1 // SPDX-License-Identifier: GPL-2.0
3 * KVM guest address space mapping code
5 * Copyright IBM Corp. 2007, 2020
6 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
7 * David Hildenbrand <david@redhat.com>
8 * Janosch Frank <frankja@linux.vnet.ibm.com>
11 #include <linux/kernel.h>
12 #include <linux/pagewalk.h>
13 #include <linux/swap.h>
14 #include <linux/smp.h>
15 #include <linux/spinlock.h>
16 #include <linux/slab.h>
17 #include <linux/swapops.h>
18 #include <linux/ksm.h>
19 #include <linux/mman.h>
20 #include <linux/pgtable.h>
21 #include <asm/page-states.h>
22 #include <asm/pgalloc.h>
27 #define GMAP_SHADOW_FAKE_TABLE 1ULL
29 static struct page
*gmap_alloc_crst(void)
33 page
= alloc_pages(GFP_KERNEL_ACCOUNT
, CRST_ALLOC_ORDER
);
36 __arch_set_page_dat(page_to_virt(page
), 1UL << CRST_ALLOC_ORDER
);
41 * gmap_alloc - allocate and initialize a guest address space
42 * @limit: maximum address of the gmap address space
44 * Returns a guest address space structure.
46 static struct gmap
*gmap_alloc(unsigned long limit
)
51 unsigned long etype
, atype
;
53 if (limit
< _REGION3_SIZE
) {
54 limit
= _REGION3_SIZE
- 1;
55 atype
= _ASCE_TYPE_SEGMENT
;
56 etype
= _SEGMENT_ENTRY_EMPTY
;
57 } else if (limit
< _REGION2_SIZE
) {
58 limit
= _REGION2_SIZE
- 1;
59 atype
= _ASCE_TYPE_REGION3
;
60 etype
= _REGION3_ENTRY_EMPTY
;
61 } else if (limit
< _REGION1_SIZE
) {
62 limit
= _REGION1_SIZE
- 1;
63 atype
= _ASCE_TYPE_REGION2
;
64 etype
= _REGION2_ENTRY_EMPTY
;
67 atype
= _ASCE_TYPE_REGION1
;
68 etype
= _REGION1_ENTRY_EMPTY
;
70 gmap
= kzalloc(sizeof(struct gmap
), GFP_KERNEL_ACCOUNT
);
73 INIT_LIST_HEAD(&gmap
->crst_list
);
74 INIT_LIST_HEAD(&gmap
->children
);
75 INIT_LIST_HEAD(&gmap
->pt_list
);
76 INIT_RADIX_TREE(&gmap
->guest_to_host
, GFP_KERNEL_ACCOUNT
);
77 INIT_RADIX_TREE(&gmap
->host_to_guest
, GFP_ATOMIC
| __GFP_ACCOUNT
);
78 INIT_RADIX_TREE(&gmap
->host_to_rmap
, GFP_ATOMIC
| __GFP_ACCOUNT
);
79 spin_lock_init(&gmap
->guest_table_lock
);
80 spin_lock_init(&gmap
->shadow_lock
);
81 refcount_set(&gmap
->ref_count
, 1);
82 page
= gmap_alloc_crst();
86 list_add(&page
->lru
, &gmap
->crst_list
);
87 table
= page_to_virt(page
);
88 crst_table_init(table
, etype
);
90 gmap
->asce
= atype
| _ASCE_TABLE_LENGTH
|
91 _ASCE_USER_BITS
| __pa(table
);
92 gmap
->asce_end
= limit
;
102 * gmap_create - create a guest address space
103 * @mm: pointer to the parent mm_struct
104 * @limit: maximum size of the gmap address space
106 * Returns a guest address space structure.
108 struct gmap
*gmap_create(struct mm_struct
*mm
, unsigned long limit
)
111 unsigned long gmap_asce
;
113 gmap
= gmap_alloc(limit
);
117 spin_lock(&mm
->context
.lock
);
118 list_add_rcu(&gmap
->list
, &mm
->context
.gmap_list
);
119 if (list_is_singular(&mm
->context
.gmap_list
))
120 gmap_asce
= gmap
->asce
;
123 WRITE_ONCE(mm
->context
.gmap_asce
, gmap_asce
);
124 spin_unlock(&mm
->context
.lock
);
127 EXPORT_SYMBOL_GPL(gmap_create
);
129 static void gmap_flush_tlb(struct gmap
*gmap
)
131 if (MACHINE_HAS_IDTE
)
132 __tlb_flush_idte(gmap
->asce
);
134 __tlb_flush_global();
137 static void gmap_radix_tree_free(struct radix_tree_root
*root
)
139 struct radix_tree_iter iter
;
140 unsigned long indices
[16];
145 /* A radix tree is freed by deleting all of its entries */
149 radix_tree_for_each_slot(slot
, root
, &iter
, index
) {
150 indices
[nr
] = iter
.index
;
154 for (i
= 0; i
< nr
; i
++) {
156 radix_tree_delete(root
, index
);
161 static void gmap_rmap_radix_tree_free(struct radix_tree_root
*root
)
163 struct gmap_rmap
*rmap
, *rnext
, *head
;
164 struct radix_tree_iter iter
;
165 unsigned long indices
[16];
170 /* A radix tree is freed by deleting all of its entries */
174 radix_tree_for_each_slot(slot
, root
, &iter
, index
) {
175 indices
[nr
] = iter
.index
;
179 for (i
= 0; i
< nr
; i
++) {
181 head
= radix_tree_delete(root
, index
);
182 gmap_for_each_rmap_safe(rmap
, rnext
, head
)
189 * gmap_free - free a guest address space
190 * @gmap: pointer to the guest address space structure
192 * No locks required. There are no references to this gmap anymore.
194 static void gmap_free(struct gmap
*gmap
)
196 struct page
*page
, *next
;
198 /* Flush tlb of all gmaps (if not already done for shadows) */
199 if (!(gmap_is_shadow(gmap
) && gmap
->removed
))
200 gmap_flush_tlb(gmap
);
201 /* Free all segment & region tables. */
202 list_for_each_entry_safe(page
, next
, &gmap
->crst_list
, lru
)
203 __free_pages(page
, CRST_ALLOC_ORDER
);
204 gmap_radix_tree_free(&gmap
->guest_to_host
);
205 gmap_radix_tree_free(&gmap
->host_to_guest
);
207 /* Free additional data for a shadow gmap */
208 if (gmap_is_shadow(gmap
)) {
209 struct ptdesc
*ptdesc
, *n
;
211 /* Free all page tables. */
212 list_for_each_entry_safe(ptdesc
, n
, &gmap
->pt_list
, pt_list
)
213 page_table_free_pgste(ptdesc
);
214 gmap_rmap_radix_tree_free(&gmap
->host_to_rmap
);
215 /* Release reference to the parent */
216 gmap_put(gmap
->parent
);
223 * gmap_get - increase reference counter for guest address space
224 * @gmap: pointer to the guest address space structure
226 * Returns the gmap pointer
228 struct gmap
*gmap_get(struct gmap
*gmap
)
230 refcount_inc(&gmap
->ref_count
);
233 EXPORT_SYMBOL_GPL(gmap_get
);
236 * gmap_put - decrease reference counter for guest address space
237 * @gmap: pointer to the guest address space structure
239 * If the reference counter reaches zero the guest address space is freed.
241 void gmap_put(struct gmap
*gmap
)
243 if (refcount_dec_and_test(&gmap
->ref_count
))
246 EXPORT_SYMBOL_GPL(gmap_put
);
249 * gmap_remove - remove a guest address space but do not free it yet
250 * @gmap: pointer to the guest address space structure
252 void gmap_remove(struct gmap
*gmap
)
254 struct gmap
*sg
, *next
;
255 unsigned long gmap_asce
;
257 /* Remove all shadow gmaps linked to this gmap */
258 if (!list_empty(&gmap
->children
)) {
259 spin_lock(&gmap
->shadow_lock
);
260 list_for_each_entry_safe(sg
, next
, &gmap
->children
, list
) {
264 spin_unlock(&gmap
->shadow_lock
);
266 /* Remove gmap from the pre-mm list */
267 spin_lock(&gmap
->mm
->context
.lock
);
268 list_del_rcu(&gmap
->list
);
269 if (list_empty(&gmap
->mm
->context
.gmap_list
))
271 else if (list_is_singular(&gmap
->mm
->context
.gmap_list
))
272 gmap_asce
= list_first_entry(&gmap
->mm
->context
.gmap_list
,
273 struct gmap
, list
)->asce
;
276 WRITE_ONCE(gmap
->mm
->context
.gmap_asce
, gmap_asce
);
277 spin_unlock(&gmap
->mm
->context
.lock
);
282 EXPORT_SYMBOL_GPL(gmap_remove
);
285 * gmap_alloc_table is assumed to be called with mmap_lock held
287 static int gmap_alloc_table(struct gmap
*gmap
, unsigned long *table
,
288 unsigned long init
, unsigned long gaddr
)
293 /* since we dont free the gmap table until gmap_free we can unlock */
294 page
= gmap_alloc_crst();
297 new = page_to_virt(page
);
298 crst_table_init(new, init
);
299 spin_lock(&gmap
->guest_table_lock
);
300 if (*table
& _REGION_ENTRY_INVALID
) {
301 list_add(&page
->lru
, &gmap
->crst_list
);
302 *table
= __pa(new) | _REGION_ENTRY_LENGTH
|
303 (*table
& _REGION_ENTRY_TYPE_MASK
);
307 spin_unlock(&gmap
->guest_table_lock
);
309 __free_pages(page
, CRST_ALLOC_ORDER
);
314 * __gmap_segment_gaddr - find virtual address from segment pointer
315 * @entry: pointer to a segment table entry in the guest address space
317 * Returns the virtual address in the guest address space for the segment
319 static unsigned long __gmap_segment_gaddr(unsigned long *entry
)
322 unsigned long offset
;
324 offset
= (unsigned long) entry
/ sizeof(unsigned long);
325 offset
= (offset
& (PTRS_PER_PMD
- 1)) * PMD_SIZE
;
326 page
= pmd_pgtable_page((pmd_t
*) entry
);
327 return page
->index
+ offset
;
331 * __gmap_unlink_by_vmaddr - unlink a single segment via a host address
332 * @gmap: pointer to the guest address space structure
333 * @vmaddr: address in the host process address space
335 * Returns 1 if a TLB flush is required
337 static int __gmap_unlink_by_vmaddr(struct gmap
*gmap
, unsigned long vmaddr
)
339 unsigned long *entry
;
342 BUG_ON(gmap_is_shadow(gmap
));
343 spin_lock(&gmap
->guest_table_lock
);
344 entry
= radix_tree_delete(&gmap
->host_to_guest
, vmaddr
>> PMD_SHIFT
);
346 flush
= (*entry
!= _SEGMENT_ENTRY_EMPTY
);
347 *entry
= _SEGMENT_ENTRY_EMPTY
;
349 spin_unlock(&gmap
->guest_table_lock
);
354 * __gmap_unmap_by_gaddr - unmap a single segment via a guest address
355 * @gmap: pointer to the guest address space structure
356 * @gaddr: address in the guest address space
358 * Returns 1 if a TLB flush is required
360 static int __gmap_unmap_by_gaddr(struct gmap
*gmap
, unsigned long gaddr
)
362 unsigned long vmaddr
;
364 vmaddr
= (unsigned long) radix_tree_delete(&gmap
->guest_to_host
,
366 return vmaddr
? __gmap_unlink_by_vmaddr(gmap
, vmaddr
) : 0;
370 * gmap_unmap_segment - unmap segment from the guest address space
371 * @gmap: pointer to the guest address space structure
372 * @to: address in the guest address space
373 * @len: length of the memory area to unmap
375 * Returns 0 if the unmap succeeded, -EINVAL if not.
