1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1994-1999 Linus Torvalds
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/syscalls.h>
26 #include <linux/mman.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
29 #include <linux/uio.h>
30 #include <linux/error-injection.h>
31 #include <linux/hash.h>
32 #include <linux/writeback.h>
33 #include <linux/backing-dev.h>
34 #include <linux/pagevec.h>
35 #include <linux/security.h>
36 #include <linux/cpuset.h>
37 #include <linux/hugetlb.h>
38 #include <linux/memcontrol.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
45 #include <linux/migrate.h>
46 #include <linux/pipe_fs_i.h>
47 #include <linux/splice.h>
48 #include <linux/rcupdate_wait.h>
49 #include <linux/sched/mm.h>
50 #include <linux/fsnotify.h>
51 #include <asm/pgalloc.h>
52 #include <asm/tlbflush.h>
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/filemap.h>
59 * FIXME: remove all knowledge of the buffer layer from the core VM
61 #include <linux/buffer_head.h> /* for try_to_free_buffers */
68 * Shared mappings implemented 30.11.1994. It's not fully working yet,
71 * Shared mappings now work. 15.8.1995 Bruno.
73 * finished 'unifying' the page and buffer cache and SMP-threaded the
74 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
76 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
82 * ->i_mmap_rwsem (truncate_pagecache)
83 * ->private_lock (__free_pte->block_dirty_folio)
84 * ->swap_lock (exclusive_swap_page, others)
88 * ->invalidate_lock (acquired by fs in truncate path)
89 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
93 * ->page_table_lock or pte_lock (various, mainly in memory.c)
94 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
97 * ->invalidate_lock (filemap_fault)
98 * ->lock_page (filemap_fault, access_process_vm)
100 * ->i_rwsem (generic_perform_write)
101 * ->mmap_lock (fault_in_readable->do_page_fault)
104 * sb_lock (fs/fs-writeback.c)
105 * ->i_pages lock (__sync_single_inode)
108 * ->anon_vma.lock (vma_merge)
111 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
113 * ->page_table_lock or pte_lock
114 * ->swap_lock (try_to_unmap_one)
115 * ->private_lock (try_to_unmap_one)
116 * ->i_pages lock (try_to_unmap_one)
117 * ->lruvec->lru_lock (follow_page_mask->mark_page_accessed)
118 * ->lruvec->lru_lock (check_pte_range->folio_isolate_lru)
119 * ->private_lock (folio_remove_rmap_pte->set_page_dirty)
120 * ->i_pages lock (folio_remove_rmap_pte->set_page_dirty)
121 * bdi.wb->list_lock (folio_remove_rmap_pte->set_page_dirty)
122 * ->inode->i_lock (folio_remove_rmap_pte->set_page_dirty)
123 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
124 * ->inode->i_lock (zap_pte_range->set_page_dirty)
125 * ->private_lock (zap_pte_range->block_dirty_folio)
128 static void page_cache_delete(struct address_space
*mapping
,
129 struct folio
*folio
, void *shadow
)
131 XA_STATE(xas
, &mapping
->i_pages
, folio
->index
);
134 mapping_set_update(&xas
, mapping
);
136 xas_set_order(&xas
, folio
->index
, folio_order(folio
));
137 nr
= folio_nr_pages(folio
);
139 VM_BUG_ON_FOLIO(!folio_test_locked(folio
), folio
);
141 xas_store(&xas
, shadow
);
142 xas_init_marks(&xas
);
144 folio
->mapping
= NULL
;
145 /* Leave page->index set: truncation lookup relies upon it */
146 mapping
->nrpages
-= nr
;
149 static void filemap_unaccount_folio(struct address_space
*mapping
,
154 VM_BUG_ON_FOLIO(folio_mapped(folio
), folio
);
155 if (!IS_ENABLED(CONFIG_DEBUG_VM
) && unlikely(folio_mapped(folio
))) {
156 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
157 current
->comm
, folio_pfn(folio
));
158 dump_page(&folio
->page
, "still mapped when deleted");
160 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
162 if (mapping_exiting(mapping
) && !folio_test_large(folio
)) {
163 int mapcount
= folio_mapcount(folio
);
165 if (folio_ref_count(folio
) >= mapcount
+ 2) {
167 * All vmas have already been torn down, so it's
168 * a good bet that actually the page is unmapped
169 * and we'd rather not leak it: if we're wrong,
170 * another bad page check should catch it later.
172 atomic_set(&folio
->_mapcount
, -1);
173 folio_ref_sub(folio
, mapcount
);
178 /* hugetlb folios do not participate in page cache accounting. */
179 if (folio_test_hugetlb(folio
))
182 nr
= folio_nr_pages(folio
);
184 __lruvec_stat_mod_folio(folio
, NR_FILE_PAGES
, -nr
);
185 if (folio_test_swapbacked(folio
)) {
186 __lruvec_stat_mod_folio(folio
, NR_SHMEM
, -nr
);
187 if (folio_test_pmd_mappable(folio
))
188 __lruvec_stat_mod_folio(folio
, NR_SHMEM_THPS
, -nr
);
189 } else if (folio_test_pmd_mappable(folio
)) {
190 __lruvec_stat_mod_folio(folio
, NR_FILE_THPS
, -nr
);
191 filemap_nr_thps_dec(mapping
);
195 * At this point folio must be either written or cleaned by
196 * truncate. Dirty folio here signals a bug and loss of
197 * unwritten data - on ordinary filesystems.
199 * But it's harmless on in-memory filesystems like tmpfs; and can
200 * occur when a driver which did get_user_pages() sets page dirty
201 * before putting it, while the inode is being finally evicted.
203 * Below fixes dirty accounting after removing the folio entirely
204 * but leaves the dirty flag set: it has no effect for truncated
205 * folio and anyway will be cleared before returning folio to
208 if (WARN_ON_ONCE(folio_test_dirty(folio
) &&
209 mapping_can_writeback(mapping
)))
210 folio_account_cleaned(folio
, inode_to_wb(mapping
->host
));
214 * Delete a page from the page cache and free it. Caller has to make
215 * sure the page is locked and that nobody else uses it - or that usage
216 * is safe. The caller must hold the i_pages lock.
218 void __filemap_remove_folio(struct folio
*folio
, void *shadow
)
220 struct address_space
*mapping
= folio
->mapping
;
222 trace_mm_filemap_delete_from_page_cache(folio
);
223 filemap_unaccount_folio(mapping
, folio
);
224 page_cache_delete(mapping
, folio
, shadow
);
227 void filemap_free_folio(struct address_space
*mapping
, struct folio
*folio
)
229 void (*free_folio
)(struct folio
*);
232 free_folio
= mapping
->a_ops
->free_folio
;
236 if (folio_test_large(folio
))
237 refs
= folio_nr_pages(folio
);
238 folio_put_refs(folio
, refs
);
242 * filemap_remove_folio - Remove folio from page cache.
245 * This must be called only on folios that are locked and have been
246 * verified to be in the page cache. It will never put the folio into
247 * the free list because the caller has a reference on the page.
249 void filemap_remove_folio(struct folio
*folio
)
251 struct address_space
*mapping
= folio
->mapping
;
253 BUG_ON(!folio_test_locked(folio
));
254 spin_lock(&mapping
->host
->i_lock
);
255 xa_lock_irq(&mapping
->i_pages
);
256 __filemap_remove_folio(folio
, NULL
);
257 xa_unlock_irq(&mapping
->i_pages
);
258 if (mapping_shrinkable(mapping
))
259 inode_add_lru(mapping
->host
);
260 spin_unlock(&mapping
->host
->i_lock
);
262 filemap_free_folio(mapping
, folio
);
266 * page_cache_delete_batch - delete several folios from page cache
267 * @mapping: the mapping to which folios belong
268 * @fbatch: batch of folios to delete
270 * The function walks over mapping->i_pages and removes folios passed in
271 * @fbatch from the mapping. The function expects @fbatch to be sorted
272 * by page index and is optimised for it to be dense.
273 * It tolerates holes in @fbatch (mapping entries at those indices are not
276 * The function expects the i_pages lock to be held.
278 static void page_cache_delete_batch(struct address_space
*mapping
,
279 struct folio_batch
*fbatch
)
281 XA_STATE(xas
, &mapping
->i_pages
, fbatch
->folios
[0]->index
);
282 long total_pages
= 0;
286 mapping_set_update(&xas
, mapping
);
287 xas_for_each(&xas
, folio
, ULONG_MAX
) {
288 if (i
>= folio_batch_count(fbatch
))
291 /* A swap/dax/shadow entry got inserted? Skip it. */
292 if (xa_is_value(folio
))
295 * A page got inserted in our range? Skip it. We have our
296 * pages locked so they are protected from being removed.
297 * If we see a page whose index is higher than ours, it
298 * means our page has been removed, which shouldn't be
299 * possible because we're holding the PageLock.
301 if (folio
!= fbatch
->folios
[i
]) {
302 VM_BUG_ON_FOLIO(folio
->index
>
303 fbatch
->folios
[i
]->index
, folio
);
307 WARN_ON_ONCE(!folio_test_locked(folio
));
309 folio
->mapping
= NULL
;
310 /* Leave folio->index set: truncation lookup relies on it */
313 xas_store(&xas
, NULL
);
314 total_pages
+= folio_nr_pages(folio
);
316 mapping
->nrpages
-= total_pages
;
319 void delete_from_page_cache_batch(struct address_space
*mapping
,
320 struct folio_batch
*fbatch
)
324 if (!folio_batch_count(fbatch
))
327 spin_lock(&mapping
->host
->i_lock
);
328 xa_lock_irq(&mapping
->i_pages
);
329 for (i
= 0; i
< folio_batch_count(fbatch
); i
++) {
330 struct folio
*folio
= fbatch
->folios
[i
];
332 trace_mm_filemap_delete_from_page_cache(folio
);
333 filemap_unaccount_folio(mapping
, folio
);
335 page_cache_delete_batch(mapping
, fbatch
);
336 xa_unlock_irq(&mapping
->i_pages
);
337 if (mapping_shrinkable(mapping
))
338 inode_add_lru(mapping
->host
);
339 spin_unlock(&mapping
->host
->i_lock
);
341 for (i
= 0; i
< folio_batch_count(fbatch
); i
++)
342 filemap_free_folio(mapping
, fbatch
->folios
[i
]);
345 int filemap_check_errors(struct address_space
*mapping
)
348 /* Check for outstanding write errors */
349 if (test_bit(AS_ENOSPC
, &mapping
->flags
) &&
350 test_and_clear_bit(AS_ENOSPC
, &mapping
->flags
))
352 if (test_bit(AS_EIO
, &mapping
->flags
) &&
353 test_and_clear_bit(AS_EIO
, &mapping
->flags
))
357 EXPORT_SYMBOL(filemap_check_errors
);
359 static int filemap_check_and_keep_errors(struct address_space
*mapping
)
361 /* Check for outstanding write errors */
362 if (test_bit(AS_EIO
, &mapping
->flags
))
364 if (test_bit(AS_ENOSPC
, &mapping
->flags
))
370 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
371 * @mapping: address space structure to write
372 * @wbc: the writeback_control controlling the writeout
374 * Call writepages on the mapping using the provided wbc to control the
377 * Return: %0 on success, negative error code otherwise.
379 int filemap_fdatawrite_wbc(struct address_space
*mapping
,
380 struct writeback_control
*wbc
)
384 if (!mapping_can_writeback(mapping
) ||
385 !mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
388 wbc_attach_fdatawrite_inode(wbc
, mapping
->host
);
389 ret
= do_writepages(mapping
, wbc
);
390 wbc_detach_inode(wbc
);
393 EXPORT_SYMBOL(filemap_fdatawrite_wbc
);
396 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
397 * @mapping: address space structure to write
398 * @start: offset in bytes where the range starts
399 * @end: offset in bytes where the range ends (inclusive)
400 * @sync_mode: enable synchronous operation
402 * Start writeback against all of a mapping's dirty pages that lie
403 * within the byte offsets <start, end> inclusive.
405 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
406 * opposed to a regular memory cleansing writeback. The difference between
407 * these two operations is that if a dirty page/buffer is encountered, it must
408 * be waited upon, and not just skipped over.
410 * Return: %0 on success, negative error code otherwise.
412 int __filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
413 loff_t end
, int sync_mode
)
415 struct writeback_control wbc
= {
416 .sync_mode
= sync_mode
,
417 .nr_to_write
= LONG_MAX
,
418 .range_start
= start
,
422 return filemap_fdatawrite_wbc(mapping
, &wbc
);
425 static inline int __filemap_fdatawrite(struct address_space
*mapping
,
428 return __filemap_fdatawrite_range(mapping
, 0, LLONG_MAX
, sync_mode
);
431 int filemap_fdatawrite(struct address_space
*mapping
)
433 return __filemap_fdatawrite(mapping
, WB_SYNC_ALL
);
435 EXPORT_SYMBOL(filemap_fdatawrite
);
437 int filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
440 return __filemap_fdatawrite_range(mapping
, start
, end
, WB_SYNC_ALL
);
442 EXPORT_SYMBOL(filemap_fdatawrite_range
);
445 * filemap_fdatawrite_range_kick - start writeback on a range
446 * @mapping: target address_space
447 * @start: index to start writeback on
448 * @end: last (non-inclusive) index for writeback
450 * This is a non-integrity writeback helper, to start writing back folios
451 * for the indicated range.
453 * Return: %0 on success, negative error code otherwise.
455 int filemap_fdatawrite_range_kick(struct address_space
*mapping
, loff_t start
,
458 return __filemap_fdatawrite_range(mapping
, start
, end
, WB_SYNC_NONE
);
460 EXPORT_SYMBOL_GPL(filemap_fdatawrite_range_kick
);
463 * filemap_flush - mostly a non-blocking flush
464 * @mapping: target address_space
466 * This is a mostly non-blocking flush. Not suitable for data-integrity
467 * purposes - I/O may not be started against all dirty pages.
469 * Return: %0 on success, negative error code otherwise.
471 int filemap_flush(struct address_space
*mapping
)
473 return __filemap_fdatawrite(mapping
, WB_SYNC_NONE
);
475 EXPORT_SYMBOL(filemap_flush
);
478 * filemap_range_has_page - check if a page exists in range.
479 * @mapping: address space within which to check
480 * @start_byte: offset in bytes where the range starts
481 * @end_byte: offset in bytes where the range ends (inclusive)
483 * Find at least one page in the range supplied, usually used to check if
484 * direct writing in this range will trigger a writeback.
486 * Return: %true if at least one page exists in the specified range,
489 bool filemap_range_has_page(struct address_space
*mapping
,
490 loff_t start_byte
, loff_t end_byte
)
493 XA_STATE(xas
, &mapping
->i_pages
, start_byte
>> PAGE_SHIFT
);
494 pgoff_t max
= end_byte
>> PAGE_SHIFT
;
496 if (end_byte
< start_byte
)
501 folio
= xas_find(&xas
, max
);
502 if (xas_retry(&xas
, folio
))
504 /* Shadow entries don't count */
505 if (xa_is_value(folio
))
508 * We don't need to try to pin this page; we're about to
509 * release the RCU lock anyway. It is enough to know that
510 * there was a page here recently.
516 return folio
!= NULL
;
518 EXPORT_SYMBOL(filemap_range_has_page
);
520 static void __filemap_fdatawait_range(struct address_space
*mapping
,
521 loff_t start_byte
, loff_t end_byte
)
523 pgoff_t index
= start_byte
>> PAGE_SHIFT
;
524 pgoff_t end
= end_byte
>> PAGE_SHIFT
;
525 struct folio_batch fbatch
;
528 folio_batch_init(&fbatch
);
530 while (index
<= end
) {
533 nr_folios
= filemap_get_folios_tag(mapping
, &index
, end
,
534 PAGECACHE_TAG_WRITEBACK
, &fbatch
);
539 for (i
= 0; i
< nr_folios
; i
++) {
540 struct folio
*folio
= fbatch
.folios
[i
];
542 folio_wait_writeback(folio
);
544 folio_batch_release(&fbatch
);
550 * filemap_fdatawait_range - wait for writeback to complete
551 * @mapping: address space structure to wait for
552 * @start_byte: offset in bytes where the range starts
553 * @end_byte: offset in bytes where the range ends (inclusive)
555 * Walk the list of under-writeback pages of the given address space
556 * in the given range and wait for all of them. Check error status of
557 * the address space and return it.
559 * Since the error status of the address space is cleared by this function,
560 * callers are responsible for checking the return value and handling and/or
561 * reporting the error.
563 * Return: error status of the address space.
565 int filemap_fdatawait_range(struct address_space
*mapping
, loff_t start_byte
,
568 __filemap_fdatawait_range(mapping
, start_byte
, end_byte
);
569 return filemap_check_errors(mapping
);
571 EXPORT_SYMBOL(filemap_fdatawait_range
);
574 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
575 * @mapping: address space structure to wait for
576 * @start_byte: offset in bytes where the range starts
577 * @end_byte: offset in bytes where the range ends (inclusive)
579 * Walk the list of under-writeback pages of the given address space in the
580 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
581 * this function does not clear error status of the address space.
583 * Use this function if callers don't handle errors themselves. Expected
584 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
587 int filemap_fdatawait_range_keep_errors(struct address_space
*mapping
,
588 loff_t start_byte
, loff_t end_byte
)
590 __filemap_fdatawait_range(mapping
, start_byte
, end_byte
);
591 return filemap_check_and_keep_errors(mapping
);
593 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors
);
596 * file_fdatawait_range - wait for writeback to complete
597 * @file: file pointing to address space structure to wait for
598 * @start_byte: offset in bytes where the range starts
599 * @end_byte: offset in bytes where the range ends (inclusive)
601 * Walk the list of under-writeback pages of the address space that file
602 * refers to, in the given range and wait for all of them. Check error
603 * status of the address space vs. the file->f_wb_err cursor and return it.
605 * Since the error status of the file is advanced by this function,
606 * callers are responsible for checking the return value and handling and/or
607 * reporting the error.
