drm/i915/backlight: Enable nits based luminance
[drm/drm-intel.git] / mm / filemap.c
blob804d7365680c1cef198ed453f1bd17bc66a7decc
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/filemap.c
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
8 /*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/syscalls.h>
26 #include <linux/mman.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
29 #include <linux/uio.h>
30 #include <linux/error-injection.h>
31 #include <linux/hash.h>
32 #include <linux/writeback.h>
33 #include <linux/backing-dev.h>
34 #include <linux/pagevec.h>
35 #include <linux/security.h>
36 #include <linux/cpuset.h>
37 #include <linux/hugetlb.h>
38 #include <linux/memcontrol.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
45 #include <linux/migrate.h>
46 #include <linux/pipe_fs_i.h>
47 #include <linux/splice.h>
48 #include <linux/rcupdate_wait.h>
49 #include <linux/sched/mm.h>
50 #include <linux/fsnotify.h>
51 #include <asm/pgalloc.h>
52 #include <asm/tlbflush.h>
53 #include "internal.h"
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/filemap.h>
59 * FIXME: remove all knowledge of the buffer layer from the core VM
61 #include <linux/buffer_head.h> /* for try_to_free_buffers */
63 #include <asm/mman.h>
65 #include "swap.h"
68 * Shared mappings implemented 30.11.1994. It's not fully working yet,
69 * though.
71 * Shared mappings now work. 15.8.1995 Bruno.
73 * finished 'unifying' the page and buffer cache and SMP-threaded the
74 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
76 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
80 * Lock ordering:
82 * ->i_mmap_rwsem (truncate_pagecache)
83 * ->private_lock (__free_pte->block_dirty_folio)
84 * ->swap_lock (exclusive_swap_page, others)
85 * ->i_pages lock
87 * ->i_rwsem
88 * ->invalidate_lock (acquired by fs in truncate path)
89 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
91 * ->mmap_lock
92 * ->i_mmap_rwsem
93 * ->page_table_lock or pte_lock (various, mainly in memory.c)
94 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
96 * ->mmap_lock
97 * ->invalidate_lock (filemap_fault)
98 * ->lock_page (filemap_fault, access_process_vm)
100 * ->i_rwsem (generic_perform_write)
101 * ->mmap_lock (fault_in_readable->do_page_fault)
103 * bdi->wb.list_lock
104 * sb_lock (fs/fs-writeback.c)
105 * ->i_pages lock (__sync_single_inode)
107 * ->i_mmap_rwsem
108 * ->anon_vma.lock (vma_merge)
110 * ->anon_vma.lock
111 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
113 * ->page_table_lock or pte_lock
114 * ->swap_lock (try_to_unmap_one)
115 * ->private_lock (try_to_unmap_one)
116 * ->i_pages lock (try_to_unmap_one)
117 * ->lruvec->lru_lock (follow_page_mask->mark_page_accessed)
118 * ->lruvec->lru_lock (check_pte_range->folio_isolate_lru)
119 * ->private_lock (folio_remove_rmap_pte->set_page_dirty)
120 * ->i_pages lock (folio_remove_rmap_pte->set_page_dirty)
121 * bdi.wb->list_lock (folio_remove_rmap_pte->set_page_dirty)
122 * ->inode->i_lock (folio_remove_rmap_pte->set_page_dirty)
123 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
124 * ->inode->i_lock (zap_pte_range->set_page_dirty)
125 * ->private_lock (zap_pte_range->block_dirty_folio)
128 static void page_cache_delete(struct address_space *mapping,
129 struct folio *folio, void *shadow)
131 XA_STATE(xas, &mapping->i_pages, folio->index);
132 long nr = 1;
134 mapping_set_update(&xas, mapping);
136 xas_set_order(&xas, folio->index, folio_order(folio));
137 nr = folio_nr_pages(folio);
139 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
141 xas_store(&xas, shadow);
142 xas_init_marks(&xas);
144 folio->mapping = NULL;
145 /* Leave page->index set: truncation lookup relies upon it */
146 mapping->nrpages -= nr;
149 static void filemap_unaccount_folio(struct address_space *mapping,
150 struct folio *folio)
152 long nr;
154 VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
155 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
156 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
157 current->comm, folio_pfn(folio));
158 dump_page(&folio->page, "still mapped when deleted");
159 dump_stack();
160 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
162 if (mapping_exiting(mapping) && !folio_test_large(folio)) {
163 int mapcount = folio_mapcount(folio);
165 if (folio_ref_count(folio) >= mapcount + 2) {
167 * All vmas have already been torn down, so it's
168 * a good bet that actually the page is unmapped
169 * and we'd rather not leak it: if we're wrong,
170 * another bad page check should catch it later.
172 atomic_set(&folio->_mapcount, -1);
173 folio_ref_sub(folio, mapcount);
178 /* hugetlb folios do not participate in page cache accounting. */
179 if (folio_test_hugetlb(folio))
180 return;
182 nr = folio_nr_pages(folio);
184 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
185 if (folio_test_swapbacked(folio)) {
186 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
187 if (folio_test_pmd_mappable(folio))
188 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
189 } else if (folio_test_pmd_mappable(folio)) {
190 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
191 filemap_nr_thps_dec(mapping);
195 * At this point folio must be either written or cleaned by
196 * truncate. Dirty folio here signals a bug and loss of
197 * unwritten data - on ordinary filesystems.
199 * But it's harmless on in-memory filesystems like tmpfs; and can
200 * occur when a driver which did get_user_pages() sets page dirty
201 * before putting it, while the inode is being finally evicted.
203 * Below fixes dirty accounting after removing the folio entirely
204 * but leaves the dirty flag set: it has no effect for truncated
205 * folio and anyway will be cleared before returning folio to
206 * buddy allocator.
208 if (WARN_ON_ONCE(folio_test_dirty(folio) &&
209 mapping_can_writeback(mapping)))
210 folio_account_cleaned(folio, inode_to_wb(mapping->host));
214 * Delete a page from the page cache and free it. Caller has to make
215 * sure the page is locked and that nobody else uses it - or that usage
216 * is safe. The caller must hold the i_pages lock.
218 void __filemap_remove_folio(struct folio *folio, void *shadow)
220 struct address_space *mapping = folio->mapping;
222 trace_mm_filemap_delete_from_page_cache(folio);
223 filemap_unaccount_folio(mapping, folio);
224 page_cache_delete(mapping, folio, shadow);
227 void filemap_free_folio(struct address_space *mapping, struct folio *folio)
229 void (*free_folio)(struct folio *);
230 int refs = 1;
232 free_folio = mapping->a_ops->free_folio;
233 if (free_folio)
234 free_folio(folio);
236 if (folio_test_large(folio))
237 refs = folio_nr_pages(folio);
238 folio_put_refs(folio, refs);
242 * filemap_remove_folio - Remove folio from page cache.
243 * @folio: The folio.
245 * This must be called only on folios that are locked and have been
246 * verified to be in the page cache. It will never put the folio into
247 * the free list because the caller has a reference on the page.
249 void filemap_remove_folio(struct folio *folio)
251 struct address_space *mapping = folio->mapping;
253 BUG_ON(!folio_test_locked(folio));
254 spin_lock(&mapping->host->i_lock);
255 xa_lock_irq(&mapping->i_pages);
256 __filemap_remove_folio(folio, NULL);
257 xa_unlock_irq(&mapping->i_pages);
258 if (mapping_shrinkable(mapping))
259 inode_add_lru(mapping->host);
260 spin_unlock(&mapping->host->i_lock);
262 filemap_free_folio(mapping, folio);
266 * page_cache_delete_batch - delete several folios from page cache
267 * @mapping: the mapping to which folios belong
268 * @fbatch: batch of folios to delete
270 * The function walks over mapping->i_pages and removes folios passed in
271 * @fbatch from the mapping. The function expects @fbatch to be sorted
272 * by page index and is optimised for it to be dense.
273 * It tolerates holes in @fbatch (mapping entries at those indices are not
274 * modified).
276 * The function expects the i_pages lock to be held.
278 static void page_cache_delete_batch(struct address_space *mapping,
279 struct folio_batch *fbatch)
281 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
282 long total_pages = 0;
283 int i = 0;
284 struct folio *folio;
286 mapping_set_update(&xas, mapping);
287 xas_for_each(&xas, folio, ULONG_MAX) {
288 if (i >= folio_batch_count(fbatch))
289 break;
291 /* A swap/dax/shadow entry got inserted? Skip it. */
292 if (xa_is_value(folio))
293 continue;
295 * A page got inserted in our range? Skip it. We have our
296 * pages locked so they are protected from being removed.
297 * If we see a page whose index is higher than ours, it
298 * means our page has been removed, which shouldn't be
299 * possible because we're holding the PageLock.
301 if (folio != fbatch->folios[i]) {
302 VM_BUG_ON_FOLIO(folio->index >
303 fbatch->folios[i]->index, folio);
304 continue;
307 WARN_ON_ONCE(!folio_test_locked(folio));
309 folio->mapping = NULL;
310 /* Leave folio->index set: truncation lookup relies on it */
312 i++;
313 xas_store(&xas, NULL);
314 total_pages += folio_nr_pages(folio);
316 mapping->nrpages -= total_pages;
319 void delete_from_page_cache_batch(struct address_space *mapping,
320 struct folio_batch *fbatch)
322 int i;
324 if (!folio_batch_count(fbatch))
325 return;
327 spin_lock(&mapping->host->i_lock);
328 xa_lock_irq(&mapping->i_pages);
329 for (i = 0; i < folio_batch_count(fbatch); i++) {
330 struct folio *folio = fbatch->folios[i];
332 trace_mm_filemap_delete_from_page_cache(folio);
333 filemap_unaccount_folio(mapping, folio);
335 page_cache_delete_batch(mapping, fbatch);
336 xa_unlock_irq(&mapping->i_pages);
337 if (mapping_shrinkable(mapping))
338 inode_add_lru(mapping->host);
339 spin_unlock(&mapping->host->i_lock);
341 for (i = 0; i < folio_batch_count(fbatch); i++)
342 filemap_free_folio(mapping, fbatch->folios[i]);
345 int filemap_check_errors(struct address_space *mapping)
347 int ret = 0;
348 /* Check for outstanding write errors */
349 if (test_bit(AS_ENOSPC, &mapping->flags) &&
350 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
351 ret = -ENOSPC;
352 if (test_bit(AS_EIO, &mapping->flags) &&
353 test_and_clear_bit(AS_EIO, &mapping->flags))
354 ret = -EIO;
355 return ret;
357 EXPORT_SYMBOL(filemap_check_errors);
359 static int filemap_check_and_keep_errors(struct address_space *mapping)
361 /* Check for outstanding write errors */
362 if (test_bit(AS_EIO, &mapping->flags))
363 return -EIO;
364 if (test_bit(AS_ENOSPC, &mapping->flags))
365 return -ENOSPC;
366 return 0;
370 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
371 * @mapping: address space structure to write
372 * @wbc: the writeback_control controlling the writeout
374 * Call writepages on the mapping using the provided wbc to control the
375 * writeout.
377 * Return: %0 on success, negative error code otherwise.
379 int filemap_fdatawrite_wbc(struct address_space *mapping,
380 struct writeback_control *wbc)
382 int ret;
384 if (!mapping_can_writeback(mapping) ||
385 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
386 return 0;
388 wbc_attach_fdatawrite_inode(wbc, mapping->host);
389 ret = do_writepages(mapping, wbc);
390 wbc_detach_inode(wbc);
391 return ret;
393 EXPORT_SYMBOL(filemap_fdatawrite_wbc);
396 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
397 * @mapping: address space structure to write
398 * @start: offset in bytes where the range starts
399 * @end: offset in bytes where the range ends (inclusive)
400 * @sync_mode: enable synchronous operation
402 * Start writeback against all of a mapping's dirty pages that lie
403 * within the byte offsets <start, end> inclusive.
405 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
406 * opposed to a regular memory cleansing writeback. The difference between
407 * these two operations is that if a dirty page/buffer is encountered, it must
408 * be waited upon, and not just skipped over.
410 * Return: %0 on success, negative error code otherwise.
412 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
413 loff_t end, int sync_mode)
415 struct writeback_control wbc = {
416 .sync_mode = sync_mode,
417 .nr_to_write = LONG_MAX,
418 .range_start = start,
419 .range_end = end,
422 return filemap_fdatawrite_wbc(mapping, &wbc);
425 static inline int __filemap_fdatawrite(struct address_space *mapping,
426 int sync_mode)
428 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
431 int filemap_fdatawrite(struct address_space *mapping)
433 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
435 EXPORT_SYMBOL(filemap_fdatawrite);
437 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
438 loff_t end)
440 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
442 EXPORT_SYMBOL(filemap_fdatawrite_range);
445 * filemap_fdatawrite_range_kick - start writeback on a range
446 * @mapping: target address_space
447 * @start: index to start writeback on
448 * @end: last (non-inclusive) index for writeback
450 * This is a non-integrity writeback helper, to start writing back folios
451 * for the indicated range.
453 * Return: %0 on success, negative error code otherwise.
455 int filemap_fdatawrite_range_kick(struct address_space *mapping, loff_t start,
456 loff_t end)
458 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_NONE);
460 EXPORT_SYMBOL_GPL(filemap_fdatawrite_range_kick);
463 * filemap_flush - mostly a non-blocking flush
464 * @mapping: target address_space
466 * This is a mostly non-blocking flush. Not suitable for data-integrity
467 * purposes - I/O may not be started against all dirty pages.
469 * Return: %0 on success, negative error code otherwise.
471 int filemap_flush(struct address_space *mapping)
473 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
475 EXPORT_SYMBOL(filemap_flush);
478 * filemap_range_has_page - check if a page exists in range.
479 * @mapping: address space within which to check
480 * @start_byte: offset in bytes where the range starts
481 * @end_byte: offset in bytes where the range ends (inclusive)
483 * Find at least one page in the range supplied, usually used to check if
484 * direct writing in this range will trigger a writeback.
486 * Return: %true if at least one page exists in the specified range,
487 * %false otherwise.
489 bool filemap_range_has_page(struct address_space *mapping,
490 loff_t start_byte, loff_t end_byte)
492 struct folio *folio;
493 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
494 pgoff_t max = end_byte >> PAGE_SHIFT;
496 if (end_byte < start_byte)
497 return false;
499 rcu_read_lock();
500 for (;;) {
501 folio = xas_find(&xas, max);
502 if (xas_retry(&xas, folio))
503 continue;
504 /* Shadow entries don't count */
505 if (xa_is_value(folio))
506 continue;
508 * We don't need to try to pin this page; we're about to
509 * release the RCU lock anyway. It is enough to know that
510 * there was a page here recently.
512 break;
514 rcu_read_unlock();
516 return folio != NULL;
518 EXPORT_SYMBOL(filemap_range_has_page);
520 static void __filemap_fdatawait_range(struct address_space *mapping,
521 loff_t start_byte, loff_t end_byte)
523 pgoff_t index = start_byte >> PAGE_SHIFT;
524 pgoff_t end = end_byte >> PAGE_SHIFT;
525 struct folio_batch fbatch;
526 unsigned nr_folios;
528 folio_batch_init(&fbatch);
530 while (index <= end) {
531 unsigned i;
533 nr_folios = filemap_get_folios_tag(mapping, &index, end,
534 PAGECACHE_TAG_WRITEBACK, &fbatch);
536 if (!nr_folios)
537 break;
539 for (i = 0; i < nr_folios; i++) {
540 struct folio *folio = fbatch.folios[i];
542 folio_wait_writeback(folio);
544 folio_batch_release(&fbatch);
545 cond_resched();
550 * filemap_fdatawait_range - wait for writeback to complete
551 * @mapping: address space structure to wait for
552 * @start_byte: offset in bytes where the range starts
553 * @end_byte: offset in bytes where the range ends (inclusive)
555 * Walk the list of under-writeback pages of the given address space
556 * in the given range and wait for all of them. Check error status of
557 * the address space and return it.
559 * Since the error status of the address space is cleared by this function,
560 * callers are responsible for checking the return value and handling and/or
561 * reporting the error.
563 * Return: error status of the address space.
565 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
566 loff_t end_byte)
568 __filemap_fdatawait_range(mapping, start_byte, end_byte);
569 return filemap_check_errors(mapping);
571 EXPORT_SYMBOL(filemap_fdatawait_range);
574 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
575 * @mapping: address space structure to wait for
576 * @start_byte: offset in bytes where the range starts
577 * @end_byte: offset in bytes where the range ends (inclusive)
579 * Walk the list of under-writeback pages of the given address space in the
580 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
581 * this function does not clear error status of the address space.
583 * Use this function if callers don't handle errors themselves. Expected
584 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
585 * fsfreeze(8)
587 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
588 loff_t start_byte, loff_t end_byte)
590 __filemap_fdatawait_range(mapping, start_byte, end_byte);
591 return filemap_check_and_keep_errors(mapping);
593 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
596 * file_fdatawait_range - wait for writeback to complete
597 * @file: file pointing to address space structure to wait for
598 * @start_byte: offset in bytes where the range starts
599 * @end_byte: offset in bytes where the range ends (inclusive)
601 * Walk the list of under-writeback pages of the address space that file
602 * refers to, in the given range and wait for all of them. Check error
603 * status of the address space vs. the file->f_wb_err cursor and return it.
