->p_lvlx
= acpi_bus_alloc_gas(sc
->cpu_dev
, &cpu_rid
, &gas
);
546 if (cx_ptr
->p_lvlx
!= NULL
) {
548 cx_ptr
->type
= ACPI_STATE_C3
;
549 cx_ptr
->trans_lat
= AcpiGbl_FADT
.C3Latency
;
557 /* If no valid registers were found, don't attach. */
558 if (sc
->cpu_cx_count
== 0)
561 /* Use initial sleep value of 1 sec. to start with lowest idle state. */
562 sc
->cpu_prev_sleep
= 1000000;
568 * Parse a _CST package and set up its Cx states. Since the _CST object
569 * can change dynamically, our notify handler may call this function
570 * to clean up and probe the new _CST package.
573 acpi_cpu_cx_cst(struct acpi_cpu_softc
*sc
)
575 struct acpi_cx
*cx_ptr
;
583 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__
);
586 buf
.Length
= ACPI_ALLOCATE_BUFFER
;
587 status
= AcpiEvaluateObject(sc
->cpu_handle
, "_CST", NULL
, &buf
);
588 if (ACPI_FAILURE(status
))
591 /* _CST is a package with a count and at least one Cx package. */
592 top
= (ACPI_OBJECT
*)buf
.Pointer
;
593 if (!ACPI_PKG_VALID(top
, 2) || acpi_PkgInt32(top
, 0, &count
) != 0) {
594 device_printf(sc
->cpu_dev
, "Invalid _CST package\n");
595 AcpiOsFree(buf
.Pointer
);
598 if (count
!= top
->Package
.Count
- 1) {
599 device_printf(sc
->cpu_dev
, "Invalid _CST state count (%d != %d)\n",
600 count
, top
->Package
.Count
- 1);
601 count
= top
->Package
.Count
- 1;
603 if (count
> MAX_CX_STATES
) {
604 device_printf(sc
->cpu_dev
, "_CST has too many states (%d)\n", count
);
605 count
= MAX_CX_STATES
;
608 /* Set up all valid states. */
609 sc
->cpu_cx_count
= 0;
610 cx_ptr
= sc
->cpu_cx_states
;
611 for (i
= 0; i
< count
; i
++) {
612 pkg
= &top
->Package
.Elements
[i
+ 1];
613 if (!ACPI_PKG_VALID(pkg
, 4) ||
614 acpi_PkgInt32(pkg
, 1, &cx_ptr
->type
) != 0 ||
615 acpi_PkgInt32(pkg
, 2, &cx_ptr
->trans_lat
) != 0 ||
616 acpi_PkgInt32(pkg
, 3, &cx_ptr
->power
) != 0) {
618 device_printf(sc
->cpu_dev
, "Skipping invalid Cx state package\n");
622 /* Validate the state to see if we should use it. */
623 switch (cx_ptr
->type
) {
630 if (cx_ptr
->trans_lat
> 100) {
631 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
632 "acpi_cpu%d: C2[%d] not available.\n",
633 device_get_unit(sc
->cpu_dev
), i
));
640 if (cx_ptr
->trans_lat
> 1000 ||
641 (cpu_quirks
& CPU_QUIRK_NO_C3
) != 0) {
643 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
644 "acpi_cpu%d: C3[%d] not available.\n",
645 device_get_unit(sc
->cpu_dev
), i
));
652 /* Free up any previous register. */
653 if (cx_ptr
->p_lvlx
!= NULL
) {
654 bus_release_resource(sc
->cpu_dev
, 0, 0, cx_ptr
->p_lvlx
);
655 cx_ptr
->p_lvlx
= NULL
;
659 /* Allocate the control register for C2 or C3. */
660 acpi_PkgGas(sc
->cpu_dev
, pkg
, 0, &cpu_rid
, &cx_ptr
->p_lvlx
);
661 if (cx_ptr
->p_lvlx
!= NULL
) {
663 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
664 "acpi_cpu%d: Got C%d - %d latency\n",
665 device_get_unit(sc
->cpu_dev
), cx_ptr
->type
,
671 AcpiOsFree(buf
.Pointer
);
677 * Call this *after* all CPUs have been attached.
680 acpi_cpu_startup(void *arg
)
682 struct acpi_cpu_softc
*sc
;
685 /* Get set of CPU devices */
686 devclass_get_devices(acpi_cpu_devclass
, &cpu_devices
, &cpu_ndevices
);
689 * Make sure all the processors' Cx counts match. We should probably
690 * also check the contents of each. However, no known systems have
691 * non-matching Cx counts so we'll deal with this later.