609 * Return: error status of the address space vs. the file->f_wb_err cursor.
611 int file_fdatawait_range(struct file
*file
, loff_t start_byte
, loff_t end_byte
)
613 struct address_space
*mapping
= file
->f_mapping
;
615 __filemap_fdatawait_range(mapping
, start_byte
, end_byte
);
616 return file_check_and_advance_wb_err(file
);
618 EXPORT_SYMBOL(file_fdatawait_range
);
621 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
622 * @mapping: address space structure to wait for
624 * Walk the list of under-writeback pages of the given address space
625 * and wait for all of them. Unlike filemap_fdatawait(), this function
626 * does not clear error status of the address space.
628 * Use this function if callers don't handle errors themselves. Expected
629 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
632 * Return: error status of the address space.
634 int filemap_fdatawait_keep_errors(struct address_space
*mapping
)
636 __filemap_fdatawait_range(mapping
, 0, LLONG_MAX
);
637 return filemap_check_and_keep_errors(mapping
);
639 EXPORT_SYMBOL(filemap_fdatawait_keep_errors
);
641 /* Returns true if writeback might be needed or already in progress. */
642 static bool mapping_needs_writeback(struct address_space
*mapping
)
644 return mapping
->nrpages
;
647 bool filemap_range_has_writeback(struct address_space
*mapping
,
648 loff_t start_byte
, loff_t end_byte
)
650 XA_STATE(xas
, &mapping
->i_pages
, start_byte
>> PAGE_SHIFT
);
651 pgoff_t max
= end_byte
>> PAGE_SHIFT
;
654 if (end_byte
< start_byte
)
658 xas_for_each(&xas
, folio
, max
) {
659 if (xas_retry(&xas
, folio
))
661 if (xa_is_value(folio
))
663 if (folio_test_dirty(folio
) || folio_test_locked(folio
) ||
664 folio_test_writeback(folio
))
668 return folio
!= NULL
;
670 EXPORT_SYMBOL_GPL(filemap_range_has_writeback
);
673 * filemap_write_and_wait_range - write out & wait on a file range
674 * @mapping: the address_space for the pages
675 * @lstart: offset in bytes where the range starts
676 * @lend: offset in bytes where the range ends (inclusive)
678 * Write out and wait upon file offsets lstart->lend, inclusive.
680 * Note that @lend is inclusive (describes the last byte to be written) so
681 * that this function can be used to write to the very end-of-file (end = -1).
683 * Return: error status of the address space.
685 int filemap_write_and_wait_range(struct address_space
*mapping
,
686 loff_t lstart
, loff_t lend
)
693 if (mapping_needs_writeback(mapping
)) {
694 err
= __filemap_fdatawrite_range(mapping
, lstart
, lend
,
697 * Even if the above returned error, the pages may be
698 * written partially (e.g. -ENOSPC), so we wait for it.
699 * But the -EIO is special case, it may indicate the worst
700 * thing (e.g. bug) happened, so we avoid waiting for it.
703 __filemap_fdatawait_range(mapping
, lstart
, lend
);
705 err2
= filemap_check_errors(mapping
);
710 EXPORT_SYMBOL(filemap_write_and_wait_range
);
712 void __filemap_set_wb_err(struct address_space
*mapping
, int err
)
714 errseq_t eseq
= errseq_set(&mapping
->wb_err
, err
);
716 trace_filemap_set_wb_err(mapping
, eseq
);
718 EXPORT_SYMBOL(__filemap_set_wb_err
);
721 * file_check_and_advance_wb_err - report wb error (if any) that was previously
722 * and advance wb_err to current one
723 * @file: struct file on which the error is being reported
725 * When userland calls fsync (or something like nfsd does the equivalent), we
726 * want to report any writeback errors that occurred since the last fsync (or
727 * since the file was opened if there haven't been any).
729 * Grab the wb_err from the mapping. If it matches what we have in the file,
730 * then just quickly return 0. The file is all caught up.
732 * If it doesn't match, then take the mapping value, set the "seen" flag in
733 * it and try to swap it into place. If it works, or another task beat us
734 * to it with the new value, then update the f_wb_err and return the error
735 * portion. The error at this point must be reported via proper channels
736 * (a'la fsync, or NFS COMMIT operation, etc.).
738 * While we handle mapping->wb_err with atomic operations, the f_wb_err
739 * value is protected by the f_lock since we must ensure that it reflects
740 * the latest value swapped in for this file descriptor.
742 * Return: %0 on success, negative error code otherwise.
744 int file_check_and_advance_wb_err(struct file
*file
)
747 errseq_t old
= READ_ONCE(file
->f_wb_err
);
748 struct address_space
*mapping
= file
->f_mapping
;
750 /* Locklessly handle the common case where nothing has changed */
751 if (errseq_check(&mapping
->wb_err
, old
)) {
752 /* Something changed, must use slow path */
753 spin_lock(&file
->f_lock
);
754 old
= file
->f_wb_err
;
755 err
= errseq_check_and_advance(&mapping
->wb_err
,
757 trace_file_check_and_advance_wb_err(file
, old
);
758 spin_unlock(&file
->f_lock
);
762 * We're mostly using this function as a drop in replacement for
763 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
764 * that the legacy code would have had on these flags.
766 clear_bit(AS_EIO
, &mapping
->flags
);
767 clear_bit(AS_ENOSPC
, &mapping
->flags
);
770 EXPORT_SYMBOL(file_check_and_advance_wb_err
);
773 * file_write_and_wait_range - write out & wait on a file range
774 * @file: file pointing to address_space with pages
775 * @lstart: offset in bytes where the range starts
776 * @lend: offset in bytes where the range ends (inclusive)
778 * Write out and wait upon file offsets lstart->lend, inclusive.
780 * Note that @lend is inclusive (describes the last byte to be written) so
781 * that this function can be used to write to the very end-of-file (end = -1).
783 * After writing out and waiting on the data, we check and advance the
784 * f_wb_err cursor to the latest value, and return any errors detected there.
786 * Return: %0 on success, negative error code otherwise.
788 int file_write_and_wait_range(struct file
*file
, loff_t lstart
, loff_t lend
)
791 struct address_space
*mapping
= file
->f_mapping
;
796 if (mapping_needs_writeback(mapping
)) {
797 err
= __filemap_fdatawrite_range(mapping
, lstart
, lend
,
799 /* See comment of filemap_write_and_wait() */
801 __filemap_fdatawait_range(mapping
, lstart
, lend
);
803 err2
= file_check_and_advance_wb_err(file
);
808 EXPORT_SYMBOL(file_write_and_wait_range
);
811 * replace_page_cache_folio - replace a pagecache folio with a new one
812 * @old: folio to be replaced
813 * @new: folio to replace with
815 * This function replaces a folio in the pagecache with a new one. On
816 * success it acquires the pagecache reference for the new folio and
817 * drops it for the old folio. Both the old and new folios must be
818 * locked. This function does not add the new folio to the LRU, the
819 * caller must do that.
821 * The remove + add is atomic. This function cannot fail.
823 void replace_page_cache_folio(struct folio
*old
, struct folio
*new)
825 struct address_space
*mapping
= old
->mapping
;
826 void (*free_folio
)(struct folio
*) = mapping
->a_ops
->free_folio
;
827 pgoff_t offset
= old
->index
;
828 XA_STATE(xas
, &mapping
->i_pages
, offset
);
830 VM_BUG_ON_FOLIO(!folio_test_locked(old
), old
);
831 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
832 VM_BUG_ON_FOLIO(new->mapping
, new);
835 new->mapping
= mapping
;
838 mem_cgroup_replace_folio(old
, new);
841 xas_store(&xas
, new);
844 /* hugetlb pages do not participate in page cache accounting. */
845 if (!folio_test_hugetlb(old
))
846 __lruvec_stat_sub_folio(old
, NR_FILE_PAGES
);
847 if (!folio_test_hugetlb(new))
848 __lruvec_stat_add_folio(new, NR_FILE_PAGES
);
849 if (folio_test_swapbacked(old
))
850 __lruvec_stat_sub_folio(old
, NR_SHMEM
);
851 if (folio_test_swapbacked(new))
852 __lruvec_stat_add_folio(new, NR_SHMEM
);
853 xas_unlock_irq(&xas
);
858 EXPORT_SYMBOL_GPL(replace_page_cache_folio
);
860 noinline
int __filemap_add_folio(struct address_space
*mapping
,
861 struct folio
*folio
, pgoff_t index
, gfp_t gfp
, void **shadowp
)
863 XA_STATE(xas
, &mapping
->i_pages
, index
);
864 void *alloced_shadow
= NULL
;
865 int alloced_order
= 0;
869 VM_BUG_ON_FOLIO(!folio_test_locked(folio
), folio
);
870 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio
), folio
);
871 VM_BUG_ON_FOLIO(folio_order(folio
) < mapping_min_folio_order(mapping
),
873 mapping_set_update(&xas
, mapping
);
875 VM_BUG_ON_FOLIO(index
& (folio_nr_pages(folio
) - 1), folio
);
876 xas_set_order(&xas
, index
, folio_order(folio
));
877 huge
= folio_test_hugetlb(folio
);
878 nr
= folio_nr_pages(folio
);
880 gfp
&= GFP_RECLAIM_MASK
;
881 folio_ref_add(folio
, nr
);
882 folio
->mapping
= mapping
;
883 folio
->index
= xas
.xa_index
;
886 int order
= -1, split_order
= 0;
887 void *entry
, *old
= NULL
;
890 xas_for_each_conflict(&xas
, entry
) {
892 if (!xa_is_value(entry
)) {
893 xas_set_err(&xas
, -EEXIST
);
897 * If a larger entry exists,
898 * it will be the first and only entry iterated.
901 order
= xas_get_order(&xas
);
904 /* entry may have changed before we re-acquire the lock */
905 if (alloced_order
&& (old
!= alloced_shadow
|| order
!= alloced_order
)) {
911 if (order
> 0 && order
> folio_order(folio
)) {
912 /* How to handle large swap entries? */
913 BUG_ON(shmem_mapping(mapping
));
914 if (!alloced_order
) {
918 xas_split(&xas
, old
, order
);
925 xas_store(&xas
, folio
);
929 mapping
->nrpages
+= nr
;
931 /* hugetlb pages do not participate in page cache accounting */
933 __lruvec_stat_mod_folio(folio
, NR_FILE_PAGES
, nr
);
934 if (folio_test_pmd_mappable(folio
))
935 __lruvec_stat_mod_folio(folio
,
940 xas_unlock_irq(&xas
);
942 /* split needed, alloc here and retry. */
944 xas_split_alloc(&xas
, old
, split_order
, gfp
);
947 alloced_shadow
= old
;
948 alloced_order
= split_order
;
953 if (!xas_nomem(&xas
, gfp
))
960 trace_mm_filemap_add_to_page_cache(folio
);
963 folio
->mapping
= NULL
;
964 /* Leave page->index set: truncation relies upon it */
965 folio_put_refs(folio
, nr
);
966 return xas_error(&xas
);
968 ALLOW_ERROR_INJECTION(__filemap_add_folio
, ERRNO
);
970 int filemap_add_folio(struct address_space
*mapping
, struct folio
*folio
,
971 pgoff_t index
, gfp_t gfp
)
976 ret
= mem_cgroup_charge(folio
, NULL
, gfp
);
980 __folio_set_locked(folio
);
981 ret
= __filemap_add_folio(mapping
, folio
, index
, gfp
, &shadow
);
983 mem_cgroup_uncharge(folio
);
984 __folio_clear_locked(folio
);
987 * The folio might have been evicted from cache only
988 * recently, in which case it should be activated like
989 * any other repeatedly accessed folio.
990 * The exception is folios getting rewritten; evicting other
991 * data from the working set, only to cache data that will
992 * get overwritten with something else, is a waste of memory.
994 WARN_ON_ONCE(folio_test_active(folio
));
995 if (!(gfp
& __GFP_WRITE
) && shadow
)
996 workingset_refault(folio
, shadow
);
997 folio_add_lru(folio
);
1001 EXPORT_SYMBOL_GPL(filemap_add_folio
);
1004 struct folio
*filemap_alloc_folio_noprof(gfp_t gfp
, unsigned int order
)
1007 struct folio
*folio
;
1009 if (cpuset_do_page_mem_spread()) {
1010 unsigned int cpuset_mems_cookie
;
1012 cpuset_mems_cookie
= read_mems_allowed_begin();
1013 n
= cpuset_mem_spread_node();
1014 folio
= __folio_alloc_node_noprof(gfp
, order
, n
);
1015 } while (!folio
&& read_mems_allowed_retry(cpuset_mems_cookie
));
1019 return folio_alloc_noprof(gfp
, order
);
1021 EXPORT_SYMBOL(filemap_alloc_folio_noprof
);
1025 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
1027 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
1029 * @mapping1: the first mapping to lock
1030 * @mapping2: the second mapping to lock
1032 void filemap_invalidate_lock_two(struct address_space
*mapping1
,
1033 struct address_space
*mapping2
)
1035 if (mapping1
> mapping2
)
1036 swap(mapping1
, mapping2
);
1038 down_write(&mapping1
->invalidate_lock
);
1039 if (mapping2
&& mapping1
!= mapping2
)
1040 down_write_nested(&mapping2
->invalidate_lock
, 1);
1042 EXPORT_SYMBOL(filemap_invalidate_lock_two
);
1045 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1047 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1049 * @mapping1: the first mapping to unlock
1050 * @mapping2: the second mapping to unlock
1052 void filemap_invalidate_unlock_two(struct address_space
*mapping1
,
1053 struct address_space
*mapping2
)
1056 up_write(&mapping1
->invalidate_lock
);
1057 if (mapping2
&& mapping1
!= mapping2
)
1058 up_write(&mapping2
->invalidate_lock
);
1060 EXPORT_SYMBOL(filemap_invalidate_unlock_two
);
1063 * In order to wait for pages to become available there must be
1064 * waitqueues associated with pages. By using a hash table of
1065 * waitqueues where the bucket discipline is to maintain all
1066 * waiters on the same queue and wake all when any of the pages
1067 * become available, and for the woken contexts to check to be
1068 * sure the appropriate page became available, this saves space
1069 * at a cost of "thundering herd" phenomena during rare hash
1072 #define PAGE_WAIT_TABLE_BITS 8
1073 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1074 static wait_queue_head_t folio_wait_table
[PAGE_WAIT_TABLE_SIZE
] __cacheline_aligned
;
1076 static wait_queue_head_t
*folio_waitqueue(struct folio
*folio
)
1078 return &folio_wait_table
[hash_ptr(folio
, PAGE_WAIT_TABLE_BITS
)];
1081 void __init
pagecache_init(void)
1085 for (i
= 0; i
< PAGE_WAIT_TABLE_SIZE
; i
++)
1086 init_waitqueue_head(&folio_wait_table
[i
]);
1088 page_writeback_init();
1092 * The page wait code treats the "wait->flags" somewhat unusually, because
1093 * we have multiple different kinds of waits, not just the usual "exclusive"
1098 * (a) no special bits set:
1100 * We're just waiting for the bit to be released, and when a waker
1101 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1102 * and remove it from the wait queue.
1104 * Simple and straightforward.
1106 * (b) WQ_FLAG_EXCLUSIVE:
1108 * The waiter is waiting to get the lock, and only one waiter should
1109 * be woken up to avoid any thundering herd behavior. We'll set the
1110 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1112 * This is the traditional exclusive wait.
1114 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1116 * The waiter is waiting to get the bit, and additionally wants the
1117 * lock to be transferred to it for fair lock behavior. If the lock
1118 * cannot be taken, we stop walking the wait queue without waking
1121 * This is the "fair lock handoff" case, and in addition to setting
1122 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1123 * that it now has the lock.
1125 static int wake_page_function(wait_queue_entry_t
*wait
, unsigned mode
, int sync
, void *arg
)
1128 struct wait_page_key
*key
= arg
;
1129 struct wait_page_queue
*wait_page
1130 = container_of(wait
, struct wait_page_queue
, wait
);
1132 if (!wake_page_match(wait_page
, key
))
1136 * If it's a lock handoff wait, we get the bit for it, and
1137 * stop walking (and do not wake it up) if we can't.
1139 flags
= wait
->flags
;
1140 if (flags
& WQ_FLAG_EXCLUSIVE
) {
1141 if (test_bit(key
->bit_nr
, &key
->folio
->flags
))
1143 if (flags
& WQ_FLAG_CUSTOM
) {
1144 if (test_and_set_bit(key
->bit_nr
, &key
->folio
->flags
))
1146 flags
|= WQ_FLAG_DONE
;
1151 * We are holding the wait-queue lock, but the waiter that
1152 * is waiting for this will be checking the flags without
1155 * So update the flags atomically, and wake up the waiter
1156 * afterwards to avoid any races. This store-release pairs
1157 * with the load-acquire in folio_wait_bit_common().
1159 smp_store_release(&wait
->flags
, flags
| WQ_FLAG_WOKEN
);
1160 wake_up_state(wait
->private, mode
);
1163 * Ok, we have successfully done what we're waiting for,
1164 * and we can unconditionally remove the wait entry.
1166 * Note that this pairs with the "finish_wait()" in the
1167 * waiter, and has to be the absolute last thing we do.
1168 * After this list_del_init(&wait->entry) the wait entry
1169 * might be de-allocated and the process might even have
1172 list_del_init_careful(&wait
->entry
);
1173 return (flags
& WQ_FLAG_EXCLUSIVE
) != 0;
1176 static void folio_wake_bit(struct folio
*folio
, int bit_nr
)
1178 wait_queue_head_t
*q
= folio_waitqueue(folio
);
1179 struct wait_page_key key
;
1180 unsigned long flags
;
1183 key
.bit_nr
= bit_nr
;
1186 spin_lock_irqsave(&q
->lock
, flags
);
1187 __wake_up_locked_key(q
, TASK_NORMAL
, &key
);
1190 * It's possible to miss clearing waiters here, when we woke our page
1191 * waiters, but the hashed waitqueue has waiters for other pages on it.