605 * Since the error status of the file is advanced by this function,
606 * callers are responsible for checking the return value and handling and/or
607 * reporting the error.
609 * Return: error status of the address space vs. the file->f_wb_err cursor.
611 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
613 struct address_space *mapping = file->f_mapping;
615 __filemap_fdatawait_range(mapping, start_byte, end_byte);
616 return file_check_and_advance_wb_err(file);
618 EXPORT_SYMBOL(file_fdatawait_range);
621 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
622 * @mapping: address space structure to wait for
624 * Walk the list of under-writeback pages of the given address space
625 * and wait for all of them. Unlike filemap_fdatawait(), this function
626 * does not clear error status of the address space.
628 * Use this function if callers don't handle errors themselves. Expected
629 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
630 * fsfreeze(8)
632 * Return: error status of the address space.
634 int filemap_fdatawait_keep_errors(struct address_space *mapping)
636 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
637 return filemap_check_and_keep_errors(mapping);
639 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
641 /* Returns true if writeback might be needed or already in progress. */
642 static bool mapping_needs_writeback(struct address_space *mapping)
644 return mapping->nrpages;
647 bool filemap_range_has_writeback(struct address_space *mapping,
648 loff_t start_byte, loff_t end_byte)
650 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
651 pgoff_t max = end_byte >> PAGE_SHIFT;
652 struct folio *folio;
654 if (end_byte < start_byte)
655 return false;
657 rcu_read_lock();
658 xas_for_each(&xas, folio, max) {
659 if (xas_retry(&xas, folio))
660 continue;
661 if (xa_is_value(folio))
662 continue;
663 if (folio_test_dirty(folio) || folio_test_locked(folio) ||
664 folio_test_writeback(folio))
665 break;
667 rcu_read_unlock();
668 return folio != NULL;
670 EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
673 * filemap_write_and_wait_range - write out & wait on a file range
674 * @mapping: the address_space for the pages
675 * @lstart: offset in bytes where the range starts
676 * @lend: offset in bytes where the range ends (inclusive)
678 * Write out and wait upon file offsets lstart->lend, inclusive.
680 * Note that @lend is inclusive (describes the last byte to be written) so
681 * that this function can be used to write to the very end-of-file (end = -1).
683 * Return: error status of the address space.
685 int filemap_write_and_wait_range(struct address_space *mapping,
686 loff_t lstart, loff_t lend)
688 int err = 0, err2;
690 if (lend < lstart)
691 return 0;
693 if (mapping_needs_writeback(mapping)) {
694 err = __filemap_fdatawrite_range(mapping, lstart, lend,
695 WB_SYNC_ALL);
697 * Even if the above returned error, the pages may be
698 * written partially (e.g. -ENOSPC), so we wait for it.
699 * But the -EIO is special case, it may indicate the worst
700 * thing (e.g. bug) happened, so we avoid waiting for it.
702 if (err != -EIO)
703 __filemap_fdatawait_range(mapping, lstart, lend);
705 err2 = filemap_check_errors(mapping);
706 if (!err)
707 err = err2;
708 return err;
710 EXPORT_SYMBOL(filemap_write_and_wait_range);
712 void __filemap_set_wb_err(struct address_space *mapping, int err)
714 errseq_t eseq = errseq_set(&mapping->wb_err, err);
716 trace_filemap_set_wb_err(mapping, eseq);
718 EXPORT_SYMBOL(__filemap_set_wb_err);
721 * file_check_and_advance_wb_err - report wb error (if any) that was previously
722 * and advance wb_err to current one
723 * @file: struct file on which the error is being reported
725 * When userland calls fsync (or something like nfsd does the equivalent), we
726 * want to report any writeback errors that occurred since the last fsync (or
727 * since the file was opened if there haven't been any).
729 * Grab the wb_err from the mapping. If it matches what we have in the file,
730 * then just quickly return 0. The file is all caught up.
732 * If it doesn't match, then take the mapping value, set the "seen" flag in
733 * it and try to swap it into place. If it works, or another task beat us
734 * to it with the new value, then update the f_wb_err and return the error
735 * portion. The error at this point must be reported via proper channels
736 * (a'la fsync, or NFS COMMIT operation, etc.).
738 * While we handle mapping->wb_err with atomic operations, the f_wb_err
739 * value is protected by the f_lock since we must ensure that it reflects
740 * the latest value swapped in for this file descriptor.
742 * Return: %0 on success, negative error code otherwise.
744 int file_check_and_advance_wb_err(struct file *file)
746 int err = 0;
747 errseq_t old = READ_ONCE(file->f_wb_err);
748 struct address_space *mapping = file->f_mapping;
750 /* Locklessly handle the common case where nothing has changed */
751 if (errseq_check(&mapping->wb_err, old)) {
752 /* Something changed, must use slow path */
753 spin_lock(&file->f_lock);
754 old = file->f_wb_err;
755 err = errseq_check_and_advance(&mapping->wb_err,
756 &file->f_wb_err);
757 trace_file_check_and_advance_wb_err(file, old);
758 spin_unlock(&file->f_lock);
762 * We're mostly using this function as a drop in replacement for
763 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
764 * that the legacy code would have had on these flags.
766 clear_bit(AS_EIO, &mapping->flags);
767 clear_bit(AS_ENOSPC, &mapping->flags);
768 return err;
770 EXPORT_SYMBOL(file_check_and_advance_wb_err);
773 * file_write_and_wait_range - write out & wait on a file range
774 * @file: file pointing to address_space with pages
775 * @lstart: offset in bytes where the range starts
776 * @lend: offset in bytes where the range ends (inclusive)
778 * Write out and wait upon file offsets lstart->lend, inclusive.
780 * Note that @lend is inclusive (describes the last byte to be written) so
781 * that this function can be used to write to the very end-of-file (end = -1).
783 * After writing out and waiting on the data, we check and advance the
784 * f_wb_err cursor to the latest value, and return any errors detected there.
786 * Return: %0 on success, negative error code otherwise.
788 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
790 int err = 0, err2;
791 struct address_space *mapping = file->f_mapping;
793 if (lend < lstart)
794 return 0;
796 if (mapping_needs_writeback(mapping)) {
797 err = __filemap_fdatawrite_range(mapping, lstart, lend,
798 WB_SYNC_ALL);
799 /* See comment of filemap_write_and_wait() */
800 if (err != -EIO)
801 __filemap_fdatawait_range(mapping, lstart, lend);
803 err2 = file_check_and_advance_wb_err(file);
804 if (!err)
805 err = err2;
806 return err;
808 EXPORT_SYMBOL(file_write_and_wait_range);
811 * replace_page_cache_folio - replace a pagecache folio with a new one
812 * @old: folio to be replaced
813 * @new: folio to replace with
815 * This function replaces a folio in the pagecache with a new one. On
816 * success it acquires the pagecache reference for the new folio and
817 * drops it for the old folio. Both the old and new folios must be
818 * locked. This function does not add the new folio to the LRU, the
819 * caller must do that.
821 * The remove + add is atomic. This function cannot fail.
823 void replace_page_cache_folio(struct folio *old, struct folio *new)
825 struct address_space *mapping = old->mapping;
826 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
827 pgoff_t offset = old->index;
828 XA_STATE(xas, &mapping->i_pages, offset);
830 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
831 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
832 VM_BUG_ON_FOLIO(new->mapping, new);
834 folio_get(new);
835 new->mapping = mapping;
836 new->index = offset;
838 mem_cgroup_replace_folio(old, new);
840 xas_lock_irq(&xas);
841 xas_store(&xas, new);
843 old->mapping = NULL;
844 /* hugetlb pages do not participate in page cache accounting. */
845 if (!folio_test_hugetlb(old))
846 __lruvec_stat_sub_folio(old, NR_FILE_PAGES);
847 if (!folio_test_hugetlb(new))
848 __lruvec_stat_add_folio(new, NR_FILE_PAGES);
849 if (folio_test_swapbacked(old))
850 __lruvec_stat_sub_folio(old, NR_SHMEM);
851 if (folio_test_swapbacked(new))
852 __lruvec_stat_add_folio(new, NR_SHMEM);
853 xas_unlock_irq(&xas);
854 if (free_folio)
855 free_folio(old);
856 folio_put(old);
858 EXPORT_SYMBOL_GPL(replace_page_cache_folio);
860 noinline int __filemap_add_folio(struct address_space *mapping,
861 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
863 XA_STATE(xas, &mapping->i_pages, index);
864 void *alloced_shadow = NULL;
865 int alloced_order = 0;
866 bool huge;
867 long nr;
869 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
870 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
871 VM_BUG_ON_FOLIO(folio_order(folio) < mapping_min_folio_order(mapping),
872 folio);
873 mapping_set_update(&xas, mapping);
875 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
876 xas_set_order(&xas, index, folio_order(folio));
877 huge = folio_test_hugetlb(folio);
878 nr = folio_nr_pages(folio);
880 gfp &= GFP_RECLAIM_MASK;
881 folio_ref_add(folio, nr);
882 folio->mapping = mapping;
883 folio->index = xas.xa_index;
885 for (;;) {
886 int order = -1, split_order = 0;
887 void *entry, *old = NULL;
889 xas_lock_irq(&xas);
890 xas_for_each_conflict(&xas, entry) {
891 old = entry;
892 if (!xa_is_value(entry)) {
893 xas_set_err(&xas, -EEXIST);
894 goto unlock;
897 * If a larger entry exists,
898 * it will be the first and only entry iterated.
900 if (order == -1)
901 order = xas_get_order(&xas);
904 /* entry may have changed before we re-acquire the lock */
905 if (alloced_order && (old != alloced_shadow || order != alloced_order)) {
906 xas_destroy(&xas);
907 alloced_order = 0;
910 if (old) {
911 if (order > 0 && order > folio_order(folio)) {
912 /* How to handle large swap entries? */
913 BUG_ON(shmem_mapping(mapping));
914 if (!alloced_order) {
915 split_order = order;
916 goto unlock;
918 xas_split(&xas, old, order);
919 xas_reset(&xas);
921 if (shadowp)
922 *shadowp = old;
925 xas_store(&xas, folio);
926 if (xas_error(&xas))
927 goto unlock;
929 mapping->nrpages += nr;
931 /* hugetlb pages do not participate in page cache accounting */
932 if (!huge) {
933 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
934 if (folio_test_pmd_mappable(folio))
935 __lruvec_stat_mod_folio(folio,
936 NR_FILE_THPS, nr);
939 unlock:
940 xas_unlock_irq(&xas);
942 /* split needed, alloc here and retry. */
943 if (split_order) {
944 xas_split_alloc(&xas, old, split_order, gfp);
945 if (xas_error(&xas))
946 goto error;
947 alloced_shadow = old;
948 alloced_order = split_order;
949 xas_reset(&xas);
950 continue;
953 if (!xas_nomem(&xas, gfp))
954 break;
957 if (xas_error(&xas))
958 goto error;
960 trace_mm_filemap_add_to_page_cache(folio);
961 return 0;
962 error:
963 folio->mapping = NULL;
964 /* Leave page->index set: truncation relies upon it */
965 folio_put_refs(folio, nr);
966 return xas_error(&xas);
968 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
970 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
971 pgoff_t index, gfp_t gfp)
973 void *shadow = NULL;
974 int ret;
976 ret = mem_cgroup_charge(folio, NULL, gfp);
977 if (ret)
978 return ret;
980 __folio_set_locked(folio);
981 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
982 if (unlikely(ret)) {
983 mem_cgroup_uncharge(folio);
984 __folio_clear_locked(folio);
985 } else {
987 * The folio might have been evicted from cache only
988 * recently, in which case it should be activated like
989 * any other repeatedly accessed folio.
990 * The exception is folios getting rewritten; evicting other
991 * data from the working set, only to cache data that will
992 * get overwritten with something else, is a waste of memory.
994 WARN_ON_ONCE(folio_test_active(folio));
995 if (!(gfp & __GFP_WRITE) && shadow)
996 workingset_refault(folio, shadow);
997 folio_add_lru(folio);
999 return ret;
1001 EXPORT_SYMBOL_GPL(filemap_add_folio);
1003 #ifdef CONFIG_NUMA
1004 struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order)
1006 int n;
1007 struct folio *folio;
1009 if (cpuset_do_page_mem_spread()) {
1010 unsigned int cpuset_mems_cookie;
1011 do {
1012 cpuset_mems_cookie = read_mems_allowed_begin();
1013 n = cpuset_mem_spread_node();
1014 folio = __folio_alloc_node_noprof(gfp, order, n);
1015 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
1017 return folio;
1019 return folio_alloc_noprof(gfp, order);
1021 EXPORT_SYMBOL(filemap_alloc_folio_noprof);
1022 #endif
1025 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
1027 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
1029 * @mapping1: the first mapping to lock
1030 * @mapping2: the second mapping to lock
1032 void filemap_invalidate_lock_two(struct address_space *mapping1,
1033 struct address_space *mapping2)
1035 if (mapping1 > mapping2)
1036 swap(mapping1, mapping2);
1037 if (mapping1)
1038 down_write(&mapping1->invalidate_lock);
1039 if (mapping2 && mapping1 != mapping2)
1040 down_write_nested(&mapping2->invalidate_lock, 1);
1042 EXPORT_SYMBOL(filemap_invalidate_lock_two);
1045 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1047 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1049 * @mapping1: the first mapping to unlock
1050 * @mapping2: the second mapping to unlock
1052 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1053 struct address_space *mapping2)
1055 if (mapping1)
1056 up_write(&mapping1->invalidate_lock);
1057 if (mapping2 && mapping1 != mapping2)
1058 up_write(&mapping2->invalidate_lock);
1060 EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1063 * In order to wait for pages to become available there must be
1064 * waitqueues associated with pages. By using a hash table of
1065 * waitqueues where the bucket discipline is to maintain all
1066 * waiters on the same queue and wake all when any of the pages
1067 * become available, and for the woken contexts to check to be
1068 * sure the appropriate page became available, this saves space
1069 * at a cost of "thundering herd" phenomena during rare hash
1070 * collisions.
1072 #define PAGE_WAIT_TABLE_BITS 8
1073 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1074 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1076 static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1078 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1081 void __init pagecache_init(void)
1083 int i;
1085 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1086 init_waitqueue_head(&folio_wait_table[i]);
1088 page_writeback_init();
1092 * The page wait code treats the "wait->flags" somewhat unusually, because
1093 * we have multiple different kinds of waits, not just the usual "exclusive"
1094 * one.
1096 * We have:
1098 * (a) no special bits set:
1100 * We're just waiting for the bit to be released, and when a waker
1101 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1102 * and remove it from the wait queue.
1104 * Simple and straightforward.
1106 * (b) WQ_FLAG_EXCLUSIVE:
1108 * The waiter is waiting to get the lock, and only one waiter should
1109 * be woken up to avoid any thundering herd behavior. We'll set the
1110 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1112 * This is the traditional exclusive wait.
1114 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1116 * The waiter is waiting to get the bit, and additionally wants the
1117 * lock to be transferred to it for fair lock behavior. If the lock
1118 * cannot be taken, we stop walking the wait queue without waking
1119 * the waiter.
1121 * This is the "fair lock handoff" case, and in addition to setting
1122 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1123 * that it now has the lock.
1125 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1127 unsigned int flags;
1128 struct wait_page_key *key = arg;
1129 struct wait_page_queue *wait_page
1130 = container_of(wait, struct wait_page_queue, wait);
1132 if (!wake_page_match(wait_page, key))
1133 return 0;
1136 * If it's a lock handoff wait, we get the bit for it, and
1137 * stop walking (and do not wake it up) if we can't.
1139 flags = wait->flags;
1140 if (flags & WQ_FLAG_EXCLUSIVE) {
1141 if (test_bit(key->bit_nr, &key->folio->flags))
1142 return -1;
1143 if (flags & WQ_FLAG_CUSTOM) {
1144 if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1145 return -1;
1146 flags |= WQ_FLAG_DONE;
1151 * We are holding the wait-queue lock, but the waiter that
1152 * is waiting for this will be checking the flags without
1153 * any locking.
1155 * So update the flags atomically, and wake up the waiter
1156 * afterwards to avoid any races. This store-release pairs
1157 * with the load-acquire in folio_wait_bit_common().
1159 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1160 wake_up_state(wait->private, mode);
1163 * Ok, we have successfully done what we're waiting for,
1164 * and we can unconditionally remove the wait entry.
1166 * Note that this pairs with the "finish_wait()" in the
1167 * waiter, and has to be the absolute last thing we do.
1168 * After this list_del_init(&wait->entry) the wait entry
1169 * might be de-allocated and the process might even have
1170 * exited.
1172 list_del_init_careful(&wait->entry);
1173 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1176 static void folio_wake_bit(struct folio *folio, int bit_nr)
1178 wait_queue_head_t *q = folio_waitqueue(folio);
1179 struct wait_page_key key;
1180 unsigned long flags;
1182 key.folio = folio;
1183 key.bit_nr = bit_nr;
1184 key.page_match = 0;
1186 spin_lock_irqsave(&q->lock, flags);
1187 __wake_up_locked_key(q, TASK_NORMAL, &key);
1190 * It's possible to miss clearing waiters here, when we woke our page
1191 * waiters, but the hashed waitqueue has waiters for other pages on it.