693 count
= MAX_CX_STATES
;
694 for (i
= 0; i
< cpu_ndevices
; i
++) {
695 sc
= device_get_softc(cpu_devices
[i
]);
696 count
= min(sc
->cpu_cx_count
, count
);
698 cpu_cx_count
= count
;
700 /* Perform throttling and Cx final initialization. */
701 sc
= device_get_softc(cpu_devices
[0]);
702 if (sc
->cpu_p_cnt
!= NULL
)
703 acpi_cpu_startup_throttling();
704 if (cpu_cx_count
> 0)
705 acpi_cpu_startup_cx();
707 /* register performance profile change handler */
708 EVENTHANDLER_REGISTER(power_profile_change
, acpi_cpu_power_profile
, NULL
, 0);
712 * Power profile change hook.
714 * Uses the ACPI lock to avoid reentrancy.
717 acpi_cpu_power_profile(void *arg
)
723 state
= power_profile_get_state();
724 if (state
!= POWER_PROFILE_PERFORMANCE
&&
725 state
!= POWER_PROFILE_ECONOMY
) {
731 case POWER_PROFILE_PERFORMANCE
:
732 speed
= cpu_throttle_performance
;
734 case POWER_PROFILE_ECONOMY
:
735 speed
= cpu_throttle_economy
;
738 speed
= cpu_throttle_state
;
741 if (speed
!= cpu_throttle_state
)
742 acpi_cpu_throttle_set(speed
);
747 * Takes the ACPI lock to avoid fighting anyone over the SMI command
751 acpi_cpu_startup_throttling(void)
755 /* Initialise throttling states */
756 cpu_throttle_max
= CPU_MAX_SPEED
;
757 cpu_throttle_state
= CPU_MAX_SPEED
;
758 cpu_throttle_performance
= cpu_throttle_max
;
759 cpu_throttle_economy
= cpu_throttle_performance
/ 2;
761 SYSCTL_ADD_INT(&acpi_cpu_sysctl_ctx
,
762 SYSCTL_CHILDREN(acpi_cpu_sysctl_tree
),
763 OID_AUTO
, "throttle_max", CTLFLAG_RD
,
764 &cpu_throttle_max
, 0, "maximum CPU speed");
765 SYSCTL_ADD_PROC(&acpi_cpu_sysctl_ctx
,
766 SYSCTL_CHILDREN(acpi_cpu_sysctl_tree
),
767 OID_AUTO
, "throttle_state",
768 CTLTYPE_INT
| CTLFLAG_RW
, &cpu_throttle_state
,
769 0, acpi_cpu_throttle_sysctl
, "I", "current CPU speed");
772 * Performance/Economy throttle settings
774 SYSCTL_ADD_PROC(&acpi_cpu_sysctl_ctx
,
775 SYSCTL_CHILDREN(acpi_cpu_sysctl_tree
),
776 OID_AUTO
, "performance_speed",
777 CTLTYPE_INT
| CTLFLAG_RW
, &cpu_throttle_performance
,
778 0, acpi_cpu_throttle_sysctl
, "I", "performance CPU speed");
779 SYSCTL_ADD_PROC(&acpi_cpu_sysctl_ctx
,
780 SYSCTL_CHILDREN(acpi_cpu_sysctl_tree
),
781 OID_AUTO
, "economy_speed",
782 CTLTYPE_INT
| CTLFLAG_RW
, &cpu_throttle_economy
,
783 0, acpi_cpu_throttle_sysctl
, "I", "economy CPU speed");
785 /* Set initial speed to maximum. */
787 acpi_cpu_throttle_set(cpu_throttle_max
);
790 kprintf("acpi_cpu: throttling enabled, %d steps (100%% to %d.%d%%), "
791 "currently %d.%d%%\n", CPU_MAX_SPEED
, CPU_SPEED_PRINTABLE(1),
792 CPU_SPEED_PRINTABLE(cpu_throttle_state
));
796 acpi_cpu_startup_cx(void)
798 struct acpi_cpu_softc
*sc
;
802 sc
= device_get_softc(cpu_devices
[0]);
803 sbuf_new(&sb
, cpu_cx_supported
, sizeof(cpu_cx_supported
), SBUF_FIXEDLEN
);
804 for (i
= 0; i
< cpu_cx_count
; i
++)
805 sbuf_printf(&sb
, "C%d/%d ", i
+ 1, sc
->cpu_cx_states
[i
].trans_lat
);
808 SYSCTL_ADD_STRING(&acpi_cpu_sysctl_ctx
,
809 SYSCTL_CHILDREN(acpi_cpu_sysctl_tree
),
810 OID_AUTO
, "cx_supported", CTLFLAG_RD
, cpu_cx_supported
,
811 0, "Cx/microsecond values for supported Cx states");
812 SYSCTL_ADD_PROC(&acpi_cpu_sysctl_ctx