377 int gmap_unmap_segment(struct gmap
*gmap
, unsigned long to
, unsigned long len
)
382 BUG_ON(gmap_is_shadow(gmap
));
383 if ((to
| len
) & (PMD_SIZE
- 1))
385 if (len
== 0 || to
+ len
< to
)
389 mmap_write_lock(gmap
->mm
);
390 for (off
= 0; off
< len
; off
+= PMD_SIZE
)
391 flush
|= __gmap_unmap_by_gaddr(gmap
, to
+ off
);
392 mmap_write_unlock(gmap
->mm
);
394 gmap_flush_tlb(gmap
);
397 EXPORT_SYMBOL_GPL(gmap_unmap_segment
);
400 * gmap_map_segment - map a segment to the guest address space
401 * @gmap: pointer to the guest address space structure
402 * @from: source address in the parent address space
403 * @to: target address in the guest address space
404 * @len: length of the memory area to map
406 * Returns 0 if the mmap succeeded, -EINVAL or -ENOMEM if not.
408 int gmap_map_segment(struct gmap
*gmap
, unsigned long from
,
409 unsigned long to
, unsigned long len
)
414 BUG_ON(gmap_is_shadow(gmap
));
415 if ((from
| to
| len
) & (PMD_SIZE
- 1))
417 if (len
== 0 || from
+ len
< from
|| to
+ len
< to
||
418 from
+ len
- 1 > TASK_SIZE_MAX
|| to
+ len
- 1 > gmap
->asce_end
)
422 mmap_write_lock(gmap
->mm
);
423 for (off
= 0; off
< len
; off
+= PMD_SIZE
) {
424 /* Remove old translation */
425 flush
|= __gmap_unmap_by_gaddr(gmap
, to
+ off
);
426 /* Store new translation */
427 if (radix_tree_insert(&gmap
->guest_to_host
,
428 (to
+ off
) >> PMD_SHIFT
,
429 (void *) from
+ off
))
432 mmap_write_unlock(gmap
->mm
);
434 gmap_flush_tlb(gmap
);
437 gmap_unmap_segment(gmap
, to
, len
);
440 EXPORT_SYMBOL_GPL(gmap_map_segment
);
443 * __gmap_translate - translate a guest address to a user space address
444 * @gmap: pointer to guest mapping meta data structure
445 * @gaddr: guest address
447 * Returns user space address which corresponds to the guest address or
448 * -EFAULT if no such mapping exists.
449 * This function does not establish potentially missing page table entries.
450 * The mmap_lock of the mm that belongs to the address space must be held
451 * when this function gets called.
453 * Note: Can also be called for shadow gmaps.
455 unsigned long __gmap_translate(struct gmap
*gmap
, unsigned long gaddr
)
457 unsigned long vmaddr
;
459 vmaddr
= (unsigned long)
460 radix_tree_lookup(&gmap
->guest_to_host
, gaddr
>> PMD_SHIFT
);
461 /* Note: guest_to_host is empty for a shadow gmap */
462 return vmaddr
? (vmaddr
| (gaddr
& ~PMD_MASK
)) : -EFAULT
;
464 EXPORT_SYMBOL_GPL(__gmap_translate
);
467 * gmap_translate - translate a guest address to a user space address
468 * @gmap: pointer to guest mapping meta data structure
469 * @gaddr: guest address
471 * Returns user space address which corresponds to the guest address or
472 * -EFAULT if no such mapping exists.
473 * This function does not establish potentially missing page table entries.
475 unsigned long gmap_translate(struct gmap
*gmap
, unsigned long gaddr
)
479 mmap_read_lock(gmap
->mm
);
480 rc
= __gmap_translate(gmap
, gaddr
);
481 mmap_read_unlock(gmap
->mm
);
484 EXPORT_SYMBOL_GPL(gmap_translate
);
487 * gmap_unlink - disconnect a page table from the gmap shadow tables
488 * @mm: pointer to the parent mm_struct
489 * @table: pointer to the host page table
490 * @vmaddr: vm address associated with the host page table
492 void gmap_unlink(struct mm_struct
*mm
, unsigned long *table
,
493 unsigned long vmaddr
)
499 list_for_each_entry_rcu(gmap
, &mm
->context
.gmap_list
, list
) {
500 flush
= __gmap_unlink_by_vmaddr(gmap
, vmaddr
);
502 gmap_flush_tlb(gmap
);
507 static void gmap_pmdp_xchg(struct gmap
*gmap
, pmd_t
*old
, pmd_t
new,
508 unsigned long gaddr
);
511 * __gmap_link - set up shadow page tables to connect a host to a guest address
512 * @gmap: pointer to guest mapping meta data structure
513 * @gaddr: guest address
514 * @vmaddr: vm address
516 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
517 * if the vm address is already mapped to a different guest segment.
518 * The mmap_lock of the mm that belongs to the address space must be held
519 * when this function gets called.
521 int __gmap_link(struct gmap
*gmap
, unsigned long gaddr
, unsigned long vmaddr
)
523 struct mm_struct
*mm
;
524 unsigned long *table
;
533 BUG_ON(gmap_is_shadow(gmap
));
534 /* Create higher level tables in the gmap page table */
536 if ((gmap
->asce
& _ASCE_TYPE_MASK
) >= _ASCE_TYPE_REGION1
) {
537 table
+= (gaddr
& _REGION1_INDEX
) >> _REGION1_SHIFT
;
538 if ((*table
& _REGION_ENTRY_INVALID
) &&
539 gmap_alloc_table(gmap
, table
, _REGION2_ENTRY_EMPTY
,
540 gaddr
& _REGION1_MASK
))
542 table
= __va(*table
& _REGION_ENTRY_ORIGIN
);
544 if ((gmap
->asce
& _ASCE_TYPE_MASK
) >= _ASCE_TYPE_REGION2
) {
545 table
+= (gaddr
& _REGION2_INDEX
) >> _REGION2_SHIFT
;
546 if ((*table
& _REGION_ENTRY_INVALID
) &&
547 gmap_alloc_table(gmap
, table
, _REGION3_ENTRY_EMPTY
,
548 gaddr
& _REGION2_MASK
))
550 table
= __va(*table
& _REGION_ENTRY_ORIGIN
);
552 if ((gmap
->asce
& _ASCE_TYPE_MASK
) >= _ASCE_TYPE_REGION3
) {
553 table
+= (gaddr
& _REGION3_INDEX
) >> _REGION3_SHIFT
;
554 if ((*table
& _REGION_ENTRY_INVALID
) &&
555 gmap_alloc_table(gmap
, table
, _SEGMENT_ENTRY_EMPTY
,
556 gaddr
& _REGION3_MASK
))
558 table
= __va(*table
& _REGION_ENTRY_ORIGIN
);
560 table
+= (gaddr
& _SEGMENT_INDEX
) >> _SEGMENT_SHIFT
;
561 /* Walk the parent mm page table */
563 pgd
= pgd_offset(mm
, vmaddr
);
564 VM_BUG_ON(pgd_none(*pgd
));
565 p4d
= p4d_offset(pgd
, vmaddr
);
566 VM_BUG_ON(p4d_none(*p4d
));
567 pud
= pud_offset(p4d
, vmaddr
);
568 VM_BUG_ON(pud_none(*pud
));
569 /* large puds cannot yet be handled */
572 pmd
= pmd_offset(pud
, vmaddr
);
573 VM_BUG_ON(pmd_none(*pmd
));
574 /* Are we allowed to use huge pages? */
575 if (pmd_leaf(*pmd
) && !gmap
->mm
->context
.allow_gmap_hpage_1m
)
577 /* Link gmap segment table entry location to page table. */
578 rc
= radix_tree_preload(GFP_KERNEL_ACCOUNT
);
581 ptl
= pmd_lock(mm
, pmd
);
582 spin_lock(&gmap
->guest_table_lock
);
583 if (*table
== _SEGMENT_ENTRY_EMPTY
) {
584 rc
= radix_tree_insert(&gmap
->host_to_guest
,
585 vmaddr
>> PMD_SHIFT
, table
);
587 if (pmd_leaf(*pmd
)) {
588 *table
= (pmd_val(*pmd
) &
589 _SEGMENT_ENTRY_HARDWARE_BITS_LARGE
)
590 | _SEGMENT_ENTRY_GMAP_UC
;
592 *table
= pmd_val(*pmd
) &
593 _SEGMENT_ENTRY_HARDWARE_BITS
;
595 } else if (*table
& _SEGMENT_ENTRY_PROTECT
&&
596 !(pmd_val(*pmd
) & _SEGMENT_ENTRY_PROTECT
)) {
597 unprot
= (u64
)*table
;
598 unprot
&= ~_SEGMENT_ENTRY_PROTECT
;
599 unprot
|= _SEGMENT_ENTRY_GMAP_UC
;
600 gmap_pmdp_xchg(gmap
, (pmd_t
*)table
, __pmd(unprot
), gaddr
);
602 spin_unlock(&gmap
->guest_table_lock
);
604 radix_tree_preload_end();
609 * fixup_user_fault_nowait - manually resolve a user page fault without waiting
610 * @mm: mm_struct of target mm
611 * @address: user address
612 * @fault_flags:flags to pass down to handle_mm_fault()
613 * @unlocked: did we unlock the mmap_lock while retrying
615 * This function behaves similarly to fixup_user_fault(), but it guarantees
616 * that the fault will be resolved without waiting. The function might drop
617 * and re-acquire the mm lock, in which case @unlocked will be set to true.
619 * The guarantee is that the fault is handled without waiting, but the
620 * function itself might sleep, due to the lock.
622 * Context: Needs to be called with mm->mmap_lock held in read mode, and will
623 * return with the lock held in read mode; @unlocked will indicate whether
624 * the lock has been dropped and re-acquired. This is the same behaviour as
625 * fixup_user_fault().
627 * Return: 0 on success, -EAGAIN if the fault cannot be resolved without
628 * waiting, -EFAULT if the fault cannot be resolved, -ENOMEM if out of
631 static int fixup_user_fault_nowait(struct mm_struct
*mm
, unsigned long address
,
632 unsigned int fault_flags
, bool *unlocked
)
634 struct vm_area_struct
*vma
;
635 unsigned int test_flags
;
639 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_RETRY_NOWAIT
;
640 test_flags
= fault_flags
& FAULT_FLAG_WRITE
? VM_WRITE
: VM_READ
;
642 vma
= find_vma(mm
, address
);
643 if (unlikely(!vma
|| address
< vma
->vm_start
))
645 if (unlikely(!(vma
->vm_flags
& test_flags
)))
648 fault
= handle_mm_fault(vma
, address
, fault_flags
, NULL
);
649 /* the mm lock has been dropped, take it again */
650 if (fault
& VM_FAULT_COMPLETED
) {
655 /* the mm lock has not been dropped */
656 if (fault
& VM_FAULT_ERROR
) {
657 rc
= vm_fault_to_errno(fault
, 0);
661 /* the mm lock has not been dropped because of FAULT_FLAG_RETRY_NOWAIT */
662 if (fault
& VM_FAULT_RETRY
)
664 /* nothing needed to be done and the mm lock has not been dropped */
669 * __gmap_fault - resolve a fault on a guest address
670 * @gmap: pointer to guest mapping meta data structure
671 * @gaddr: guest address
672 * @fault_flags: flags to pass down to handle_mm_fault()
674 * Context: Needs to be called with mm->mmap_lock held in read mode. Might
675 * drop and re-acquire the lock. Will always return with the lock held.