1192 * That's okay, it's a rare case. The next waker will clear it.
1194 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1195 * other), the flag may be cleared in the course of freeing the page;
1196 * but that is not required for correctness.
1198 if (!waitqueue_active(q) || !key.page_match)
1199 folio_clear_waiters(folio);
1201 spin_unlock_irqrestore(&q->lock, flags);
1205 * A choice of three behaviors for folio_wait_bit_common():
1207 enum behavior {
1208 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1209 * __folio_lock() waiting on then setting PG_locked.
1211 SHARED, /* Hold ref to page and check the bit when woken, like
1212 * folio_wait_writeback() waiting on PG_writeback.
1214 DROP, /* Drop ref to page before wait, no check when woken,
1215 * like folio_put_wait_locked() on PG_locked.
1220 * Attempt to check (or get) the folio flag, and mark us done
1221 * if successful.
1223 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1224 struct wait_queue_entry *wait)
1226 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1227 if (test_and_set_bit(bit_nr, &folio->flags))
1228 return false;
1229 } else if (test_bit(bit_nr, &folio->flags))
1230 return false;
1232 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1233 return true;
1236 /* How many times do we accept lock stealing from under a waiter? */
1237 int sysctl_page_lock_unfairness = 5;
1239 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1240 int state, enum behavior behavior)
1242 wait_queue_head_t *q = folio_waitqueue(folio);
1243 int unfairness = sysctl_page_lock_unfairness;
1244 struct wait_page_queue wait_page;
1245 wait_queue_entry_t *wait = &wait_page.wait;
1246 bool thrashing = false;
1247 unsigned long pflags;
1248 bool in_thrashing;
1250 if (bit_nr == PG_locked &&
1251 !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1252 delayacct_thrashing_start(&in_thrashing);
1253 psi_memstall_enter(&pflags);
1254 thrashing = true;
1257 init_wait(wait);
1258 wait->func = wake_page_function;
1259 wait_page.folio = folio;
1260 wait_page.bit_nr = bit_nr;
1262 repeat:
1263 wait->flags = 0;
1264 if (behavior == EXCLUSIVE) {
1265 wait->flags = WQ_FLAG_EXCLUSIVE;
1266 if (--unfairness < 0)
1267 wait->flags |= WQ_FLAG_CUSTOM;
1271 * Do one last check whether we can get the
1272 * page bit synchronously.
1274 * Do the folio_set_waiters() marking before that
1275 * to let any waker we _just_ missed know they
1276 * need to wake us up (otherwise they'll never
1277 * even go to the slow case that looks at the
1278 * page queue), and add ourselves to the wait
1279 * queue if we need to sleep.
1281 * This part needs to be done under the queue
1282 * lock to avoid races.
1284 spin_lock_irq(&q->lock);
1285 folio_set_waiters(folio);
1286 if (!folio_trylock_flag(folio, bit_nr, wait))
1287 __add_wait_queue_entry_tail(q, wait);
1288 spin_unlock_irq(&q->lock);
1291 * From now on, all the logic will be based on
1292 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1293 * see whether the page bit testing has already
1294 * been done by the wake function.
1296 * We can drop our reference to the folio.
1298 if (behavior == DROP)
1299 folio_put(folio);
1302 * Note that until the "finish_wait()", or until
1303 * we see the WQ_FLAG_WOKEN flag, we need to
1304 * be very careful with the 'wait->flags', because
1305 * we may race with a waker that sets them.
1307 for (;;) {
1308 unsigned int flags;
1310 set_current_state(state);
1312 /* Loop until we've been woken or interrupted */
1313 flags = smp_load_acquire(&wait->flags);
1314 if (!(flags & WQ_FLAG_WOKEN)) {
1315 if (signal_pending_state(state, current))
1316 break;
1318 io_schedule();
1319 continue;
1322 /* If we were non-exclusive, we're done */
1323 if (behavior != EXCLUSIVE)
1324 break;
1326 /* If the waker got the lock for us, we're done */
1327 if (flags & WQ_FLAG_DONE)
1328 break;
1331 * Otherwise, if we're getting the lock, we need to
1332 * try to get it ourselves.
1334 * And if that fails, we'll have to retry this all.
1336 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1337 goto repeat;
1339 wait->flags |= WQ_FLAG_DONE;
1340 break;
1344 * If a signal happened, this 'finish_wait()' may remove the last
1345 * waiter from the wait-queues, but the folio waiters bit will remain
1346 * set. That's ok. The next wakeup will take care of it, and trying
1347 * to do it here would be difficult and prone to races.
1349 finish_wait(q, wait);
1351 if (thrashing) {
1352 delayacct_thrashing_end(&in_thrashing);
1353 psi_memstall_leave(&pflags);
1357 * NOTE! The wait->flags weren't stable until we've done the
1358 * 'finish_wait()', and we could have exited the loop above due
1359 * to a signal, and had a wakeup event happen after the signal
1360 * test but before the 'finish_wait()'.
1362 * So only after the finish_wait() can we reliably determine
1363 * if we got woken up or not, so we can now figure out the final
1364 * return value based on that state without races.
1366 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1367 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1369 if (behavior == EXCLUSIVE)
1370 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1372 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1375 #ifdef CONFIG_MIGRATION
1377 * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1378 * @entry: migration swap entry.
1379 * @ptl: already locked ptl. This function will drop the lock.
1381 * Wait for a migration entry referencing the given page to be removed. This is
1382 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1383 * this can be called without taking a reference on the page. Instead this
1384 * should be called while holding the ptl for the migration entry referencing
1385 * the page.
1387 * Returns after unlocking the ptl.
1389 * This follows the same logic as folio_wait_bit_common() so see the comments
1390 * there.
1392 void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl)
1393 __releases(ptl)
1395 struct wait_page_queue wait_page;
1396 wait_queue_entry_t *wait = &wait_page.wait;
1397 bool thrashing = false;
1398 unsigned long pflags;
1399 bool in_thrashing;
1400 wait_queue_head_t *q;
1401 struct folio *folio = pfn_swap_entry_folio(entry);
1403 q = folio_waitqueue(folio);
1404 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1405 delayacct_thrashing_start(&in_thrashing);
1406 psi_memstall_enter(&pflags);
1407 thrashing = true;
1410 init_wait(wait);
1411 wait->func = wake_page_function;
1412 wait_page.folio = folio;
1413 wait_page.bit_nr = PG_locked;
1414 wait->flags = 0;
1416 spin_lock_irq(&q->lock);
1417 folio_set_waiters(folio);
1418 if (!folio_trylock_flag(folio, PG_locked, wait))
1419 __add_wait_queue_entry_tail(q, wait);
1420 spin_unlock_irq(&q->lock);
1423 * If a migration entry exists for the page the migration path must hold
1424 * a valid reference to the page, and it must take the ptl to remove the
1425 * migration entry. So the page is valid until the ptl is dropped.
1427 spin_unlock(ptl);
1429 for (;;) {
1430 unsigned int flags;
1432 set_current_state(TASK_UNINTERRUPTIBLE);
1434 /* Loop until we've been woken or interrupted */
1435 flags = smp_load_acquire(&wait->flags);
1436 if (!(flags & WQ_FLAG_WOKEN)) {
1437 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1438 break;
1440 io_schedule();
1441 continue;
1443 break;
1446 finish_wait(q, wait);
1448 if (thrashing) {
1449 delayacct_thrashing_end(&in_thrashing);
1450 psi_memstall_leave(&pflags);
1453 #endif
1455 void folio_wait_bit(struct folio *folio, int bit_nr)
1457 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1459 EXPORT_SYMBOL(folio_wait_bit);
1461 int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1463 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1465 EXPORT_SYMBOL(folio_wait_bit_killable);
1468 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1469 * @folio: The folio to wait for.
1470 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1472 * The caller should hold a reference on @folio. They expect the page to
1473 * become unlocked relatively soon, but do not wish to hold up migration
1474 * (for example) by holding the reference while waiting for the folio to
1475 * come unlocked. After this function returns, the caller should not
1476 * dereference @folio.
1478 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1480 static int folio_put_wait_locked(struct folio *folio, int state)
1482 return folio_wait_bit_common(folio, PG_locked, state, DROP);
1486 * folio_unlock - Unlock a locked folio.
1487 * @folio: The folio.
1489 * Unlocks the folio and wakes up any thread sleeping on the page lock.
1491 * Context: May be called from interrupt or process context. May not be
1492 * called from NMI context.
1494 void folio_unlock(struct folio *folio)
1496 /* Bit 7 allows x86 to check the byte's sign bit */
1497 BUILD_BUG_ON(PG_waiters != 7);
1498 BUILD_BUG_ON(PG_locked > 7);
1499 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1500 if (folio_xor_flags_has_waiters(folio, 1 << PG_locked))
1501 folio_wake_bit(folio, PG_locked);
1503 EXPORT_SYMBOL(folio_unlock);
1506 * folio_end_read - End read on a folio.
1507 * @folio: The folio.
1508 * @success: True if all reads completed successfully.
1510 * When all reads against a folio have completed, filesystems should
1511 * call this function to let the pagecache know that no more reads
1512 * are outstanding. This will unlock the folio and wake up any thread
1513 * sleeping on the lock. The folio will also be marked uptodate if all
1514 * reads succeeded.
1516 * Context: May be called from interrupt or process context. May not be
1517 * called from NMI context.
1519 void folio_end_read(struct folio *folio, bool success)
1521 unsigned long mask = 1 << PG_locked;
1523 /* Must be in bottom byte for x86 to work */
1524 BUILD_BUG_ON(PG_uptodate > 7);
1525 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1526 VM_BUG_ON_FOLIO(success && folio_test_uptodate(folio), folio);
1528 if (likely(success))
1529 mask |= 1 << PG_uptodate;
1530 if (folio_xor_flags_has_waiters(folio, mask))
1531 folio_wake_bit(folio, PG_locked);
1533 EXPORT_SYMBOL(folio_end_read);
1536 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1537 * @folio: The folio.
1539 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1540 * it. The folio reference held for PG_private_2 being set is released.
1542 * This is, for example, used when a netfs folio is being written to a local
1543 * disk cache, thereby allowing writes to the cache for the same folio to be
1544 * serialised.
1546 void folio_end_private_2(struct folio *folio)
1548 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1549 clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1550 folio_wake_bit(folio, PG_private_2);
1551 folio_put(folio);
1553 EXPORT_SYMBOL(folio_end_private_2);
1556 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1557 * @folio: The folio to wait on.
1559 * Wait for PG_private_2 to be cleared on a folio.
1561 void folio_wait_private_2(struct folio *folio)
1563 while (folio_test_private_2(folio))
1564 folio_wait_bit(folio, PG_private_2);
1566 EXPORT_SYMBOL(folio_wait_private_2);
1569 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1570 * @folio: The folio to wait on.
1572 * Wait for PG_private_2 to be cleared on a folio or until a fatal signal is
1573 * received by the calling task.
1575 * Return:
1576 * - 0 if successful.
1577 * - -EINTR if a fatal signal was encountered.
1579 int folio_wait_private_2_killable(struct folio *folio)
1581 int ret = 0;
1583 while (folio_test_private_2(folio)) {
1584 ret = folio_wait_bit_killable(folio, PG_private_2);
1585 if (ret < 0)
1586 break;
1589 return ret;
1591 EXPORT_SYMBOL(folio_wait_private_2_killable);
1594 * If folio was marked as dropbehind, then pages should be dropped when writeback
1595 * completes. Do that now. If we fail, it's likely because of a big folio -
1596 * just reset dropbehind for that case and latter completions should invalidate.
1598 static void folio_end_dropbehind_write(struct folio *folio)
1601 * Hitting !in_task() should not happen off RWF_DONTCACHE writeback,
1602 * but can happen if normal writeback just happens to find dirty folios
1603 * that were created as part of uncached writeback, and that writeback
1604 * would otherwise not need non-IRQ handling. Just skip the
1605 * invalidation in that case.
1607 if (in_task() && folio_trylock(folio)) {
1608 if (folio->mapping)
1609 folio_unmap_invalidate(folio->mapping, folio, 0);
1610 folio_unlock(folio);
1615 * folio_end_writeback - End writeback against a folio.
1616 * @folio: The folio.
1618 * The folio must actually be under writeback.
1620 * Context: May be called from process or interrupt context.
1622 void folio_end_writeback(struct folio *folio)
1624 bool folio_dropbehind = false;
1626 VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio);
1629 * folio_test_clear_reclaim() could be used here but it is an
1630 * atomic operation and overkill in this particular case. Failing
1631 * to shuffle a folio marked for immediate reclaim is too mild
1632 * a gain to justify taking an atomic operation penalty at the
1633 * end of every folio writeback.
1635 if (folio_test_reclaim(folio)) {
1636 folio_clear_reclaim(folio);
1637 folio_rotate_reclaimable(folio);
1641 * Writeback does not hold a folio reference of its own, relying
1642 * on truncation to wait for the clearing of PG_writeback.
1643 * But here we must make sure that the folio is not freed and
1644 * reused before the folio_wake_bit().
1646 folio_get(folio);
1647 if (!folio_test_dirty(folio))
1648 folio_dropbehind = folio_test_clear_dropbehind(folio);
1649 if (__folio_end_writeback(folio))
1650 folio_wake_bit(folio, PG_writeback);
1651 acct_reclaim_writeback(folio);
1653 if (folio_dropbehind)
1654 folio_end_dropbehind_write(folio);
1655 folio_put(folio);
1657 EXPORT_SYMBOL(folio_end_writeback);
1660 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1661 * @folio: The folio to lock
1663 void __folio_lock(struct folio *folio)
1665 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1666 EXCLUSIVE);
1668 EXPORT_SYMBOL(__folio_lock);
1670 int __folio_lock_killable(struct folio *folio)
1672 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1673 EXCLUSIVE);
1675 EXPORT_SYMBOL_GPL(__folio_lock_killable);
1677 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1679 struct wait_queue_head *q = folio_waitqueue(folio);
1680 int ret;
1682 wait->folio = folio;
1683 wait->bit_nr = PG_locked;
1685 spin_lock_irq(&q->lock);
1686 __add_wait_queue_entry_tail(q, &wait->wait);
1687 folio_set_waiters(folio);
1688 ret = !folio_trylock(folio);
1690 * If we were successful now, we know we're still on the
1691 * waitqueue as we're still under the lock. This means it's
1692 * safe to remove and return success, we know the callback
1693 * isn't going to trigger.
1695 if (!ret)
1696 __remove_wait_queue(q, &wait->wait);
1697 else
1698 ret = -EIOCBQUEUED;
1699 spin_unlock_irq(&q->lock);
1700 return ret;
1704 * Return values:
1705 * 0 - folio is locked.
1706 * non-zero - folio is not locked.
1707 * mmap_lock or per-VMA lock has been released (mmap_read_unlock() or
1708 * vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and
1709 * FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held.
1711 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0
1712 * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed.
1714 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf)
1716 unsigned int flags = vmf->flags;
1718 if (fault_flag_allow_retry_first(flags)) {
1720 * CAUTION! In this case, mmap_lock/per-VMA lock is not
1721 * released even though returning VM_FAULT_RETRY.
1723 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1724 return VM_FAULT_RETRY;
1726 release_fault_lock(vmf);
1727 if (flags & FAULT_FLAG_KILLABLE)
1728 folio_wait_locked_killable(folio);
1729 else
1730 folio_wait_locked(folio);
1731 return VM_FAULT_RETRY;
1733 if (flags & FAULT_FLAG_KILLABLE) {
1734 bool ret;
1736 ret = __folio_lock_killable(folio);
1737 if (ret) {
1738 release_fault_lock(vmf);
1739 return VM_FAULT_RETRY;
1741 } else {
1742 __folio_lock(folio);
1745 return 0;
1749 * page_cache_next_miss() - Find the next gap in the page cache.
1750 * @mapping: Mapping.
1751 * @index: Index.
1752 * @max_scan: Maximum range to search.
1754 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1755 * gap with the lowest index.
1757 * This function may be called under the rcu_read_lock. However, this will
1758 * not atomically search a snapshot of the cache at a single point in time.
1759 * For example, if a gap is created at index 5, then subsequently a gap is
1760 * created at index 10, page_cache_next_miss covering both indices may
1761 * return 10 if called under the rcu_read_lock.
1763 * Return: The index of the gap if found, otherwise an index outside the
1764 * range specified (in which case 'return - index >= max_scan' will be true).
1765 * In the rare case of index wrap-around, 0 will be returned.
1767 pgoff_t page_cache_next_miss(struct address_space *mapping,
1768 pgoff_t index, unsigned long max_scan)
1770 XA_STATE(xas, &mapping->i_pages, index);
1772 while (max_scan--) {
1773 void *entry = xas_next(&xas);
1774 if (!entry || xa_is_value(entry))
1775 return xas.xa_index;
1776 if (xas.xa_index == 0)
1777 return 0;
1780 return index + max_scan;
1782 EXPORT_SYMBOL(page_cache_next_miss);
1785 * page_cache_prev_miss() - Find the previous gap in the page cache.
1786 * @mapping: Mapping.
1787 * @index: Index.
1788 * @max_scan: Maximum range to search.
1790 * Search the range [max(index - max_scan + 1, 0), index] for the
1791 * gap with the highest index.