1192 * That's okay, it's a rare case. The next waker will clear it.
1194 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1195 * other), the flag may be cleared in the course of freeing the page;
1196 * but that is not required for correctness.
1198 if (!waitqueue_active(q
) || !key
.page_match
)
1199 folio_clear_waiters(folio
);
1201 spin_unlock_irqrestore(&q
->lock
, flags
);
1205 * A choice of three behaviors for folio_wait_bit_common():
1208 EXCLUSIVE
, /* Hold ref to page and take the bit when woken, like
1209 * __folio_lock() waiting on then setting PG_locked.
1211 SHARED
, /* Hold ref to page and check the bit when woken, like
1212 * folio_wait_writeback() waiting on PG_writeback.
1214 DROP
, /* Drop ref to page before wait, no check when woken,
1215 * like folio_put_wait_locked() on PG_locked.
1220 * Attempt to check (or get) the folio flag, and mark us done
1223 static inline bool folio_trylock_flag(struct folio
*folio
, int bit_nr
,
1224 struct wait_queue_entry
*wait
)
1226 if (wait
->flags
& WQ_FLAG_EXCLUSIVE
) {
1227 if (test_and_set_bit(bit_nr
, &folio
->flags
))
1229 } else if (test_bit(bit_nr
, &folio
->flags
))
1232 wait
->flags
|= WQ_FLAG_WOKEN
| WQ_FLAG_DONE
;
1236 /* How many times do we accept lock stealing from under a waiter? */
1237 int sysctl_page_lock_unfairness
= 5;
1239 static inline int folio_wait_bit_common(struct folio
*folio
, int bit_nr
,
1240 int state
, enum behavior behavior
)
1242 wait_queue_head_t
*q
= folio_waitqueue(folio
);
1243 int unfairness
= sysctl_page_lock_unfairness
;
1244 struct wait_page_queue wait_page
;
1245 wait_queue_entry_t
*wait
= &wait_page
.wait
;
1246 bool thrashing
= false;
1247 unsigned long pflags
;
1250 if (bit_nr
== PG_locked
&&
1251 !folio_test_uptodate(folio
) && folio_test_workingset(folio
)) {
1252 delayacct_thrashing_start(&in_thrashing
);
1253 psi_memstall_enter(&pflags
);
1258 wait
->func
= wake_page_function
;
1259 wait_page
.folio
= folio
;
1260 wait_page
.bit_nr
= bit_nr
;
1264 if (behavior
== EXCLUSIVE
) {
1265 wait
->flags
= WQ_FLAG_EXCLUSIVE
;
1266 if (--unfairness
< 0)
1267 wait
->flags
|= WQ_FLAG_CUSTOM
;
1271 * Do one last check whether we can get the
1272 * page bit synchronously.
1274 * Do the folio_set_waiters() marking before that
1275 * to let any waker we _just_ missed know they
1276 * need to wake us up (otherwise they'll never
1277 * even go to the slow case that looks at the
1278 * page queue), and add ourselves to the wait
1279 * queue if we need to sleep.
1281 * This part needs to be done under the queue
1282 * lock to avoid races.
1284 spin_lock_irq(&q
->lock
);
1285 folio_set_waiters(folio
);
1286 if (!folio_trylock_flag(folio
, bit_nr
, wait
))
1287 __add_wait_queue_entry_tail(q
, wait
);
1288 spin_unlock_irq(&q
->lock
);
1291 * From now on, all the logic will be based on
1292 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1293 * see whether the page bit testing has already
1294 * been done by the wake function.
1296 * We can drop our reference to the folio.
1298 if (behavior
== DROP
)
1302 * Note that until the "finish_wait()", or until
1303 * we see the WQ_FLAG_WOKEN flag, we need to
1304 * be very careful with the 'wait->flags', because
1305 * we may race with a waker that sets them.
1310 set_current_state(state
);
1312 /* Loop until we've been woken or interrupted */
1313 flags
= smp_load_acquire(&wait
->flags
);
1314 if (!(flags
& WQ_FLAG_WOKEN
)) {
1315 if (signal_pending_state(state
, current
))
1322 /* If we were non-exclusive, we're done */
1323 if (behavior
!= EXCLUSIVE
)
1326 /* If the waker got the lock for us, we're done */
1327 if (flags
& WQ_FLAG_DONE
)
1331 * Otherwise, if we're getting the lock, we need to
1332 * try to get it ourselves.
1334 * And if that fails, we'll have to retry this all.
1336 if (unlikely(test_and_set_bit(bit_nr
, folio_flags(folio
, 0))))
1339 wait
->flags
|= WQ_FLAG_DONE
;
1344 * If a signal happened, this 'finish_wait()' may remove the last
1345 * waiter from the wait-queues, but the folio waiters bit will remain
1346 * set. That's ok. The next wakeup will take care of it, and trying
1347 * to do it here would be difficult and prone to races.
1349 finish_wait(q
, wait
);
1352 delayacct_thrashing_end(&in_thrashing
);
1353 psi_memstall_leave(&pflags
);
1357 * NOTE! The wait->flags weren't stable until we've done the
1358 * 'finish_wait()', and we could have exited the loop above due
1359 * to a signal, and had a wakeup event happen after the signal
1360 * test but before the 'finish_wait()'.
1362 * So only after the finish_wait() can we reliably determine
1363 * if we got woken up or not, so we can now figure out the final
1364 * return value based on that state without races.
1366 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1367 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1369 if (behavior
== EXCLUSIVE
)
1370 return wait
->flags
& WQ_FLAG_DONE
? 0 : -EINTR
;
1372 return wait
->flags
& WQ_FLAG_WOKEN
? 0 : -EINTR
;
1375 #ifdef CONFIG_MIGRATION
1377 * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1378 * @entry: migration swap entry.
1379 * @ptl: already locked ptl. This function will drop the lock.
1381 * Wait for a migration entry referencing the given page to be removed. This is
1382 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1383 * this can be called without taking a reference on the page. Instead this
1384 * should be called while holding the ptl for the migration entry referencing
1387 * Returns after unlocking the ptl.
1389 * This follows the same logic as folio_wait_bit_common() so see the comments
1392 void migration_entry_wait_on_locked(swp_entry_t entry
, spinlock_t
*ptl
)
1395 struct wait_page_queue wait_page
;
1396 wait_queue_entry_t
*wait
= &wait_page
.wait
;
1397 bool thrashing
= false;
1398 unsigned long pflags
;
1400 wait_queue_head_t
*q
;
1401 struct folio
*folio
= pfn_swap_entry_folio(entry
);
1403 q
= folio_waitqueue(folio
);
1404 if (!folio_test_uptodate(folio
) && folio_test_workingset(folio
)) {
1405 delayacct_thrashing_start(&in_thrashing
);
1406 psi_memstall_enter(&pflags
);
1411 wait
->func
= wake_page_function
;
1412 wait_page
.folio
= folio
;
1413 wait_page
.bit_nr
= PG_locked
;
1416 spin_lock_irq(&q
->lock
);
1417 folio_set_waiters(folio
);
1418 if (!folio_trylock_flag(folio
, PG_locked
, wait
))
1419 __add_wait_queue_entry_tail(q
, wait
);
1420 spin_unlock_irq(&q
->lock
);
1423 * If a migration entry exists for the page the migration path must hold
1424 * a valid reference to the page, and it must take the ptl to remove the
1425 * migration entry. So the page is valid until the ptl is dropped.
1432 set_current_state(TASK_UNINTERRUPTIBLE
);
1434 /* Loop until we've been woken or interrupted */
1435 flags
= smp_load_acquire(&wait
->flags
);
1436 if (!(flags
& WQ_FLAG_WOKEN
)) {
1437 if (signal_pending_state(TASK_UNINTERRUPTIBLE
, current
))
1446 finish_wait(q
, wait
);
1449 delayacct_thrashing_end(&in_thrashing
);
1450 psi_memstall_leave(&pflags
);
1455 void folio_wait_bit(struct folio
*folio
, int bit_nr
)
1457 folio_wait_bit_common(folio
, bit_nr
, TASK_UNINTERRUPTIBLE
, SHARED
);
1459 EXPORT_SYMBOL(folio_wait_bit
);
1461 int folio_wait_bit_killable(struct folio
*folio
, int bit_nr
)
1463 return folio_wait_bit_common(folio
, bit_nr
, TASK_KILLABLE
, SHARED
);
1465 EXPORT_SYMBOL(folio_wait_bit_killable
);
1468 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1469 * @folio: The folio to wait for.
1470 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1472 * The caller should hold a reference on @folio. They expect the page to
1473 * become unlocked relatively soon, but do not wish to hold up migration
1474 * (for example) by holding the reference while waiting for the folio to
1475 * come unlocked. After this function returns, the caller should not
1476 * dereference @folio.
1478 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1480 static int folio_put_wait_locked(struct folio
*folio
, int state
)
1482 return folio_wait_bit_common(folio
, PG_locked
, state
, DROP
);
1486 * folio_unlock - Unlock a locked folio.
1487 * @folio: The folio.
1489 * Unlocks the folio and wakes up any thread sleeping on the page lock.
1491 * Context: May be called from interrupt or process context. May not be
1492 * called from NMI context.
1494 void folio_unlock(struct folio
*folio
)
1496 /* Bit 7 allows x86 to check the byte's sign bit */
1497 BUILD_BUG_ON(PG_waiters
!= 7);
1498 BUILD_BUG_ON(PG_locked
> 7);
1499 VM_BUG_ON_FOLIO(!folio_test_locked(folio
), folio
);
1500 if (folio_xor_flags_has_waiters(folio
, 1 << PG_locked
))
1501 folio_wake_bit(folio
, PG_locked
);
1503 EXPORT_SYMBOL(folio_unlock
);
1506 * folio_end_read - End read on a folio.
1507 * @folio: The folio.
1508 * @success: True if all reads completed successfully.
1510 * When all reads against a folio have completed, filesystems should
1511 * call this function to let the pagecache know that no more reads
1512 * are outstanding. This will unlock the folio and wake up any thread
1513 * sleeping on the lock. The folio will also be marked uptodate if all
1516 * Context: May be called from interrupt or process context. May not be
1517 * called from NMI context.
1519 void folio_end_read(struct folio
*folio
, bool success
)
1521 unsigned long mask
= 1 << PG_locked
;
1523 /* Must be in bottom byte for x86 to work */
1524 BUILD_BUG_ON(PG_uptodate
> 7);
1525 VM_BUG_ON_FOLIO(!folio_test_locked(folio
), folio
);
1526 VM_BUG_ON_FOLIO(success
&& folio_test_uptodate(folio
), folio
);
1528 if (likely(success
))
1529 mask
|= 1 << PG_uptodate
;
1530 if (folio_xor_flags_has_waiters(folio
, mask
))
1531 folio_wake_bit(folio
, PG_locked
);
1533 EXPORT_SYMBOL(folio_end_read
);
1536 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1537 * @folio: The folio.
1539 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1540 * it. The folio reference held for PG_private_2 being set is released.
1542 * This is, for example, used when a netfs folio is being written to a local
1543 * disk cache, thereby allowing writes to the cache for the same folio to be
1546 void folio_end_private_2(struct folio
*folio
)
1548 VM_BUG_ON_FOLIO(!folio_test_private_2(folio
), folio
);
1549 clear_bit_unlock(PG_private_2
, folio_flags(folio
, 0));
1550 folio_wake_bit(folio
, PG_private_2
);
1553 EXPORT_SYMBOL(folio_end_private_2
);
1556 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1557 * @folio: The folio to wait on.
1559 * Wait for PG_private_2 to be cleared on a folio.
1561 void folio_wait_private_2(struct folio
*folio
)
1563 while (folio_test_private_2(folio
))
1564 folio_wait_bit(folio
, PG_private_2
);
1566 EXPORT_SYMBOL(folio_wait_private_2
);
1569 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1570 * @folio: The folio to wait on.
1572 * Wait for PG_private_2 to be cleared on a folio or until a fatal signal is
1573 * received by the calling task.
1576 * - 0 if successful.
1577 * - -EINTR if a fatal signal was encountered.
1579 int folio_wait_private_2_killable(struct folio
*folio
)
1583 while (folio_test_private_2(folio
)) {
1584 ret
= folio_wait_bit_killable(folio
, PG_private_2
);
1591 EXPORT_SYMBOL(folio_wait_private_2_killable
);
1594 * If folio was marked as dropbehind, then pages should be dropped when writeback
1595 * completes. Do that now. If we fail, it's likely because of a big folio -
1596 * just reset dropbehind for that case and latter completions should invalidate.
1598 static void folio_end_dropbehind_write(struct folio
*folio
)
1601 * Hitting !in_task() should not happen off RWF_DONTCACHE writeback,
1602 * but can happen if normal writeback just happens to find dirty folios
1603 * that were created as part of uncached writeback, and that writeback
1604 * would otherwise not need non-IRQ handling. Just skip the
1605 * invalidation in that case.
1607 if (in_task() && folio_trylock(folio
)) {
1609 folio_unmap_invalidate(folio
->mapping
, folio
, 0);
1610 folio_unlock(folio
);
1615 * folio_end_writeback - End writeback against a folio.
1616 * @folio: The folio.
1618 * The folio must actually be under writeback.
1620 * Context: May be called from process or interrupt context.
1622 void folio_end_writeback(struct folio
*folio
)
1624 bool folio_dropbehind
= false;
1626 VM_BUG_ON_FOLIO(!folio_test_writeback(folio
), folio
);
1629 * folio_test_clear_reclaim() could be used here but it is an
1630 * atomic operation and overkill in this particular case. Failing
1631 * to shuffle a folio marked for immediate reclaim is too mild
1632 * a gain to justify taking an atomic operation penalty at the
1633 * end of every folio writeback.
1635 if (folio_test_reclaim(folio
)) {
1636 folio_clear_reclaim(folio
);
1637 folio_rotate_reclaimable(folio
);
1641 * Writeback does not hold a folio reference of its own, relying
1642 * on truncation to wait for the clearing of PG_writeback.
1643 * But here we must make sure that the folio is not freed and
1644 * reused before the folio_wake_bit().
1647 if (!folio_test_dirty(folio
))
1648 folio_dropbehind
= folio_test_clear_dropbehind(folio
);
1649 if (__folio_end_writeback(folio
))
1650 folio_wake_bit(folio
, PG_writeback
);
1651 acct_reclaim_writeback(folio
);
1653 if (folio_dropbehind
)
1654 folio_end_dropbehind_write(folio
);
1657 EXPORT_SYMBOL(folio_end_writeback
);
1660 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1661 * @folio: The folio to lock
1663 void __folio_lock(struct folio
*folio
)
1665 folio_wait_bit_common(folio
, PG_locked
, TASK_UNINTERRUPTIBLE
,
1668 EXPORT_SYMBOL(__folio_lock
);
1670 int __folio_lock_killable(struct folio
*folio
)
1672 return folio_wait_bit_common(folio
, PG_locked
, TASK_KILLABLE
,
1675 EXPORT_SYMBOL_GPL(__folio_lock_killable
);
1677 static int __folio_lock_async(struct folio
*folio
, struct wait_page_queue
*wait
)
1679 struct wait_queue_head
*q
= folio_waitqueue(folio
);
1682 wait
->folio
= folio
;
1683 wait
->bit_nr
= PG_locked
;
1685 spin_lock_irq(&q
->lock
);
1686 __add_wait_queue_entry_tail(q
, &wait
->wait
);
1687 folio_set_waiters(folio
);
1688 ret
= !folio_trylock(folio
);
1690 * If we were successful now, we know we're still on the
1691 * waitqueue as we're still under the lock. This means it's
1692 * safe to remove and return success, we know the callback
1693 * isn't going to trigger.
1696 __remove_wait_queue(q
, &wait
->wait
);
1699 spin_unlock_irq(&q
->lock
);
1705 * 0 - folio is locked.
1706 * non-zero - folio is not locked.
1707 * mmap_lock or per-VMA lock has been released (mmap_read_unlock() or
1708 * vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and
1709 * FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held.
1711 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0
1712 * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed.
1714 vm_fault_t
__folio_lock_or_retry(struct folio
*folio
, struct vm_fault
*vmf
)
1716 unsigned int flags
= vmf
->flags
;
1718 if (fault_flag_allow_retry_first(flags
)) {
1720 * CAUTION! In this case, mmap_lock/per-VMA lock is not
1721 * released even though returning VM_FAULT_RETRY.
1723 if (flags
& FAULT_FLAG_RETRY_NOWAIT
)
1724 return VM_FAULT_RETRY
;
1726 release_fault_lock(vmf
);
1727 if (flags
& FAULT_FLAG_KILLABLE
)
1728 folio_wait_locked_killable(folio
);
1730 folio_wait_locked(folio
);
1731 return VM_FAULT_RETRY
;
1733 if (flags
& FAULT_FLAG_KILLABLE
) {
1736 ret
= __folio_lock_killable(folio
);
1738 release_fault_lock(vmf
);
1739 return VM_FAULT_RETRY
;
1742 __folio_lock(folio
);
1749 * page_cache_next_miss() - Find the next gap in the page cache.
1750 * @mapping: Mapping.
1752 * @max_scan: Maximum range to search.
1754 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1755 * gap with the lowest index.
1757 * This function may be called under the rcu_read_lock. However, this will
1758 * not atomically search a snapshot of the cache at a single point in time.
1759 * For example, if a gap is created at index 5, then subsequently a gap is
1760 * created at index 10, page_cache_next_miss covering both indices may
1761 * return 10 if called under the rcu_read_lock.
1763 * Return: The index of the gap if found, otherwise an index outside the
1764 * range specified (in which case 'return - index >= max_scan' will be true).
1765 * In the rare case of index wrap-around, 0 will be returned.