677 static int __gmap_fault(struct gmap
*gmap
, unsigned long gaddr
, unsigned int fault_flags
)
679 unsigned long vmaddr
;
686 vmaddr
= __gmap_translate(gmap
, gaddr
);
687 if (IS_ERR_VALUE(vmaddr
))
690 if (fault_flags
& FAULT_FLAG_RETRY_NOWAIT
)
691 rc
= fixup_user_fault_nowait(gmap
->mm
, vmaddr
, fault_flags
, &unlocked
);
693 rc
= fixup_user_fault(gmap
->mm
, vmaddr
, fault_flags
, &unlocked
);
697 * In the case that fixup_user_fault unlocked the mmap_lock during
698 * fault-in, redo __gmap_translate() to avoid racing with a
700 * In particular, __gmap_translate(), fixup_user_fault{,_nowait}(),
701 * and __gmap_link() must all be called atomically in one go; if the
702 * lock had been dropped in between, a retry is needed.
707 return __gmap_link(gmap
, gaddr
, vmaddr
);
711 * gmap_fault - resolve a fault on a guest address
712 * @gmap: pointer to guest mapping meta data structure
713 * @gaddr: guest address
714 * @fault_flags: flags to pass down to handle_mm_fault()
716 * Returns 0 on success, -ENOMEM for out of memory conditions, -EFAULT if the
717 * vm address is already mapped to a different guest segment, and -EAGAIN if
718 * FAULT_FLAG_RETRY_NOWAIT was specified and the fault could not be processed
721 int gmap_fault(struct gmap
*gmap
, unsigned long gaddr
, unsigned int fault_flags
)
725 mmap_read_lock(gmap
->mm
);
726 rc
= __gmap_fault(gmap
, gaddr
, fault_flags
);
727 mmap_read_unlock(gmap
->mm
);
730 EXPORT_SYMBOL_GPL(gmap_fault
);
733 * this function is assumed to be called with mmap_lock held
735 void __gmap_zap(struct gmap
*gmap
, unsigned long gaddr
)
737 struct vm_area_struct
*vma
;
738 unsigned long vmaddr
;
742 /* Find the vm address for the guest address */
743 vmaddr
= (unsigned long) radix_tree_lookup(&gmap
->guest_to_host
,
746 vmaddr
|= gaddr
& ~PMD_MASK
;
748 vma
= vma_lookup(gmap
->mm
, vmaddr
);
749 if (!vma
|| is_vm_hugetlb_page(vma
))
752 /* Get pointer to the page table entry */
753 ptep
= get_locked_pte(gmap
->mm
, vmaddr
, &ptl
);
755 ptep_zap_unused(gmap
->mm
, vmaddr
, ptep
, 0);
756 pte_unmap_unlock(ptep
, ptl
);
760 EXPORT_SYMBOL_GPL(__gmap_zap
);
762 void gmap_discard(struct gmap
*gmap
, unsigned long from
, unsigned long to
)
764 unsigned long gaddr
, vmaddr
, size
;
765 struct vm_area_struct
*vma
;
767 mmap_read_lock(gmap
->mm
);
768 for (gaddr
= from
; gaddr
< to
;
769 gaddr
= (gaddr
+ PMD_SIZE
) & PMD_MASK
) {
770 /* Find the vm address for the guest address */
771 vmaddr
= (unsigned long)
772 radix_tree_lookup(&gmap
->guest_to_host
,
776 vmaddr
|= gaddr
& ~PMD_MASK
;
777 /* Find vma in the parent mm */
778 vma
= find_vma(gmap
->mm
, vmaddr
);
782 * We do not discard pages that are backed by
783 * hugetlbfs, so we don't have to refault them.
785 if (is_vm_hugetlb_page(vma
))
787 size
= min(to
- gaddr
, PMD_SIZE
- (gaddr
& ~PMD_MASK
));
788 zap_page_range_single(vma
, vmaddr
, size
, NULL
);
790 mmap_read_unlock(gmap
->mm
);
792 EXPORT_SYMBOL_GPL(gmap_discard
);
794 static LIST_HEAD(gmap_notifier_list
);
795 static DEFINE_SPINLOCK(gmap_notifier_lock
);
798 * gmap_register_pte_notifier - register a pte invalidation callback
799 * @nb: pointer to the gmap notifier block
801 void gmap_register_pte_notifier(struct gmap_notifier
*nb
)
803 spin_lock(&gmap_notifier_lock
);
804 list_add_rcu(&nb
->list
, &gmap_notifier_list
);
805 spin_unlock(&gmap_notifier_lock
);
807 EXPORT_SYMBOL_GPL(gmap_register_pte_notifier
);
810 * gmap_unregister_pte_notifier - remove a pte invalidation callback
811 * @nb: pointer to the gmap notifier block
813 void gmap_unregister_pte_notifier(struct gmap_notifier
*nb
)
815 spin_lock(&gmap_notifier_lock
);
816 list_del_rcu(&nb
->list
);
817 spin_unlock(&gmap_notifier_lock
);
820 EXPORT_SYMBOL_GPL(gmap_unregister_pte_notifier
);
823 * gmap_call_notifier - call all registered invalidation callbacks
824 * @gmap: pointer to guest mapping meta data structure
825 * @start: start virtual address in the guest address space
826 * @end: end virtual address in the guest address space
828 static void gmap_call_notifier(struct gmap
*gmap
, unsigned long start
,
831 struct gmap_notifier
*nb
;
833 list_for_each_entry(nb
, &gmap_notifier_list
, list
)
834 nb
->notifier_call(gmap
, start
, end
);
838 * gmap_table_walk - walk the gmap page tables
839 * @gmap: pointer to guest mapping meta data structure
840 * @gaddr: virtual address in the guest address space
841 * @level: page table level to stop at
843 * Returns a table entry pointer for the given guest address and @level
844 * @level=0 : returns a pointer to a page table table entry (or NULL)
845 * @level=1 : returns a pointer to a segment table entry (or NULL)
846 * @level=2 : returns a pointer to a region-3 table entry (or NULL)
847 * @level=3 : returns a pointer to a region-2 table entry (or NULL)
848 * @level=4 : returns a pointer to a region-1 table entry (or NULL)
850 * Returns NULL if the gmap page tables could not be walked to the
853 * Note: Can also be called for shadow gmaps.
855 static inline unsigned long *gmap_table_walk(struct gmap
*gmap
,
856 unsigned long gaddr
, int level
)
858 const int asce_type
= gmap
->asce
& _ASCE_TYPE_MASK
;
859 unsigned long *table
= gmap
->table
;
861 if (gmap_is_shadow(gmap
) && gmap
->removed
)
864 if (WARN_ON_ONCE(level
> (asce_type
>> 2) + 1))
867 if (asce_type
!= _ASCE_TYPE_REGION1
&&
868 gaddr
& (-1UL << (31 + (asce_type
>> 2) * 11)))
872 case _ASCE_TYPE_REGION1
:
873 table
+= (gaddr
& _REGION1_INDEX
) >> _REGION1_SHIFT
;
876 if (*table
& _REGION_ENTRY_INVALID
)
878 table
= __va(*table
& _REGION_ENTRY_ORIGIN
);
880 case _ASCE_TYPE_REGION2
:
881 table
+= (gaddr
& _REGION2_INDEX
) >> _REGION2_SHIFT
;
884 if (*table
& _REGION_ENTRY_INVALID
)
886 table
= __va(*table
& _REGION_ENTRY_ORIGIN
);
888 case _ASCE_TYPE_REGION3
:
889 table
+= (gaddr
& _REGION3_INDEX
) >> _REGION3_SHIFT
;
892 if (*table
& _REGION_ENTRY_INVALID
)
894 table
= __va(*table
& _REGION_ENTRY_ORIGIN
);
896 case _ASCE_TYPE_SEGMENT
:
897 table
+= (gaddr
& _SEGMENT_INDEX
) >> _SEGMENT_SHIFT
;
900 if (*table
& _REGION_ENTRY_INVALID
)
902 table
= __va(*table
& _SEGMENT_ENTRY_ORIGIN
);
903 table
+= (gaddr
& _PAGE_INDEX
) >> PAGE_SHIFT
;
909 * gmap_pte_op_walk - walk the gmap page table, get the page table lock
910 * and return the pte pointer
911 * @gmap: pointer to guest mapping meta data structure
912 * @gaddr: virtual address in the guest address space
913 * @ptl: pointer to the spinlock pointer
915 * Returns a pointer to the locked pte for a guest address, or NULL
917 static pte_t
*gmap_pte_op_walk(struct gmap
*gmap
, unsigned long gaddr
,
920 unsigned long *table
;
922 BUG_ON(gmap_is_shadow(gmap
));
923 /* Walk the gmap page table, lock and get pte pointer */
924 table
= gmap_table_walk(gmap
, gaddr
, 1); /* get segment pointer */
925 if (!table
|| *table
& _SEGMENT_ENTRY_INVALID
)
927 return pte_alloc_map_lock(gmap
->mm
, (pmd_t
*) table
, gaddr
, ptl
);
931 * gmap_pte_op_fixup - force a page in and connect the gmap page table
932 * @gmap: pointer to guest mapping meta data structure
933 * @gaddr: virtual address in the guest address space
934 * @vmaddr: address in the host process address space
935 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
937 * Returns 0 if the caller can retry __gmap_translate (might fail again),
938 * -ENOMEM if out of memory and -EFAULT if anything goes wrong while fixing
939 * up or connecting the gmap page table.
941 static int gmap_pte_op_fixup(struct gmap
*gmap
, unsigned long gaddr
,
942 unsigned long vmaddr
, int prot
)
944 struct mm_struct
*mm
= gmap
->mm
;
945 unsigned int fault_flags
;
946 bool unlocked
= false;
948 BUG_ON(gmap_is_shadow(gmap
));
949 fault_flags
= (prot
== PROT_WRITE
) ? FAULT_FLAG_WRITE
: 0;
950 if (fixup_user_fault(mm
, vmaddr
, fault_flags
, &unlocked
))
953 /* lost mmap_lock, caller has to retry __gmap_translate */
955 /* Connect the page tables */
956 return __gmap_link(gmap
, gaddr
, vmaddr
);
960 * gmap_pte_op_end - release the page table lock
961 * @ptep: pointer to the locked pte
962 * @ptl: pointer to the page table spinlock
964 static void gmap_pte_op_end(pte_t
*ptep
, spinlock_t
*ptl
)
966 pte_unmap_unlock(ptep
, ptl
);
970 * gmap_pmd_op_walk - walk the gmap tables, get the guest table lock
971 * and return the pmd pointer
972 * @gmap: pointer to guest mapping meta data structure
973 * @gaddr: virtual address in the guest address space
975 * Returns a pointer to the pmd for a guest address, or NULL
977 static inline pmd_t
*gmap_pmd_op_walk(struct gmap
*gmap
, unsigned long gaddr
)
981 BUG_ON(gmap_is_shadow(gmap
));
982 pmdp
= (pmd_t
*) gmap_table_walk(gmap
, gaddr
, 1);
986 /* without huge pages, there is no need to take the table lock */
987 if (!gmap
->mm
->context
.allow_gmap_hpage_1m
)
988 return pmd_none(*pmdp
) ? NULL
: pmdp
;
990 spin_lock(&gmap
->guest_table_lock
);
991 if (pmd_none(*pmdp
)) {
992 spin_unlock(&gmap
->guest_table_lock
);
996 /* 4k page table entries are locked via the pte (pte_alloc_map_lock). */
997 if (!pmd_leaf(*pmdp
))
998 spin_unlock(&gmap
->guest_table_lock
);
1003 * gmap_pmd_op_end - release the guest_table_lock if needed
1004 * @gmap: pointer to the guest mapping meta data structure
1005 * @pmdp: pointer to the pmd
1007 static inline void gmap_pmd_op_end(struct gmap
*gmap
, pmd_t
*pmdp
)
1009 if (pmd_leaf(*pmdp
))
1010 spin_unlock(&gmap
->guest_table_lock
);
1014 * gmap_protect_pmd - remove access rights to memory and set pmd notification bits
1015 * @pmdp: pointer to the pmd to be protected
1016 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1017 * @bits: notification bits to set
1020 * 0 if successfully protected
1021 * -EAGAIN if a fixup is needed
1022 * -EINVAL if unsupported notifier bits have been specified
1024 * Expected to be called with sg->mm->mmap_lock in read and
1025 * guest_table_lock held.