,
813 SYSCTL_CHILDREN(acpi_cpu_sysctl_tree
),
814 OID_AUTO
, "cx_lowest", CTLTYPE_STRING
| CTLFLAG_RW
,
815 NULL
, 0, acpi_cpu_cx_lowest_sysctl
, "A",
816 "lowest Cx sleep state to use");
817 SYSCTL_ADD_PROC(&acpi_cpu_sysctl_ctx
,
818 SYSCTL_CHILDREN(acpi_cpu_sysctl_tree
),
819 OID_AUTO
, "cx_usage", CTLTYPE_STRING
| CTLFLAG_RD
,
820 NULL
, 0, acpi_cpu_usage_sysctl
, "A",
821 "percent usage for each Cx state");
824 /* Signal platform that we can handle _CST notification. */
825 if (cpu_cst_cnt
!= 0) {
827 AcpiOsWritePort(cpu_smi_cmd
, cpu_cst_cnt
, 8);
832 /* Take over idling from cpu_idle_default_hook(). */
834 cpu_idle_hook
= acpi_cpu_idle
;
836 kprintf("Warning: ACPI idle hook not yet supported for SMP\n");
840 * Set CPUs to the new state.
842 * Must be called with the ACPI lock held.
845 acpi_cpu_throttle_set(uint32_t speed
)
847 struct acpi_cpu_softc
*sc
;
849 uint32_t p_cnt
, clk_val
;
853 /* Iterate over processors */
854 for (i
= 0; i
< cpu_ndevices
; i
++) {
855 sc
= device_get_softc(cpu_devices
[i
]);
856 if (sc
->cpu_p_cnt
== NULL
)
859 /* Get the current P_CNT value and disable throttling */
860 p_cnt
= CPU_GET_REG(sc
->cpu_p_cnt
, 4);
861 p_cnt
&= ~CPU_P_CNT_THT_EN
;
862 CPU_SET_REG(sc
->cpu_p_cnt
, 4, p_cnt
);
864 /* If we're at maximum speed, that's all */
865 if (speed
< CPU_MAX_SPEED
) {
866 /* Mask the old CLK_VAL off and or-in the new value */
867 clk_val
= (CPU_MAX_SPEED
- 1) << cpu_duty_offset
;
869 p_cnt
|= (speed
<< cpu_duty_offset
);
871 /* Write the new P_CNT value and then enable throttling */
872 CPU_SET_REG(sc
->cpu_p_cnt
, 4, p_cnt
);
873 p_cnt
|= CPU_P_CNT_THT_EN
;
874 CPU_SET_REG(sc
->cpu_p_cnt
, 4, p_cnt
);
876 ACPI_VPRINT(sc
->cpu_dev
, acpi_device_get_parent_softc(sc
->cpu_dev
),
877 "set speed to %d.%d%%\n", CPU_SPEED_PRINTABLE(speed
));
879 cpu_throttle_state
= speed
;
883 * Idle the CPU in the lowest state possible. This function is called with
884 * interrupts disabled. Note that once it re-enables interrupts, a task
885 * switch can occur so do not access shared data (i.e. the softc) after
886 * interrupts are re-enabled.
891 struct acpi_cpu_softc
*sc
;
892 struct acpi_cx
*cx_next
;
893 uint32_t start_time
, end_time
;
894 int bm_active
, cx_next_idx
, i
;
896 /* If disabled, return immediately. */
897 if (cpu_cx_count
== 0) {
903 * Look up our CPU id to get our softc. If it's NULL, we'll use C1
904 * since there is no ACPI processor object for this CPU. This occurs
905 * for logical CPUs in the HTT case.
907 sc
= cpu_softc
[mdcpu
->mi
.gd_cpuid
];
914 * If we slept 100 us or more, use the lowest Cx state. Otherwise,
915 * find the lowest state that has a latency less than or equal to
916 * the length of our last sleep.
918 cx_next_idx
= cpu_cx_lowest
;
919 if (sc
->cpu_prev_sleep
< 100)
920 for (i
= cpu_cx_lowest
; i
>= 0; i
--)
921 if (sc
->cpu_cx_states
[i
].trans_lat
<= sc
->cpu_prev_sleep
) {
927 * Check for bus master activity. If there was activity, clear
928 * the bit and use the lowest non-C3 state. Note that the USB
929 * driver polling for new devices keeps this bit set all the
930 * time if USB is loaded.