1767 pgoff_t
page_cache_next_miss(struct address_space
*mapping
,
1768 pgoff_t index
, unsigned long max_scan
)
1770 XA_STATE(xas
, &mapping
->i_pages
, index
);
1772 while (max_scan
--) {
1773 void *entry
= xas_next(&xas
);
1774 if (!entry
|| xa_is_value(entry
))
1775 return xas
.xa_index
;
1776 if (xas
.xa_index
== 0)
1780 return index
+ max_scan
;
1782 EXPORT_SYMBOL(page_cache_next_miss
);
1785 * page_cache_prev_miss() - Find the previous gap in the page cache.
1786 * @mapping: Mapping.
1788 * @max_scan: Maximum range to search.
1790 * Search the range [max(index - max_scan + 1, 0), index] for the
1791 * gap with the highest index.
1793 * This function may be called under the rcu_read_lock. However, this will
1794 * not atomically search a snapshot of the cache at a single point in time.
1795 * For example, if a gap is created at index 10, then subsequently a gap is
1796 * created at index 5, page_cache_prev_miss() covering both indices may
1797 * return 5 if called under the rcu_read_lock.
1799 * Return: The index of the gap if found, otherwise an index outside the
1800 * range specified (in which case 'index - return >= max_scan' will be true).
1801 * In the rare case of wrap-around, ULONG_MAX will be returned.
1803 pgoff_t
page_cache_prev_miss(struct address_space
*mapping
,
1804 pgoff_t index
, unsigned long max_scan
)
1806 XA_STATE(xas
, &mapping
->i_pages
, index
);
1808 while (max_scan
--) {
1809 void *entry
= xas_prev(&xas
);
1810 if (!entry
|| xa_is_value(entry
))
1812 if (xas
.xa_index
== ULONG_MAX
)
1816 return xas
.xa_index
;
1818 EXPORT_SYMBOL(page_cache_prev_miss
);
1821 * Lockless page cache protocol:
1822 * On the lookup side:
1823 * 1. Load the folio from i_pages
1824 * 2. Increment the refcount if it's not zero
1825 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1827 * On the removal side:
1828 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1829 * B. Remove the page from i_pages
1830 * C. Return the page to the page allocator
1832 * This means that any page may have its reference count temporarily
1833 * increased by a speculative page cache (or GUP-fast) lookup as it can
1834 * be allocated by another user before the RCU grace period expires.
1835 * Because the refcount temporarily acquired here may end up being the
1836 * last refcount on the page, any page allocation must be freeable by
1841 * filemap_get_entry - Get a page cache entry.
1842 * @mapping: the address_space to search
1843 * @index: The page cache index.
1845 * Looks up the page cache entry at @mapping & @index. If it is a folio,
1846 * it is returned with an increased refcount. If it is a shadow entry
1847 * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1848 * it is returned without further action.
1850 * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1852 void *filemap_get_entry(struct address_space
*mapping
, pgoff_t index
)
1854 XA_STATE(xas
, &mapping
->i_pages
, index
);
1855 struct folio
*folio
;
1860 folio
= xas_load(&xas
);
1861 if (xas_retry(&xas
, folio
))
1864 * A shadow entry of a recently evicted page, or a swap entry from
1865 * shmem/tmpfs. Return it without attempting to raise page count.
1867 if (!folio
|| xa_is_value(folio
))
1870 if (!folio_try_get(folio
))
1873 if (unlikely(folio
!= xas_reload(&xas
))) {
1884 * __filemap_get_folio - Find and get a reference to a folio.
1885 * @mapping: The address_space to search.
1886 * @index: The page index.
1887 * @fgp_flags: %FGP flags modify how the folio is returned.
1888 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1890 * Looks up the page cache entry at @mapping & @index.
1892 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1893 * if the %GFP flags specified for %FGP_CREAT are atomic.
1895 * If this function returns a folio, it is returned with an increased refcount.
1897 * Return: The found folio or an ERR_PTR() otherwise.
1899 struct folio
*__filemap_get_folio(struct address_space
*mapping
, pgoff_t index
,
1900 fgf_t fgp_flags
, gfp_t gfp
)
1902 struct folio
*folio
;
1905 folio
= filemap_get_entry(mapping
, index
);
1906 if (xa_is_value(folio
))
1911 if (fgp_flags
& FGP_LOCK
) {
1912 if (fgp_flags
& FGP_NOWAIT
) {
1913 if (!folio_trylock(folio
)) {
1915 return ERR_PTR(-EAGAIN
);
1921 /* Has the page been truncated? */
1922 if (unlikely(folio
->mapping
!= mapping
)) {
1923 folio_unlock(folio
);
1927 VM_BUG_ON_FOLIO(!folio_contains(folio
, index
), folio
);
1930 if (fgp_flags
& FGP_ACCESSED
)
1931 folio_mark_accessed(folio
);
1932 else if (fgp_flags
& FGP_WRITE
) {
1933 /* Clear idle flag for buffer write */
1934 if (folio_test_idle(folio
))
1935 folio_clear_idle(folio
);
1938 if (fgp_flags
& FGP_STABLE
)
1939 folio_wait_stable(folio
);
1941 if (!folio
&& (fgp_flags
& FGP_CREAT
)) {
1942 unsigned int min_order
= mapping_min_folio_order(mapping
);
1943 unsigned int order
= max(min_order
, FGF_GET_ORDER(fgp_flags
));
1945 index
= mapping_align_index(mapping
, index
);
1947 if ((fgp_flags
& FGP_WRITE
) && mapping_can_writeback(mapping
))
1949 if (fgp_flags
& FGP_NOFS
)
1951 if (fgp_flags
& FGP_NOWAIT
) {
1953 gfp
|= GFP_NOWAIT
| __GFP_NOWARN
;
1955 if (WARN_ON_ONCE(!(fgp_flags
& (FGP_LOCK
| FGP_FOR_MMAP
))))
1956 fgp_flags
|= FGP_LOCK
;
1958 if (order
> mapping_max_folio_order(mapping
))
1959 order
= mapping_max_folio_order(mapping
);
1960 /* If we're not aligned, allocate a smaller folio */
1961 if (index
& ((1UL << order
) - 1))
1962 order
= __ffs(index
);
1965 gfp_t alloc_gfp
= gfp
;
1968 if (order
> min_order
)
1969 alloc_gfp
|= __GFP_NORETRY
| __GFP_NOWARN
;
1970 folio
= filemap_alloc_folio(alloc_gfp
, order
);
1974 /* Init accessed so avoid atomic mark_page_accessed later */
1975 if (fgp_flags
& FGP_ACCESSED
)
1976 __folio_set_referenced(folio
);
1977 if (fgp_flags
& FGP_DONTCACHE
)
1978 __folio_set_dropbehind(folio
);
1980 err
= filemap_add_folio(mapping
, folio
, index
, gfp
);
1985 } while (order
-- > min_order
);
1990 return ERR_PTR(err
);
1992 * filemap_add_folio locks the page, and for mmap
1993 * we expect an unlocked page.
1995 if (folio
&& (fgp_flags
& FGP_FOR_MMAP
))
1996 folio_unlock(folio
);
2000 return ERR_PTR(-ENOENT
);
2001 /* not an uncached lookup, clear uncached if set */
2002 if (folio_test_dropbehind(folio
) && !(fgp_flags
& FGP_DONTCACHE
))
2003 folio_clear_dropbehind(folio
);
2006 EXPORT_SYMBOL(__filemap_get_folio
);
2008 static inline struct folio
*find_get_entry(struct xa_state
*xas
, pgoff_t max
,
2011 struct folio
*folio
;
2014 if (mark
== XA_PRESENT
)
2015 folio
= xas_find(xas
, max
);
2017 folio
= xas_find_marked(xas
, max
, mark
);
2019 if (xas_retry(xas
, folio
))
2022 * A shadow entry of a recently evicted page, a swap
2023 * entry from shmem/tmpfs or a DAX entry. Return it
2024 * without attempting to raise page count.
2026 if (!folio
|| xa_is_value(folio
))
2029 if (!folio_try_get(folio
))
2032 if (unlikely(folio
!= xas_reload(xas
))) {
2044 * find_get_entries - gang pagecache lookup
2045 * @mapping: The address_space to search
2046 * @start: The starting page cache index
2047 * @end: The final page index (inclusive).
2048 * @fbatch: Where the resulting entries are placed.
2049 * @indices: The cache indices corresponding to the entries in @entries
2051 * find_get_entries() will search for and return a batch of entries in
2052 * the mapping. The entries are placed in @fbatch. find_get_entries()
2053 * takes a reference on any actual folios it returns.
2055 * The entries have ascending indexes. The indices may not be consecutive
2056 * due to not-present entries or large folios.
2058 * Any shadow entries of evicted folios, or swap entries from
2059 * shmem/tmpfs, are included in the returned array.
2061 * Return: The number of entries which were found.
2063 unsigned find_get_entries(struct address_space
*mapping
, pgoff_t
*start
,
2064 pgoff_t end
, struct folio_batch
*fbatch
, pgoff_t
*indices
)
2066 XA_STATE(xas
, &mapping
->i_pages
, *start
);
2067 struct folio
*folio
;
2070 while ((folio
= find_get_entry(&xas
, end
, XA_PRESENT
)) != NULL
) {
2071 indices
[fbatch
->nr
] = xas
.xa_index
;
2072 if (!folio_batch_add(fbatch
, folio
))
2076 if (folio_batch_count(fbatch
)) {
2078 int idx
= folio_batch_count(fbatch
) - 1;
2080 folio
= fbatch
->folios
[idx
];
2081 if (!xa_is_value(folio
))
2082 nr
= folio_nr_pages(folio
);
2084 nr
= 1 << xa_get_order(&mapping
->i_pages
, indices
[idx
]);
2085 *start
= round_down(indices
[idx
] + nr
, nr
);
2089 return folio_batch_count(fbatch
);
2093 * find_lock_entries - Find a batch of pagecache entries.
2094 * @mapping: The address_space to search.
2095 * @start: The starting page cache index.
2096 * @end: The final page index (inclusive).
2097 * @fbatch: Where the resulting entries are placed.
2098 * @indices: The cache indices of the entries in @fbatch.
2100 * find_lock_entries() will return a batch of entries from @mapping.
2101 * Swap, shadow and DAX entries are included. Folios are returned
2102 * locked and with an incremented refcount. Folios which are locked
2103 * by somebody else or under writeback are skipped. Folios which are
2104 * partially outside the range are not returned.
2106 * The entries have ascending indexes. The indices may not be consecutive
2107 * due to not-present entries, large folios, folios which could not be
2108 * locked or folios under writeback.
2110 * Return: The number of entries which were found.
2112 unsigned find_lock_entries(struct address_space
*mapping
, pgoff_t
*start
,
2113 pgoff_t end
, struct folio_batch
*fbatch
, pgoff_t
*indices
)
2115 XA_STATE(xas
, &mapping
->i_pages
, *start
);
2116 struct folio
*folio
;
2119 while ((folio
= find_get_entry(&xas
, end
, XA_PRESENT
))) {
2123 if (!xa_is_value(folio
)) {
2124 nr
= folio_nr_pages(folio
);
2125 base
= folio
->index
;
2126 /* Omit large folio which begins before the start */
2129 /* Omit large folio which extends beyond the end */
2130 if (base
+ nr
- 1 > end
)
2132 if (!folio_trylock(folio
))
2134 if (folio
->mapping
!= mapping
||
2135 folio_test_writeback(folio
))
2137 VM_BUG_ON_FOLIO(!folio_contains(folio
, xas
.xa_index
),
2140 nr
= 1 << xas_get_order(&xas
);
2141 base
= xas
.xa_index
& ~(nr
- 1);
2142 /* Omit order>0 value which begins before the start */
2145 /* Omit order>0 value which extends beyond the end */
2146 if (base
+ nr
- 1 > end
)
2150 /* Update start now so that last update is correct on return */
2152 indices
[fbatch
->nr
] = xas
.xa_index
;
2153 if (!folio_batch_add(fbatch
, folio
))
2157 folio_unlock(folio
);
2163 return folio_batch_count(fbatch
);
2167 * filemap_get_folios - Get a batch of folios
2168 * @mapping: The address_space to search
2169 * @start: The starting page index
2170 * @end: The final page index (inclusive)
2171 * @fbatch: The batch to fill.
2173 * Search for and return a batch of folios in the mapping starting at
2174 * index @start and up to index @end (inclusive). The folios are returned
2175 * in @fbatch with an elevated reference count.
2177 * Return: The number of folios which were found.
2178 * We also update @start to index the next folio for the traversal.
2180 unsigned filemap_get_folios(struct address_space
*mapping
, pgoff_t
*start
,
2181 pgoff_t end
, struct folio_batch
*fbatch
)
2183 return filemap_get_folios_tag(mapping
, start
, end
, XA_PRESENT
, fbatch
);
2185 EXPORT_SYMBOL(filemap_get_folios
);
2188 * filemap_get_folios_contig - Get a batch of contiguous folios
2189 * @mapping: The address_space to search
2190 * @start: The starting page index
2191 * @end: The final page index (inclusive)
2192 * @fbatch: The batch to fill
2194 * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2195 * except the returned folios are guaranteed to be contiguous. This may
2196 * not return all contiguous folios if the batch gets filled up.
2198 * Return: The number of folios found.
2199 * Also update @start to be positioned for traversal of the next folio.
2202 unsigned filemap_get_folios_contig(struct address_space
*mapping
,
2203 pgoff_t
*start
, pgoff_t end
, struct folio_batch
*fbatch
)
2205 XA_STATE(xas
, &mapping
->i_pages
, *start
);
2207 struct folio
*folio
;
2211 for (folio
= xas_load(&xas
); folio
&& xas
.xa_index
<= end
;
2212 folio
= xas_next(&xas
)) {
2213 if (xas_retry(&xas
, folio
))
2216 * If the entry has been swapped out, we can stop looking.
2217 * No current caller is looking for DAX entries.
2219 if (xa_is_value(folio
))
2222 /* If we landed in the middle of a THP, continue at its end. */
2223 if (xa_is_sibling(folio
))
2226 if (!folio_try_get(folio
))
2229 if (unlikely(folio
!= xas_reload(&xas
)))
2232 if (!folio_batch_add(fbatch
, folio
)) {
2233 nr
= folio_nr_pages(folio
);
2234 *start
= folio
->index
+ nr
;
2246 nr
= folio_batch_count(fbatch
);
2249 folio
= fbatch
->folios
[nr
- 1];
2250 *start
= folio_next_index(folio
);
2254 return folio_batch_count(fbatch
);
2256 EXPORT_SYMBOL(filemap_get_folios_contig
);
2259 * filemap_get_folios_tag - Get a batch of folios matching @tag
2260 * @mapping: The address_space to search
2261 * @start: The starting page index
2262 * @end: The final page index (inclusive)
2263 * @tag: The tag index
2264 * @fbatch: The batch to fill
2266 * The first folio may start before @start; if it does, it will contain
2267 * @start. The final folio may extend beyond @end; if it does, it will
2268 * contain @end. The folios have ascending indices. There may be gaps
2269 * between the folios if there are indices which have no folio in the
2270 * page cache. If folios are added to or removed from the page cache
2271 * while this is running, they may or may not be found by this call.
2272 * Only returns folios that are tagged with @tag.
2274 * Return: The number of folios found.
2275 * Also update @start to index the next folio for traversal.
2277 unsigned filemap_get_folios_tag(struct address_space
*mapping
, pgoff_t
*start
,
2278 pgoff_t end
, xa_mark_t tag
, struct folio_batch
*fbatch
)
2280 XA_STATE(xas
, &mapping
->i_pages
, *start
);
2281 struct folio
*folio
;
2284 while ((folio
= find_get_entry(&xas
, end
, tag
)) != NULL
) {
2286 * Shadow entries should never be tagged, but this iteration
2287 * is lockless so there is a window for page reclaim to evict
2288 * a page we saw tagged. Skip over it.
2290 if (xa_is_value(folio
))
2292 if (!folio_batch_add(fbatch
, folio
)) {
2293 unsigned long nr
= folio_nr_pages(folio
);
2294 *start
= folio
->index
+ nr
;
2299 * We come here when there is no page beyond @end. We take care to not
2300 * overflow the index @start as it confuses some of the callers. This
2301 * breaks the iteration when there is a page at index -1 but that is
2302 * already broke anyway.
2304 if (end
== (pgoff_t
)-1)
2305 *start
= (pgoff_t
)-1;
2311 return folio_batch_count(fbatch
);
2313 EXPORT_SYMBOL(filemap_get_folios_tag
);
2316 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2317 * a _large_ part of the i/o request. Imagine the worst scenario:
2319 * ---R__________________________________________B__________
2320 * ^ reading here ^ bad block(assume 4k)
2322 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2323 * => failing the whole request => read(R) => read(R+1) =>
2324 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2325 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2326 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2328 * It is going insane. Fix it by quickly scaling down the readahead size.
2330 static void shrink_readahead_size_eio(struct file_ra_state
*ra
)
2336 * filemap_get_read_batch - Get a batch of folios for read
2338 * Get a batch of folios which represent a contiguous range of bytes in
2339 * the file. No exceptional entries will be returned. If @index is in
2340 * the middle of a folio, the entire folio will be returned. The last
2341 * folio in the batch may have the readahead flag set or the uptodate flag
2342 * clear so that the caller can take the appropriate action.