1793 * This function may be called under the rcu_read_lock. However, this will
1794 * not atomically search a snapshot of the cache at a single point in time.
1795 * For example, if a gap is created at index 10, then subsequently a gap is
1796 * created at index 5, page_cache_prev_miss() covering both indices may
1797 * return 5 if called under the rcu_read_lock.
1799 * Return: The index of the gap if found, otherwise an index outside the
1800 * range specified (in which case 'index - return >= max_scan' will be true).
1801 * In the rare case of wrap-around, ULONG_MAX will be returned.
1803 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1804 pgoff_t index, unsigned long max_scan)
1806 XA_STATE(xas, &mapping->i_pages, index);
1808 while (max_scan--) {
1809 void *entry = xas_prev(&xas);
1810 if (!entry || xa_is_value(entry))
1811 break;
1812 if (xas.xa_index == ULONG_MAX)
1813 break;
1816 return xas.xa_index;
1818 EXPORT_SYMBOL(page_cache_prev_miss);
1821 * Lockless page cache protocol:
1822 * On the lookup side:
1823 * 1. Load the folio from i_pages
1824 * 2. Increment the refcount if it's not zero
1825 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1827 * On the removal side:
1828 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1829 * B. Remove the page from i_pages
1830 * C. Return the page to the page allocator
1832 * This means that any page may have its reference count temporarily
1833 * increased by a speculative page cache (or GUP-fast) lookup as it can
1834 * be allocated by another user before the RCU grace period expires.
1835 * Because the refcount temporarily acquired here may end up being the
1836 * last refcount on the page, any page allocation must be freeable by
1837 * folio_put().
1841 * filemap_get_entry - Get a page cache entry.
1842 * @mapping: the address_space to search
1843 * @index: The page cache index.
1845 * Looks up the page cache entry at @mapping & @index. If it is a folio,
1846 * it is returned with an increased refcount. If it is a shadow entry
1847 * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1848 * it is returned without further action.
1850 * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1852 void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1854 XA_STATE(xas, &mapping->i_pages, index);
1855 struct folio *folio;
1857 rcu_read_lock();
1858 repeat:
1859 xas_reset(&xas);
1860 folio = xas_load(&xas);
1861 if (xas_retry(&xas, folio))
1862 goto repeat;
1864 * A shadow entry of a recently evicted page, or a swap entry from
1865 * shmem/tmpfs. Return it without attempting to raise page count.
1867 if (!folio || xa_is_value(folio))
1868 goto out;
1870 if (!folio_try_get(folio))
1871 goto repeat;
1873 if (unlikely(folio != xas_reload(&xas))) {
1874 folio_put(folio);
1875 goto repeat;
1877 out:
1878 rcu_read_unlock();
1880 return folio;
1884 * __filemap_get_folio - Find and get a reference to a folio.
1885 * @mapping: The address_space to search.
1886 * @index: The page index.
1887 * @fgp_flags: %FGP flags modify how the folio is returned.
1888 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1890 * Looks up the page cache entry at @mapping & @index.
1892 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1893 * if the %GFP flags specified for %FGP_CREAT are atomic.
1895 * If this function returns a folio, it is returned with an increased refcount.
1897 * Return: The found folio or an ERR_PTR() otherwise.
1899 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1900 fgf_t fgp_flags, gfp_t gfp)
1902 struct folio *folio;
1904 repeat:
1905 folio = filemap_get_entry(mapping, index);
1906 if (xa_is_value(folio))
1907 folio = NULL;
1908 if (!folio)
1909 goto no_page;
1911 if (fgp_flags & FGP_LOCK) {
1912 if (fgp_flags & FGP_NOWAIT) {
1913 if (!folio_trylock(folio)) {
1914 folio_put(folio);
1915 return ERR_PTR(-EAGAIN);
1917 } else {
1918 folio_lock(folio);
1921 /* Has the page been truncated? */
1922 if (unlikely(folio->mapping != mapping)) {
1923 folio_unlock(folio);
1924 folio_put(folio);
1925 goto repeat;
1927 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1930 if (fgp_flags & FGP_ACCESSED)
1931 folio_mark_accessed(folio);
1932 else if (fgp_flags & FGP_WRITE) {
1933 /* Clear idle flag for buffer write */
1934 if (folio_test_idle(folio))
1935 folio_clear_idle(folio);
1938 if (fgp_flags & FGP_STABLE)
1939 folio_wait_stable(folio);
1940 no_page:
1941 if (!folio && (fgp_flags & FGP_CREAT)) {
1942 unsigned int min_order = mapping_min_folio_order(mapping);
1943 unsigned int order = max(min_order, FGF_GET_ORDER(fgp_flags));
1944 int err;
1945 index = mapping_align_index(mapping, index);
1947 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1948 gfp |= __GFP_WRITE;
1949 if (fgp_flags & FGP_NOFS)
1950 gfp &= ~__GFP_FS;
1951 if (fgp_flags & FGP_NOWAIT) {
1952 gfp &= ~GFP_KERNEL;
1953 gfp |= GFP_NOWAIT | __GFP_NOWARN;
1955 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1956 fgp_flags |= FGP_LOCK;
1958 if (order > mapping_max_folio_order(mapping))
1959 order = mapping_max_folio_order(mapping);
1960 /* If we're not aligned, allocate a smaller folio */
1961 if (index & ((1UL << order) - 1))
1962 order = __ffs(index);
1964 do {
1965 gfp_t alloc_gfp = gfp;
1967 err = -ENOMEM;
1968 if (order > min_order)
1969 alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN;
1970 folio = filemap_alloc_folio(alloc_gfp, order);
1971 if (!folio)
1972 continue;
1974 /* Init accessed so avoid atomic mark_page_accessed later */
1975 if (fgp_flags & FGP_ACCESSED)
1976 __folio_set_referenced(folio);
1977 if (fgp_flags & FGP_DONTCACHE)
1978 __folio_set_dropbehind(folio);
1980 err = filemap_add_folio(mapping, folio, index, gfp);
1981 if (!err)
1982 break;
1983 folio_put(folio);
1984 folio = NULL;
1985 } while (order-- > min_order);
1987 if (err == -EEXIST)
1988 goto repeat;
1989 if (err)
1990 return ERR_PTR(err);
1992 * filemap_add_folio locks the page, and for mmap
1993 * we expect an unlocked page.
1995 if (folio && (fgp_flags & FGP_FOR_MMAP))
1996 folio_unlock(folio);
1999 if (!folio)
2000 return ERR_PTR(-ENOENT);
2001 /* not an uncached lookup, clear uncached if set */
2002 if (folio_test_dropbehind(folio) && !(fgp_flags & FGP_DONTCACHE))
2003 folio_clear_dropbehind(folio);
2004 return folio;
2006 EXPORT_SYMBOL(__filemap_get_folio);
2008 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
2009 xa_mark_t mark)
2011 struct folio *folio;
2013 retry:
2014 if (mark == XA_PRESENT)
2015 folio = xas_find(xas, max);
2016 else
2017 folio = xas_find_marked(xas, max, mark);
2019 if (xas_retry(xas, folio))
2020 goto retry;
2022 * A shadow entry of a recently evicted page, a swap
2023 * entry from shmem/tmpfs or a DAX entry. Return it
2024 * without attempting to raise page count.
2026 if (!folio || xa_is_value(folio))
2027 return folio;
2029 if (!folio_try_get(folio))
2030 goto reset;
2032 if (unlikely(folio != xas_reload(xas))) {
2033 folio_put(folio);
2034 goto reset;
2037 return folio;
2038 reset:
2039 xas_reset(xas);
2040 goto retry;
2044 * find_get_entries - gang pagecache lookup
2045 * @mapping: The address_space to search
2046 * @start: The starting page cache index
2047 * @end: The final page index (inclusive).
2048 * @fbatch: Where the resulting entries are placed.
2049 * @indices: The cache indices corresponding to the entries in @entries
2051 * find_get_entries() will search for and return a batch of entries in
2052 * the mapping. The entries are placed in @fbatch. find_get_entries()
2053 * takes a reference on any actual folios it returns.
2055 * The entries have ascending indexes. The indices may not be consecutive
2056 * due to not-present entries or large folios.
2058 * Any shadow entries of evicted folios, or swap entries from
2059 * shmem/tmpfs, are included in the returned array.
2061 * Return: The number of entries which were found.
2063 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
2064 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2066 XA_STATE(xas, &mapping->i_pages, *start);
2067 struct folio *folio;
2069 rcu_read_lock();
2070 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2071 indices[fbatch->nr] = xas.xa_index;
2072 if (!folio_batch_add(fbatch, folio))
2073 break;
2076 if (folio_batch_count(fbatch)) {
2077 unsigned long nr;
2078 int idx = folio_batch_count(fbatch) - 1;
2080 folio = fbatch->folios[idx];
2081 if (!xa_is_value(folio))
2082 nr = folio_nr_pages(folio);
2083 else
2084 nr = 1 << xa_get_order(&mapping->i_pages, indices[idx]);
2085 *start = round_down(indices[idx] + nr, nr);
2087 rcu_read_unlock();
2089 return folio_batch_count(fbatch);
2093 * find_lock_entries - Find a batch of pagecache entries.
2094 * @mapping: The address_space to search.
2095 * @start: The starting page cache index.
2096 * @end: The final page index (inclusive).
2097 * @fbatch: Where the resulting entries are placed.
2098 * @indices: The cache indices of the entries in @fbatch.
2100 * find_lock_entries() will return a batch of entries from @mapping.
2101 * Swap, shadow and DAX entries are included. Folios are returned
2102 * locked and with an incremented refcount. Folios which are locked
2103 * by somebody else or under writeback are skipped. Folios which are
2104 * partially outside the range are not returned.
2106 * The entries have ascending indexes. The indices may not be consecutive
2107 * due to not-present entries, large folios, folios which could not be
2108 * locked or folios under writeback.
2110 * Return: The number of entries which were found.
2112 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
2113 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2115 XA_STATE(xas, &mapping->i_pages, *start);
2116 struct folio *folio;
2118 rcu_read_lock();
2119 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2120 unsigned long base;
2121 unsigned long nr;
2123 if (!xa_is_value(folio)) {
2124 nr = folio_nr_pages(folio);
2125 base = folio->index;
2126 /* Omit large folio which begins before the start */
2127 if (base < *start)
2128 goto put;
2129 /* Omit large folio which extends beyond the end */
2130 if (base + nr - 1 > end)
2131 goto put;
2132 if (!folio_trylock(folio))
2133 goto put;
2134 if (folio->mapping != mapping ||
2135 folio_test_writeback(folio))
2136 goto unlock;
2137 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2138 folio);
2139 } else {
2140 nr = 1 << xas_get_order(&xas);
2141 base = xas.xa_index & ~(nr - 1);
2142 /* Omit order>0 value which begins before the start */
2143 if (base < *start)
2144 continue;
2145 /* Omit order>0 value which extends beyond the end */
2146 if (base + nr - 1 > end)
2147 break;
2150 /* Update start now so that last update is correct on return */
2151 *start = base + nr;
2152 indices[fbatch->nr] = xas.xa_index;
2153 if (!folio_batch_add(fbatch, folio))
2154 break;
2155 continue;
2156 unlock:
2157 folio_unlock(folio);
2158 put:
2159 folio_put(folio);
2161 rcu_read_unlock();
2163 return folio_batch_count(fbatch);
2167 * filemap_get_folios - Get a batch of folios
2168 * @mapping: The address_space to search
2169 * @start: The starting page index
2170 * @end: The final page index (inclusive)
2171 * @fbatch: The batch to fill.
2173 * Search for and return a batch of folios in the mapping starting at
2174 * index @start and up to index @end (inclusive). The folios are returned
2175 * in @fbatch with an elevated reference count.
2177 * Return: The number of folios which were found.
2178 * We also update @start to index the next folio for the traversal.
2180 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2181 pgoff_t end, struct folio_batch *fbatch)
2183 return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch);
2185 EXPORT_SYMBOL(filemap_get_folios);
2188 * filemap_get_folios_contig - Get a batch of contiguous folios
2189 * @mapping: The address_space to search
2190 * @start: The starting page index
2191 * @end: The final page index (inclusive)
2192 * @fbatch: The batch to fill
2194 * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2195 * except the returned folios are guaranteed to be contiguous. This may
2196 * not return all contiguous folios if the batch gets filled up.
2198 * Return: The number of folios found.
2199 * Also update @start to be positioned for traversal of the next folio.
2202 unsigned filemap_get_folios_contig(struct address_space *mapping,
2203 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2205 XA_STATE(xas, &mapping->i_pages, *start);
2206 unsigned long nr;
2207 struct folio *folio;
2209 rcu_read_lock();
2211 for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2212 folio = xas_next(&xas)) {
2213 if (xas_retry(&xas, folio))
2214 continue;
2216 * If the entry has been swapped out, we can stop looking.
2217 * No current caller is looking for DAX entries.
2219 if (xa_is_value(folio))
2220 goto update_start;
2222 /* If we landed in the middle of a THP, continue at its end. */
2223 if (xa_is_sibling(folio))
2224 goto update_start;
2226 if (!folio_try_get(folio))
2227 goto retry;
2229 if (unlikely(folio != xas_reload(&xas)))
2230 goto put_folio;
2232 if (!folio_batch_add(fbatch, folio)) {
2233 nr = folio_nr_pages(folio);
2234 *start = folio->index + nr;
2235 goto out;
2237 continue;
2238 put_folio:
2239 folio_put(folio);
2241 retry:
2242 xas_reset(&xas);
2245 update_start:
2246 nr = folio_batch_count(fbatch);
2248 if (nr) {
2249 folio = fbatch->folios[nr - 1];
2250 *start = folio_next_index(folio);
2252 out:
2253 rcu_read_unlock();
2254 return folio_batch_count(fbatch);
2256 EXPORT_SYMBOL(filemap_get_folios_contig);
2259 * filemap_get_folios_tag - Get a batch of folios matching @tag
2260 * @mapping: The address_space to search
2261 * @start: The starting page index
2262 * @end: The final page index (inclusive)
2263 * @tag: The tag index
2264 * @fbatch: The batch to fill
2266 * The first folio may start before @start; if it does, it will contain
2267 * @start. The final folio may extend beyond @end; if it does, it will
2268 * contain @end. The folios have ascending indices. There may be gaps
2269 * between the folios if there are indices which have no folio in the
2270 * page cache. If folios are added to or removed from the page cache
2271 * while this is running, they may or may not be found by this call.
2272 * Only returns folios that are tagged with @tag.
2274 * Return: The number of folios found.
2275 * Also update @start to index the next folio for traversal.
2277 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2278 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
2280 XA_STATE(xas, &mapping->i_pages, *start);
2281 struct folio *folio;
2283 rcu_read_lock();
2284 while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
2286 * Shadow entries should never be tagged, but this iteration
2287 * is lockless so there is a window for page reclaim to evict
2288 * a page we saw tagged. Skip over it.
2290 if (xa_is_value(folio))
2291 continue;
2292 if (!folio_batch_add(fbatch, folio)) {
2293 unsigned long nr = folio_nr_pages(folio);
2294 *start = folio->index + nr;
2295 goto out;
2299 * We come here when there is no page beyond @end. We take care to not
2300 * overflow the index @start as it confuses some of the callers. This
2301 * breaks the iteration when there is a page at index -1 but that is
2302 * already broke anyway.
2304 if (end == (pgoff_t)-1)
2305 *start = (pgoff_t)-1;
2306 else
2307 *start = end + 1;
2308 out:
2309 rcu_read_unlock();
2311 return folio_batch_count(fbatch);
2313 EXPORT_SYMBOL(filemap_get_folios_tag);
2316 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2317 * a _large_ part of the i/o request. Imagine the worst scenario:
2319 * ---R__________________________________________B__________
2320 * ^ reading here ^ bad block(assume 4k)
2322 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2323 * => failing the whole request => read(R) => read(R+1) =>
2324 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2325 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2326 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2328 * It is going insane. Fix it by quickly scaling down the readahead size.
2330 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2332 ra->ra_pages /= 4;
2336 * filemap_get_read_batch - Get a batch of folios for read
2338 * Get a batch of folios which represent a contiguous range of bytes in
2339 * the file. No exceptional entries will be returned. If @index is in
2340 * the middle of a folio, the entire folio will be returned. The last
2341 * folio in the batch may have the readahead flag set or the uptodate flag
2342 * clear so that the caller can take the appropriate action.