932 if ((cpu_quirks
& CPU_QUIRK_NO_BM_CTRL
) == 0) {
933 AcpiGetRegister(ACPI_BITREG_BUS_MASTER_STATUS
, &bm_active
);
934 if (bm_active
!= 0) {
935 AcpiSetRegister(ACPI_BITREG_BUS_MASTER_STATUS
, 1);
936 cx_next_idx
= min(cx_next_idx
, cpu_non_c3
);
940 /* Select the next state and update statistics. */
941 cx_next
= &sc
->cpu_cx_states
[cx_next_idx
];
942 cpu_cx_stats
[cx_next_idx
]++;
943 KASSERT(cx_next
->type
!= ACPI_STATE_C0
, ("acpi_cpu_idle: C0 sleep"));
946 * Execute HLT (or equivalent) and wait for an interrupt. We can't
947 * calculate the time spent in C1 since the place we wake up is an
948 * ISR. Assume we slept one quantum and return.
950 if (cx_next
->type
== ACPI_STATE_C1
) {
951 sc
->cpu_prev_sleep
= 1000000 / hz
;
957 * For C3, disable bus master arbitration and enable bus master wake
958 * if BM control is available, otherwise flush the CPU cache.
960 if (cx_next
->type
== ACPI_STATE_C3
) {
961 if ((cpu_quirks
& CPU_QUIRK_NO_BM_CTRL
) == 0) {
962 AcpiSetRegister(ACPI_BITREG_ARB_DISABLE
, 1);
963 AcpiSetRegister(ACPI_BITREG_BUS_MASTER_RLD
, 1);
965 ACPI_FLUSH_CPU_CACHE();
969 * Read from P_LVLx to enter C2(+), checking time spent asleep.
970 * Use the ACPI timer for measuring sleep time. Since we need to
971 * get the time very close to the CPU start/stop clock logic, this
972 * is the only reliable time source.
974 AcpiHwLowLevelRead(32, &start_time
, &AcpiGbl_FADT
.XPmTimerBlock
);
975 CPU_GET_REG(cx_next
->p_lvlx
, 1);
978 * Read the end time twice. Since it may take an arbitrary time
979 * to enter the idle state, the first read may be executed before
980 * the processor has stopped. Doing it again provides enough
981 * margin that we are certain to have a correct value.
983 AcpiHwLowLevelRead(32, &end_time
, &AcpiGbl_FADT
.XPmTimerBlock
);
984 AcpiHwLowLevelRead(32, &end_time
, &AcpiGbl_FADT
.XPmTimerBlock
);
986 /* Enable bus master arbitration and disable bus master wakeup. */
987 if (cx_next
->type
== ACPI_STATE_C3
&&
988 (cpu_quirks
& CPU_QUIRK_NO_BM_CTRL
) == 0) {
989 AcpiSetRegister(ACPI_BITREG_ARB_DISABLE
, 0);
990 AcpiSetRegister(ACPI_BITREG_BUS_MASTER_RLD
, 0);
993 /* Find the actual time asleep in microseconds, minus overhead. */
994 end_time
= acpi_TimerDelta(end_time
, start_time
);
995 sc
->cpu_prev_sleep
= PM_USEC(end_time
) - cx_next
->trans_lat
;
999 /* Put the CPU in C1 in a machine-dependant way. */
1004 ia64_call_pal_static(PAL_HALT_LIGHT
, 0, 0, 0);
1008 if (!lwkt_runnable())
1009 __asm
__volatile("sti; hlt");
1011 __asm
__volatile("sti; pause");
1013 if (!lwkt_runnable())
1014 __asm
__volatile("sti; hlt");
1016 __asm
__volatile("sti");
1018 #endif /* !__ia64__ */
1022 * Re-evaluate the _PSS and _CST objects when we are notified that they
1025 * XXX Re-evaluation disabled until locking is done.