2344 static void filemap_get_read_batch(struct address_space
*mapping
,
2345 pgoff_t index
, pgoff_t max
, struct folio_batch
*fbatch
)
2347 XA_STATE(xas
, &mapping
->i_pages
, index
);
2348 struct folio
*folio
;
2351 for (folio
= xas_load(&xas
); folio
; folio
= xas_next(&xas
)) {
2352 if (xas_retry(&xas
, folio
))
2354 if (xas
.xa_index
> max
|| xa_is_value(folio
))
2356 if (xa_is_sibling(folio
))
2358 if (!folio_try_get(folio
))
2361 if (unlikely(folio
!= xas_reload(&xas
)))
2364 if (!folio_batch_add(fbatch
, folio
))
2366 if (!folio_test_uptodate(folio
))
2368 if (folio_test_readahead(folio
))
2370 xas_advance(&xas
, folio_next_index(folio
) - 1);
2380 static int filemap_read_folio(struct file
*file
, filler_t filler
,
2381 struct folio
*folio
)
2383 bool workingset
= folio_test_workingset(folio
);
2384 unsigned long pflags
;
2387 /* Start the actual read. The read will unlock the page. */
2388 if (unlikely(workingset
))
2389 psi_memstall_enter(&pflags
);
2390 error
= filler(file
, folio
);
2391 if (unlikely(workingset
))
2392 psi_memstall_leave(&pflags
);
2396 error
= folio_wait_locked_killable(folio
);
2399 if (folio_test_uptodate(folio
))
2402 shrink_readahead_size_eio(&file
->f_ra
);
2406 static bool filemap_range_uptodate(struct address_space
*mapping
,
2407 loff_t pos
, size_t count
, struct folio
*folio
,
2410 if (folio_test_uptodate(folio
))
2412 /* pipes can't handle partially uptodate pages */
2415 if (!mapping
->a_ops
->is_partially_uptodate
)
2417 if (mapping
->host
->i_blkbits
>= folio_shift(folio
))
2420 if (folio_pos(folio
) > pos
) {
2421 count
-= folio_pos(folio
) - pos
;
2424 pos
-= folio_pos(folio
);
2427 return mapping
->a_ops
->is_partially_uptodate(folio
, pos
, count
);
2430 static int filemap_update_page(struct kiocb
*iocb
,
2431 struct address_space
*mapping
, size_t count
,
2432 struct folio
*folio
, bool need_uptodate
)
2436 if (iocb
->ki_flags
& IOCB_NOWAIT
) {
2437 if (!filemap_invalidate_trylock_shared(mapping
))
2440 filemap_invalidate_lock_shared(mapping
);
2443 if (!folio_trylock(folio
)) {
2445 if (iocb
->ki_flags
& (IOCB_NOWAIT
| IOCB_NOIO
))
2446 goto unlock_mapping
;
2447 if (!(iocb
->ki_flags
& IOCB_WAITQ
)) {
2448 filemap_invalidate_unlock_shared(mapping
);
2450 * This is where we usually end up waiting for a
2451 * previously submitted readahead to finish.
2453 folio_put_wait_locked(folio
, TASK_KILLABLE
);
2454 return AOP_TRUNCATED_PAGE
;
2456 error
= __folio_lock_async(folio
, iocb
->ki_waitq
);
2458 goto unlock_mapping
;
2461 error
= AOP_TRUNCATED_PAGE
;
2462 if (!folio
->mapping
)
2466 if (filemap_range_uptodate(mapping
, iocb
->ki_pos
, count
, folio
,
2471 if (iocb
->ki_flags
& (IOCB_NOIO
| IOCB_NOWAIT
| IOCB_WAITQ
))
2474 error
= filemap_read_folio(iocb
->ki_filp
, mapping
->a_ops
->read_folio
,
2476 goto unlock_mapping
;
2478 folio_unlock(folio
);
2480 filemap_invalidate_unlock_shared(mapping
);
2481 if (error
== AOP_TRUNCATED_PAGE
)
2486 static int filemap_create_folio(struct kiocb
*iocb
, struct folio_batch
*fbatch
)
2488 struct address_space
*mapping
= iocb
->ki_filp
->f_mapping
;
2489 struct folio
*folio
;
2491 unsigned int min_order
= mapping_min_folio_order(mapping
);
2494 if (iocb
->ki_flags
& (IOCB_NOWAIT
| IOCB_WAITQ
))
2497 folio
= filemap_alloc_folio(mapping_gfp_mask(mapping
), min_order
);
2500 if (iocb
->ki_flags
& IOCB_DONTCACHE
)
2501 __folio_set_dropbehind(folio
);
2504 * Protect against truncate / hole punch. Grabbing invalidate_lock
2505 * here assures we cannot instantiate and bring uptodate new
2506 * pagecache folios after evicting page cache during truncate
2507 * and before actually freeing blocks. Note that we could
2508 * release invalidate_lock after inserting the folio into
2509 * the page cache as the locked folio would then be enough to
2510 * synchronize with hole punching. But there are code paths
2511 * such as filemap_update_page() filling in partially uptodate
2512 * pages or ->readahead() that need to hold invalidate_lock
2513 * while mapping blocks for IO so let's hold the lock here as
2514 * well to keep locking rules simple.
2516 filemap_invalidate_lock_shared(mapping
);
2517 index
= (iocb
->ki_pos
>> (PAGE_SHIFT
+ min_order
)) << min_order
;
2518 error
= filemap_add_folio(mapping
, folio
, index
,
2519 mapping_gfp_constraint(mapping
, GFP_KERNEL
));
2520 if (error
== -EEXIST
)
2521 error
= AOP_TRUNCATED_PAGE
;
2525 error
= filemap_read_folio(iocb
->ki_filp
, mapping
->a_ops
->read_folio
,
2530 filemap_invalidate_unlock_shared(mapping
);
2531 folio_batch_add(fbatch
, folio
);
2534 filemap_invalidate_unlock_shared(mapping
);
2539 static int filemap_readahead(struct kiocb
*iocb
, struct file
*file
,
2540 struct address_space
*mapping
, struct folio
*folio
,
2543 DEFINE_READAHEAD(ractl
, file
, &file
->f_ra
, mapping
, folio
->index
);
2545 if (iocb
->ki_flags
& IOCB_NOIO
)
2547 if (iocb
->ki_flags
& IOCB_DONTCACHE
)
2548 ractl
.dropbehind
= 1;
2549 page_cache_async_ra(&ractl
, folio
, last_index
- folio
->index
);
2553 static int filemap_get_pages(struct kiocb
*iocb
, size_t count
,
2554 struct folio_batch
*fbatch
, bool need_uptodate
)
2556 struct file
*filp
= iocb
->ki_filp
;
2557 struct address_space
*mapping
= filp
->f_mapping
;
2558 pgoff_t index
= iocb
->ki_pos
>> PAGE_SHIFT
;
2560 struct folio
*folio
;
2564 /* "last_index" is the index of the page beyond the end of the read */
2565 last_index
= DIV_ROUND_UP(iocb
->ki_pos
+ count
, PAGE_SIZE
);
2567 if (fatal_signal_pending(current
))
2570 filemap_get_read_batch(mapping
, index
, last_index
- 1, fbatch
);
2571 if (!folio_batch_count(fbatch
)) {
2572 DEFINE_READAHEAD(ractl
, filp
, &filp
->f_ra
, mapping
, index
);
2574 if (iocb
->ki_flags
& IOCB_NOIO
)
2576 if (iocb
->ki_flags
& IOCB_NOWAIT
)
2577 flags
= memalloc_noio_save();
2578 if (iocb
->ki_flags
& IOCB_DONTCACHE
)
2579 ractl
.dropbehind
= 1;
2580 page_cache_sync_ra(&ractl
, last_index
- index
);
2581 if (iocb
->ki_flags
& IOCB_NOWAIT
)
2582 memalloc_noio_restore(flags
);
2583 filemap_get_read_batch(mapping
, index
, last_index
- 1, fbatch
);
2585 if (!folio_batch_count(fbatch
)) {
2586 err
= filemap_create_folio(iocb
, fbatch
);
2587 if (err
== AOP_TRUNCATED_PAGE
)
2592 folio
= fbatch
->folios
[folio_batch_count(fbatch
) - 1];
2593 if (folio_test_readahead(folio
)) {
2594 err
= filemap_readahead(iocb
, filp
, mapping
, folio
, last_index
);
2598 if (!folio_test_uptodate(folio
)) {
2599 if ((iocb
->ki_flags
& IOCB_WAITQ
) &&
2600 folio_batch_count(fbatch
) > 1)
2601 iocb
->ki_flags
|= IOCB_NOWAIT
;
2602 err
= filemap_update_page(iocb
, mapping
, count
, folio
,
2608 trace_mm_filemap_get_pages(mapping
, index
, last_index
- 1);
2613 if (likely(--fbatch
->nr
))
2615 if (err
== AOP_TRUNCATED_PAGE
)
2620 static inline bool pos_same_folio(loff_t pos1
, loff_t pos2
, struct folio
*folio
)
2622 unsigned int shift
= folio_shift(folio
);
2624 return (pos1
>> shift
== pos2
>> shift
);
2627 static void filemap_end_dropbehind_read(struct address_space
*mapping
,
2628 struct folio
*folio
)
2630 if (!folio_test_dropbehind(folio
))
2632 if (folio_test_writeback(folio
) || folio_test_dirty(folio
))
2634 if (folio_trylock(folio
)) {
2635 if (folio_test_clear_dropbehind(folio
))
2636 folio_unmap_invalidate(mapping
, folio
, 0);
2637 folio_unlock(folio
);
2642 * filemap_read - Read data from the page cache.
2643 * @iocb: The iocb to read.
2644 * @iter: Destination for the data.
2645 * @already_read: Number of bytes already read by the caller.
2647 * Copies data from the page cache. If the data is not currently present,
2648 * uses the readahead and read_folio address_space operations to fetch it.
2650 * Return: Total number of bytes copied, including those already read by
2651 * the caller. If an error happens before any bytes are copied, returns
2652 * a negative error number.
2654 ssize_t
filemap_read(struct kiocb
*iocb
, struct iov_iter
*iter
,
2655 ssize_t already_read
)
2657 struct file
*filp
= iocb
->ki_filp
;
2658 struct file_ra_state
*ra
= &filp
->f_ra
;
2659 struct address_space
*mapping
= filp
->f_mapping
;
2660 struct inode
*inode
= mapping
->host
;
2661 struct folio_batch fbatch
;
2663 bool writably_mapped
;
2664 loff_t isize
, end_offset
;
2665 loff_t last_pos
= ra
->prev_pos
;
2667 if (unlikely(iocb
->ki_pos
< 0))
2669 if (unlikely(iocb
->ki_pos
>= inode
->i_sb
->s_maxbytes
))
2671 if (unlikely(!iov_iter_count(iter
)))
2674 iov_iter_truncate(iter
, inode
->i_sb
->s_maxbytes
- iocb
->ki_pos
);
2675 folio_batch_init(&fbatch
);
2681 * If we've already successfully copied some data, then we
2682 * can no longer safely return -EIOCBQUEUED. Hence mark
2683 * an async read NOWAIT at that point.
2685 if ((iocb
->ki_flags
& IOCB_WAITQ
) && already_read
)
2686 iocb
->ki_flags
|= IOCB_NOWAIT
;
2688 if (unlikely(iocb
->ki_pos
>= i_size_read(inode
)))
2691 error
= filemap_get_pages(iocb
, iter
->count
, &fbatch
, false);
2696 * i_size must be checked after we know the pages are Uptodate.
2698 * Checking i_size after the check allows us to calculate
2699 * the correct value for "nr", which means the zero-filled
2700 * part of the page is not copied back to userspace (unless
2701 * another truncate extends the file - this is desired though).
2703 isize
= i_size_read(inode
);
2704 if (unlikely(iocb
->ki_pos
>= isize
))
2706 end_offset
= min_t(loff_t
, isize
, iocb
->ki_pos
+ iter
->count
);
2709 * Once we start copying data, we don't want to be touching any
2710 * cachelines that might be contended:
2712 writably_mapped
= mapping_writably_mapped(mapping
);
2715 * When a read accesses the same folio several times, only
2716 * mark it as accessed the first time.
2718 if (!pos_same_folio(iocb
->ki_pos
, last_pos
- 1,
2720 folio_mark_accessed(fbatch
.folios
[0]);
2722 for (i
= 0; i
< folio_batch_count(&fbatch
); i
++) {
2723 struct folio
*folio
= fbatch
.folios
[i
];
2724 size_t fsize
= folio_size(folio
);
2725 size_t offset
= iocb
->ki_pos
& (fsize
- 1);
2726 size_t bytes
= min_t(loff_t
, end_offset
- iocb
->ki_pos
,
2730 if (end_offset
< folio_pos(folio
))
2733 folio_mark_accessed(folio
);
2735 * If users can be writing to this folio using arbitrary
2736 * virtual addresses, take care of potential aliasing
2737 * before reading the folio on the kernel side.
2739 if (writably_mapped
)
2740 flush_dcache_folio(folio
);
2742 copied
= copy_folio_to_iter(folio
, offset
, bytes
, iter
);
2744 already_read
+= copied
;
2745 iocb
->ki_pos
+= copied
;
2746 last_pos
= iocb
->ki_pos
;
2748 if (copied
< bytes
) {
2754 for (i
= 0; i
< folio_batch_count(&fbatch
); i
++) {
2755 struct folio
*folio
= fbatch
.folios
[i
];
2757 filemap_end_dropbehind_read(mapping
, folio
);
2760 folio_batch_init(&fbatch
);
2761 } while (iov_iter_count(iter
) && iocb
->ki_pos
< isize
&& !error
);
2763 file_accessed(filp
);
2764 ra
->prev_pos
= last_pos
;
2765 return already_read
? already_read
: error
;
2767 EXPORT_SYMBOL_GPL(filemap_read
);
2769 int kiocb_write_and_wait(struct kiocb
*iocb
, size_t count
)
2771 struct address_space
*mapping
= iocb
->ki_filp
->f_mapping
;
2772 loff_t pos
= iocb
->ki_pos
;
2773 loff_t end
= pos
+ count
- 1;
2775 if (iocb
->ki_flags
& IOCB_NOWAIT
) {
2776 if (filemap_range_needs_writeback(mapping
, pos
, end
))
2781 return filemap_write_and_wait_range(mapping
, pos
, end
);
2783 EXPORT_SYMBOL_GPL(kiocb_write_and_wait
);
2785 int filemap_invalidate_pages(struct address_space
*mapping
,
2786 loff_t pos
, loff_t end
, bool nowait
)
2791 /* we could block if there are any pages in the range */
2792 if (filemap_range_has_page(mapping
, pos
, end
))
2795 ret
= filemap_write_and_wait_range(mapping
, pos
, end
);
2801 * After a write we want buffered reads to be sure to go to disk to get
2802 * the new data. We invalidate clean cached page from the region we're
2803 * about to write. We do this *before* the write so that we can return
2804 * without clobbering -EIOCBQUEUED from ->direct_IO().
2806 return invalidate_inode_pages2_range(mapping
, pos
>> PAGE_SHIFT
,
2810 int kiocb_invalidate_pages(struct kiocb
*iocb
, size_t count
)
2812 struct address_space
*mapping
= iocb
->ki_filp
->f_mapping
;
2814 return filemap_invalidate_pages(mapping
, iocb
->ki_pos
,
2815 iocb
->ki_pos
+ count
- 1,
2816 iocb
->ki_flags
& IOCB_NOWAIT
);
2818 EXPORT_SYMBOL_GPL(kiocb_invalidate_pages
);
2821 * generic_file_read_iter - generic filesystem read routine
2822 * @iocb: kernel I/O control block
2823 * @iter: destination for the data read
2825 * This is the "read_iter()" routine for all filesystems
2826 * that can use the page cache directly.
2828 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2829 * be returned when no data can be read without waiting for I/O requests
2830 * to complete; it doesn't prevent readahead.
2832 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2833 * requests shall be made for the read or for readahead. When no data
2834 * can be read, -EAGAIN shall be returned. When readahead would be
2835 * triggered, a partial, possibly empty read shall be returned.
2838 * * number of bytes copied, even for partial reads
2839 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2842 generic_file_read_iter(struct kiocb
*iocb
, struct iov_iter
*iter
)
2844 size_t count
= iov_iter_count(iter
);
2848 return 0; /* skip atime */
2850 if (iocb
->ki_flags
& IOCB_DIRECT
) {
2851 struct file
*file
= iocb
->ki_filp
;
2852 struct address_space
*mapping
= file
->f_mapping
;
2853 struct inode
*inode
= mapping
->host
;
2855 retval
= kiocb_write_and_wait(iocb
, count
);
2858 file_accessed(file
);
2860 retval
= mapping
->a_ops
->direct_IO(iocb
, iter
);
2862 iocb
->ki_pos
+= retval
;
2865 if (retval
!= -EIOCBQUEUED
)
2866 iov_iter_revert(iter
, count
- iov_iter_count(iter
));
2869 * Btrfs can have a short DIO read if we encounter
2870 * compressed extents, so if there was an error, or if
2871 * we've already read everything we wanted to, or if
2872 * there was a short read because we hit EOF, go ahead
2873 * and return. Otherwise fallthrough to buffered io for
2874 * the rest of the read. Buffered reads will not work for
2875 * DAX files, so don't bother trying.
2877 if (retval
< 0 || !count
|| IS_DAX(inode
))
2879 if (iocb
->ki_pos
>= i_size_read(inode
))
2883 return filemap_read(iocb
, iter
, retval
);
2885 EXPORT_SYMBOL(generic_file_read_iter
);
2888 * Splice subpages from a folio into a pipe.
2890 size_t splice_folio_into_pipe(struct pipe_inode_info
*pipe
,
2891 struct folio
*folio
, loff_t fpos
, size_t size
)
2894 size_t spliced
= 0, offset
= offset_in_folio(folio
, fpos
);
2896 page
= folio_page(folio
, offset
/ PAGE_SIZE
);
2897 size
= min(size
, folio_size(folio
) - offset
);
2898 offset
%= PAGE_SIZE
;
2900 while (spliced
< size
&&
2901 !pipe_full(pipe
->head
, pipe
->tail
, pipe
->max_usage
)) {
2902 struct pipe_buffer
*buf
= pipe_head_buf(pipe
);
2903 size_t part
= min_t(size_t, PAGE_SIZE
- offset
, size
- spliced
);
2905 *buf
= (struct pipe_buffer
) {
2906 .ops
= &page_cache_pipe_buf_ops
,
2922 * filemap_splice_read - Splice data from a file's pagecache into a pipe
2923 * @in: The file to read from
2924 * @ppos: Pointer to the file position to read from
2925 * @pipe: The pipe to splice into
2926 * @len: The amount to splice
2927 * @flags: The SPLICE_F_* flags
2929 * This function gets folios from a file's pagecache and splices them into the
2930 * pipe. Readahead will be called as necessary to fill more folios. This may
2931 * be used for blockdevs also.