2344 static void filemap_get_read_batch(struct address_space *mapping,
2345 pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2347 XA_STATE(xas, &mapping->i_pages, index);
2348 struct folio *folio;
2350 rcu_read_lock();
2351 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2352 if (xas_retry(&xas, folio))
2353 continue;
2354 if (xas.xa_index > max || xa_is_value(folio))
2355 break;
2356 if (xa_is_sibling(folio))
2357 break;
2358 if (!folio_try_get(folio))
2359 goto retry;
2361 if (unlikely(folio != xas_reload(&xas)))
2362 goto put_folio;
2364 if (!folio_batch_add(fbatch, folio))
2365 break;
2366 if (!folio_test_uptodate(folio))
2367 break;
2368 if (folio_test_readahead(folio))
2369 break;
2370 xas_advance(&xas, folio_next_index(folio) - 1);
2371 continue;
2372 put_folio:
2373 folio_put(folio);
2374 retry:
2375 xas_reset(&xas);
2377 rcu_read_unlock();
2380 static int filemap_read_folio(struct file *file, filler_t filler,
2381 struct folio *folio)
2383 bool workingset = folio_test_workingset(folio);
2384 unsigned long pflags;
2385 int error;
2387 /* Start the actual read. The read will unlock the page. */
2388 if (unlikely(workingset))
2389 psi_memstall_enter(&pflags);
2390 error = filler(file, folio);
2391 if (unlikely(workingset))
2392 psi_memstall_leave(&pflags);
2393 if (error)
2394 return error;
2396 error = folio_wait_locked_killable(folio);
2397 if (error)
2398 return error;
2399 if (folio_test_uptodate(folio))
2400 return 0;
2401 if (file)
2402 shrink_readahead_size_eio(&file->f_ra);
2403 return -EIO;
2406 static bool filemap_range_uptodate(struct address_space *mapping,
2407 loff_t pos, size_t count, struct folio *folio,
2408 bool need_uptodate)
2410 if (folio_test_uptodate(folio))
2411 return true;
2412 /* pipes can't handle partially uptodate pages */
2413 if (need_uptodate)
2414 return false;
2415 if (!mapping->a_ops->is_partially_uptodate)
2416 return false;
2417 if (mapping->host->i_blkbits >= folio_shift(folio))
2418 return false;
2420 if (folio_pos(folio) > pos) {
2421 count -= folio_pos(folio) - pos;
2422 pos = 0;
2423 } else {
2424 pos -= folio_pos(folio);
2427 return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2430 static int filemap_update_page(struct kiocb *iocb,
2431 struct address_space *mapping, size_t count,
2432 struct folio *folio, bool need_uptodate)
2434 int error;
2436 if (iocb->ki_flags & IOCB_NOWAIT) {
2437 if (!filemap_invalidate_trylock_shared(mapping))
2438 return -EAGAIN;
2439 } else {
2440 filemap_invalidate_lock_shared(mapping);
2443 if (!folio_trylock(folio)) {
2444 error = -EAGAIN;
2445 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2446 goto unlock_mapping;
2447 if (!(iocb->ki_flags & IOCB_WAITQ)) {
2448 filemap_invalidate_unlock_shared(mapping);
2450 * This is where we usually end up waiting for a
2451 * previously submitted readahead to finish.
2453 folio_put_wait_locked(folio, TASK_KILLABLE);
2454 return AOP_TRUNCATED_PAGE;
2456 error = __folio_lock_async(folio, iocb->ki_waitq);
2457 if (error)
2458 goto unlock_mapping;
2461 error = AOP_TRUNCATED_PAGE;
2462 if (!folio->mapping)
2463 goto unlock;
2465 error = 0;
2466 if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2467 need_uptodate))
2468 goto unlock;
2470 error = -EAGAIN;
2471 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2472 goto unlock;
2474 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2475 folio);
2476 goto unlock_mapping;
2477 unlock:
2478 folio_unlock(folio);
2479 unlock_mapping:
2480 filemap_invalidate_unlock_shared(mapping);
2481 if (error == AOP_TRUNCATED_PAGE)
2482 folio_put(folio);
2483 return error;
2486 static int filemap_create_folio(struct kiocb *iocb, struct folio_batch *fbatch)
2488 struct address_space *mapping = iocb->ki_filp->f_mapping;
2489 struct folio *folio;
2490 int error;
2491 unsigned int min_order = mapping_min_folio_order(mapping);
2492 pgoff_t index;
2494 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2495 return -EAGAIN;
2497 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), min_order);
2498 if (!folio)
2499 return -ENOMEM;
2500 if (iocb->ki_flags & IOCB_DONTCACHE)
2501 __folio_set_dropbehind(folio);
2504 * Protect against truncate / hole punch. Grabbing invalidate_lock
2505 * here assures we cannot instantiate and bring uptodate new
2506 * pagecache folios after evicting page cache during truncate
2507 * and before actually freeing blocks. Note that we could
2508 * release invalidate_lock after inserting the folio into
2509 * the page cache as the locked folio would then be enough to
2510 * synchronize with hole punching. But there are code paths
2511 * such as filemap_update_page() filling in partially uptodate
2512 * pages or ->readahead() that need to hold invalidate_lock
2513 * while mapping blocks for IO so let's hold the lock here as
2514 * well to keep locking rules simple.
2516 filemap_invalidate_lock_shared(mapping);
2517 index = (iocb->ki_pos >> (PAGE_SHIFT + min_order)) << min_order;
2518 error = filemap_add_folio(mapping, folio, index,
2519 mapping_gfp_constraint(mapping, GFP_KERNEL));
2520 if (error == -EEXIST)
2521 error = AOP_TRUNCATED_PAGE;
2522 if (error)
2523 goto error;
2525 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2526 folio);
2527 if (error)
2528 goto error;
2530 filemap_invalidate_unlock_shared(mapping);
2531 folio_batch_add(fbatch, folio);
2532 return 0;
2533 error:
2534 filemap_invalidate_unlock_shared(mapping);
2535 folio_put(folio);
2536 return error;
2539 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2540 struct address_space *mapping, struct folio *folio,
2541 pgoff_t last_index)
2543 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2545 if (iocb->ki_flags & IOCB_NOIO)
2546 return -EAGAIN;
2547 if (iocb->ki_flags & IOCB_DONTCACHE)
2548 ractl.dropbehind = 1;
2549 page_cache_async_ra(&ractl, folio, last_index - folio->index);
2550 return 0;
2553 static int filemap_get_pages(struct kiocb *iocb, size_t count,
2554 struct folio_batch *fbatch, bool need_uptodate)
2556 struct file *filp = iocb->ki_filp;
2557 struct address_space *mapping = filp->f_mapping;
2558 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2559 pgoff_t last_index;
2560 struct folio *folio;
2561 unsigned int flags;
2562 int err = 0;
2564 /* "last_index" is the index of the page beyond the end of the read */
2565 last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE);
2566 retry:
2567 if (fatal_signal_pending(current))
2568 return -EINTR;
2570 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2571 if (!folio_batch_count(fbatch)) {
2572 DEFINE_READAHEAD(ractl, filp, &filp->f_ra, mapping, index);
2574 if (iocb->ki_flags & IOCB_NOIO)
2575 return -EAGAIN;
2576 if (iocb->ki_flags & IOCB_NOWAIT)
2577 flags = memalloc_noio_save();
2578 if (iocb->ki_flags & IOCB_DONTCACHE)
2579 ractl.dropbehind = 1;
2580 page_cache_sync_ra(&ractl, last_index - index);
2581 if (iocb->ki_flags & IOCB_NOWAIT)
2582 memalloc_noio_restore(flags);
2583 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2585 if (!folio_batch_count(fbatch)) {
2586 err = filemap_create_folio(iocb, fbatch);
2587 if (err == AOP_TRUNCATED_PAGE)
2588 goto retry;
2589 return err;
2592 folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2593 if (folio_test_readahead(folio)) {
2594 err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2595 if (err)
2596 goto err;
2598 if (!folio_test_uptodate(folio)) {
2599 if ((iocb->ki_flags & IOCB_WAITQ) &&
2600 folio_batch_count(fbatch) > 1)
2601 iocb->ki_flags |= IOCB_NOWAIT;
2602 err = filemap_update_page(iocb, mapping, count, folio,
2603 need_uptodate);
2604 if (err)
2605 goto err;
2608 trace_mm_filemap_get_pages(mapping, index, last_index - 1);
2609 return 0;
2610 err:
2611 if (err < 0)
2612 folio_put(folio);
2613 if (likely(--fbatch->nr))
2614 return 0;
2615 if (err == AOP_TRUNCATED_PAGE)
2616 goto retry;
2617 return err;
2620 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2622 unsigned int shift = folio_shift(folio);
2624 return (pos1 >> shift == pos2 >> shift);
2627 static void filemap_end_dropbehind_read(struct address_space *mapping,
2628 struct folio *folio)
2630 if (!folio_test_dropbehind(folio))
2631 return;
2632 if (folio_test_writeback(folio) || folio_test_dirty(folio))
2633 return;
2634 if (folio_trylock(folio)) {
2635 if (folio_test_clear_dropbehind(folio))
2636 folio_unmap_invalidate(mapping, folio, 0);
2637 folio_unlock(folio);
2642 * filemap_read - Read data from the page cache.
2643 * @iocb: The iocb to read.
2644 * @iter: Destination for the data.
2645 * @already_read: Number of bytes already read by the caller.
2647 * Copies data from the page cache. If the data is not currently present,
2648 * uses the readahead and read_folio address_space operations to fetch it.
2650 * Return: Total number of bytes copied, including those already read by
2651 * the caller. If an error happens before any bytes are copied, returns
2652 * a negative error number.
2654 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2655 ssize_t already_read)
2657 struct file *filp = iocb->ki_filp;
2658 struct file_ra_state *ra = &filp->f_ra;
2659 struct address_space *mapping = filp->f_mapping;
2660 struct inode *inode = mapping->host;
2661 struct folio_batch fbatch;
2662 int i, error = 0;
2663 bool writably_mapped;
2664 loff_t isize, end_offset;
2665 loff_t last_pos = ra->prev_pos;
2667 if (unlikely(iocb->ki_pos < 0))
2668 return -EINVAL;
2669 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2670 return 0;
2671 if (unlikely(!iov_iter_count(iter)))
2672 return 0;
2674 iov_iter_truncate(iter, inode->i_sb->s_maxbytes - iocb->ki_pos);
2675 folio_batch_init(&fbatch);
2677 do {
2678 cond_resched();
2681 * If we've already successfully copied some data, then we
2682 * can no longer safely return -EIOCBQUEUED. Hence mark
2683 * an async read NOWAIT at that point.
2685 if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2686 iocb->ki_flags |= IOCB_NOWAIT;
2688 if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2689 break;
2691 error = filemap_get_pages(iocb, iter->count, &fbatch, false);
2692 if (error < 0)
2693 break;
2696 * i_size must be checked after we know the pages are Uptodate.
2698 * Checking i_size after the check allows us to calculate
2699 * the correct value for "nr", which means the zero-filled
2700 * part of the page is not copied back to userspace (unless
2701 * another truncate extends the file - this is desired though).
2703 isize = i_size_read(inode);
2704 if (unlikely(iocb->ki_pos >= isize))
2705 goto put_folios;
2706 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2709 * Once we start copying data, we don't want to be touching any
2710 * cachelines that might be contended:
2712 writably_mapped = mapping_writably_mapped(mapping);
2715 * When a read accesses the same folio several times, only
2716 * mark it as accessed the first time.
2718 if (!pos_same_folio(iocb->ki_pos, last_pos - 1,
2719 fbatch.folios[0]))
2720 folio_mark_accessed(fbatch.folios[0]);
2722 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2723 struct folio *folio = fbatch.folios[i];
2724 size_t fsize = folio_size(folio);
2725 size_t offset = iocb->ki_pos & (fsize - 1);
2726 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2727 fsize - offset);
2728 size_t copied;
2730 if (end_offset < folio_pos(folio))
2731 break;
2732 if (i > 0)
2733 folio_mark_accessed(folio);
2735 * If users can be writing to this folio using arbitrary
2736 * virtual addresses, take care of potential aliasing
2737 * before reading the folio on the kernel side.
2739 if (writably_mapped)
2740 flush_dcache_folio(folio);
2742 copied = copy_folio_to_iter(folio, offset, bytes, iter);
2744 already_read += copied;
2745 iocb->ki_pos += copied;
2746 last_pos = iocb->ki_pos;
2748 if (copied < bytes) {
2749 error = -EFAULT;
2750 break;
2753 put_folios:
2754 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2755 struct folio *folio = fbatch.folios[i];
2757 filemap_end_dropbehind_read(mapping, folio);
2758 folio_put(folio);
2760 folio_batch_init(&fbatch);
2761 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2763 file_accessed(filp);
2764 ra->prev_pos = last_pos;
2765 return already_read ? already_read : error;
2767 EXPORT_SYMBOL_GPL(filemap_read);
2769 int kiocb_write_and_wait(struct kiocb *iocb, size_t count)
2771 struct address_space *mapping = iocb->ki_filp->f_mapping;
2772 loff_t pos = iocb->ki_pos;
2773 loff_t end = pos + count - 1;
2775 if (iocb->ki_flags & IOCB_NOWAIT) {
2776 if (filemap_range_needs_writeback(mapping, pos, end))
2777 return -EAGAIN;
2778 return 0;
2781 return filemap_write_and_wait_range(mapping, pos, end);
2783 EXPORT_SYMBOL_GPL(kiocb_write_and_wait);
2785 int filemap_invalidate_pages(struct address_space *mapping,
2786 loff_t pos, loff_t end, bool nowait)
2788 int ret;
2790 if (nowait) {
2791 /* we could block if there are any pages in the range */
2792 if (filemap_range_has_page(mapping, pos, end))
2793 return -EAGAIN;
2794 } else {
2795 ret = filemap_write_and_wait_range(mapping, pos, end);
2796 if (ret)
2797 return ret;
2801 * After a write we want buffered reads to be sure to go to disk to get
2802 * the new data. We invalidate clean cached page from the region we're
2803 * about to write. We do this *before* the write so that we can return
2804 * without clobbering -EIOCBQUEUED from ->direct_IO().
2806 return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT,
2807 end >> PAGE_SHIFT);
2810 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count)
2812 struct address_space *mapping = iocb->ki_filp->f_mapping;
2814 return filemap_invalidate_pages(mapping, iocb->ki_pos,
2815 iocb->ki_pos + count - 1,
2816 iocb->ki_flags & IOCB_NOWAIT);
2818 EXPORT_SYMBOL_GPL(kiocb_invalidate_pages);
2821 * generic_file_read_iter - generic filesystem read routine
2822 * @iocb: kernel I/O control block
2823 * @iter: destination for the data read
2825 * This is the "read_iter()" routine for all filesystems
2826 * that can use the page cache directly.
2828 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2829 * be returned when no data can be read without waiting for I/O requests
2830 * to complete; it doesn't prevent readahead.
2832 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2833 * requests shall be made for the read or for readahead. When no data
2834 * can be read, -EAGAIN shall be returned. When readahead would be
2835 * triggered, a partial, possibly empty read shall be returned.
2837 * Return:
2838 * * number of bytes copied, even for partial reads
2839 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2841 ssize_t
2842 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2844 size_t count = iov_iter_count(iter);
2845 ssize_t retval = 0;
2847 if (!count)
2848 return 0; /* skip atime */
2850 if (iocb->ki_flags & IOCB_DIRECT) {
2851 struct file *file = iocb->ki_filp;
2852 struct address_space *mapping = file->f_mapping;
2853 struct inode *inode = mapping->host;
2855 retval = kiocb_write_and_wait(iocb, count);
2856 if (retval < 0)
2857 return retval;
2858 file_accessed(file);
2860 retval = mapping->a_ops->direct_IO(iocb, iter);
2861 if (retval >= 0) {
2862 iocb->ki_pos += retval;
2863 count -= retval;
2865 if (retval != -EIOCBQUEUED)
2866 iov_iter_revert(iter, count - iov_iter_count(iter));
2869 * Btrfs can have a short DIO read if we encounter
2870 * compressed extents, so if there was an error, or if
2871 * we've already read everything we wanted to, or if
2872 * there was a short read because we hit EOF, go ahead
2873 * and return. Otherwise fallthrough to buffered io for
2874 * the rest of the read. Buffered reads will not work for
2875 * DAX files, so don't bother trying.
2877 if (retval < 0 || !count || IS_DAX(inode))
2878 return retval;
2879 if (iocb->ki_pos >= i_size_read(inode))
2880 return retval;
2883 return filemap_read(iocb, iter, retval);
2885 EXPORT_SYMBOL(generic_file_read_iter);
2888 * Splice subpages from a folio into a pipe.
2890 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2891 struct folio *folio, loff_t fpos, size_t size)
2893 struct page *page;
2894 size_t spliced = 0, offset = offset_in_folio(folio, fpos);
2896 page = folio_page(folio, offset / PAGE_SIZE);
2897 size = min(size, folio_size(folio) - offset);
2898 offset %= PAGE_SIZE;
2900 while (spliced < size &&
2901 !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2902 struct pipe_buffer *buf = pipe_head_buf(pipe);
2903 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
2905 *buf = (struct pipe_buffer) {
2906 .ops = &page_cache_pipe_buf_ops,
2907 .page = page,
2908 .offset = offset,
2909 .len = part,
2911 folio_get(folio);
2912 pipe->head++;
2913 page++;
2914 spliced += part;
2915 offset = 0;
2918 return spliced;
2922 * filemap_splice_read - Splice data from a file's pagecache into a pipe
2923 * @in: The file to read from
2924 * @ppos: Pointer to the file position to read from
2925 * @pipe: The pipe to splice into
2926 * @len: The amount to splice
2927 * @flags: The SPLICE_F_* flags
2929 * This function gets folios from a file's pagecache and splices them into the
2930 * pipe. Readahead will be called as necessary to fill more folios. This may
2931 * be used for blockdevs also.