1027 static int gmap_protect_pmd(struct gmap
*gmap
, unsigned long gaddr
,
1028 pmd_t
*pmdp
, int prot
, unsigned long bits
)
1030 int pmd_i
= pmd_val(*pmdp
) & _SEGMENT_ENTRY_INVALID
;
1031 int pmd_p
= pmd_val(*pmdp
) & _SEGMENT_ENTRY_PROTECT
;
1035 if ((pmd_i
&& (prot
!= PROT_NONE
)) || (pmd_p
&& (prot
== PROT_WRITE
)))
1038 if (prot
== PROT_NONE
&& !pmd_i
) {
1039 new = set_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_INVALID
));
1040 gmap_pmdp_xchg(gmap
, pmdp
, new, gaddr
);
1043 if (prot
== PROT_READ
&& !pmd_p
) {
1044 new = clear_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_INVALID
));
1045 new = set_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_PROTECT
));
1046 gmap_pmdp_xchg(gmap
, pmdp
, new, gaddr
);
1049 if (bits
& GMAP_NOTIFY_MPROT
)
1050 set_pmd(pmdp
, set_pmd_bit(*pmdp
, __pgprot(_SEGMENT_ENTRY_GMAP_IN
)));
1052 /* Shadow GMAP protection needs split PMDs */
1053 if (bits
& GMAP_NOTIFY_SHADOW
)
1060 * gmap_protect_pte - remove access rights to memory and set pgste bits
1061 * @gmap: pointer to guest mapping meta data structure
1062 * @gaddr: virtual address in the guest address space
1063 * @pmdp: pointer to the pmd associated with the pte
1064 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1065 * @bits: notification bits to set
1067 * Returns 0 if successfully protected, -ENOMEM if out of memory and
1068 * -EAGAIN if a fixup is needed.
1070 * Expected to be called with sg->mm->mmap_lock in read
1072 static int gmap_protect_pte(struct gmap
*gmap
, unsigned long gaddr
,
1073 pmd_t
*pmdp
, int prot
, unsigned long bits
)
1078 unsigned long pbits
= 0;
1080 if (pmd_val(*pmdp
) & _SEGMENT_ENTRY_INVALID
)
1083 ptep
= pte_alloc_map_lock(gmap
->mm
, pmdp
, gaddr
, &ptl
);
1087 pbits
|= (bits
& GMAP_NOTIFY_MPROT
) ? PGSTE_IN_BIT
: 0;
1088 pbits
|= (bits
& GMAP_NOTIFY_SHADOW
) ? PGSTE_VSIE_BIT
: 0;
1089 /* Protect and unlock. */
1090 rc
= ptep_force_prot(gmap
->mm
, gaddr
, ptep
, prot
, pbits
);
1091 gmap_pte_op_end(ptep
, ptl
);
1096 * gmap_protect_range - remove access rights to memory and set pgste bits
1097 * @gmap: pointer to guest mapping meta data structure
1098 * @gaddr: virtual address in the guest address space
1099 * @len: size of area
1100 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1101 * @bits: pgste notification bits to set
1103 * Returns 0 if successfully protected, -ENOMEM if out of memory and
1104 * -EFAULT if gaddr is invalid (or mapping for shadows is missing).
1106 * Called with sg->mm->mmap_lock in read.
1108 static int gmap_protect_range(struct gmap
*gmap
, unsigned long gaddr
,
1109 unsigned long len
, int prot
, unsigned long bits
)
1111 unsigned long vmaddr
, dist
;
1115 BUG_ON(gmap_is_shadow(gmap
));
1118 pmdp
= gmap_pmd_op_walk(gmap
, gaddr
);
1120 if (!pmd_leaf(*pmdp
)) {
1121 rc
= gmap_protect_pte(gmap
, gaddr
, pmdp
, prot
,
1128 rc
= gmap_protect_pmd(gmap
, gaddr
, pmdp
, prot
,
1131 dist
= HPAGE_SIZE
- (gaddr
& ~HPAGE_MASK
);
1132 len
= len
< dist
? 0 : len
- dist
;
1133 gaddr
= (gaddr
& HPAGE_MASK
) + HPAGE_SIZE
;
1136 gmap_pmd_op_end(gmap
, pmdp
);
1142 /* -EAGAIN, fixup of userspace mm and gmap */
1143 vmaddr
= __gmap_translate(gmap
, gaddr
);
1144 if (IS_ERR_VALUE(vmaddr
))
1146 rc
= gmap_pte_op_fixup(gmap
, gaddr
, vmaddr
, prot
);
1155 * gmap_mprotect_notify - change access rights for a range of ptes and
1156 * call the notifier if any pte changes again
1157 * @gmap: pointer to guest mapping meta data structure
1158 * @gaddr: virtual address in the guest address space
1159 * @len: size of area
1160 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1162 * Returns 0 if for each page in the given range a gmap mapping exists,
1163 * the new access rights could be set and the notifier could be armed.
1164 * If the gmap mapping is missing for one or more pages -EFAULT is
1165 * returned. If no memory could be allocated -ENOMEM is returned.
1166 * This function establishes missing page table entries.
1168 int gmap_mprotect_notify(struct gmap
*gmap
, unsigned long gaddr
,
1169 unsigned long len
, int prot
)
1173 if ((gaddr
& ~PAGE_MASK
) || (len
& ~PAGE_MASK
) || gmap_is_shadow(gmap
))
1175 if (!MACHINE_HAS_ESOP
&& prot
== PROT_READ
)
1177 mmap_read_lock(gmap
->mm
);
1178 rc
= gmap_protect_range(gmap
, gaddr
, len
, prot
, GMAP_NOTIFY_MPROT
);
1179 mmap_read_unlock(gmap
->mm
);
1182 EXPORT_SYMBOL_GPL(gmap_mprotect_notify
);
1185 * gmap_read_table - get an unsigned long value from a guest page table using
1186 * absolute addressing, without marking the page referenced.
1187 * @gmap: pointer to guest mapping meta data structure
1188 * @gaddr: virtual address in the guest address space
1189 * @val: pointer to the unsigned long value to return
1191 * Returns 0 if the value was read, -ENOMEM if out of memory and -EFAULT
1192 * if reading using the virtual address failed. -EINVAL if called on a gmap
1195 * Called with gmap->mm->mmap_lock in read.
1197 int gmap_read_table(struct gmap
*gmap
, unsigned long gaddr
, unsigned long *val
)
1199 unsigned long address
, vmaddr
;
1204 if (gmap_is_shadow(gmap
))
1209 ptep
= gmap_pte_op_walk(gmap
, gaddr
, &ptl
);
1212 if (pte_present(pte
) && (pte_val(pte
) & _PAGE_READ
)) {
1213 address
= pte_val(pte
) & PAGE_MASK
;
1214 address
+= gaddr
& ~PAGE_MASK
;
1215 *val
= *(unsigned long *)__va(address
);
1216 set_pte(ptep
, set_pte_bit(*ptep
, __pgprot(_PAGE_YOUNG
)));
1217 /* Do *NOT* clear the _PAGE_INVALID bit! */
1220 gmap_pte_op_end(ptep
, ptl
);
1224 vmaddr
= __gmap_translate(gmap
, gaddr
);
1225 if (IS_ERR_VALUE(vmaddr
)) {
1229 rc
= gmap_pte_op_fixup(gmap
, gaddr
, vmaddr
, PROT_READ
);
1235 EXPORT_SYMBOL_GPL(gmap_read_table
);
1238 * gmap_insert_rmap - add a rmap to the host_to_rmap radix tree
1239 * @sg: pointer to the shadow guest address space structure
1240 * @vmaddr: vm address associated with the rmap
1241 * @rmap: pointer to the rmap structure
1243 * Called with the sg->guest_table_lock
1245 static inline void gmap_insert_rmap(struct gmap
*sg
, unsigned long vmaddr
,
1246 struct gmap_rmap
*rmap
)
1248 struct gmap_rmap
*temp
;
1251 BUG_ON(!gmap_is_shadow(sg
));
1252 slot
= radix_tree_lookup_slot(&sg
->host_to_rmap
, vmaddr
>> PAGE_SHIFT
);
1254 rmap
->next
= radix_tree_deref_slot_protected(slot
,
1255 &sg
->guest_table_lock
);
1256 for (temp
= rmap
->next
; temp
; temp
= temp
->next
) {
1257 if (temp
->raddr
== rmap
->raddr
) {
1262 radix_tree_replace_slot(&sg
->host_to_rmap
, slot
, rmap
);
1265 radix_tree_insert(&sg
->host_to_rmap
, vmaddr
>> PAGE_SHIFT
,
1271 * gmap_protect_rmap - restrict access rights to memory (RO) and create an rmap
1272 * @sg: pointer to the shadow guest address space structure
1273 * @raddr: rmap address in the shadow gmap
1274 * @paddr: address in the parent guest address space
1275 * @len: length of the memory area to protect
1277 * Returns 0 if successfully protected and the rmap was created, -ENOMEM
1278 * if out of memory and -EFAULT if paddr is invalid.
1280 static int gmap_protect_rmap(struct gmap
*sg
, unsigned long raddr
,
1281 unsigned long paddr
, unsigned long len
)
1283 struct gmap
*parent
;
1284 struct gmap_rmap
*rmap
;
1285 unsigned long vmaddr
;
1290 BUG_ON(!gmap_is_shadow(sg
));
1291 parent
= sg
->parent
;
1293 vmaddr
= __gmap_translate(parent
, paddr
);
1294 if (IS_ERR_VALUE(vmaddr
))
1296 rmap
= kzalloc(sizeof(*rmap
), GFP_KERNEL_ACCOUNT
);
1299 rmap
->raddr
= raddr
;
1300 rc
= radix_tree_preload(GFP_KERNEL_ACCOUNT
);
1306 ptep
= gmap_pte_op_walk(parent
, paddr
, &ptl
);
1308 spin_lock(&sg
->guest_table_lock
);
1309 rc
= ptep_force_prot(parent
->mm
, paddr
, ptep
, PROT_READ
,
1312 gmap_insert_rmap(sg
, vmaddr
, rmap
);
1313 spin_unlock(&sg
->guest_table_lock
);
1314 gmap_pte_op_end(ptep
, ptl
);
1316 radix_tree_preload_end();
1319 rc
= gmap_pte_op_fixup(parent
, paddr
, vmaddr
, PROT_READ
);
1330 #define _SHADOW_RMAP_MASK 0x7
1331 #define _SHADOW_RMAP_REGION1 0x5
1332 #define _SHADOW_RMAP_REGION2 0x4
1333 #define _SHADOW_RMAP_REGION3 0x3
1334 #define _SHADOW_RMAP_SEGMENT 0x2
1335 #define _SHADOW_RMAP_PGTABLE 0x1
1338 * gmap_idte_one - invalidate a single region or segment table entry
1339 * @asce: region or segment table *origin* + table-type bits
1340 * @vaddr: virtual address to identify the table entry to flush
1342 * The invalid bit of a single region or segment table entry is set
1343 * and the associated TLB entries depending on the entry are flushed.
1344 * The table-type of the @asce identifies the portion of the @vaddr
1345 * that is used as the invalidation index.