2933 * Return: On success, the number of bytes read will be returned and *@ppos
2934 * will be updated if appropriate; 0 will be returned if there is no more data
2935 * to be read; -EAGAIN will be returned if the pipe had no space, and some
2936 * other negative error code will be returned on error. A short read may occur
2937 * if the pipe has insufficient space, we reach the end of the data or we hit a
2940 ssize_t
filemap_splice_read(struct file
*in
, loff_t
*ppos
,
2941 struct pipe_inode_info
*pipe
,
2942 size_t len
, unsigned int flags
)
2944 struct folio_batch fbatch
;
2946 size_t total_spliced
= 0, used
, npages
;
2947 loff_t isize
, end_offset
;
2948 bool writably_mapped
;
2951 if (unlikely(*ppos
>= in
->f_mapping
->host
->i_sb
->s_maxbytes
))
2954 init_sync_kiocb(&iocb
, in
);
2955 iocb
.ki_pos
= *ppos
;
2957 /* Work out how much data we can actually add into the pipe */
2958 used
= pipe_occupancy(pipe
->head
, pipe
->tail
);
2959 npages
= max_t(ssize_t
, pipe
->max_usage
- used
, 0);
2960 len
= min_t(size_t, len
, npages
* PAGE_SIZE
);
2962 folio_batch_init(&fbatch
);
2967 if (*ppos
>= i_size_read(in
->f_mapping
->host
))
2970 iocb
.ki_pos
= *ppos
;
2971 error
= filemap_get_pages(&iocb
, len
, &fbatch
, true);
2976 * i_size must be checked after we know the pages are Uptodate.
2978 * Checking i_size after the check allows us to calculate
2979 * the correct value for "nr", which means the zero-filled
2980 * part of the page is not copied back to userspace (unless
2981 * another truncate extends the file - this is desired though).
2983 isize
= i_size_read(in
->f_mapping
->host
);
2984 if (unlikely(*ppos
>= isize
))
2986 end_offset
= min_t(loff_t
, isize
, *ppos
+ len
);
2989 * Once we start copying data, we don't want to be touching any
2990 * cachelines that might be contended:
2992 writably_mapped
= mapping_writably_mapped(in
->f_mapping
);
2994 for (i
= 0; i
< folio_batch_count(&fbatch
); i
++) {
2995 struct folio
*folio
= fbatch
.folios
[i
];
2998 if (folio_pos(folio
) >= end_offset
)
3000 folio_mark_accessed(folio
);
3003 * If users can be writing to this folio using arbitrary
3004 * virtual addresses, take care of potential aliasing
3005 * before reading the folio on the kernel side.
3007 if (writably_mapped
)
3008 flush_dcache_folio(folio
);
3010 n
= min_t(loff_t
, len
, isize
- *ppos
);
3011 n
= splice_folio_into_pipe(pipe
, folio
, *ppos
, n
);
3017 in
->f_ra
.prev_pos
= *ppos
;
3018 if (pipe_full(pipe
->head
, pipe
->tail
, pipe
->max_usage
))
3022 folio_batch_release(&fbatch
);
3026 folio_batch_release(&fbatch
);
3029 return total_spliced
? total_spliced
: error
;
3031 EXPORT_SYMBOL(filemap_splice_read
);
3033 static inline loff_t
folio_seek_hole_data(struct xa_state
*xas
,
3034 struct address_space
*mapping
, struct folio
*folio
,
3035 loff_t start
, loff_t end
, bool seek_data
)
3037 const struct address_space_operations
*ops
= mapping
->a_ops
;
3038 size_t offset
, bsz
= i_blocksize(mapping
->host
);
3040 if (xa_is_value(folio
) || folio_test_uptodate(folio
))
3041 return seek_data
? start
: end
;
3042 if (!ops
->is_partially_uptodate
)
3043 return seek_data
? end
: start
;
3048 if (unlikely(folio
->mapping
!= mapping
))
3051 offset
= offset_in_folio(folio
, start
) & ~(bsz
- 1);
3054 if (ops
->is_partially_uptodate(folio
, offset
, bsz
) ==
3057 start
= (start
+ bsz
) & ~((u64
)bsz
- 1);
3059 } while (offset
< folio_size(folio
));
3061 folio_unlock(folio
);
3066 static inline size_t seek_folio_size(struct xa_state
*xas
, struct folio
*folio
)
3068 if (xa_is_value(folio
))
3069 return PAGE_SIZE
<< xas_get_order(xas
);
3070 return folio_size(folio
);
3074 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3075 * @mapping: Address space to search.
3076 * @start: First byte to consider.
3077 * @end: Limit of search (exclusive).
3078 * @whence: Either SEEK_HOLE or SEEK_DATA.
3080 * If the page cache knows which blocks contain holes and which blocks
3081 * contain data, your filesystem can use this function to implement
3082 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
3083 * entirely memory-based such as tmpfs, and filesystems which support
3084 * unwritten extents.
3086 * Return: The requested offset on success, or -ENXIO if @whence specifies
3087 * SEEK_DATA and there is no data after @start. There is an implicit hole
3088 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
3089 * and @end contain data.
3091 loff_t
mapping_seek_hole_data(struct address_space
*mapping
, loff_t start
,
3092 loff_t end
, int whence
)
3094 XA_STATE(xas
, &mapping
->i_pages
, start
>> PAGE_SHIFT
);
3095 pgoff_t max
= (end
- 1) >> PAGE_SHIFT
;
3096 bool seek_data
= (whence
== SEEK_DATA
);
3097 struct folio
*folio
;
3103 while ((folio
= find_get_entry(&xas
, max
, XA_PRESENT
))) {
3104 loff_t pos
= (u64
)xas
.xa_index
<< PAGE_SHIFT
;
3113 seek_size
= seek_folio_size(&xas
, folio
);
3114 pos
= round_up((u64
)pos
+ 1, seek_size
);
3115 start
= folio_seek_hole_data(&xas
, mapping
, folio
, start
, pos
,
3121 if (seek_size
> PAGE_SIZE
)
3122 xas_set(&xas
, pos
>> PAGE_SHIFT
);
3123 if (!xa_is_value(folio
))
3130 if (folio
&& !xa_is_value(folio
))
3138 #define MMAP_LOTSAMISS (100)
3140 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
3141 * @vmf - the vm_fault for this fault.
3142 * @folio - the folio to lock.
3143 * @fpin - the pointer to the file we may pin (or is already pinned).
3145 * This works similar to lock_folio_or_retry in that it can drop the
3146 * mmap_lock. It differs in that it actually returns the folio locked
3147 * if it returns 1 and 0 if it couldn't lock the folio. If we did have
3148 * to drop the mmap_lock then fpin will point to the pinned file and
3149 * needs to be fput()'ed at a later point.
3151 static int lock_folio_maybe_drop_mmap(struct vm_fault
*vmf
, struct folio
*folio
,
3154 if (folio_trylock(folio
))
3158 * NOTE! This will make us return with VM_FAULT_RETRY, but with
3159 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
3160 * is supposed to work. We have way too many special cases..
3162 if (vmf
->flags
& FAULT_FLAG_RETRY_NOWAIT
)
3165 *fpin
= maybe_unlock_mmap_for_io(vmf
, *fpin
);
3166 if (vmf
->flags
& FAULT_FLAG_KILLABLE
) {
3167 if (__folio_lock_killable(folio
)) {
3169 * We didn't have the right flags to drop the
3170 * fault lock, but all fault_handlers only check
3171 * for fatal signals if we return VM_FAULT_RETRY,
3172 * so we need to drop the fault lock here and
3173 * return 0 if we don't have a fpin.
3176 release_fault_lock(vmf
);
3180 __folio_lock(folio
);
3186 * Synchronous readahead happens when we don't even find a page in the page
3187 * cache at all. We don't want to perform IO under the mmap sem, so if we have
3188 * to drop the mmap sem we return the file that was pinned in order for us to do
3189 * that. If we didn't pin a file then we return NULL. The file that is
3190 * returned needs to be fput()'ed when we're done with it.
3192 static struct file
*do_sync_mmap_readahead(struct vm_fault
*vmf
)
3194 struct file
*file
= vmf
->vma
->vm_file
;
3195 struct file_ra_state
*ra
= &file
->f_ra
;
3196 struct address_space
*mapping
= file
->f_mapping
;
3197 DEFINE_READAHEAD(ractl
, file
, ra
, mapping
, vmf
->pgoff
);
3198 struct file
*fpin
= NULL
;
3199 unsigned long vm_flags
= vmf
->vma
->vm_flags
;
3200 unsigned int mmap_miss
;
3203 * If we have pre-content watches we need to disable readahead to make
3204 * sure that we don't populate our mapping with 0 filled pages that we
3205 * never emitted an event for.
3207 if (unlikely(FMODE_FSNOTIFY_HSM(file
->f_mode
)))
3210 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3211 /* Use the readahead code, even if readahead is disabled */
3212 if ((vm_flags
& VM_HUGEPAGE
) && HPAGE_PMD_ORDER
<= MAX_PAGECACHE_ORDER
) {
3213 fpin
= maybe_unlock_mmap_for_io(vmf
, fpin
);
3214 ractl
._index
&= ~((unsigned long)HPAGE_PMD_NR
- 1);
3215 ra
->size
= HPAGE_PMD_NR
;
3217 * Fetch two PMD folios, so we get the chance to actually
3218 * readahead, unless we've been told not to.
3220 if (!(vm_flags
& VM_RAND_READ
))
3222 ra
->async_size
= HPAGE_PMD_NR
;
3223 page_cache_ra_order(&ractl
, ra
, HPAGE_PMD_ORDER
);
3228 /* If we don't want any read-ahead, don't bother */
3229 if (vm_flags
& VM_RAND_READ
)
3234 if (vm_flags
& VM_SEQ_READ
) {
3235 fpin
= maybe_unlock_mmap_for_io(vmf
, fpin
);
3236 page_cache_sync_ra(&ractl
, ra
->ra_pages
);
3240 /* Avoid banging the cache line if not needed */
3241 mmap_miss
= READ_ONCE(ra
->mmap_miss
);
3242 if (mmap_miss
< MMAP_LOTSAMISS
* 10)
3243 WRITE_ONCE(ra
->mmap_miss
, ++mmap_miss
);
3246 * Do we miss much more than hit in this file? If so,
3247 * stop bothering with read-ahead. It will only hurt.
3249 if (mmap_miss
> MMAP_LOTSAMISS
)
3255 fpin
= maybe_unlock_mmap_for_io(vmf
, fpin
);
3256 ra
->start
= max_t(long, 0, vmf
->pgoff
- ra
->ra_pages
/ 2);
3257 ra
->size
= ra
->ra_pages
;
3258 ra
->async_size
= ra
->ra_pages
/ 4;
3259 ractl
._index
= ra
->start
;
3260 page_cache_ra_order(&ractl
, ra
, 0);
3265 * Asynchronous readahead happens when we find the page and PG_readahead,
3266 * so we want to possibly extend the readahead further. We return the file that
3267 * was pinned if we have to drop the mmap_lock in order to do IO.
3269 static struct file
*do_async_mmap_readahead(struct vm_fault
*vmf
,
3270 struct folio
*folio
)
3272 struct file
*file
= vmf
->vma
->vm_file
;
3273 struct file_ra_state
*ra
= &file
->f_ra
;
3274 DEFINE_READAHEAD(ractl
, file
, ra
, file
->f_mapping
, vmf
->pgoff
);
3275 struct file
*fpin
= NULL
;
3276 unsigned int mmap_miss
;
3278 /* See comment in do_sync_mmap_readahead. */
3279 if (unlikely(FMODE_FSNOTIFY_HSM(file
->f_mode
)))
3282 /* If we don't want any read-ahead, don't bother */
3283 if (vmf
->vma
->vm_flags
& VM_RAND_READ
|| !ra
->ra_pages
)
3286 mmap_miss
= READ_ONCE(ra
->mmap_miss
);
3288 WRITE_ONCE(ra
->mmap_miss
, --mmap_miss
);
3290 if (folio_test_readahead(folio
)) {
3291 fpin
= maybe_unlock_mmap_for_io(vmf
, fpin
);
3292 page_cache_async_ra(&ractl
, folio
, ra
->ra_pages
);
3297 static vm_fault_t
filemap_fault_recheck_pte_none(struct vm_fault
*vmf
)
3299 struct vm_area_struct
*vma
= vmf
->vma
;
3304 * We might have COW'ed a pagecache folio and might now have an mlocked
3305 * anon folio mapped. The original pagecache folio is not mlocked and
3306 * might have been evicted. During a read+clear/modify/write update of
3307 * the PTE, such as done in do_numa_page()/change_pte_range(), we
3308 * temporarily clear the PTE under PT lock and might detect it here as
3309 * "none" when not holding the PT lock.
3311 * Not rechecking the PTE under PT lock could result in an unexpected
3312 * major fault in an mlock'ed region. Recheck only for this special
3313 * scenario while holding the PT lock, to not degrade non-mlocked
3314 * scenarios. Recheck the PTE without PT lock firstly, thereby reducing
3315 * the number of times we hold PT lock.
3317 if (!(vma
->vm_flags
& VM_LOCKED
))
3320 if (!(vmf
->flags
& FAULT_FLAG_ORIG_PTE_VALID
))
3323 ptep
= pte_offset_map_ro_nolock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
3325 if (unlikely(!ptep
))
3326 return VM_FAULT_NOPAGE
;
3328 if (unlikely(!pte_none(ptep_get_lockless(ptep
)))) {
3329 ret
= VM_FAULT_NOPAGE
;
3331 spin_lock(vmf
->ptl
);
3332 if (unlikely(!pte_none(ptep_get(ptep
))))
3333 ret
= VM_FAULT_NOPAGE
;
3334 spin_unlock(vmf
->ptl
);
3341 * filemap_fsnotify_fault - maybe emit a pre-content event.
3342 * @vmf: struct vm_fault containing details of the fault.
3344 * If we have a pre-content watch on this file we will emit an event for this
3345 * range. If we return anything the fault caller should return immediately, we
3346 * will return VM_FAULT_RETRY if we had to emit an event, which will trigger the
3347 * fault again and then the fault handler will run the second time through.
3349 * Return: a bitwise-OR of %VM_FAULT_ codes, 0 if nothing happened.
3351 vm_fault_t
filemap_fsnotify_fault(struct vm_fault
*vmf
)
3353 struct file
*fpin
= NULL
;
3354 int mask
= (vmf
->flags
& FAULT_FLAG_WRITE
) ? MAY_WRITE
: MAY_ACCESS
;
3355 loff_t pos
= vmf
->pgoff
>> PAGE_SHIFT
;
3356 size_t count
= PAGE_SIZE
;
3360 * We already did this and now we're retrying with everything locked,
3361 * don't emit the event and continue.
3363 if (vmf
->flags
& FAULT_FLAG_TRIED
)
3366 /* No watches, we're done. */
3367 if (likely(!FMODE_FSNOTIFY_HSM(vmf
->vma
->vm_file
->f_mode
)))
3370 fpin
= maybe_unlock_mmap_for_io(vmf
, fpin
);
3372 return VM_FAULT_SIGBUS
;
3374 err
= fsnotify_file_area_perm(fpin
, mask
, &pos
, count
);
3377 return VM_FAULT_SIGBUS
;
3378 return VM_FAULT_RETRY
;
3380 EXPORT_SYMBOL_GPL(filemap_fsnotify_fault
);
3383 * filemap_fault - read in file data for page fault handling
3384 * @vmf: struct vm_fault containing details of the fault
3386 * filemap_fault() is invoked via the vma operations vector for a
3387 * mapped memory region to read in file data during a page fault.
3389 * The goto's are kind of ugly, but this streamlines the normal case of having
3390 * it in the page cache, and handles the special cases reasonably without
3391 * having a lot of duplicated code.
3393 * vma->vm_mm->mmap_lock must be held on entry.
3395 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3396 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3398 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3399 * has not been released.
3401 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3403 * Return: bitwise-OR of %VM_FAULT_ codes.
3405 vm_fault_t
filemap_fault(struct vm_fault
*vmf
)
3408 struct file
*file
= vmf
->vma
->vm_file
;
3409 struct file
*fpin
= NULL
;
3410 struct address_space
*mapping
= file
->f_mapping
;
3411 struct inode
*inode
= mapping
->host
;
3412 pgoff_t max_idx
, index
= vmf
->pgoff
;
3413 struct folio
*folio
;
3415 bool mapping_locked
= false;
3417 max_idx
= DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
);
3418 if (unlikely(index
>= max_idx
))
3419 return VM_FAULT_SIGBUS
;
3421 trace_mm_filemap_fault(mapping
, index
);
3424 * Do we have something in the page cache already?
3426 folio
= filemap_get_folio(mapping
, index
);
3427 if (likely(!IS_ERR(folio
))) {
3429 * We found the page, so try async readahead before waiting for
3432 if (!(vmf
->flags
& FAULT_FLAG_TRIED
))
3433 fpin
= do_async_mmap_readahead(vmf
, folio
);
3434 if (unlikely(!folio_test_uptodate(folio
))) {
3435 filemap_invalidate_lock_shared(mapping
);
3436 mapping_locked
= true;
3439 ret
= filemap_fault_recheck_pte_none(vmf
);
3443 /* No page in the page cache at all */
3444 count_vm_event(PGMAJFAULT
);
3445 count_memcg_event_mm(vmf
->vma
->vm_mm
, PGMAJFAULT
);
3446 ret
= VM_FAULT_MAJOR
;
3447 fpin
= do_sync_mmap_readahead(vmf
);
3450 * See comment in filemap_create_folio() why we need
3453 if (!mapping_locked
) {
3454 filemap_invalidate_lock_shared(mapping
);
3455 mapping_locked
= true;
3457 folio
= __filemap_get_folio(mapping
, index
,
3458 FGP_CREAT
|FGP_FOR_MMAP
,
3460 if (IS_ERR(folio
)) {
3463 filemap_invalidate_unlock_shared(mapping
);
3464 return VM_FAULT_OOM
;
3468 if (!lock_folio_maybe_drop_mmap(vmf
, folio
, &fpin
))
3471 /* Did it get truncated? */
3472 if (unlikely(folio
->mapping
!= mapping
)) {
3473 folio_unlock(folio
);
3477 VM_BUG_ON_FOLIO(!folio_contains(folio
, index
), folio
);
3480 * We have a locked folio in the page cache, now we need to check
3481 * that it's up-to-date. If not, it is going to be due to an error,
3482 * or because readahead was otherwise unable to retrieve it.