2933 * Return: On success, the number of bytes read will be returned and *@ppos
2934 * will be updated if appropriate; 0 will be returned if there is no more data
2935 * to be read; -EAGAIN will be returned if the pipe had no space, and some
2936 * other negative error code will be returned on error. A short read may occur
2937 * if the pipe has insufficient space, we reach the end of the data or we hit a
2938 * hole.
2940 ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
2941 struct pipe_inode_info *pipe,
2942 size_t len, unsigned int flags)
2944 struct folio_batch fbatch;
2945 struct kiocb iocb;
2946 size_t total_spliced = 0, used, npages;
2947 loff_t isize, end_offset;
2948 bool writably_mapped;
2949 int i, error = 0;
2951 if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes))
2952 return 0;
2954 init_sync_kiocb(&iocb, in);
2955 iocb.ki_pos = *ppos;
2957 /* Work out how much data we can actually add into the pipe */
2958 used = pipe_occupancy(pipe->head, pipe->tail);
2959 npages = max_t(ssize_t, pipe->max_usage - used, 0);
2960 len = min_t(size_t, len, npages * PAGE_SIZE);
2962 folio_batch_init(&fbatch);
2964 do {
2965 cond_resched();
2967 if (*ppos >= i_size_read(in->f_mapping->host))
2968 break;
2970 iocb.ki_pos = *ppos;
2971 error = filemap_get_pages(&iocb, len, &fbatch, true);
2972 if (error < 0)
2973 break;
2976 * i_size must be checked after we know the pages are Uptodate.
2978 * Checking i_size after the check allows us to calculate
2979 * the correct value for "nr", which means the zero-filled
2980 * part of the page is not copied back to userspace (unless
2981 * another truncate extends the file - this is desired though).
2983 isize = i_size_read(in->f_mapping->host);
2984 if (unlikely(*ppos >= isize))
2985 break;
2986 end_offset = min_t(loff_t, isize, *ppos + len);
2989 * Once we start copying data, we don't want to be touching any
2990 * cachelines that might be contended:
2992 writably_mapped = mapping_writably_mapped(in->f_mapping);
2994 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2995 struct folio *folio = fbatch.folios[i];
2996 size_t n;
2998 if (folio_pos(folio) >= end_offset)
2999 goto out;
3000 folio_mark_accessed(folio);
3003 * If users can be writing to this folio using arbitrary
3004 * virtual addresses, take care of potential aliasing
3005 * before reading the folio on the kernel side.
3007 if (writably_mapped)
3008 flush_dcache_folio(folio);
3010 n = min_t(loff_t, len, isize - *ppos);
3011 n = splice_folio_into_pipe(pipe, folio, *ppos, n);
3012 if (!n)
3013 goto out;
3014 len -= n;
3015 total_spliced += n;
3016 *ppos += n;
3017 in->f_ra.prev_pos = *ppos;
3018 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
3019 goto out;
3022 folio_batch_release(&fbatch);
3023 } while (len);
3025 out:
3026 folio_batch_release(&fbatch);
3027 file_accessed(in);
3029 return total_spliced ? total_spliced : error;
3031 EXPORT_SYMBOL(filemap_splice_read);
3033 static inline loff_t folio_seek_hole_data(struct xa_state *xas,
3034 struct address_space *mapping, struct folio *folio,
3035 loff_t start, loff_t end, bool seek_data)
3037 const struct address_space_operations *ops = mapping->a_ops;
3038 size_t offset, bsz = i_blocksize(mapping->host);
3040 if (xa_is_value(folio) || folio_test_uptodate(folio))
3041 return seek_data ? start : end;
3042 if (!ops->is_partially_uptodate)
3043 return seek_data ? end : start;
3045 xas_pause(xas);
3046 rcu_read_unlock();
3047 folio_lock(folio);
3048 if (unlikely(folio->mapping != mapping))
3049 goto unlock;
3051 offset = offset_in_folio(folio, start) & ~(bsz - 1);
3053 do {
3054 if (ops->is_partially_uptodate(folio, offset, bsz) ==
3055 seek_data)
3056 break;
3057 start = (start + bsz) & ~((u64)bsz - 1);
3058 offset += bsz;
3059 } while (offset < folio_size(folio));
3060 unlock:
3061 folio_unlock(folio);
3062 rcu_read_lock();
3063 return start;
3066 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
3068 if (xa_is_value(folio))
3069 return PAGE_SIZE << xas_get_order(xas);
3070 return folio_size(folio);
3074 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3075 * @mapping: Address space to search.
3076 * @start: First byte to consider.
3077 * @end: Limit of search (exclusive).
3078 * @whence: Either SEEK_HOLE or SEEK_DATA.
3080 * If the page cache knows which blocks contain holes and which blocks
3081 * contain data, your filesystem can use this function to implement
3082 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
3083 * entirely memory-based such as tmpfs, and filesystems which support
3084 * unwritten extents.
3086 * Return: The requested offset on success, or -ENXIO if @whence specifies
3087 * SEEK_DATA and there is no data after @start. There is an implicit hole
3088 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
3089 * and @end contain data.
3091 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
3092 loff_t end, int whence)
3094 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
3095 pgoff_t max = (end - 1) >> PAGE_SHIFT;
3096 bool seek_data = (whence == SEEK_DATA);
3097 struct folio *folio;
3099 if (end <= start)
3100 return -ENXIO;
3102 rcu_read_lock();
3103 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
3104 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
3105 size_t seek_size;
3107 if (start < pos) {
3108 if (!seek_data)
3109 goto unlock;
3110 start = pos;
3113 seek_size = seek_folio_size(&xas, folio);
3114 pos = round_up((u64)pos + 1, seek_size);
3115 start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
3116 seek_data);
3117 if (start < pos)
3118 goto unlock;
3119 if (start >= end)
3120 break;
3121 if (seek_size > PAGE_SIZE)
3122 xas_set(&xas, pos >> PAGE_SHIFT);
3123 if (!xa_is_value(folio))
3124 folio_put(folio);
3126 if (seek_data)
3127 start = -ENXIO;
3128 unlock:
3129 rcu_read_unlock();
3130 if (folio && !xa_is_value(folio))
3131 folio_put(folio);
3132 if (start > end)
3133 return end;
3134 return start;
3137 #ifdef CONFIG_MMU
3138 #define MMAP_LOTSAMISS (100)
3140 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
3141 * @vmf - the vm_fault for this fault.
3142 * @folio - the folio to lock.
3143 * @fpin - the pointer to the file we may pin (or is already pinned).
3145 * This works similar to lock_folio_or_retry in that it can drop the
3146 * mmap_lock. It differs in that it actually returns the folio locked
3147 * if it returns 1 and 0 if it couldn't lock the folio. If we did have
3148 * to drop the mmap_lock then fpin will point to the pinned file and
3149 * needs to be fput()'ed at a later point.
3151 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
3152 struct file **fpin)
3154 if (folio_trylock(folio))
3155 return 1;
3158 * NOTE! This will make us return with VM_FAULT_RETRY, but with
3159 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
3160 * is supposed to work. We have way too many special cases..
3162 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3163 return 0;
3165 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3166 if (vmf->flags & FAULT_FLAG_KILLABLE) {
3167 if (__folio_lock_killable(folio)) {
3169 * We didn't have the right flags to drop the
3170 * fault lock, but all fault_handlers only check
3171 * for fatal signals if we return VM_FAULT_RETRY,
3172 * so we need to drop the fault lock here and
3173 * return 0 if we don't have a fpin.
3175 if (*fpin == NULL)
3176 release_fault_lock(vmf);
3177 return 0;
3179 } else
3180 __folio_lock(folio);
3182 return 1;
3186 * Synchronous readahead happens when we don't even find a page in the page
3187 * cache at all. We don't want to perform IO under the mmap sem, so if we have
3188 * to drop the mmap sem we return the file that was pinned in order for us to do
3189 * that. If we didn't pin a file then we return NULL. The file that is
3190 * returned needs to be fput()'ed when we're done with it.
3192 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
3194 struct file *file = vmf->vma->vm_file;
3195 struct file_ra_state *ra = &file->f_ra;
3196 struct address_space *mapping = file->f_mapping;
3197 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3198 struct file *fpin = NULL;
3199 unsigned long vm_flags = vmf->vma->vm_flags;
3200 unsigned int mmap_miss;
3203 * If we have pre-content watches we need to disable readahead to make
3204 * sure that we don't populate our mapping with 0 filled pages that we
3205 * never emitted an event for.
3207 if (unlikely(FMODE_FSNOTIFY_HSM(file->f_mode)))
3208 return fpin;
3210 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3211 /* Use the readahead code, even if readahead is disabled */
3212 if ((vm_flags & VM_HUGEPAGE) && HPAGE_PMD_ORDER <= MAX_PAGECACHE_ORDER) {
3213 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3214 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3215 ra->size = HPAGE_PMD_NR;
3217 * Fetch two PMD folios, so we get the chance to actually
3218 * readahead, unless we've been told not to.
3220 if (!(vm_flags & VM_RAND_READ))
3221 ra->size *= 2;
3222 ra->async_size = HPAGE_PMD_NR;
3223 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3224 return fpin;
3226 #endif
3228 /* If we don't want any read-ahead, don't bother */
3229 if (vm_flags & VM_RAND_READ)
3230 return fpin;
3231 if (!ra->ra_pages)
3232 return fpin;
3234 if (vm_flags & VM_SEQ_READ) {
3235 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3236 page_cache_sync_ra(&ractl, ra->ra_pages);
3237 return fpin;
3240 /* Avoid banging the cache line if not needed */
3241 mmap_miss = READ_ONCE(ra->mmap_miss);
3242 if (mmap_miss < MMAP_LOTSAMISS * 10)
3243 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3246 * Do we miss much more than hit in this file? If so,
3247 * stop bothering with read-ahead. It will only hurt.
3249 if (mmap_miss > MMAP_LOTSAMISS)
3250 return fpin;
3253 * mmap read-around
3255 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3256 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3257 ra->size = ra->ra_pages;
3258 ra->async_size = ra->ra_pages / 4;
3259 ractl._index = ra->start;
3260 page_cache_ra_order(&ractl, ra, 0);
3261 return fpin;
3265 * Asynchronous readahead happens when we find the page and PG_readahead,
3266 * so we want to possibly extend the readahead further. We return the file that
3267 * was pinned if we have to drop the mmap_lock in order to do IO.
3269 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3270 struct folio *folio)
3272 struct file *file = vmf->vma->vm_file;
3273 struct file_ra_state *ra = &file->f_ra;
3274 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3275 struct file *fpin = NULL;
3276 unsigned int mmap_miss;
3278 /* See comment in do_sync_mmap_readahead. */
3279 if (unlikely(FMODE_FSNOTIFY_HSM(file->f_mode)))
3280 return fpin;
3282 /* If we don't want any read-ahead, don't bother */
3283 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3284 return fpin;
3286 mmap_miss = READ_ONCE(ra->mmap_miss);
3287 if (mmap_miss)
3288 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3290 if (folio_test_readahead(folio)) {
3291 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3292 page_cache_async_ra(&ractl, folio, ra->ra_pages);
3294 return fpin;
3297 static vm_fault_t filemap_fault_recheck_pte_none(struct vm_fault *vmf)
3299 struct vm_area_struct *vma = vmf->vma;
3300 vm_fault_t ret = 0;
3301 pte_t *ptep;
3304 * We might have COW'ed a pagecache folio and might now have an mlocked
3305 * anon folio mapped. The original pagecache folio is not mlocked and
3306 * might have been evicted. During a read+clear/modify/write update of
3307 * the PTE, such as done in do_numa_page()/change_pte_range(), we
3308 * temporarily clear the PTE under PT lock and might detect it here as
3309 * "none" when not holding the PT lock.
3311 * Not rechecking the PTE under PT lock could result in an unexpected
3312 * major fault in an mlock'ed region. Recheck only for this special
3313 * scenario while holding the PT lock, to not degrade non-mlocked
3314 * scenarios. Recheck the PTE without PT lock firstly, thereby reducing
3315 * the number of times we hold PT lock.
3317 if (!(vma->vm_flags & VM_LOCKED))
3318 return 0;
3320 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
3321 return 0;
3323 ptep = pte_offset_map_ro_nolock(vma->vm_mm, vmf->pmd, vmf->address,
3324 &vmf->ptl);
3325 if (unlikely(!ptep))
3326 return VM_FAULT_NOPAGE;
3328 if (unlikely(!pte_none(ptep_get_lockless(ptep)))) {
3329 ret = VM_FAULT_NOPAGE;
3330 } else {
3331 spin_lock(vmf->ptl);
3332 if (unlikely(!pte_none(ptep_get(ptep))))
3333 ret = VM_FAULT_NOPAGE;
3334 spin_unlock(vmf->ptl);
3336 pte_unmap(ptep);
3337 return ret;
3341 * filemap_fsnotify_fault - maybe emit a pre-content event.
3342 * @vmf: struct vm_fault containing details of the fault.
3344 * If we have a pre-content watch on this file we will emit an event for this
3345 * range. If we return anything the fault caller should return immediately, we
3346 * will return VM_FAULT_RETRY if we had to emit an event, which will trigger the
3347 * fault again and then the fault handler will run the second time through.
3349 * Return: a bitwise-OR of %VM_FAULT_ codes, 0 if nothing happened.
3351 vm_fault_t filemap_fsnotify_fault(struct vm_fault *vmf)
3353 struct file *fpin = NULL;
3354 int mask = (vmf->flags & FAULT_FLAG_WRITE) ? MAY_WRITE : MAY_ACCESS;
3355 loff_t pos = vmf->pgoff >> PAGE_SHIFT;
3356 size_t count = PAGE_SIZE;
3357 int err;
3360 * We already did this and now we're retrying with everything locked,
3361 * don't emit the event and continue.
3363 if (vmf->flags & FAULT_FLAG_TRIED)
3364 return 0;
3366 /* No watches, we're done. */
3367 if (likely(!FMODE_FSNOTIFY_HSM(vmf->vma->vm_file->f_mode)))
3368 return 0;
3370 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3371 if (!fpin)
3372 return VM_FAULT_SIGBUS;
3374 err = fsnotify_file_area_perm(fpin, mask, &pos, count);
3375 fput(fpin);
3376 if (err)
3377 return VM_FAULT_SIGBUS;
3378 return VM_FAULT_RETRY;
3380 EXPORT_SYMBOL_GPL(filemap_fsnotify_fault);
3383 * filemap_fault - read in file data for page fault handling
3384 * @vmf: struct vm_fault containing details of the fault
3386 * filemap_fault() is invoked via the vma operations vector for a
3387 * mapped memory region to read in file data during a page fault.
3389 * The goto's are kind of ugly, but this streamlines the normal case of having
3390 * it in the page cache, and handles the special cases reasonably without
3391 * having a lot of duplicated code.
3393 * vma->vm_mm->mmap_lock must be held on entry.
3395 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3396 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3398 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3399 * has not been released.
3401 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3403 * Return: bitwise-OR of %VM_FAULT_ codes.
3405 vm_fault_t filemap_fault(struct vm_fault *vmf)
3407 int error;
3408 struct file *file = vmf->vma->vm_file;
3409 struct file *fpin = NULL;
3410 struct address_space *mapping = file->f_mapping;
3411 struct inode *inode = mapping->host;
3412 pgoff_t max_idx, index = vmf->pgoff;
3413 struct folio *folio;
3414 vm_fault_t ret = 0;
3415 bool mapping_locked = false;
3417 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3418 if (unlikely(index >= max_idx))
3419 return VM_FAULT_SIGBUS;
3421 trace_mm_filemap_fault(mapping, index);
3424 * Do we have something in the page cache already?
3426 folio = filemap_get_folio(mapping, index);
3427 if (likely(!IS_ERR(folio))) {
3429 * We found the page, so try async readahead before waiting for
3430 * the lock.
3432 if (!(vmf->flags & FAULT_FLAG_TRIED))
3433 fpin = do_async_mmap_readahead(vmf, folio);
3434 if (unlikely(!folio_test_uptodate(folio))) {
3435 filemap_invalidate_lock_shared(mapping);
3436 mapping_locked = true;
3438 } else {
3439 ret = filemap_fault_recheck_pte_none(vmf);
3440 if (unlikely(ret))
3441 return ret;
3443 /* No page in the page cache at all */
3444 count_vm_event(PGMAJFAULT);
3445 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3446 ret = VM_FAULT_MAJOR;
3447 fpin = do_sync_mmap_readahead(vmf);
3448 retry_find:
3450 * See comment in filemap_create_folio() why we need
3451 * invalidate_lock
3453 if (!mapping_locked) {
3454 filemap_invalidate_lock_shared(mapping);
3455 mapping_locked = true;
3457 folio = __filemap_get_folio(mapping, index,
3458 FGP_CREAT|FGP_FOR_MMAP,
3459 vmf->gfp_mask);
3460 if (IS_ERR(folio)) {
3461 if (fpin)
3462 goto out_retry;
3463 filemap_invalidate_unlock_shared(mapping);
3464 return VM_FAULT_OOM;
3468 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3469 goto out_retry;
3471 /* Did it get truncated? */
3472 if (unlikely(folio->mapping != mapping)) {
3473 folio_unlock(folio);
3474 folio_put(folio);
3475 goto retry_find;
3477 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3480 * We have a locked folio in the page cache, now we need to check
3481 * that it's up-to-date. If not, it is going to be due to an error,
3482 * or because readahead was otherwise unable to retrieve it.