1347 static inline void gmap_idte_one(unsigned long asce
, unsigned long vaddr
)
1351 : : "a" (asce
), "a" (vaddr
) : "cc", "memory");
1355 * gmap_unshadow_page - remove a page from a shadow page table
1356 * @sg: pointer to the shadow guest address space structure
1357 * @raddr: rmap address in the shadow guest address space
1359 * Called with the sg->guest_table_lock
1361 static void gmap_unshadow_page(struct gmap
*sg
, unsigned long raddr
)
1363 unsigned long *table
;
1365 BUG_ON(!gmap_is_shadow(sg
));
1366 table
= gmap_table_walk(sg
, raddr
, 0); /* get page table pointer */
1367 if (!table
|| *table
& _PAGE_INVALID
)
1369 gmap_call_notifier(sg
, raddr
, raddr
+ PAGE_SIZE
- 1);
1370 ptep_unshadow_pte(sg
->mm
, raddr
, (pte_t
*) table
);
1374 * __gmap_unshadow_pgt - remove all entries from a shadow page table
1375 * @sg: pointer to the shadow guest address space structure
1376 * @raddr: rmap address in the shadow guest address space
1377 * @pgt: pointer to the start of a shadow page table
1379 * Called with the sg->guest_table_lock
1381 static void __gmap_unshadow_pgt(struct gmap
*sg
, unsigned long raddr
,
1386 BUG_ON(!gmap_is_shadow(sg
));
1387 for (i
= 0; i
< _PAGE_ENTRIES
; i
++, raddr
+= PAGE_SIZE
)
1388 pgt
[i
] = _PAGE_INVALID
;
1392 * gmap_unshadow_pgt - remove a shadow page table from a segment entry
1393 * @sg: pointer to the shadow guest address space structure
1394 * @raddr: address in the shadow guest address space
1396 * Called with the sg->guest_table_lock
1398 static void gmap_unshadow_pgt(struct gmap
*sg
, unsigned long raddr
)
1401 phys_addr_t sto
, pgt
;
1402 struct ptdesc
*ptdesc
;
1404 BUG_ON(!gmap_is_shadow(sg
));
1405 ste
= gmap_table_walk(sg
, raddr
, 1); /* get segment pointer */
1406 if (!ste
|| !(*ste
& _SEGMENT_ENTRY_ORIGIN
))
1408 gmap_call_notifier(sg
, raddr
, raddr
+ _SEGMENT_SIZE
- 1);
1409 sto
= __pa(ste
- ((raddr
& _SEGMENT_INDEX
) >> _SEGMENT_SHIFT
));
1410 gmap_idte_one(sto
| _ASCE_TYPE_SEGMENT
, raddr
);
1411 pgt
= *ste
& _SEGMENT_ENTRY_ORIGIN
;
1412 *ste
= _SEGMENT_ENTRY_EMPTY
;
1413 __gmap_unshadow_pgt(sg
, raddr
, __va(pgt
));
1414 /* Free page table */
1415 ptdesc
= page_ptdesc(phys_to_page(pgt
));
1416 list_del(&ptdesc
->pt_list
);
1417 page_table_free_pgste(ptdesc
);
1421 * __gmap_unshadow_sgt - remove all entries from a shadow segment table
1422 * @sg: pointer to the shadow guest address space structure
1423 * @raddr: rmap address in the shadow guest address space
1424 * @sgt: pointer to the start of a shadow segment table
1426 * Called with the sg->guest_table_lock
1428 static void __gmap_unshadow_sgt(struct gmap
*sg
, unsigned long raddr
,
1431 struct ptdesc
*ptdesc
;
1435 BUG_ON(!gmap_is_shadow(sg
));
1436 for (i
= 0; i
< _CRST_ENTRIES
; i
++, raddr
+= _SEGMENT_SIZE
) {
1437 if (!(sgt
[i
] & _SEGMENT_ENTRY_ORIGIN
))
1439 pgt
= sgt
[i
] & _REGION_ENTRY_ORIGIN
;
1440 sgt
[i
] = _SEGMENT_ENTRY_EMPTY
;
1441 __gmap_unshadow_pgt(sg
, raddr
, __va(pgt
));
1442 /* Free page table */
1443 ptdesc
= page_ptdesc(phys_to_page(pgt
));
1444 list_del(&ptdesc
->pt_list
);
1445 page_table_free_pgste(ptdesc
);
1450 * gmap_unshadow_sgt - remove a shadow segment table from a region-3 entry
1451 * @sg: pointer to the shadow guest address space structure
1452 * @raddr: rmap address in the shadow guest address space
1454 * Called with the shadow->guest_table_lock
1456 static void gmap_unshadow_sgt(struct gmap
*sg
, unsigned long raddr
)
1458 unsigned long r3o
, *r3e
;
1462 BUG_ON(!gmap_is_shadow(sg
));
1463 r3e
= gmap_table_walk(sg
, raddr
, 2); /* get region-3 pointer */
1464 if (!r3e
|| !(*r3e
& _REGION_ENTRY_ORIGIN
))
1466 gmap_call_notifier(sg
, raddr
, raddr
+ _REGION3_SIZE
- 1);
1467 r3o
= (unsigned long) (r3e
- ((raddr
& _REGION3_INDEX
) >> _REGION3_SHIFT
));
1468 gmap_idte_one(__pa(r3o
) | _ASCE_TYPE_REGION3
, raddr
);
1469 sgt
= *r3e
& _REGION_ENTRY_ORIGIN
;
1470 *r3e
= _REGION3_ENTRY_EMPTY
;
1471 __gmap_unshadow_sgt(sg
, raddr
, __va(sgt
));
1472 /* Free segment table */
1473 page
= phys_to_page(sgt
);
1474 list_del(&page
->lru
);
1475 __free_pages(page
, CRST_ALLOC_ORDER
);
1479 * __gmap_unshadow_r3t - remove all entries from a shadow region-3 table
1480 * @sg: pointer to the shadow guest address space structure
1481 * @raddr: address in the shadow guest address space
1482 * @r3t: pointer to the start of a shadow region-3 table
1484 * Called with the sg->guest_table_lock
1486 static void __gmap_unshadow_r3t(struct gmap
*sg
, unsigned long raddr
,
1493 BUG_ON(!gmap_is_shadow(sg
));
1494 for (i
= 0; i
< _CRST_ENTRIES
; i
++, raddr
+= _REGION3_SIZE
) {
1495 if (!(r3t
[i
] & _REGION_ENTRY_ORIGIN
))
1497 sgt
= r3t
[i
] & _REGION_ENTRY_ORIGIN
;
1498 r3t
[i
] = _REGION3_ENTRY_EMPTY
;
1499 __gmap_unshadow_sgt(sg
, raddr
, __va(sgt
));
1500 /* Free segment table */
1501 page
= phys_to_page(sgt
);
1502 list_del(&page
->lru
);
1503 __free_pages(page
, CRST_ALLOC_ORDER
);
1508 * gmap_unshadow_r3t - remove a shadow region-3 table from a region-2 entry
1509 * @sg: pointer to the shadow guest address space structure
1510 * @raddr: rmap address in the shadow guest address space
1512 * Called with the sg->guest_table_lock
1514 static void gmap_unshadow_r3t(struct gmap
*sg
, unsigned long raddr
)
1516 unsigned long r2o
, *r2e
;
1520 BUG_ON(!gmap_is_shadow(sg
));
1521 r2e
= gmap_table_walk(sg
, raddr
, 3); /* get region-2 pointer */
1522 if (!r2e
|| !(*r2e
& _REGION_ENTRY_ORIGIN
))
1524 gmap_call_notifier(sg
, raddr
, raddr
+ _REGION2_SIZE
- 1);
1525 r2o
= (unsigned long) (r2e
- ((raddr
& _REGION2_INDEX
) >> _REGION2_SHIFT
));
1526 gmap_idte_one(__pa(r2o
) | _ASCE_TYPE_REGION2
, raddr
);
1527 r3t
= *r2e
& _REGION_ENTRY_ORIGIN
;
1528 *r2e
= _REGION2_ENTRY_EMPTY
;
1529 __gmap_unshadow_r3t(sg
, raddr
, __va(r3t
));
1530 /* Free region 3 table */
1531 page
= phys_to_page(r3t
);
1532 list_del(&page
->lru
);
1533 __free_pages(page
, CRST_ALLOC_ORDER
);
1537 * __gmap_unshadow_r2t - remove all entries from a shadow region-2 table
1538 * @sg: pointer to the shadow guest address space structure
1539 * @raddr: rmap address in the shadow guest address space
1540 * @r2t: pointer to the start of a shadow region-2 table
1542 * Called with the sg->guest_table_lock
1544 static void __gmap_unshadow_r2t(struct gmap
*sg
, unsigned long raddr
,
1551 BUG_ON(!gmap_is_shadow(sg
));
1552 for (i
= 0; i
< _CRST_ENTRIES
; i
++, raddr
+= _REGION2_SIZE
) {
1553 if (!(r2t
[i
] & _REGION_ENTRY_ORIGIN
))
1555 r3t
= r2t
[i
] & _REGION_ENTRY_ORIGIN
;
1556 r2t
[i
] = _REGION2_ENTRY_EMPTY
;
1557 __gmap_unshadow_r3t(sg
, raddr
, __va(r3t
));
1558 /* Free region 3 table */
1559 page
= phys_to_page(r3t
);
1560 list_del(&page
->lru
);
1561 __free_pages(page
, CRST_ALLOC_ORDER
);
1566 * gmap_unshadow_r2t - remove a shadow region-2 table from a region-1 entry
1567 * @sg: pointer to the shadow guest address space structure
1568 * @raddr: rmap address in the shadow guest address space
1570 * Called with the sg->guest_table_lock
1572 static void gmap_unshadow_r2t(struct gmap
*sg
, unsigned long raddr
)
1574 unsigned long r1o
, *r1e
;
1578 BUG_ON(!gmap_is_shadow(sg
));
1579 r1e
= gmap_table_walk(sg
, raddr
, 4); /* get region-1 pointer */
1580 if (!r1e
|| !(*r1e
& _REGION_ENTRY_ORIGIN
))
1582 gmap_call_notifier(sg
, raddr
, raddr
+ _REGION1_SIZE
- 1);
1583 r1o
= (unsigned long) (r1e
- ((raddr
& _REGION1_INDEX
) >> _REGION1_SHIFT
));
1584 gmap_idte_one(__pa(r1o
) | _ASCE_TYPE_REGION1
, raddr
);
1585 r2t
= *r1e
& _REGION_ENTRY_ORIGIN
;
1586 *r1e
= _REGION1_ENTRY_EMPTY
;
1587 __gmap_unshadow_r2t(sg
, raddr
, __va(r2t
));
1588 /* Free region 2 table */
1589 page
= phys_to_page(r2t
);
1590 list_del(&page
->lru
);
1591 __free_pages(page
, CRST_ALLOC_ORDER
);
1595 * __gmap_unshadow_r1t - remove all entries from a shadow region-1 table
1596 * @sg: pointer to the shadow guest address space structure
1597 * @raddr: rmap address in the shadow guest address space
1598 * @r1t: pointer to the start of a shadow region-1 table
1600 * Called with the shadow->guest_table_lock
1602 static void __gmap_unshadow_r1t(struct gmap
*sg
, unsigned long raddr
,
1610 BUG_ON(!gmap_is_shadow(sg
));
1611 asce
= __pa(r1t
) | _ASCE_TYPE_REGION1
;
1612 for (i
= 0; i
< _CRST_ENTRIES
; i
++, raddr
+= _REGION1_SIZE
) {
1613 if (!(r1t
[i
] & _REGION_ENTRY_ORIGIN
))
1615 r2t
= r1t
[i
] & _REGION_ENTRY_ORIGIN
;
1616 __gmap_unshadow_r2t(sg
, raddr
, __va(r2t
));
1617 /* Clear entry and flush translation r1t -> r2t */
1618 gmap_idte_one(asce
, raddr
);
1619 r1t
[i
] = _REGION1_ENTRY_EMPTY
;
1620 /* Free region 2 table */
1621 page
= phys_to_page(r2t
);
1622 list_del(&page
->lru
);
1623 __free_pages(page
, CRST_ALLOC_ORDER
);
1628 * gmap_unshadow - remove a shadow page table completely
1629 * @sg: pointer to the shadow guest address space structure
1631 * Called with sg->guest_table_lock
1633 static void gmap_unshadow(struct gmap
*sg
)
1635 unsigned long *table
;
1637 BUG_ON(!gmap_is_shadow(sg
));
1641 gmap_call_notifier(sg
, 0, -1UL);
1643 table
= __va(sg
->asce
& _ASCE_ORIGIN
);
1644 switch (sg
->asce
& _ASCE_TYPE_MASK
) {
1645 case _ASCE_TYPE_REGION1
:
1646 __gmap_unshadow_r1t(sg
, 0, table
);
1648 case _ASCE_TYPE_REGION2
:
1649 __gmap_unshadow_r2t(sg
, 0, table
);
1651 case _ASCE_TYPE_REGION3
:
1652 __gmap_unshadow_r3t(sg
, 0, table
);
1654 case _ASCE_TYPE_SEGMENT
:
1655 __gmap_unshadow_sgt(sg
, 0, table
);
1661 * gmap_find_shadow - find a specific asce in the list of shadow tables
1662 * @parent: pointer to the parent gmap
1663 * @asce: ASCE for which the shadow table is created
1664 * @edat_level: edat level to be used for the shadow translation
1666 * Returns the pointer to a gmap if a shadow table with the given asce is
1667 * already available, ERR_PTR(-EAGAIN) if another one is just being created,
1670 static struct gmap
*gmap_find_shadow(struct gmap
*parent
, unsigned long asce
,
1675 list_for_each_entry(sg
, &parent
->children
, list
) {
1676 if (sg
->orig_asce
!= asce
|| sg
->edat_level
!= edat_level
||
1679 if (!sg
->initialized
)
1680 return ERR_PTR(-EAGAIN
);
1681 refcount_inc(&sg
->ref_count
);
1688 * gmap_shadow_valid - check if a shadow guest address space matches the
1689 * given properties and is still valid
1690 * @sg: pointer to the shadow guest address space structure
1691 * @asce: ASCE for which the shadow table is requested
1692 * @edat_level: edat level to be used for the shadow translation
1694 * Returns 1 if the gmap shadow is still valid and matches the given
1695 * properties, the caller can continue using it. Returns 0 otherwise, the
1696 * caller has to request a new shadow gmap in this case.