3484 if (unlikely(!folio_test_uptodate(folio
))) {
3486 * If this is a precontent file we have can now emit an event to
3487 * try and populate the folio.
3489 if (!(vmf
->flags
& FAULT_FLAG_TRIED
) &&
3490 unlikely(FMODE_FSNOTIFY_HSM(file
->f_mode
))) {
3491 loff_t pos
= folio_pos(folio
);
3492 size_t count
= folio_size(folio
);
3494 /* We're NOWAIT, we have to retry. */
3495 if (vmf
->flags
& FAULT_FLAG_RETRY_NOWAIT
) {
3496 folio_unlock(folio
);
3501 filemap_invalidate_unlock_shared(mapping
);
3502 mapping_locked
= false;
3504 folio_unlock(folio
);
3505 fpin
= maybe_unlock_mmap_for_io(vmf
, fpin
);
3509 error
= fsnotify_file_area_perm(fpin
, MAY_ACCESS
, &pos
,
3512 ret
= VM_FAULT_SIGBUS
;
3517 * If the invalidate lock is not held, the folio was in cache
3518 * and uptodate and now it is not. Strange but possible since we
3519 * didn't hold the page lock all the time. Let's drop
3520 * everything, get the invalidate lock and try again.
3522 if (!mapping_locked
) {
3523 folio_unlock(folio
);
3529 * OK, the folio is really not uptodate. This can be because the
3530 * VMA has the VM_RAND_READ flag set, or because an error
3531 * arose. Let's read it in directly.
3533 goto page_not_uptodate
;
3537 * We've made it this far and we had to drop our mmap_lock, now is the
3538 * time to return to the upper layer and have it re-find the vma and
3542 folio_unlock(folio
);
3546 filemap_invalidate_unlock_shared(mapping
);
3549 * Found the page and have a reference on it.
3550 * We must recheck i_size under page lock.
3552 max_idx
= DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
);
3553 if (unlikely(index
>= max_idx
)) {
3554 folio_unlock(folio
);
3556 return VM_FAULT_SIGBUS
;
3559 vmf
->page
= folio_file_page(folio
, index
);
3560 return ret
| VM_FAULT_LOCKED
;
3564 * Umm, take care of errors if the page isn't up-to-date.
3565 * Try to re-read it _once_. We do this synchronously,
3566 * because there really aren't any performance issues here
3567 * and we need to check for errors.
3569 fpin
= maybe_unlock_mmap_for_io(vmf
, fpin
);
3570 error
= filemap_read_folio(file
, mapping
->a_ops
->read_folio
, folio
);
3575 if (!error
|| error
== AOP_TRUNCATED_PAGE
)
3577 filemap_invalidate_unlock_shared(mapping
);
3579 return VM_FAULT_SIGBUS
;
3583 * We dropped the mmap_lock, we need to return to the fault handler to
3584 * re-find the vma and come back and find our hopefully still populated
3590 filemap_invalidate_unlock_shared(mapping
);
3593 return ret
| VM_FAULT_RETRY
;
3595 EXPORT_SYMBOL(filemap_fault
);
3597 static bool filemap_map_pmd(struct vm_fault
*vmf
, struct folio
*folio
,
3600 struct mm_struct
*mm
= vmf
->vma
->vm_mm
;
3602 /* Huge page is mapped? No need to proceed. */
3603 if (pmd_trans_huge(*vmf
->pmd
)) {
3604 folio_unlock(folio
);
3609 if (pmd_none(*vmf
->pmd
) && folio_test_pmd_mappable(folio
)) {
3610 struct page
*page
= folio_file_page(folio
, start
);
3611 vm_fault_t ret
= do_set_pmd(vmf
, page
);
3613 /* The page is mapped successfully, reference consumed. */
3614 folio_unlock(folio
);
3619 if (pmd_none(*vmf
->pmd
) && vmf
->prealloc_pte
)
3620 pmd_install(mm
, vmf
->pmd
, &vmf
->prealloc_pte
);
3625 static struct folio
*next_uptodate_folio(struct xa_state
*xas
,
3626 struct address_space
*mapping
, pgoff_t end_pgoff
)
3628 struct folio
*folio
= xas_next_entry(xas
, end_pgoff
);
3629 unsigned long max_idx
;
3634 if (xas_retry(xas
, folio
))
3636 if (xa_is_value(folio
))
3638 if (!folio_try_get(folio
))
3640 if (folio_test_locked(folio
))
3642 /* Has the page moved or been split? */
3643 if (unlikely(folio
!= xas_reload(xas
)))
3645 if (!folio_test_uptodate(folio
) || folio_test_readahead(folio
))
3647 if (!folio_trylock(folio
))
3649 if (folio
->mapping
!= mapping
)
3651 if (!folio_test_uptodate(folio
))
3653 max_idx
= DIV_ROUND_UP(i_size_read(mapping
->host
), PAGE_SIZE
);
3654 if (xas
->xa_index
>= max_idx
)
3658 folio_unlock(folio
);
3661 } while ((folio
= xas_next_entry(xas
, end_pgoff
)) != NULL
);
3667 * Map page range [start_page, start_page + nr_pages) of folio.
3668 * start_page is gotten from start by folio_page(folio, start)
3670 static vm_fault_t
filemap_map_folio_range(struct vm_fault
*vmf
,
3671 struct folio
*folio
, unsigned long start
,
3672 unsigned long addr
, unsigned int nr_pages
,
3673 unsigned long *rss
, unsigned int *mmap_miss
)
3676 struct page
*page
= folio_page(folio
, start
);
3677 unsigned int count
= 0;
3678 pte_t
*old_ptep
= vmf
->pte
;
3681 if (PageHWPoison(page
+ count
))
3685 * If there are too many folios that are recently evicted
3686 * in a file, they will probably continue to be evicted.
3687 * In such situation, read-ahead is only a waste of IO.
3688 * Don't decrease mmap_miss in this scenario to make sure
3689 * we can stop read-ahead.
3691 if (!folio_test_workingset(folio
))
3695 * NOTE: If there're PTE markers, we'll leave them to be
3696 * handled in the specific fault path, and it'll prohibit the
3697 * fault-around logic.
3699 if (!pte_none(ptep_get(&vmf
->pte
[count
])))
3706 set_pte_range(vmf
, folio
, page
, count
, addr
);
3708 folio_ref_add(folio
, count
);
3709 if (in_range(vmf
->address
, addr
, count
* PAGE_SIZE
))
3710 ret
= VM_FAULT_NOPAGE
;
3716 addr
+= count
* PAGE_SIZE
;
3718 } while (--nr_pages
> 0);
3721 set_pte_range(vmf
, folio
, page
, count
, addr
);
3723 folio_ref_add(folio
, count
);
3724 if (in_range(vmf
->address
, addr
, count
* PAGE_SIZE
))
3725 ret
= VM_FAULT_NOPAGE
;
3728 vmf
->pte
= old_ptep
;
3733 static vm_fault_t
filemap_map_order0_folio(struct vm_fault
*vmf
,
3734 struct folio
*folio
, unsigned long addr
,
3735 unsigned long *rss
, unsigned int *mmap_miss
)
3738 struct page
*page
= &folio
->page
;
3740 if (PageHWPoison(page
))
3743 /* See comment of filemap_map_folio_range() */
3744 if (!folio_test_workingset(folio
))
3748 * NOTE: If there're PTE markers, we'll leave them to be
3749 * handled in the specific fault path, and it'll prohibit
3750 * the fault-around logic.
3752 if (!pte_none(ptep_get(vmf
->pte
)))
3755 if (vmf
->address
== addr
)
3756 ret
= VM_FAULT_NOPAGE
;
3758 set_pte_range(vmf
, folio
, page
, 1, addr
);
3760 folio_ref_inc(folio
);
3765 vm_fault_t
filemap_map_pages(struct vm_fault
*vmf
,
3766 pgoff_t start_pgoff
, pgoff_t end_pgoff
)
3768 struct vm_area_struct
*vma
= vmf
->vma
;
3769 struct file
*file
= vma
->vm_file
;
3770 struct address_space
*mapping
= file
->f_mapping
;
3771 pgoff_t file_end
, last_pgoff
= start_pgoff
;
3773 XA_STATE(xas
, &mapping
->i_pages
, start_pgoff
);
3774 struct folio
*folio
;
3776 unsigned long rss
= 0;
3777 unsigned int nr_pages
= 0, mmap_miss
= 0, mmap_miss_saved
, folio_type
;
3780 folio
= next_uptodate_folio(&xas
, mapping
, end_pgoff
);
3784 if (filemap_map_pmd(vmf
, folio
, start_pgoff
)) {
3785 ret
= VM_FAULT_NOPAGE
;
3789 addr
= vma
->vm_start
+ ((start_pgoff
- vma
->vm_pgoff
) << PAGE_SHIFT
);
3790 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, addr
, &vmf
->ptl
);
3792 folio_unlock(folio
);
3797 file_end
= DIV_ROUND_UP(i_size_read(mapping
->host
), PAGE_SIZE
) - 1;
3798 if (end_pgoff
> file_end
)
3799 end_pgoff
= file_end
;
3801 folio_type
= mm_counter_file(folio
);
3805 addr
+= (xas
.xa_index
- last_pgoff
) << PAGE_SHIFT
;
3806 vmf
->pte
+= xas
.xa_index
- last_pgoff
;
3807 last_pgoff
= xas
.xa_index
;
3808 end
= folio_next_index(folio
) - 1;
3809 nr_pages
= min(end
, end_pgoff
) - xas
.xa_index
+ 1;
3811 if (!folio_test_large(folio
))
3812 ret
|= filemap_map_order0_folio(vmf
,
3813 folio
, addr
, &rss
, &mmap_miss
);
3815 ret
|= filemap_map_folio_range(vmf
, folio
,
3816 xas
.xa_index
- folio
->index
, addr
,
3817 nr_pages
, &rss
, &mmap_miss
);
3819 folio_unlock(folio
);
3821 } while ((folio
= next_uptodate_folio(&xas
, mapping
, end_pgoff
)) != NULL
);
3822 add_mm_counter(vma
->vm_mm
, folio_type
, rss
);
3823 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3824 trace_mm_filemap_map_pages(mapping
, start_pgoff
, end_pgoff
);
3828 mmap_miss_saved
= READ_ONCE(file
->f_ra
.mmap_miss
);
3829 if (mmap_miss
>= mmap_miss_saved
)
3830 WRITE_ONCE(file
->f_ra
.mmap_miss
, 0);
3832 WRITE_ONCE(file
->f_ra
.mmap_miss
, mmap_miss_saved
- mmap_miss
);
3836 EXPORT_SYMBOL(filemap_map_pages
);
3838 vm_fault_t
filemap_page_mkwrite(struct vm_fault
*vmf
)
3840 struct address_space
*mapping
= vmf
->vma
->vm_file
->f_mapping
;
3841 struct folio
*folio
= page_folio(vmf
->page
);
3842 vm_fault_t ret
= VM_FAULT_LOCKED
;
3844 sb_start_pagefault(mapping
->host
->i_sb
);
3845 file_update_time(vmf
->vma
->vm_file
);
3847 if (folio
->mapping
!= mapping
) {
3848 folio_unlock(folio
);
3849 ret
= VM_FAULT_NOPAGE
;
3853 * We mark the folio dirty already here so that when freeze is in
3854 * progress, we are guaranteed that writeback during freezing will
3855 * see the dirty folio and writeprotect it again.
3857 folio_mark_dirty(folio
);
3858 folio_wait_stable(folio
);
3860 sb_end_pagefault(mapping
->host
->i_sb
);
3864 const struct vm_operations_struct generic_file_vm_ops
= {
3865 .fault
= filemap_fault
,
3866 .map_pages
= filemap_map_pages
,
3867 .page_mkwrite
= filemap_page_mkwrite
,
3870 /* This is used for a general mmap of a disk file */
3872 int generic_file_mmap(struct file
*file
, struct vm_area_struct
*vma
)
3874 struct address_space
*mapping
= file
->f_mapping
;
3876 if (!mapping
->a_ops
->read_folio
)
3878 file_accessed(file
);
3879 vma
->vm_ops
= &generic_file_vm_ops
;
3884 * This is for filesystems which do not implement ->writepage.
3886 int generic_file_readonly_mmap(struct file
*file
, struct vm_area_struct
*vma
)
3888 if (vma_is_shared_maywrite(vma
))
3890 return generic_file_mmap(file
, vma
);
3893 vm_fault_t
filemap_page_mkwrite(struct vm_fault
*vmf
)
3895 return VM_FAULT_SIGBUS
;
3897 int generic_file_mmap(struct file
*file
, struct vm_area_struct
*vma
)
3901 int generic_file_readonly_mmap(struct file
*file
, struct vm_area_struct
*vma
)
3905 #endif /* CONFIG_MMU */
3907 EXPORT_SYMBOL(filemap_page_mkwrite
);
3908 EXPORT_SYMBOL(generic_file_mmap
);
3909 EXPORT_SYMBOL(generic_file_readonly_mmap
);
3911 static struct folio
*do_read_cache_folio(struct address_space
*mapping
,
3912 pgoff_t index
, filler_t filler
, struct file
*file
, gfp_t gfp
)
3914 struct folio
*folio
;
3918 filler
= mapping
->a_ops
->read_folio
;
3920 folio
= filemap_get_folio(mapping
, index
);
3921 if (IS_ERR(folio
)) {
3922 folio
= filemap_alloc_folio(gfp
,
3923 mapping_min_folio_order(mapping
));
3925 return ERR_PTR(-ENOMEM
);
3926 index
= mapping_align_index(mapping
, index
);
3927 err
= filemap_add_folio(mapping
, folio
, index
, gfp
);
3928 if (unlikely(err
)) {
3932 /* Presumably ENOMEM for xarray node */
3933 return ERR_PTR(err
);
3938 if (folio_test_uptodate(folio
))
3941 if (!folio_trylock(folio
)) {
3942 folio_put_wait_locked(folio
, TASK_UNINTERRUPTIBLE
);
3946 /* Folio was truncated from mapping */
3947 if (!folio
->mapping
) {
3948 folio_unlock(folio
);
3953 /* Someone else locked and filled the page in a very small window */
3954 if (folio_test_uptodate(folio
)) {
3955 folio_unlock(folio
);
3960 err
= filemap_read_folio(file
, filler
, folio
);
3963 if (err
== AOP_TRUNCATED_PAGE
)
3965 return ERR_PTR(err
);
3969 folio_mark_accessed(folio
);
3974 * read_cache_folio - Read into page cache, fill it if needed.
3975 * @mapping: The address_space to read from.
3976 * @index: The index to read.
3977 * @filler: Function to perform the read, or NULL to use aops->read_folio().
3978 * @file: Passed to filler function, may be NULL if not required.
3980 * Read one page into the page cache. If it succeeds, the folio returned
3981 * will contain @index, but it may not be the first page of the folio.
3983 * If the filler function returns an error, it will be returned to the
3986 * Context: May sleep. Expects mapping->invalidate_lock to be held.
3987 * Return: An uptodate folio on success, ERR_PTR() on failure.
3989 struct folio
*read_cache_folio(struct address_space
*mapping
, pgoff_t index
,
3990 filler_t filler
, struct file
*file
)
3992 return do_read_cache_folio(mapping
, index
, filler
, file
,
3993 mapping_gfp_mask(mapping
));
3995 EXPORT_SYMBOL(read_cache_folio
);
3998 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
3999 * @mapping: The address_space for the folio.
4000 * @index: The index that the allocated folio will contain.
4001 * @gfp: The page allocator flags to use if allocating.
4003 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
4004 * any new memory allocations done using the specified allocation flags.
4006 * The most likely error from this function is EIO, but ENOMEM is
4007 * possible and so is EINTR. If ->read_folio returns another error,
4008 * that will be returned to the caller.
4010 * The function expects mapping->invalidate_lock to be already held.
4012 * Return: Uptodate folio on success, ERR_PTR() on failure.
4014 struct folio
*mapping_read_folio_gfp(struct address_space
*mapping
,
4015 pgoff_t index
, gfp_t gfp
)
4017 return do_read_cache_folio(mapping
, index
, NULL
, NULL
, gfp
);
4019 EXPORT_SYMBOL(mapping_read_folio_gfp
);
4021 static struct page
*do_read_cache_page(struct address_space
*mapping
,
4022 pgoff_t index
, filler_t
*filler
, struct file
*file
, gfp_t gfp
)
4024 struct folio
*folio
;
4026 folio
= do_read_cache_folio(mapping
, index
, filler
, file
, gfp
);
4028 return &folio
->page
;
4029 return folio_file_page(folio
, index
);
4032 struct page
*read_cache_page(struct address_space
*mapping
,
4033 pgoff_t index
, filler_t
*filler
, struct file
*file
)
4035 return do_read_cache_page(mapping
, index
, filler
, file
,
4036 mapping_gfp_mask(mapping
));
4038 EXPORT_SYMBOL(read_cache_page
);
4041 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
4042 * @mapping: the page's address_space
4043 * @index: the page index
4044 * @gfp: the page allocator flags to use if allocating
4046 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
4047 * any new page allocations done using the specified allocation flags.