3484 if (unlikely(!folio_test_uptodate(folio))) {
3486 * If this is a precontent file we have can now emit an event to
3487 * try and populate the folio.
3489 if (!(vmf->flags & FAULT_FLAG_TRIED) &&
3490 unlikely(FMODE_FSNOTIFY_HSM(file->f_mode))) {
3491 loff_t pos = folio_pos(folio);
3492 size_t count = folio_size(folio);
3494 /* We're NOWAIT, we have to retry. */
3495 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) {
3496 folio_unlock(folio);
3497 goto out_retry;
3500 if (mapping_locked)
3501 filemap_invalidate_unlock_shared(mapping);
3502 mapping_locked = false;
3504 folio_unlock(folio);
3505 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3506 if (!fpin)
3507 goto out_retry;
3509 error = fsnotify_file_area_perm(fpin, MAY_ACCESS, &pos,
3510 count);
3511 if (error)
3512 ret = VM_FAULT_SIGBUS;
3513 goto out_retry;
3517 * If the invalidate lock is not held, the folio was in cache
3518 * and uptodate and now it is not. Strange but possible since we
3519 * didn't hold the page lock all the time. Let's drop
3520 * everything, get the invalidate lock and try again.
3522 if (!mapping_locked) {
3523 folio_unlock(folio);
3524 folio_put(folio);
3525 goto retry_find;
3529 * OK, the folio is really not uptodate. This can be because the
3530 * VMA has the VM_RAND_READ flag set, or because an error
3531 * arose. Let's read it in directly.
3533 goto page_not_uptodate;
3537 * We've made it this far and we had to drop our mmap_lock, now is the
3538 * time to return to the upper layer and have it re-find the vma and
3539 * redo the fault.
3541 if (fpin) {
3542 folio_unlock(folio);
3543 goto out_retry;
3545 if (mapping_locked)
3546 filemap_invalidate_unlock_shared(mapping);
3549 * Found the page and have a reference on it.
3550 * We must recheck i_size under page lock.
3552 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3553 if (unlikely(index >= max_idx)) {
3554 folio_unlock(folio);
3555 folio_put(folio);
3556 return VM_FAULT_SIGBUS;
3559 vmf->page = folio_file_page(folio, index);
3560 return ret | VM_FAULT_LOCKED;
3562 page_not_uptodate:
3564 * Umm, take care of errors if the page isn't up-to-date.
3565 * Try to re-read it _once_. We do this synchronously,
3566 * because there really aren't any performance issues here
3567 * and we need to check for errors.
3569 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3570 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3571 if (fpin)
3572 goto out_retry;
3573 folio_put(folio);
3575 if (!error || error == AOP_TRUNCATED_PAGE)
3576 goto retry_find;
3577 filemap_invalidate_unlock_shared(mapping);
3579 return VM_FAULT_SIGBUS;
3581 out_retry:
3583 * We dropped the mmap_lock, we need to return to the fault handler to
3584 * re-find the vma and come back and find our hopefully still populated
3585 * page.
3587 if (!IS_ERR(folio))
3588 folio_put(folio);
3589 if (mapping_locked)
3590 filemap_invalidate_unlock_shared(mapping);
3591 if (fpin)
3592 fput(fpin);
3593 return ret | VM_FAULT_RETRY;
3595 EXPORT_SYMBOL(filemap_fault);
3597 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3598 pgoff_t start)
3600 struct mm_struct *mm = vmf->vma->vm_mm;
3602 /* Huge page is mapped? No need to proceed. */
3603 if (pmd_trans_huge(*vmf->pmd)) {
3604 folio_unlock(folio);
3605 folio_put(folio);
3606 return true;
3609 if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3610 struct page *page = folio_file_page(folio, start);
3611 vm_fault_t ret = do_set_pmd(vmf, page);
3612 if (!ret) {
3613 /* The page is mapped successfully, reference consumed. */
3614 folio_unlock(folio);
3615 return true;
3619 if (pmd_none(*vmf->pmd) && vmf->prealloc_pte)
3620 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3622 return false;
3625 static struct folio *next_uptodate_folio(struct xa_state *xas,
3626 struct address_space *mapping, pgoff_t end_pgoff)
3628 struct folio *folio = xas_next_entry(xas, end_pgoff);
3629 unsigned long max_idx;
3631 do {
3632 if (!folio)
3633 return NULL;
3634 if (xas_retry(xas, folio))
3635 continue;
3636 if (xa_is_value(folio))
3637 continue;
3638 if (!folio_try_get(folio))
3639 continue;
3640 if (folio_test_locked(folio))
3641 goto skip;
3642 /* Has the page moved or been split? */
3643 if (unlikely(folio != xas_reload(xas)))
3644 goto skip;
3645 if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3646 goto skip;
3647 if (!folio_trylock(folio))
3648 goto skip;
3649 if (folio->mapping != mapping)
3650 goto unlock;
3651 if (!folio_test_uptodate(folio))
3652 goto unlock;
3653 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3654 if (xas->xa_index >= max_idx)
3655 goto unlock;
3656 return folio;
3657 unlock:
3658 folio_unlock(folio);
3659 skip:
3660 folio_put(folio);
3661 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3663 return NULL;
3667 * Map page range [start_page, start_page + nr_pages) of folio.
3668 * start_page is gotten from start by folio_page(folio, start)
3670 static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf,
3671 struct folio *folio, unsigned long start,
3672 unsigned long addr, unsigned int nr_pages,
3673 unsigned long *rss, unsigned int *mmap_miss)
3675 vm_fault_t ret = 0;
3676 struct page *page = folio_page(folio, start);
3677 unsigned int count = 0;
3678 pte_t *old_ptep = vmf->pte;
3680 do {
3681 if (PageHWPoison(page + count))
3682 goto skip;
3685 * If there are too many folios that are recently evicted
3686 * in a file, they will probably continue to be evicted.
3687 * In such situation, read-ahead is only a waste of IO.
3688 * Don't decrease mmap_miss in this scenario to make sure
3689 * we can stop read-ahead.
3691 if (!folio_test_workingset(folio))
3692 (*mmap_miss)++;
3695 * NOTE: If there're PTE markers, we'll leave them to be
3696 * handled in the specific fault path, and it'll prohibit the
3697 * fault-around logic.
3699 if (!pte_none(ptep_get(&vmf->pte[count])))
3700 goto skip;
3702 count++;
3703 continue;
3704 skip:
3705 if (count) {
3706 set_pte_range(vmf, folio, page, count, addr);
3707 *rss += count;
3708 folio_ref_add(folio, count);
3709 if (in_range(vmf->address, addr, count * PAGE_SIZE))
3710 ret = VM_FAULT_NOPAGE;
3713 count++;
3714 page += count;
3715 vmf->pte += count;
3716 addr += count * PAGE_SIZE;
3717 count = 0;
3718 } while (--nr_pages > 0);
3720 if (count) {
3721 set_pte_range(vmf, folio, page, count, addr);
3722 *rss += count;
3723 folio_ref_add(folio, count);
3724 if (in_range(vmf->address, addr, count * PAGE_SIZE))
3725 ret = VM_FAULT_NOPAGE;
3728 vmf->pte = old_ptep;
3730 return ret;
3733 static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf,
3734 struct folio *folio, unsigned long addr,
3735 unsigned long *rss, unsigned int *mmap_miss)
3737 vm_fault_t ret = 0;
3738 struct page *page = &folio->page;
3740 if (PageHWPoison(page))
3741 return ret;
3743 /* See comment of filemap_map_folio_range() */
3744 if (!folio_test_workingset(folio))
3745 (*mmap_miss)++;
3748 * NOTE: If there're PTE markers, we'll leave them to be
3749 * handled in the specific fault path, and it'll prohibit
3750 * the fault-around logic.
3752 if (!pte_none(ptep_get(vmf->pte)))
3753 return ret;
3755 if (vmf->address == addr)
3756 ret = VM_FAULT_NOPAGE;
3758 set_pte_range(vmf, folio, page, 1, addr);
3759 (*rss)++;
3760 folio_ref_inc(folio);
3762 return ret;
3765 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3766 pgoff_t start_pgoff, pgoff_t end_pgoff)
3768 struct vm_area_struct *vma = vmf->vma;
3769 struct file *file = vma->vm_file;
3770 struct address_space *mapping = file->f_mapping;
3771 pgoff_t file_end, last_pgoff = start_pgoff;
3772 unsigned long addr;
3773 XA_STATE(xas, &mapping->i_pages, start_pgoff);
3774 struct folio *folio;
3775 vm_fault_t ret = 0;
3776 unsigned long rss = 0;
3777 unsigned int nr_pages = 0, mmap_miss = 0, mmap_miss_saved, folio_type;
3779 rcu_read_lock();
3780 folio = next_uptodate_folio(&xas, mapping, end_pgoff);
3781 if (!folio)
3782 goto out;
3784 if (filemap_map_pmd(vmf, folio, start_pgoff)) {
3785 ret = VM_FAULT_NOPAGE;
3786 goto out;
3789 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3790 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3791 if (!vmf->pte) {
3792 folio_unlock(folio);
3793 folio_put(folio);
3794 goto out;
3797 file_end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE) - 1;
3798 if (end_pgoff > file_end)
3799 end_pgoff = file_end;
3801 folio_type = mm_counter_file(folio);
3802 do {
3803 unsigned long end;
3805 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3806 vmf->pte += xas.xa_index - last_pgoff;
3807 last_pgoff = xas.xa_index;
3808 end = folio_next_index(folio) - 1;
3809 nr_pages = min(end, end_pgoff) - xas.xa_index + 1;
3811 if (!folio_test_large(folio))
3812 ret |= filemap_map_order0_folio(vmf,
3813 folio, addr, &rss, &mmap_miss);
3814 else
3815 ret |= filemap_map_folio_range(vmf, folio,
3816 xas.xa_index - folio->index, addr,
3817 nr_pages, &rss, &mmap_miss);
3819 folio_unlock(folio);
3820 folio_put(folio);
3821 } while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL);
3822 add_mm_counter(vma->vm_mm, folio_type, rss);
3823 pte_unmap_unlock(vmf->pte, vmf->ptl);
3824 trace_mm_filemap_map_pages(mapping, start_pgoff, end_pgoff);
3825 out:
3826 rcu_read_unlock();
3828 mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss);
3829 if (mmap_miss >= mmap_miss_saved)
3830 WRITE_ONCE(file->f_ra.mmap_miss, 0);
3831 else
3832 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss);
3834 return ret;
3836 EXPORT_SYMBOL(filemap_map_pages);
3838 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3840 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3841 struct folio *folio = page_folio(vmf->page);
3842 vm_fault_t ret = VM_FAULT_LOCKED;
3844 sb_start_pagefault(mapping->host->i_sb);
3845 file_update_time(vmf->vma->vm_file);
3846 folio_lock(folio);
3847 if (folio->mapping != mapping) {
3848 folio_unlock(folio);
3849 ret = VM_FAULT_NOPAGE;
3850 goto out;
3853 * We mark the folio dirty already here so that when freeze is in
3854 * progress, we are guaranteed that writeback during freezing will
3855 * see the dirty folio and writeprotect it again.
3857 folio_mark_dirty(folio);
3858 folio_wait_stable(folio);
3859 out:
3860 sb_end_pagefault(mapping->host->i_sb);
3861 return ret;
3864 const struct vm_operations_struct generic_file_vm_ops = {
3865 .fault = filemap_fault,
3866 .map_pages = filemap_map_pages,
3867 .page_mkwrite = filemap_page_mkwrite,
3870 /* This is used for a general mmap of a disk file */
3872 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3874 struct address_space *mapping = file->f_mapping;
3876 if (!mapping->a_ops->read_folio)
3877 return -ENOEXEC;
3878 file_accessed(file);
3879 vma->vm_ops = &generic_file_vm_ops;
3880 return 0;
3884 * This is for filesystems which do not implement ->writepage.
3886 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3888 if (vma_is_shared_maywrite(vma))
3889 return -EINVAL;
3890 return generic_file_mmap(file, vma);
3892 #else
3893 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3895 return VM_FAULT_SIGBUS;
3897 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3899 return -ENOSYS;
3901 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3903 return -ENOSYS;
3905 #endif /* CONFIG_MMU */
3907 EXPORT_SYMBOL(filemap_page_mkwrite);
3908 EXPORT_SYMBOL(generic_file_mmap);
3909 EXPORT_SYMBOL(generic_file_readonly_mmap);
3911 static struct folio *do_read_cache_folio(struct address_space *mapping,
3912 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
3914 struct folio *folio;
3915 int err;
3917 if (!filler)
3918 filler = mapping->a_ops->read_folio;
3919 repeat:
3920 folio = filemap_get_folio(mapping, index);
3921 if (IS_ERR(folio)) {
3922 folio = filemap_alloc_folio(gfp,
3923 mapping_min_folio_order(mapping));
3924 if (!folio)
3925 return ERR_PTR(-ENOMEM);
3926 index = mapping_align_index(mapping, index);
3927 err = filemap_add_folio(mapping, folio, index, gfp);
3928 if (unlikely(err)) {
3929 folio_put(folio);
3930 if (err == -EEXIST)
3931 goto repeat;
3932 /* Presumably ENOMEM for xarray node */
3933 return ERR_PTR(err);
3936 goto filler;
3938 if (folio_test_uptodate(folio))
3939 goto out;
3941 if (!folio_trylock(folio)) {
3942 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3943 goto repeat;
3946 /* Folio was truncated from mapping */
3947 if (!folio->mapping) {
3948 folio_unlock(folio);
3949 folio_put(folio);
3950 goto repeat;
3953 /* Someone else locked and filled the page in a very small window */
3954 if (folio_test_uptodate(folio)) {
3955 folio_unlock(folio);
3956 goto out;
3959 filler:
3960 err = filemap_read_folio(file, filler, folio);
3961 if (err) {
3962 folio_put(folio);
3963 if (err == AOP_TRUNCATED_PAGE)
3964 goto repeat;
3965 return ERR_PTR(err);
3968 out:
3969 folio_mark_accessed(folio);
3970 return folio;
3974 * read_cache_folio - Read into page cache, fill it if needed.
3975 * @mapping: The address_space to read from.
3976 * @index: The index to read.
3977 * @filler: Function to perform the read, or NULL to use aops->read_folio().
3978 * @file: Passed to filler function, may be NULL if not required.
3980 * Read one page into the page cache. If it succeeds, the folio returned
3981 * will contain @index, but it may not be the first page of the folio.
3983 * If the filler function returns an error, it will be returned to the
3984 * caller.
3986 * Context: May sleep. Expects mapping->invalidate_lock to be held.
3987 * Return: An uptodate folio on success, ERR_PTR() on failure.
3989 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3990 filler_t filler, struct file *file)
3992 return do_read_cache_folio(mapping, index, filler, file,
3993 mapping_gfp_mask(mapping));
3995 EXPORT_SYMBOL(read_cache_folio);
3998 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
3999 * @mapping: The address_space for the folio.
4000 * @index: The index that the allocated folio will contain.
4001 * @gfp: The page allocator flags to use if allocating.
4003 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
4004 * any new memory allocations done using the specified allocation flags.
4006 * The most likely error from this function is EIO, but ENOMEM is
4007 * possible and so is EINTR. If ->read_folio returns another error,
4008 * that will be returned to the caller.
4010 * The function expects mapping->invalidate_lock to be already held.
4012 * Return: Uptodate folio on success, ERR_PTR() on failure.
4014 struct folio *mapping_read_folio_gfp(struct address_space *mapping,
4015 pgoff_t index, gfp_t gfp)
4017 return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
4019 EXPORT_SYMBOL(mapping_read_folio_gfp);
4021 static struct page *do_read_cache_page(struct address_space *mapping,
4022 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
4024 struct folio *folio;
4026 folio = do_read_cache_folio(mapping, index, filler, file, gfp);
4027 if (IS_ERR(folio))
4028 return &folio->page;
4029 return folio_file_page(folio, index);
4032 struct page *read_cache_page(struct address_space *mapping,
4033 pgoff_t index, filler_t *filler, struct file *file)
4035 return do_read_cache_page(mapping, index, filler, file,
4036 mapping_gfp_mask(mapping));
4038 EXPORT_SYMBOL(read_cache_page);
4041 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
4042 * @mapping: the page's address_space
4043 * @index: the page index
4044 * @gfp: the page allocator flags to use if allocating
4046 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
4047 * any new page allocations done using the specified allocation flags.
4049 * If the page does not get brought uptodate, return -EIO.
4051 * The function expects mapping->invalidate_lock to be already held.
4053 * Return: up to date page on success, ERR_PTR() on failure.
4055 struct page *read_cache_page_gfp(struct address_space *mapping,
4056 pgoff_t index,
4057 gfp_t gfp)
4059 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
4061 EXPORT_SYMBOL(read_cache_page_gfp);
4064 * Warn about a page cache invalidation failure during a direct I/O write.