1699 int gmap_shadow_valid(struct gmap
*sg
, unsigned long asce
, int edat_level
)
1703 return sg
->orig_asce
== asce
&& sg
->edat_level
== edat_level
;
1705 EXPORT_SYMBOL_GPL(gmap_shadow_valid
);
1708 * gmap_shadow - create/find a shadow guest address space
1709 * @parent: pointer to the parent gmap
1710 * @asce: ASCE for which the shadow table is created
1711 * @edat_level: edat level to be used for the shadow translation
1713 * The pages of the top level page table referred by the asce parameter
1714 * will be set to read-only and marked in the PGSTEs of the kvm process.
1715 * The shadow table will be removed automatically on any change to the
1716 * PTE mapping for the source table.
1718 * Returns a guest address space structure, ERR_PTR(-ENOMEM) if out of memory,
1719 * ERR_PTR(-EAGAIN) if the caller has to retry and ERR_PTR(-EFAULT) if the
1720 * parent gmap table could not be protected.
1722 struct gmap
*gmap_shadow(struct gmap
*parent
, unsigned long asce
,
1725 struct gmap
*sg
, *new;
1726 unsigned long limit
;
1729 BUG_ON(parent
->mm
->context
.allow_gmap_hpage_1m
);
1730 BUG_ON(gmap_is_shadow(parent
));
1731 spin_lock(&parent
->shadow_lock
);
1732 sg
= gmap_find_shadow(parent
, asce
, edat_level
);
1733 spin_unlock(&parent
->shadow_lock
);
1736 /* Create a new shadow gmap */
1737 limit
= -1UL >> (33 - (((asce
& _ASCE_TYPE_MASK
) >> 2) * 11));
1738 if (asce
& _ASCE_REAL_SPACE
)
1740 new = gmap_alloc(limit
);
1742 return ERR_PTR(-ENOMEM
);
1743 new->mm
= parent
->mm
;
1744 new->parent
= gmap_get(parent
);
1745 new->private = parent
->private;
1746 new->orig_asce
= asce
;
1747 new->edat_level
= edat_level
;
1748 new->initialized
= false;
1749 spin_lock(&parent
->shadow_lock
);
1750 /* Recheck if another CPU created the same shadow */
1751 sg
= gmap_find_shadow(parent
, asce
, edat_level
);
1753 spin_unlock(&parent
->shadow_lock
);
1757 if (asce
& _ASCE_REAL_SPACE
) {
1758 /* only allow one real-space gmap shadow */
1759 list_for_each_entry(sg
, &parent
->children
, list
) {
1760 if (sg
->orig_asce
& _ASCE_REAL_SPACE
) {
1761 spin_lock(&sg
->guest_table_lock
);
1763 spin_unlock(&sg
->guest_table_lock
);
1764 list_del(&sg
->list
);
1770 refcount_set(&new->ref_count
, 2);
1771 list_add(&new->list
, &parent
->children
);
1772 if (asce
& _ASCE_REAL_SPACE
) {
1773 /* nothing to protect, return right away */
1774 new->initialized
= true;
1775 spin_unlock(&parent
->shadow_lock
);
1778 spin_unlock(&parent
->shadow_lock
);
1779 /* protect after insertion, so it will get properly invalidated */
1780 mmap_read_lock(parent
->mm
);
1781 rc
= gmap_protect_range(parent
, asce
& _ASCE_ORIGIN
,
1782 ((asce
& _ASCE_TABLE_LENGTH
) + 1) * PAGE_SIZE
,
1783 PROT_READ
, GMAP_NOTIFY_SHADOW
);
1784 mmap_read_unlock(parent
->mm
);
1785 spin_lock(&parent
->shadow_lock
);
1786 new->initialized
= true;
1788 list_del(&new->list
);
1792 spin_unlock(&parent
->shadow_lock
);
1795 EXPORT_SYMBOL_GPL(gmap_shadow
);
1798 * gmap_shadow_r2t - create an empty shadow region 2 table
1799 * @sg: pointer to the shadow guest address space structure
1800 * @saddr: faulting address in the shadow gmap
1801 * @r2t: parent gmap address of the region 2 table to get shadowed
1802 * @fake: r2t references contiguous guest memory block, not a r2t
1804 * The r2t parameter specifies the address of the source table. The
1805 * four pages of the source table are made read-only in the parent gmap
1806 * address space. A write to the source table area @r2t will automatically
1807 * remove the shadow r2 table and all of its descendants.
1809 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1810 * shadow table structure is incomplete, -ENOMEM if out of memory and
1811 * -EFAULT if an address in the parent gmap could not be resolved.
1813 * Called with sg->mm->mmap_lock in read.
1815 int gmap_shadow_r2t(struct gmap
*sg
, unsigned long saddr
, unsigned long r2t
,
1818 unsigned long raddr
, origin
, offset
, len
;
1819 unsigned long *table
;
1824 BUG_ON(!gmap_is_shadow(sg
));
1825 /* Allocate a shadow region second table */
1826 page
= gmap_alloc_crst();
1829 page
->index
= r2t
& _REGION_ENTRY_ORIGIN
;
1831 page
->index
|= GMAP_SHADOW_FAKE_TABLE
;
1832 s_r2t
= page_to_phys(page
);
1833 /* Install shadow region second table */
1834 spin_lock(&sg
->guest_table_lock
);
1835 table
= gmap_table_walk(sg
, saddr
, 4); /* get region-1 pointer */
1837 rc
= -EAGAIN
; /* Race with unshadow */
1840 if (!(*table
& _REGION_ENTRY_INVALID
)) {
1841 rc
= 0; /* Already established */
1843 } else if (*table
& _REGION_ENTRY_ORIGIN
) {
1844 rc
= -EAGAIN
; /* Race with shadow */
1847 crst_table_init(__va(s_r2t
), _REGION2_ENTRY_EMPTY
);
1848 /* mark as invalid as long as the parent table is not protected */
1849 *table
= s_r2t
| _REGION_ENTRY_LENGTH
|
1850 _REGION_ENTRY_TYPE_R1
| _REGION_ENTRY_INVALID
;
1851 if (sg
->edat_level
>= 1)
1852 *table
|= (r2t
& _REGION_ENTRY_PROTECT
);
1853 list_add(&page
->lru
, &sg
->crst_list
);
1855 /* nothing to protect for fake tables */
1856 *table
&= ~_REGION_ENTRY_INVALID
;
1857 spin_unlock(&sg
->guest_table_lock
);
1860 spin_unlock(&sg
->guest_table_lock
);
1861 /* Make r2t read-only in parent gmap page table */
1862 raddr
= (saddr
& _REGION1_MASK
) | _SHADOW_RMAP_REGION1
;
1863 origin
= r2t
& _REGION_ENTRY_ORIGIN
;
1864 offset
= ((r2t
& _REGION_ENTRY_OFFSET
) >> 6) * PAGE_SIZE
;
1865 len
= ((r2t
& _REGION_ENTRY_LENGTH
) + 1) * PAGE_SIZE
- offset
;
1866 rc
= gmap_protect_rmap(sg
, raddr
, origin
+ offset
, len
);
1867 spin_lock(&sg
->guest_table_lock
);
1869 table
= gmap_table_walk(sg
, saddr
, 4);
1870 if (!table
|| (*table
& _REGION_ENTRY_ORIGIN
) != s_r2t
)
1871 rc
= -EAGAIN
; /* Race with unshadow */
1873 *table
&= ~_REGION_ENTRY_INVALID
;
1875 gmap_unshadow_r2t(sg
, raddr
);
1877 spin_unlock(&sg
->guest_table_lock
);
1880 spin_unlock(&sg
->guest_table_lock
);
1881 __free_pages(page
, CRST_ALLOC_ORDER
);
1884 EXPORT_SYMBOL_GPL(gmap_shadow_r2t
);
1887 * gmap_shadow_r3t - create a shadow region 3 table
1888 * @sg: pointer to the shadow guest address space structure
1889 * @saddr: faulting address in the shadow gmap
1890 * @r3t: parent gmap address of the region 3 table to get shadowed
1891 * @fake: r3t references contiguous guest memory block, not a r3t
1893 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1894 * shadow table structure is incomplete, -ENOMEM if out of memory and
1895 * -EFAULT if an address in the parent gmap could not be resolved.
1897 * Called with sg->mm->mmap_lock in read.