1028 acpi_cpu_notify(ACPI_HANDLE h
, UINT32 notify
, void *context
)
1030 struct acpi_cpu_softc
*sc
= (struct acpi_cpu_softc
*)context
;
1033 case ACPI_CPU_NOTIFY_PERF_STATES
:
1034 device_printf(sc
->cpu_dev
, "Performance states changed\n");
1035 /* acpi_cpu_px_available(sc); */
1037 case ACPI_CPU_NOTIFY_CX_STATES
:
1038 device_printf(sc
->cpu_dev
, "Cx states changed\n");
1039 /* acpi_cpu_cx_cst(sc); */
1042 device_printf(sc
->cpu_dev
, "Unknown notify %#x\n", notify
);
1048 acpi_cpu_quirks(struct acpi_cpu_softc
*sc
)
1052 * C3 on multiple CPUs requires using the expensive flush cache
1056 cpu_quirks
|= CPU_QUIRK_NO_BM_CTRL
;
1059 /* Look for various quirks of the PIIX4 part. */
1060 acpi_dev
= pci_find_device(PCI_VENDOR_INTEL
, PCI_DEVICE_82371AB_3
);
1061 if (acpi_dev
!= NULL
) {
1062 switch (pci_get_revid(acpi_dev
)) {
1064 * Disable throttling control on PIIX4 A and B-step.
1065 * See specification changes #13 ("Manual Throttle Duty Cycle")
1066 * and #14 ("Enabling and Disabling Manual Throttle"), plus
1067 * erratum #5 ("STPCLK# Deassertion Time") from the January
1068 * 2002 PIIX4 specification update. Note that few (if any)
1069 * mobile systems ever used this part.
1071 case PCI_REVISION_A_STEP
:
1072 case PCI_REVISION_B_STEP
:
1073 cpu_quirks
|= CPU_QUIRK_NO_THROTTLE
;
1076 * Disable C3 support for all PIIX4 chipsets. Some of these parts
1077 * do not report the BMIDE status to the BM status register and
1078 * others have a livelock bug if Type-F DMA is enabled. Linux
1079 * works around the BMIDE bug by reading the BM status directly
1080 * but we take the simpler approach of disabling C3 for these
1083 * See erratum #18 ("C3 Power State/BMIDE and Type-F DMA
1084 * Livelock") from the January 2002 PIIX4 specification update.
1085 * Applies to all PIIX4 models.
1087 case PCI_REVISION_4E
:
1088 case PCI_REVISION_4M
:
1089 cpu_quirks
|= CPU_QUIRK_NO_C3
;
1100 /* Handle changes in the CPU throttling setting. */
1102 acpi_cpu_throttle_sysctl(SYSCTL_HANDLER_ARGS
)
1109 argp
= (uint32_t *)oidp
->oid_arg1
;
1111 error
= sysctl_handle_int(oidp
, &arg
, 0, req
);
1113 /* Error or no new value */
1114 if (error
!= 0 || req
->newptr
== NULL
)
1116 if (arg
< 1 || arg
> cpu_throttle_max
)
1119 /* If throttling changed, notify the BIOS of the new rate. */
1123 acpi_cpu_throttle_set(arg
);
1131 acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS
)
1136 uintmax_t fract
, sum
, whole
;
1139 for (i
= 0; i
< cpu_cx_count
; i
++)
1140 sum
+= cpu_cx_stats
[i
];
1141 sbuf_new(&sb
, buf
, sizeof(buf
), SBUF_FIXEDLEN
);
1142 for (i
= 0; i
< cpu_cx_count
; i
++) {
1144 whole
= (uintmax_t)cpu_cx_stats
[i
] * 100;
1145 fract
= (whole
% sum
) * 100;
1146 sbuf_printf(&sb
, "%u.%02u%% ", (u_int
)(whole
/ sum
),
1147 (u_int
)(fract
/ sum
));
1149 sbuf_printf(&sb
, "0%% ");
1153 sysctl_handle_string(oidp
, sbuf_data(&sb
), sbuf_len(&sb
), req
);
1160 acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS
)
1162 struct acpi_cpu_softc
*sc
;
1166 sc
= device_get_softc(cpu_devices
[0]);
1167 ksnprintf(state
, sizeof(state
), "C%d", cpu_cx_lowest
+ 1);
1168 error
= sysctl_handle_string(oidp
, state
, sizeof(state
), req
);
1169 if (error
!= 0 || req
->newptr
== NULL
)
1171 if (strlen(state
) < 2 || toupper(state
[0]) != 'C')
1173 val
= (int) strtol(state
+ 1, NULL
, 10) - 1;
1174 if (val
< 0 || val
> cpu_cx_count
- 1)
1177 cpu_cx_lowest
= val
;
1179 /* If not disabling, cache the new lowest non-C3 state. */
1181 for (i
= cpu_cx_lowest
; i
>= 0; i
--) {
1182 if (sc
->cpu_cx_states
[i
].type
< ACPI_STATE_C3
) {
1188 /* Reset the statistics counters. */
1189 bzero(cpu_cx_stats
, sizeof(cpu_cx_stats
));