4066 static void dio_warn_stale_pagecache(struct file *filp)
4068 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
4069 char pathname[128];
4070 char *path;
4072 errseq_set(&filp->f_mapping->wb_err, -EIO);
4073 if (__ratelimit(&_rs)) {
4074 path = file_path(filp, pathname, sizeof(pathname));
4075 if (IS_ERR(path))
4076 path = "(unknown)";
4077 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
4078 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
4079 current->comm);
4083 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count)
4085 struct address_space *mapping = iocb->ki_filp->f_mapping;
4087 if (mapping->nrpages &&
4088 invalidate_inode_pages2_range(mapping,
4089 iocb->ki_pos >> PAGE_SHIFT,
4090 (iocb->ki_pos + count - 1) >> PAGE_SHIFT))
4091 dio_warn_stale_pagecache(iocb->ki_filp);
4094 ssize_t
4095 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
4097 struct address_space *mapping = iocb->ki_filp->f_mapping;
4098 size_t write_len = iov_iter_count(from);
4099 ssize_t written;
4102 * If a page can not be invalidated, return 0 to fall back
4103 * to buffered write.
4105 written = kiocb_invalidate_pages(iocb, write_len);
4106 if (written) {
4107 if (written == -EBUSY)
4108 return 0;
4109 return written;
4112 written = mapping->a_ops->direct_IO(iocb, from);
4115 * Finally, try again to invalidate clean pages which might have been
4116 * cached by non-direct readahead, or faulted in by get_user_pages()
4117 * if the source of the write was an mmap'ed region of the file
4118 * we're writing. Either one is a pretty crazy thing to do,
4119 * so we don't support it 100%. If this invalidation
4120 * fails, tough, the write still worked...
4122 * Most of the time we do not need this since dio_complete() will do
4123 * the invalidation for us. However there are some file systems that
4124 * do not end up with dio_complete() being called, so let's not break
4125 * them by removing it completely.
4127 * Noticeable example is a blkdev_direct_IO().
4129 * Skip invalidation for async writes or if mapping has no pages.
4131 if (written > 0) {
4132 struct inode *inode = mapping->host;
4133 loff_t pos = iocb->ki_pos;
4135 kiocb_invalidate_post_direct_write(iocb, written);
4136 pos += written;
4137 write_len -= written;
4138 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
4139 i_size_write(inode, pos);
4140 mark_inode_dirty(inode);
4142 iocb->ki_pos = pos;
4144 if (written != -EIOCBQUEUED)
4145 iov_iter_revert(from, write_len - iov_iter_count(from));
4146 return written;
4148 EXPORT_SYMBOL(generic_file_direct_write);
4150 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
4152 struct file *file = iocb->ki_filp;
4153 loff_t pos = iocb->ki_pos;
4154 struct address_space *mapping = file->f_mapping;
4155 const struct address_space_operations *a_ops = mapping->a_ops;
4156 size_t chunk = mapping_max_folio_size(mapping);
4157 long status = 0;
4158 ssize_t written = 0;
4160 do {
4161 struct folio *folio;
4162 size_t offset; /* Offset into folio */
4163 size_t bytes; /* Bytes to write to folio */
4164 size_t copied; /* Bytes copied from user */
4165 void *fsdata = NULL;
4167 bytes = iov_iter_count(i);
4168 retry:
4169 offset = pos & (chunk - 1);
4170 bytes = min(chunk - offset, bytes);
4171 balance_dirty_pages_ratelimited(mapping);
4174 * Bring in the user page that we will copy from _first_.
4175 * Otherwise there's a nasty deadlock on copying from the
4176 * same page as we're writing to, without it being marked
4177 * up-to-date.
4179 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
4180 status = -EFAULT;
4181 break;
4184 if (fatal_signal_pending(current)) {
4185 status = -EINTR;
4186 break;
4189 status = a_ops->write_begin(file, mapping, pos, bytes,
4190 &folio, &fsdata);
4191 if (unlikely(status < 0))
4192 break;
4194 offset = offset_in_folio(folio, pos);
4195 if (bytes > folio_size(folio) - offset)
4196 bytes = folio_size(folio) - offset;
4198 if (mapping_writably_mapped(mapping))
4199 flush_dcache_folio(folio);
4201 copied = copy_folio_from_iter_atomic(folio, offset, bytes, i);
4202 flush_dcache_folio(folio);
4204 status = a_ops->write_end(file, mapping, pos, bytes, copied,
4205 folio, fsdata);
4206 if (unlikely(status != copied)) {
4207 iov_iter_revert(i, copied - max(status, 0L));
4208 if (unlikely(status < 0))
4209 break;
4211 cond_resched();
4213 if (unlikely(status == 0)) {
4215 * A short copy made ->write_end() reject the
4216 * thing entirely. Might be memory poisoning
4217 * halfway through, might be a race with munmap,
4218 * might be severe memory pressure.
4220 if (chunk > PAGE_SIZE)
4221 chunk /= 2;
4222 if (copied) {
4223 bytes = copied;
4224 goto retry;
4226 } else {
4227 pos += status;
4228 written += status;
4230 } while (iov_iter_count(i));
4232 if (!written)
4233 return status;
4234 iocb->ki_pos += written;
4235 return written;
4237 EXPORT_SYMBOL(generic_perform_write);
4240 * __generic_file_write_iter - write data to a file
4241 * @iocb: IO state structure (file, offset, etc.)
4242 * @from: iov_iter with data to write
4244 * This function does all the work needed for actually writing data to a
4245 * file. It does all basic checks, removes SUID from the file, updates
4246 * modification times and calls proper subroutines depending on whether we
4247 * do direct IO or a standard buffered write.
4249 * It expects i_rwsem to be grabbed unless we work on a block device or similar
4250 * object which does not need locking at all.
4252 * This function does *not* take care of syncing data in case of O_SYNC write.
4253 * A caller has to handle it. This is mainly due to the fact that we want to
4254 * avoid syncing under i_rwsem.
4256 * Return:
4257 * * number of bytes written, even for truncated writes
4258 * * negative error code if no data has been written at all
4260 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4262 struct file *file = iocb->ki_filp;
4263 struct address_space *mapping = file->f_mapping;
4264 struct inode *inode = mapping->host;
4265 ssize_t ret;
4267 ret = file_remove_privs(file);
4268 if (ret)
4269 return ret;
4271 ret = file_update_time(file);
4272 if (ret)
4273 return ret;
4275 if (iocb->ki_flags & IOCB_DIRECT) {
4276 ret = generic_file_direct_write(iocb, from);
4278 * If the write stopped short of completing, fall back to
4279 * buffered writes. Some filesystems do this for writes to
4280 * holes, for example. For DAX files, a buffered write will
4281 * not succeed (even if it did, DAX does not handle dirty
4282 * page-cache pages correctly).
4284 if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode))
4285 return ret;
4286 return direct_write_fallback(iocb, from, ret,
4287 generic_perform_write(iocb, from));
4290 return generic_perform_write(iocb, from);
4292 EXPORT_SYMBOL(__generic_file_write_iter);
4295 * generic_file_write_iter - write data to a file
4296 * @iocb: IO state structure
4297 * @from: iov_iter with data to write
4299 * This is a wrapper around __generic_file_write_iter() to be used by most
4300 * filesystems. It takes care of syncing the file in case of O_SYNC file
4301 * and acquires i_rwsem as needed.
4302 * Return:
4303 * * negative error code if no data has been written at all of
4304 * vfs_fsync_range() failed for a synchronous write
4305 * * number of bytes written, even for truncated writes
4307 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4309 struct file *file = iocb->ki_filp;
4310 struct inode *inode = file->f_mapping->host;
4311 ssize_t ret;
4313 inode_lock(inode);
4314 ret = generic_write_checks(iocb, from);
4315 if (ret > 0)
4316 ret = __generic_file_write_iter(iocb, from);
4317 inode_unlock(inode);
4319 if (ret > 0)
4320 ret = generic_write_sync(iocb, ret);
4321 return ret;
4323 EXPORT_SYMBOL(generic_file_write_iter);
4326 * filemap_release_folio() - Release fs-specific metadata on a folio.
4327 * @folio: The folio which the kernel is trying to free.
4328 * @gfp: Memory allocation flags (and I/O mode).
4330 * The address_space is trying to release any data attached to a folio
4331 * (presumably at folio->private).
4333 * This will also be called if the private_2 flag is set on a page,
4334 * indicating that the folio has other metadata associated with it.
4336 * The @gfp argument specifies whether I/O may be performed to release
4337 * this page (__GFP_IO), and whether the call may block
4338 * (__GFP_RECLAIM & __GFP_FS).
4340 * Return: %true if the release was successful, otherwise %false.
4342 bool filemap_release_folio(struct folio *folio, gfp_t gfp)
4344 struct address_space * const mapping = folio->mapping;
4346 BUG_ON(!folio_test_locked(folio));
4347 if (!folio_needs_release(folio))
4348 return true;
4349 if (folio_test_writeback(folio))
4350 return false;
4352 if (mapping && mapping->a_ops->release_folio)
4353 return mapping->a_ops->release_folio(folio, gfp);
4354 return try_to_free_buffers(folio);
4356 EXPORT_SYMBOL(filemap_release_folio);
4359 * filemap_invalidate_inode - Invalidate/forcibly write back a range of an inode's pagecache
4360 * @inode: The inode to flush
4361 * @flush: Set to write back rather than simply invalidate.
4362 * @start: First byte to in range.
4363 * @end: Last byte in range (inclusive), or LLONG_MAX for everything from start
4364 * onwards.
4366 * Invalidate all the folios on an inode that contribute to the specified
4367 * range, possibly writing them back first. Whilst the operation is
4368 * undertaken, the invalidate lock is held to prevent new folios from being
4369 * installed.
4371 int filemap_invalidate_inode(struct inode *inode, bool flush,
4372 loff_t start, loff_t end)
4374 struct address_space *mapping = inode->i_mapping;
4375 pgoff_t first = start >> PAGE_SHIFT;
4376 pgoff_t last = end >> PAGE_SHIFT;
4377 pgoff_t nr = end == LLONG_MAX ? ULONG_MAX : last - first + 1;
4379 if (!mapping || !mapping->nrpages || end < start)
4380 goto out;
4382 /* Prevent new folios from being added to the inode. */
4383 filemap_invalidate_lock(mapping);
4385 if (!mapping->nrpages)
4386 goto unlock;
4388 unmap_mapping_pages(mapping, first, nr, false);
4390 /* Write back the data if we're asked to. */
4391 if (flush) {
4392 struct writeback_control wbc = {
4393 .sync_mode = WB_SYNC_ALL,
4394 .nr_to_write = LONG_MAX,
4395 .range_start = start,
4396 .range_end = end,
4399 filemap_fdatawrite_wbc(mapping, &wbc);
4402 /* Wait for writeback to complete on all folios and discard. */
4403 invalidate_inode_pages2_range(mapping, start / PAGE_SIZE, end / PAGE_SIZE);
4405 unlock:
4406 filemap_invalidate_unlock(mapping);
4407 out:
4408 return filemap_check_errors(mapping);
4410 EXPORT_SYMBOL_GPL(filemap_invalidate_inode);
4412 #ifdef CONFIG_CACHESTAT_SYSCALL
4414 * filemap_cachestat() - compute the page cache statistics of a mapping
4415 * @mapping: The mapping to compute the statistics for.
4416 * @first_index: The starting page cache index.
4417 * @last_index: The final page index (inclusive).
4418 * @cs: the cachestat struct to write the result to.
4420 * This will query the page cache statistics of a mapping in the
4421 * page range of [first_index, last_index] (inclusive). The statistics
4422 * queried include: number of dirty pages, number of pages marked for
4423 * writeback, and the number of (recently) evicted pages.
4425 static void filemap_cachestat(struct address_space *mapping,
4426 pgoff_t first_index, pgoff_t last_index, struct cachestat *cs)
4428 XA_STATE(xas, &mapping->i_pages, first_index);
4429 struct folio *folio;
4431 /* Flush stats (and potentially sleep) outside the RCU read section. */
4432 mem_cgroup_flush_stats_ratelimited(NULL);
4434 rcu_read_lock();
4435 xas_for_each(&xas, folio, last_index) {
4436 int order;
4437 unsigned long nr_pages;
4438 pgoff_t folio_first_index, folio_last_index;
4441 * Don't deref the folio. It is not pinned, and might
4442 * get freed (and reused) underneath us.
4444 * We *could* pin it, but that would be expensive for
4445 * what should be a fast and lightweight syscall.
4447 * Instead, derive all information of interest from
4448 * the rcu-protected xarray.
4451 if (xas_retry(&xas, folio))
4452 continue;
4454 order = xas_get_order(&xas);
4455 nr_pages = 1 << order;
4456 folio_first_index = round_down(xas.xa_index, 1 << order);
4457 folio_last_index = folio_first_index + nr_pages - 1;
4459 /* Folios might straddle the range boundaries, only count covered pages */
4460 if (folio_first_index < first_index)
4461 nr_pages -= first_index - folio_first_index;
4463 if (folio_last_index > last_index)
4464 nr_pages -= folio_last_index - last_index;
4466 if (xa_is_value(folio)) {
4467 /* page is evicted */
4468 void *shadow = (void *)folio;
4469 bool workingset; /* not used */
4471 cs->nr_evicted += nr_pages;
4473 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */
4474 if (shmem_mapping(mapping)) {
4475 /* shmem file - in swap cache */
4476 swp_entry_t swp = radix_to_swp_entry(folio);
4478 /* swapin error results in poisoned entry */
4479 if (non_swap_entry(swp))
4480 goto resched;
4483 * Getting a swap entry from the shmem
4484 * inode means we beat
4485 * shmem_unuse(). rcu_read_lock()
4486 * ensures swapoff waits for us before
4487 * freeing the swapper space. However,
4488 * we can race with swapping and
4489 * invalidation, so there might not be
4490 * a shadow in the swapcache (yet).
4492 shadow = get_shadow_from_swap_cache(swp);
4493 if (!shadow)
4494 goto resched;
4496 #endif
4497 if (workingset_test_recent(shadow, true, &workingset, false))
4498 cs->nr_recently_evicted += nr_pages;
4500 goto resched;
4503 /* page is in cache */
4504 cs->nr_cache += nr_pages;
4506 if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY))
4507 cs->nr_dirty += nr_pages;
4509 if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK))
4510 cs->nr_writeback += nr_pages;
4512 resched:
4513 if (need_resched()) {
4514 xas_pause(&xas);
4515 cond_resched_rcu();
4518 rcu_read_unlock();
4522 * See mincore: reveal pagecache information only for files
4523 * that the calling process has write access to, or could (if
4524 * tried) open for writing.
4526 static inline bool can_do_cachestat(struct file *f)
4528 if (f->f_mode & FMODE_WRITE)
4529 return true;
4530 if (inode_owner_or_capable(file_mnt_idmap(f), file_inode(f)))
4531 return true;
4532 return file_permission(f, MAY_WRITE) == 0;
4536 * The cachestat(2) system call.
4538 * cachestat() returns the page cache statistics of a file in the
4539 * bytes range specified by `off` and `len`: number of cached pages,
4540 * number of dirty pages, number of pages marked for writeback,
4541 * number of evicted pages, and number of recently evicted pages.
4543 * An evicted page is a page that is previously in the page cache
4544 * but has been evicted since. A page is recently evicted if its last
4545 * eviction was recent enough that its reentry to the cache would
4546 * indicate that it is actively being used by the system, and that
4547 * there is memory pressure on the system.
4549 * `off` and `len` must be non-negative integers. If `len` > 0,
4550 * the queried range is [`off`, `off` + `len`]. If `len` == 0,
4551 * we will query in the range from `off` to the end of the file.
4553 * The `flags` argument is unused for now, but is included for future
4554 * extensibility. User should pass 0 (i.e no flag specified).
4556 * Currently, hugetlbfs is not supported.
4558 * Because the status of a page can change after cachestat() checks it
4559 * but before it returns to the application, the returned values may
4560 * contain stale information.
4562 * return values:
4563 * zero - success
4564 * -EFAULT - cstat or cstat_range points to an illegal address
4565 * -EINVAL - invalid flags
4566 * -EBADF - invalid file descriptor
4567 * -EOPNOTSUPP - file descriptor is of a hugetlbfs file
4569 SYSCALL_DEFINE4(cachestat, unsigned int, fd,
4570 struct cachestat_range __user *, cstat_range,
4571 struct cachestat __user *, cstat, unsigned int, flags)
4573 CLASS(fd, f)(fd);
4574 struct address_space *mapping;
4575 struct cachestat_range csr;
4576 struct cachestat cs;
4577 pgoff_t first_index, last_index;
4579 if (fd_empty(f))
4580 return -EBADF;
4582 if (copy_from_user(&csr, cstat_range,
4583 sizeof(struct cachestat_range)))
4584 return -EFAULT;
4586 /* hugetlbfs is not supported */
4587 if (is_file_hugepages(fd_file(f)))
4588 return -EOPNOTSUPP;
4590 if (!can_do_cachestat(fd_file(f)))
4591 return -EPERM;
4593 if (flags != 0)
4594 return -EINVAL;
4596 first_index = csr.off >> PAGE_SHIFT;
4597 last_index =
4598 csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT;
4599 memset(&cs, 0, sizeof(struct cachestat));
4600 mapping = fd_file(f)->f_mapping;
4601 filemap_cachestat(mapping, first_index, last_index, &cs);
4603 if (copy_to_user(cstat, &cs, sizeof(struct cachestat)))
4604 return -EFAULT;
4606 return 0;
4608 #endif /* CONFIG_CACHESTAT_SYSCALL */