1899 int gmap_shadow_r3t(struct gmap
*sg
, unsigned long saddr
, unsigned long r3t
,
1902 unsigned long raddr
, origin
, offset
, len
;
1903 unsigned long *table
;
1908 BUG_ON(!gmap_is_shadow(sg
));
1909 /* Allocate a shadow region second table */
1910 page
= gmap_alloc_crst();
1913 page
->index
= r3t
& _REGION_ENTRY_ORIGIN
;
1915 page
->index
|= GMAP_SHADOW_FAKE_TABLE
;
1916 s_r3t
= page_to_phys(page
);
1917 /* Install shadow region second table */
1918 spin_lock(&sg
->guest_table_lock
);
1919 table
= gmap_table_walk(sg
, saddr
, 3); /* get region-2 pointer */
1921 rc
= -EAGAIN
; /* Race with unshadow */
1924 if (!(*table
& _REGION_ENTRY_INVALID
)) {
1925 rc
= 0; /* Already established */
1927 } else if (*table
& _REGION_ENTRY_ORIGIN
) {
1928 rc
= -EAGAIN
; /* Race with shadow */
1931 crst_table_init(__va(s_r3t
), _REGION3_ENTRY_EMPTY
);
1932 /* mark as invalid as long as the parent table is not protected */
1933 *table
= s_r3t
| _REGION_ENTRY_LENGTH
|
1934 _REGION_ENTRY_TYPE_R2
| _REGION_ENTRY_INVALID
;
1935 if (sg
->edat_level
>= 1)
1936 *table
|= (r3t
& _REGION_ENTRY_PROTECT
);
1937 list_add(&page
->lru
, &sg
->crst_list
);
1939 /* nothing to protect for fake tables */
1940 *table
&= ~_REGION_ENTRY_INVALID
;
1941 spin_unlock(&sg
->guest_table_lock
);
1944 spin_unlock(&sg
->guest_table_lock
);
1945 /* Make r3t read-only in parent gmap page table */
1946 raddr
= (saddr
& _REGION2_MASK
) | _SHADOW_RMAP_REGION2
;
1947 origin
= r3t
& _REGION_ENTRY_ORIGIN
;
1948 offset
= ((r3t
& _REGION_ENTRY_OFFSET
) >> 6) * PAGE_SIZE
;
1949 len
= ((r3t
& _REGION_ENTRY_LENGTH
) + 1) * PAGE_SIZE
- offset
;
1950 rc
= gmap_protect_rmap(sg
, raddr
, origin
+ offset
, len
);
1951 spin_lock(&sg
->guest_table_lock
);
1953 table
= gmap_table_walk(sg
, saddr
, 3);
1954 if (!table
|| (*table
& _REGION_ENTRY_ORIGIN
) != s_r3t
)
1955 rc
= -EAGAIN
; /* Race with unshadow */
1957 *table
&= ~_REGION_ENTRY_INVALID
;
1959 gmap_unshadow_r3t(sg
, raddr
);
1961 spin_unlock(&sg
->guest_table_lock
);
1964 spin_unlock(&sg
->guest_table_lock
);
1965 __free_pages(page
, CRST_ALLOC_ORDER
);
1968 EXPORT_SYMBOL_GPL(gmap_shadow_r3t
);
1971 * gmap_shadow_sgt - create a shadow segment table
1972 * @sg: pointer to the shadow guest address space structure
1973 * @saddr: faulting address in the shadow gmap
1974 * @sgt: parent gmap address of the segment table to get shadowed
1975 * @fake: sgt references contiguous guest memory block, not a sgt
1977 * Returns: 0 if successfully shadowed or already shadowed, -EAGAIN if the
1978 * shadow table structure is incomplete, -ENOMEM if out of memory and
1979 * -EFAULT if an address in the parent gmap could not be resolved.
1981 * Called with sg->mm->mmap_lock in read.
1983 int gmap_shadow_sgt(struct gmap
*sg
, unsigned long saddr
, unsigned long sgt
,
1986 unsigned long raddr
, origin
, offset
, len
;
1987 unsigned long *table
;
1992 BUG_ON(!gmap_is_shadow(sg
) || (sgt
& _REGION3_ENTRY_LARGE
));
1993 /* Allocate a shadow segment table */
1994 page
= gmap_alloc_crst();
1997 page
->index
= sgt
& _REGION_ENTRY_ORIGIN
;
1999 page
->index
|= GMAP_SHADOW_FAKE_TABLE
;
2000 s_sgt
= page_to_phys(page
);
2001 /* Install shadow region second table */
2002 spin_lock(&sg
->guest_table_lock
);
2003 table
= gmap_table_walk(sg
, saddr
, 2); /* get region-3 pointer */
2005 rc
= -EAGAIN
; /* Race with unshadow */
2008 if (!(*table
& _REGION_ENTRY_INVALID
)) {
2009 rc
= 0; /* Already established */
2011 } else if (*table
& _REGION_ENTRY_ORIGIN
) {
2012 rc
= -EAGAIN
; /* Race with shadow */
2015 crst_table_init(__va(s_sgt
), _SEGMENT_ENTRY_EMPTY
);
2016 /* mark as invalid as long as the parent table is not protected */
2017 *table
= s_sgt
| _REGION_ENTRY_LENGTH
|
2018 _REGION_ENTRY_TYPE_R3
| _REGION_ENTRY_INVALID
;
2019 if (sg
->edat_level
>= 1)
2020 *table
|= sgt
& _REGION_ENTRY_PROTECT
;
2021 list_add(&page
->lru
, &sg
->crst_list
);
2023 /* nothing to protect for fake tables */
2024 *table
&= ~_REGION_ENTRY_INVALID
;
2025 spin_unlock(&sg
->guest_table_lock
);
2028 spin_unlock(&sg
->guest_table_lock
);
2029 /* Make sgt read-only in parent gmap page table */
2030 raddr
= (saddr
& _REGION3_MASK
) | _SHADOW_RMAP_REGION3
;
2031 origin
= sgt
& _REGION_ENTRY_ORIGIN
;
2032 offset
= ((sgt
& _REGION_ENTRY_OFFSET
) >> 6) * PAGE_SIZE
;
2033 len
= ((sgt
& _REGION_ENTRY_LENGTH
) + 1) * PAGE_SIZE
- offset
;
2034 rc
= gmap_protect_rmap(sg
, raddr
, origin
+ offset
, len
);
2035 spin_lock(&sg
->guest_table_lock
);
2037 table
= gmap_table_walk(sg
, saddr
, 2);
2038 if (!table
|| (*table
& _REGION_ENTRY_ORIGIN
) != s_sgt
)
2039 rc
= -EAGAIN
; /* Race with unshadow */
2041 *table
&= ~_REGION_ENTRY_INVALID
;
2043 gmap_unshadow_sgt(sg
, raddr
);
2045 spin_unlock(&sg
->guest_table_lock
);
2048 spin_unlock(&sg
->guest_table_lock
);
2049 __free_pages(page
, CRST_ALLOC_ORDER
);
2052 EXPORT_SYMBOL_GPL(gmap_shadow_sgt
);
2055 * gmap_shadow_pgt_lookup - find a shadow page table
2056 * @sg: pointer to the shadow guest address space structure
2057 * @saddr: the address in the shadow aguest address space
2058 * @pgt: parent gmap address of the page table to get shadowed
2059 * @dat_protection: if the pgtable is marked as protected by dat
2060 * @fake: pgt references contiguous guest memory block, not a pgtable
2062 * Returns 0 if the shadow page table was found and -EAGAIN if the page
2063 * table was not found.
2065 * Called with sg->mm->mmap_lock in read.
2067 int gmap_shadow_pgt_lookup(struct gmap
*sg
, unsigned long saddr
,
2068 unsigned long *pgt
, int *dat_protection
,
2071 unsigned long *table
;
2075 BUG_ON(!gmap_is_shadow(sg
));
2076 spin_lock(&sg
->guest_table_lock
);
2077 table
= gmap_table_walk(sg
, saddr
, 1); /* get segment pointer */
2078 if (table
&& !(*table
& _SEGMENT_ENTRY_INVALID
)) {
2079 /* Shadow page tables are full pages (pte+pgste) */
2080 page
= pfn_to_page(*table
>> PAGE_SHIFT
);
2081 *pgt
= page
->index
& ~GMAP_SHADOW_FAKE_TABLE
;
2082 *dat_protection
= !!(*table
& _SEGMENT_ENTRY_PROTECT
);
2083 *fake
= !!(page
->index
& GMAP_SHADOW_FAKE_TABLE
);
2088 spin_unlock(&sg
->guest_table_lock
);
2092 EXPORT_SYMBOL_GPL(gmap_shadow_pgt_lookup
);
2095 * gmap_shadow_pgt - instantiate a shadow page table
2096 * @sg: pointer to the shadow guest address space structure
2097 * @saddr: faulting address in the shadow gmap
2098 * @pgt: parent gmap address of the page table to get shadowed
2099 * @fake: pgt references contiguous guest memory block, not a pgtable
2101 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
2102 * shadow table structure is incomplete, -ENOMEM if out of memory,
2103 * -EFAULT if an address in the parent gmap could not be resolved and
2105 * Called with gmap->mm->mmap_lock in read
2107 int gmap_shadow_pgt(struct gmap
*sg
, unsigned long saddr
, unsigned long pgt
,
2110 unsigned long raddr
, origin
;
2111 unsigned long *table
;
2112 struct ptdesc
*ptdesc
;
2116 BUG_ON(!gmap_is_shadow(sg
) || (pgt
& _SEGMENT_ENTRY_LARGE
));
2117 /* Allocate a shadow page table */
2118 ptdesc
= page_table_alloc_pgste(sg
->mm
);
2121 ptdesc
->pt_index
= pgt
& _SEGMENT_ENTRY_ORIGIN
;
2123 ptdesc
->pt_index
|= GMAP_SHADOW_FAKE_TABLE
;
2124 s_pgt
= page_to_phys(ptdesc_page(ptdesc
));
2125 /* Install shadow page table */
2126 spin_lock(&sg
->guest_table_lock
);
2127 table
= gmap_table_walk(sg
, saddr
, 1); /* get segment pointer */
2129 rc
= -EAGAIN
; /* Race with unshadow */
2132 if (!(*table
& _SEGMENT_ENTRY_INVALID
)) {
2133 rc
= 0; /* Already established */
2135 } else if (*table
& _SEGMENT_ENTRY_ORIGIN
) {
2136 rc
= -EAGAIN
; /* Race with shadow */
2139 /* mark as invalid as long as the parent table is not protected */
2140 *table
= (unsigned long) s_pgt
| _SEGMENT_ENTRY
|
2141 (pgt
& _SEGMENT_ENTRY_PROTECT
) | _SEGMENT_ENTRY_INVALID
;
2142 list_add(&ptdesc
->pt_list
, &sg
->pt_list
);
2144 /* nothing to protect for fake tables */
2145 *table
&= ~_SEGMENT_ENTRY_INVALID
;
2146 spin_unlock(&sg
->guest_table_lock
);
2149 spin_unlock(&sg
->guest_table_lock
);
2150 /* Make pgt read-only in parent gmap page table (not the pgste) */
2151 raddr
= (saddr
& _SEGMENT_MASK
) | _SHADOW_RMAP_SEGMENT
;
2152 origin
= pgt
& _SEGMENT_ENTRY_ORIGIN
& PAGE_MASK
;
2153 rc
= gmap_protect_rmap(sg
, raddr
, origin
, PAGE_SIZE
);
2154 spin_lock(&sg
->guest_table_lock
);
2156 table
= gmap_table_walk(sg
, saddr
, 1);
2157 if (!table
|| (*table
& _SEGMENT_ENTRY_ORIGIN
) != s_pgt
)
2158 rc
= -EAGAIN
; /* Race with unshadow */
2160 *table
&= ~_SEGMENT_ENTRY_INVALID
;
2162 gmap_unshadow_pgt(sg
, raddr
);
2164 spin_unlock(&sg
->guest_table_lock
);
2167 spin_unlock(&sg
->guest_table_lock
);
2168 page_table_free_pgste(ptdesc
);
2172 EXPORT_SYMBOL_GPL(gmap_shadow_pgt
);
2175 * gmap_shadow_page - create a shadow page mapping
2176 * @sg: pointer to the shadow guest address space structure
2177 * @saddr: faulting address in the shadow gmap
2178 * @pte: pte in parent gmap address space to get shadowed
2180 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
2181 * shadow table structure is incomplete, -ENOMEM if out of memory and
2182 * -EFAULT if an address in the parent gmap could not be resolved.