4049 * If the page does not get brought uptodate, return -EIO.
4051 * The function expects mapping->invalidate_lock to be already held.
4053 * Return: up to date page on success, ERR_PTR() on failure.
4055 struct page
*read_cache_page_gfp(struct address_space
*mapping
,
4059 return do_read_cache_page(mapping
, index
, NULL
, NULL
, gfp
);
4061 EXPORT_SYMBOL(read_cache_page_gfp
);
4064 * Warn about a page cache invalidation failure during a direct I/O write.
4066 static void dio_warn_stale_pagecache(struct file
*filp
)
4068 static DEFINE_RATELIMIT_STATE(_rs
, 86400 * HZ
, DEFAULT_RATELIMIT_BURST
);
4072 errseq_set(&filp
->f_mapping
->wb_err
, -EIO
);
4073 if (__ratelimit(&_rs
)) {
4074 path
= file_path(filp
, pathname
, sizeof(pathname
));
4077 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
4078 pr_crit("File: %s PID: %d Comm: %.20s\n", path
, current
->pid
,
4083 void kiocb_invalidate_post_direct_write(struct kiocb
*iocb
, size_t count
)
4085 struct address_space
*mapping
= iocb
->ki_filp
->f_mapping
;
4087 if (mapping
->nrpages
&&
4088 invalidate_inode_pages2_range(mapping
,
4089 iocb
->ki_pos
>> PAGE_SHIFT
,
4090 (iocb
->ki_pos
+ count
- 1) >> PAGE_SHIFT
))
4091 dio_warn_stale_pagecache(iocb
->ki_filp
);
4095 generic_file_direct_write(struct kiocb
*iocb
, struct iov_iter
*from
)
4097 struct address_space
*mapping
= iocb
->ki_filp
->f_mapping
;
4098 size_t write_len
= iov_iter_count(from
);
4102 * If a page can not be invalidated, return 0 to fall back
4103 * to buffered write.
4105 written
= kiocb_invalidate_pages(iocb
, write_len
);
4107 if (written
== -EBUSY
)
4112 written
= mapping
->a_ops
->direct_IO(iocb
, from
);
4115 * Finally, try again to invalidate clean pages which might have been
4116 * cached by non-direct readahead, or faulted in by get_user_pages()
4117 * if the source of the write was an mmap'ed region of the file
4118 * we're writing. Either one is a pretty crazy thing to do,
4119 * so we don't support it 100%. If this invalidation
4120 * fails, tough, the write still worked...
4122 * Most of the time we do not need this since dio_complete() will do
4123 * the invalidation for us. However there are some file systems that
4124 * do not end up with dio_complete() being called, so let's not break
4125 * them by removing it completely.
4127 * Noticeable example is a blkdev_direct_IO().
4129 * Skip invalidation for async writes or if mapping has no pages.
4132 struct inode
*inode
= mapping
->host
;
4133 loff_t pos
= iocb
->ki_pos
;
4135 kiocb_invalidate_post_direct_write(iocb
, written
);
4137 write_len
-= written
;
4138 if (pos
> i_size_read(inode
) && !S_ISBLK(inode
->i_mode
)) {
4139 i_size_write(inode
, pos
);
4140 mark_inode_dirty(inode
);
4144 if (written
!= -EIOCBQUEUED
)
4145 iov_iter_revert(from
, write_len
- iov_iter_count(from
));
4148 EXPORT_SYMBOL(generic_file_direct_write
);
4150 ssize_t
generic_perform_write(struct kiocb
*iocb
, struct iov_iter
*i
)
4152 struct file
*file
= iocb
->ki_filp
;
4153 loff_t pos
= iocb
->ki_pos
;
4154 struct address_space
*mapping
= file
->f_mapping
;
4155 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
4156 size_t chunk
= mapping_max_folio_size(mapping
);
4158 ssize_t written
= 0;
4161 struct folio
*folio
;
4162 size_t offset
; /* Offset into folio */
4163 size_t bytes
; /* Bytes to write to folio */
4164 size_t copied
; /* Bytes copied from user */
4165 void *fsdata
= NULL
;
4167 bytes
= iov_iter_count(i
);
4169 offset
= pos
& (chunk
- 1);
4170 bytes
= min(chunk
- offset
, bytes
);
4171 balance_dirty_pages_ratelimited(mapping
);
4174 * Bring in the user page that we will copy from _first_.
4175 * Otherwise there's a nasty deadlock on copying from the
4176 * same page as we're writing to, without it being marked
4179 if (unlikely(fault_in_iov_iter_readable(i
, bytes
) == bytes
)) {
4184 if (fatal_signal_pending(current
)) {
4189 status
= a_ops
->write_begin(file
, mapping
, pos
, bytes
,
4191 if (unlikely(status
< 0))
4194 offset
= offset_in_folio(folio
, pos
);
4195 if (bytes
> folio_size(folio
) - offset
)
4196 bytes
= folio_size(folio
) - offset
;
4198 if (mapping_writably_mapped(mapping
))
4199 flush_dcache_folio(folio
);
4201 copied
= copy_folio_from_iter_atomic(folio
, offset
, bytes
, i
);
4202 flush_dcache_folio(folio
);
4204 status
= a_ops
->write_end(file
, mapping
, pos
, bytes
, copied
,
4206 if (unlikely(status
!= copied
)) {
4207 iov_iter_revert(i
, copied
- max(status
, 0L));
4208 if (unlikely(status
< 0))
4213 if (unlikely(status
== 0)) {
4215 * A short copy made ->write_end() reject the
4216 * thing entirely. Might be memory poisoning
4217 * halfway through, might be a race with munmap,
4218 * might be severe memory pressure.
4220 if (chunk
> PAGE_SIZE
)
4230 } while (iov_iter_count(i
));
4234 iocb
->ki_pos
+= written
;
4237 EXPORT_SYMBOL(generic_perform_write
);
4240 * __generic_file_write_iter - write data to a file
4241 * @iocb: IO state structure (file, offset, etc.)
4242 * @from: iov_iter with data to write
4244 * This function does all the work needed for actually writing data to a
4245 * file. It does all basic checks, removes SUID from the file, updates
4246 * modification times and calls proper subroutines depending on whether we
4247 * do direct IO or a standard buffered write.
4249 * It expects i_rwsem to be grabbed unless we work on a block device or similar
4250 * object which does not need locking at all.
4252 * This function does *not* take care of syncing data in case of O_SYNC write.
4253 * A caller has to handle it. This is mainly due to the fact that we want to
4254 * avoid syncing under i_rwsem.
4257 * * number of bytes written, even for truncated writes
4258 * * negative error code if no data has been written at all
4260 ssize_t
__generic_file_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
4262 struct file
*file
= iocb
->ki_filp
;
4263 struct address_space
*mapping
= file
->f_mapping
;
4264 struct inode
*inode
= mapping
->host
;
4267 ret
= file_remove_privs(file
);
4271 ret
= file_update_time(file
);
4275 if (iocb
->ki_flags
& IOCB_DIRECT
) {
4276 ret
= generic_file_direct_write(iocb
, from
);
4278 * If the write stopped short of completing, fall back to
4279 * buffered writes. Some filesystems do this for writes to
4280 * holes, for example. For DAX files, a buffered write will
4281 * not succeed (even if it did, DAX does not handle dirty
4282 * page-cache pages correctly).
4284 if (ret
< 0 || !iov_iter_count(from
) || IS_DAX(inode
))
4286 return direct_write_fallback(iocb
, from
, ret
,
4287 generic_perform_write(iocb
, from
));
4290 return generic_perform_write(iocb
, from
);
4292 EXPORT_SYMBOL(__generic_file_write_iter
);
4295 * generic_file_write_iter - write data to a file
4296 * @iocb: IO state structure
4297 * @from: iov_iter with data to write
4299 * This is a wrapper around __generic_file_write_iter() to be used by most
4300 * filesystems. It takes care of syncing the file in case of O_SYNC file
4301 * and acquires i_rwsem as needed.
4303 * * negative error code if no data has been written at all of
4304 * vfs_fsync_range() failed for a synchronous write
4305 * * number of bytes written, even for truncated writes
4307 ssize_t
generic_file_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
4309 struct file
*file
= iocb
->ki_filp
;
4310 struct inode
*inode
= file
->f_mapping
->host
;
4314 ret
= generic_write_checks(iocb
, from
);
4316 ret
= __generic_file_write_iter(iocb
, from
);
4317 inode_unlock(inode
);
4320 ret
= generic_write_sync(iocb
, ret
);
4323 EXPORT_SYMBOL(generic_file_write_iter
);
4326 * filemap_release_folio() - Release fs-specific metadata on a folio.
4327 * @folio: The folio which the kernel is trying to free.
4328 * @gfp: Memory allocation flags (and I/O mode).
4330 * The address_space is trying to release any data attached to a folio
4331 * (presumably at folio->private).
4333 * This will also be called if the private_2 flag is set on a page,
4334 * indicating that the folio has other metadata associated with it.
4336 * The @gfp argument specifies whether I/O may be performed to release
4337 * this page (__GFP_IO), and whether the call may block
4338 * (__GFP_RECLAIM & __GFP_FS).
4340 * Return: %true if the release was successful, otherwise %false.
4342 bool filemap_release_folio(struct folio
*folio
, gfp_t gfp
)
4344 struct address_space
* const mapping
= folio
->mapping
;
4346 BUG_ON(!folio_test_locked(folio
));
4347 if (!folio_needs_release(folio
))
4349 if (folio_test_writeback(folio
))
4352 if (mapping
&& mapping
->a_ops
->release_folio
)
4353 return mapping
->a_ops
->release_folio(folio
, gfp
);
4354 return try_to_free_buffers(folio
);
4356 EXPORT_SYMBOL(filemap_release_folio
);
4359 * filemap_invalidate_inode - Invalidate/forcibly write back a range of an inode's pagecache
4360 * @inode: The inode to flush
4361 * @flush: Set to write back rather than simply invalidate.
4362 * @start: First byte to in range.
4363 * @end: Last byte in range (inclusive), or LLONG_MAX for everything from start
4366 * Invalidate all the folios on an inode that contribute to the specified
4367 * range, possibly writing them back first. Whilst the operation is
4368 * undertaken, the invalidate lock is held to prevent new folios from being
4371 int filemap_invalidate_inode(struct inode
*inode
, bool flush
,
4372 loff_t start
, loff_t end
)
4374 struct address_space
*mapping
= inode
->i_mapping
;
4375 pgoff_t first
= start
>> PAGE_SHIFT
;
4376 pgoff_t last
= end
>> PAGE_SHIFT
;
4377 pgoff_t nr
= end
== LLONG_MAX
? ULONG_MAX
: last
- first
+ 1;
4379 if (!mapping
|| !mapping
->nrpages
|| end
< start
)
4382 /* Prevent new folios from being added to the inode. */
4383 filemap_invalidate_lock(mapping
);
4385 if (!mapping
->nrpages
)
4388 unmap_mapping_pages(mapping
, first
, nr
, false);
4390 /* Write back the data if we're asked to. */
4392 struct writeback_control wbc
= {
4393 .sync_mode
= WB_SYNC_ALL
,
4394 .nr_to_write
= LONG_MAX
,
4395 .range_start
= start
,
4399 filemap_fdatawrite_wbc(mapping
, &wbc
);
4402 /* Wait for writeback to complete on all folios and discard. */
4403 invalidate_inode_pages2_range(mapping
, start
/ PAGE_SIZE
, end
/ PAGE_SIZE
);
4406 filemap_invalidate_unlock(mapping
);
4408 return filemap_check_errors(mapping
);
4410 EXPORT_SYMBOL_GPL(filemap_invalidate_inode
);
4412 #ifdef CONFIG_CACHESTAT_SYSCALL
4414 * filemap_cachestat() - compute the page cache statistics of a mapping
4415 * @mapping: The mapping to compute the statistics for.
4416 * @first_index: The starting page cache index.
4417 * @last_index: The final page index (inclusive).
4418 * @cs: the cachestat struct to write the result to.
4420 * This will query the page cache statistics of a mapping in the
4421 * page range of [first_index, last_index] (inclusive). The statistics
4422 * queried include: number of dirty pages, number of pages marked for
4423 * writeback, and the number of (recently) evicted pages.
4425 static void filemap_cachestat(struct address_space
*mapping
,
4426 pgoff_t first_index
, pgoff_t last_index
, struct cachestat
*cs
)
4428 XA_STATE(xas
, &mapping
->i_pages
, first_index
);
4429 struct folio
*folio
;
4431 /* Flush stats (and potentially sleep) outside the RCU read section. */
4432 mem_cgroup_flush_stats_ratelimited(NULL
);
4435 xas_for_each(&xas
, folio
, last_index
) {
4437 unsigned long nr_pages
;
4438 pgoff_t folio_first_index
, folio_last_index
;
4441 * Don't deref the folio. It is not pinned, and might
4442 * get freed (and reused) underneath us.
4444 * We *could* pin it, but that would be expensive for
4445 * what should be a fast and lightweight syscall.
4447 * Instead, derive all information of interest from
4448 * the rcu-protected xarray.
4451 if (xas_retry(&xas
, folio
))
4454 order
= xas_get_order(&xas
);
4455 nr_pages
= 1 << order
;
4456 folio_first_index
= round_down(xas
.xa_index
, 1 << order
);
4457 folio_last_index
= folio_first_index
+ nr_pages
- 1;
4459 /* Folios might straddle the range boundaries, only count covered pages */
4460 if (folio_first_index
< first_index
)
4461 nr_pages
-= first_index
- folio_first_index
;
4463 if (folio_last_index
> last_index
)
4464 nr_pages
-= folio_last_index
- last_index
;
4466 if (xa_is_value(folio
)) {
4467 /* page is evicted */
4468 void *shadow
= (void *)folio
;
4469 bool workingset
; /* not used */
4471 cs
->nr_evicted
+= nr_pages
;
4473 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */
4474 if (shmem_mapping(mapping
)) {
4475 /* shmem file - in swap cache */
4476 swp_entry_t swp
= radix_to_swp_entry(folio
);
4478 /* swapin error results in poisoned entry */
4479 if (non_swap_entry(swp
))
4483 * Getting a swap entry from the shmem
4484 * inode means we beat
4485 * shmem_unuse(). rcu_read_lock()
4486 * ensures swapoff waits for us before
4487 * freeing the swapper space. However,
4488 * we can race with swapping and
4489 * invalidation, so there might not be
4490 * a shadow in the swapcache (yet).
4492 shadow
= get_shadow_from_swap_cache(swp
);
4497 if (workingset_test_recent(shadow
, true, &workingset
, false))
4498 cs
->nr_recently_evicted
+= nr_pages
;
4503 /* page is in cache */
4504 cs
->nr_cache
+= nr_pages
;
4506 if (xas_get_mark(&xas
, PAGECACHE_TAG_DIRTY
))
4507 cs
->nr_dirty
+= nr_pages
;
4509 if (xas_get_mark(&xas
, PAGECACHE_TAG_WRITEBACK
))
4510 cs
->nr_writeback
+= nr_pages
;
4513 if (need_resched()) {
4522 * See mincore: reveal pagecache information only for files
4523 * that the calling process has write access to, or could (if
4524 * tried) open for writing.
4526 static inline bool can_do_cachestat(struct file
*f
)
4528 if (f
->f_mode
& FMODE_WRITE
)
4530 if (inode_owner_or_capable(file_mnt_idmap(f
), file_inode(f
)))
4532 return file_permission(f
, MAY_WRITE
) == 0;
4536 * The cachestat(2) system call.
4538 * cachestat() returns the page cache statistics of a file in the
4539 * bytes range specified by `off` and `len`: number of cached pages,
4540 * number of dirty pages, number of pages marked for writeback,
4541 * number of evicted pages, and number of recently evicted pages.
4543 * An evicted page is a page that is previously in the page cache
4544 * but has been evicted since. A page is recently evicted if its last
4545 * eviction was recent enough that its reentry to the cache would
4546 * indicate that it is actively being used by the system, and that
4547 * there is memory pressure on the system.
4549 * `off` and `len` must be non-negative integers. If `len` > 0,
4550 * the queried range is [`off`, `off` + `len`]. If `len` == 0,
4551 * we will query in the range from `off` to the end of the file.
4553 * The `flags` argument is unused for now, but is included for future
4554 * extensibility. User should pass 0 (i.e no flag specified).
4556 * Currently, hugetlbfs is not supported.
4558 * Because the status of a page can change after cachestat() checks it
4559 * but before it returns to the application, the returned values may
4560 * contain stale information.
4564 * -EFAULT - cstat or cstat_range points to an illegal address
4565 * -EINVAL - invalid flags
4566 * -EBADF - invalid file descriptor
4567 * -EOPNOTSUPP - file descriptor is of a hugetlbfs file
4569 SYSCALL_DEFINE4(cachestat
, unsigned int, fd
,
4570 struct cachestat_range __user
*, cstat_range
,
4571 struct cachestat __user
*, cstat
, unsigned int, flags
)
4574 struct address_space
*mapping
;
4575 struct cachestat_range csr
;
4576 struct cachestat cs
;
4577 pgoff_t first_index
, last_index
;
4582 if (copy_from_user(&csr
, cstat_range
,
4583 sizeof(struct cachestat_range
)))
4586 /* hugetlbfs is not supported */
4587 if (is_file_hugepages(fd_file(f
)))
4590 if (!can_do_cachestat(fd_file(f
)))
4596 first_index
= csr
.off
>> PAGE_SHIFT
;
4598 csr
.len
== 0 ? ULONG_MAX
: (csr
.off
+ csr
.len
- 1) >> PAGE_SHIFT
;
4599 memset(&cs
, 0, sizeof(struct cachestat
));
4600 mapping
= fd_file(f
)->f_mapping
;
4601 filemap_cachestat(mapping
, first_index
, last_index
, &cs
);
4603 if (copy_to_user(cstat
, &cs
, sizeof(struct cachestat
)))
4608 #endif /* CONFIG_CACHESTAT_SYSCALL */