2184 * Called with sg->mm->mmap_lock in read.
2186 int gmap_shadow_page(struct gmap
*sg
, unsigned long saddr
, pte_t pte
)
2188 struct gmap
*parent
;
2189 struct gmap_rmap
*rmap
;
2190 unsigned long vmaddr
, paddr
;
2192 pte_t
*sptep
, *tptep
;
2196 BUG_ON(!gmap_is_shadow(sg
));
2197 parent
= sg
->parent
;
2198 prot
= (pte_val(pte
) & _PAGE_PROTECT
) ? PROT_READ
: PROT_WRITE
;
2200 rmap
= kzalloc(sizeof(*rmap
), GFP_KERNEL_ACCOUNT
);
2203 rmap
->raddr
= (saddr
& PAGE_MASK
) | _SHADOW_RMAP_PGTABLE
;
2206 paddr
= pte_val(pte
) & PAGE_MASK
;
2207 vmaddr
= __gmap_translate(parent
, paddr
);
2208 if (IS_ERR_VALUE(vmaddr
)) {
2212 rc
= radix_tree_preload(GFP_KERNEL_ACCOUNT
);
2216 sptep
= gmap_pte_op_walk(parent
, paddr
, &ptl
);
2218 spin_lock(&sg
->guest_table_lock
);
2219 /* Get page table pointer */
2220 tptep
= (pte_t
*) gmap_table_walk(sg
, saddr
, 0);
2222 spin_unlock(&sg
->guest_table_lock
);
2223 gmap_pte_op_end(sptep
, ptl
);
2224 radix_tree_preload_end();
2227 rc
= ptep_shadow_pte(sg
->mm
, saddr
, sptep
, tptep
, pte
);
2229 /* Success and a new mapping */
2230 gmap_insert_rmap(sg
, vmaddr
, rmap
);
2234 gmap_pte_op_end(sptep
, ptl
);
2235 spin_unlock(&sg
->guest_table_lock
);
2237 radix_tree_preload_end();
2240 rc
= gmap_pte_op_fixup(parent
, paddr
, vmaddr
, prot
);
2247 EXPORT_SYMBOL_GPL(gmap_shadow_page
);
2250 * gmap_shadow_notify - handle notifications for shadow gmap
2252 * Called with sg->parent->shadow_lock.
2254 static void gmap_shadow_notify(struct gmap
*sg
, unsigned long vmaddr
,
2255 unsigned long gaddr
)
2257 struct gmap_rmap
*rmap
, *rnext
, *head
;
2258 unsigned long start
, end
, bits
, raddr
;
2260 BUG_ON(!gmap_is_shadow(sg
));
2262 spin_lock(&sg
->guest_table_lock
);
2264 spin_unlock(&sg
->guest_table_lock
);
2267 /* Check for top level table */
2268 start
= sg
->orig_asce
& _ASCE_ORIGIN
;
2269 end
= start
+ ((sg
->orig_asce
& _ASCE_TABLE_LENGTH
) + 1) * PAGE_SIZE
;
2270 if (!(sg
->orig_asce
& _ASCE_REAL_SPACE
) && gaddr
>= start
&&
2272 /* The complete shadow table has to go */
2274 spin_unlock(&sg
->guest_table_lock
);
2275 list_del(&sg
->list
);
2279 /* Remove the page table tree from on specific entry */
2280 head
= radix_tree_delete(&sg
->host_to_rmap
, vmaddr
>> PAGE_SHIFT
);
2281 gmap_for_each_rmap_safe(rmap
, rnext
, head
) {
2282 bits
= rmap
->raddr
& _SHADOW_RMAP_MASK
;
2283 raddr
= rmap
->raddr
^ bits
;
2285 case _SHADOW_RMAP_REGION1
:
2286 gmap_unshadow_r2t(sg
, raddr
);
2288 case _SHADOW_RMAP_REGION2
:
2289 gmap_unshadow_r3t(sg
, raddr
);
2291 case _SHADOW_RMAP_REGION3
:
2292 gmap_unshadow_sgt(sg
, raddr
);
2294 case _SHADOW_RMAP_SEGMENT
:
2295 gmap_unshadow_pgt(sg
, raddr
);
2297 case _SHADOW_RMAP_PGTABLE
:
2298 gmap_unshadow_page(sg
, raddr
);
2303 spin_unlock(&sg
->guest_table_lock
);
2307 * ptep_notify - call all invalidation callbacks for a specific pte.
2308 * @mm: pointer to the process mm_struct
2309 * @vmaddr: virtual address in the process address space
2310 * @pte: pointer to the page table entry
2311 * @bits: bits from the pgste that caused the notify call
2313 * This function is assumed to be called with the page table lock held
2314 * for the pte to notify.
2316 void ptep_notify(struct mm_struct
*mm
, unsigned long vmaddr
,
2317 pte_t
*pte
, unsigned long bits
)
2319 unsigned long offset
, gaddr
= 0;
2320 unsigned long *table
;
2321 struct gmap
*gmap
, *sg
, *next
;
2323 offset
= ((unsigned long) pte
) & (255 * sizeof(pte_t
));
2324 offset
= offset
* (PAGE_SIZE
/ sizeof(pte_t
));
2326 list_for_each_entry_rcu(gmap
, &mm
->context
.gmap_list
, list
) {
2327 spin_lock(&gmap
->guest_table_lock
);
2328 table
= radix_tree_lookup(&gmap
->host_to_guest
,
2329 vmaddr
>> PMD_SHIFT
);
2331 gaddr
= __gmap_segment_gaddr(table
) + offset
;
2332 spin_unlock(&gmap
->guest_table_lock
);
2336 if (!list_empty(&gmap
->children
) && (bits
& PGSTE_VSIE_BIT
)) {
2337 spin_lock(&gmap
->shadow_lock
);
2338 list_for_each_entry_safe(sg
, next
,
2339 &gmap
->children
, list
)
2340 gmap_shadow_notify(sg
, vmaddr
, gaddr
);
2341 spin_unlock(&gmap
->shadow_lock
);
2343 if (bits
& PGSTE_IN_BIT
)
2344 gmap_call_notifier(gmap
, gaddr
, gaddr
+ PAGE_SIZE
- 1);
2348 EXPORT_SYMBOL_GPL(ptep_notify
);
2350 static void pmdp_notify_gmap(struct gmap
*gmap
, pmd_t
*pmdp
,
2351 unsigned long gaddr
)
2353 set_pmd(pmdp
, clear_pmd_bit(*pmdp
, __pgprot(_SEGMENT_ENTRY_GMAP_IN
)));
2354 gmap_call_notifier(gmap
, gaddr
, gaddr
+ HPAGE_SIZE
- 1);
2358 * gmap_pmdp_xchg - exchange a gmap pmd with another
2359 * @gmap: pointer to the guest address space structure
2360 * @pmdp: pointer to the pmd entry
2361 * @new: replacement entry
2362 * @gaddr: the affected guest address
2364 * This function is assumed to be called with the guest_table_lock
2367 static void gmap_pmdp_xchg(struct gmap
*gmap
, pmd_t
*pmdp
, pmd_t
new,
2368 unsigned long gaddr
)
2370 gaddr
&= HPAGE_MASK
;
2371 pmdp_notify_gmap(gmap
, pmdp
, gaddr
);
2372 new = clear_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_GMAP_IN
));
2373 if (MACHINE_HAS_TLB_GUEST
)
2374 __pmdp_idte(gaddr
, (pmd_t
*)pmdp
, IDTE_GUEST_ASCE
, gmap
->asce
,
2376 else if (MACHINE_HAS_IDTE
)
2377 __pmdp_idte(gaddr
, (pmd_t
*)pmdp
, 0, 0, IDTE_GLOBAL
);
2383 static void gmap_pmdp_clear(struct mm_struct
*mm
, unsigned long vmaddr
,
2388 unsigned long gaddr
;
2391 list_for_each_entry_rcu(gmap
, &mm
->context
.gmap_list
, list
) {
2392 spin_lock(&gmap
->guest_table_lock
);
2393 pmdp
= (pmd_t
*)radix_tree_delete(&gmap
->host_to_guest
,
2394 vmaddr
>> PMD_SHIFT
);
2396 gaddr
= __gmap_segment_gaddr((unsigned long *)pmdp
);
2397 pmdp_notify_gmap(gmap
, pmdp
, gaddr
);
2398 WARN_ON(pmd_val(*pmdp
) & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE
|
2399 _SEGMENT_ENTRY_GMAP_UC
));
2402 set_pmd(pmdp
, __pmd(_SEGMENT_ENTRY_EMPTY
));
2404 spin_unlock(&gmap
->guest_table_lock
);
2410 * gmap_pmdp_invalidate - invalidate all affected guest pmd entries without
2412 * @mm: pointer to the process mm_struct
2413 * @vmaddr: virtual address in the process address space
2415 void gmap_pmdp_invalidate(struct mm_struct
*mm
, unsigned long vmaddr
)
2417 gmap_pmdp_clear(mm
, vmaddr
, 0);
2419 EXPORT_SYMBOL_GPL(gmap_pmdp_invalidate
);
2422 * gmap_pmdp_csp - csp all affected guest pmd entries
2423 * @mm: pointer to the process mm_struct
2424 * @vmaddr: virtual address in the process address space
2426 void gmap_pmdp_csp(struct mm_struct
*mm
, unsigned long vmaddr
)
2428 gmap_pmdp_clear(mm
, vmaddr
, 1);
2430 EXPORT_SYMBOL_GPL(gmap_pmdp_csp
);
2433 * gmap_pmdp_idte_local - invalidate and clear a guest pmd entry
2434 * @mm: pointer to the process mm_struct
2435 * @vmaddr: virtual address in the process address space
2437 void gmap_pmdp_idte_local(struct mm_struct
*mm
, unsigned long vmaddr
)
2439 unsigned long *entry
, gaddr
;
2444 list_for_each_entry_rcu(gmap
, &mm
->context
.gmap_list
, list
) {
2445 spin_lock(&gmap
->guest_table_lock
);
2446 entry
= radix_tree_delete(&gmap
->host_to_guest
,
2447 vmaddr
>> PMD_SHIFT
);
2449 pmdp
= (pmd_t
*)entry
;
2450 gaddr
= __gmap_segment_gaddr(entry
);
2451 pmdp_notify_gmap(gmap
, pmdp
, gaddr
);
2452 WARN_ON(*entry
& ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE
|
2453 _SEGMENT_ENTRY_GMAP_UC
));
2454 if (MACHINE_HAS_TLB_GUEST
)
2455 __pmdp_idte(gaddr
, pmdp
, IDTE_GUEST_ASCE
,
2456 gmap
->asce
, IDTE_LOCAL
);
2457 else if (MACHINE_HAS_IDTE
)
2458 __pmdp_idte(gaddr
, pmdp
, 0, 0, IDTE_LOCAL
);
2459 *entry
= _SEGMENT_ENTRY_EMPTY
;
2461 spin_unlock(&gmap
->guest_table_lock
);
2465 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_local
);
2468 * gmap_pmdp_idte_global - invalidate and clear a guest pmd entry
2469 * @mm: pointer to the process mm_struct
2470 * @vmaddr: virtual address in the process address space
2472 void gmap_pmdp_idte_global(struct mm_struct
*mm
, unsigned long vmaddr
)
2474 unsigned long *entry
, gaddr
;
2479 list_for_each_entry_rcu(gmap
, &mm
->context
.gmap_list
, list
) {
2480 spin_lock(&gmap
->guest_table_lock
);
2481 entry
= radix_tree_delete(&gmap
->host_to_guest
,
2482 vmaddr
>> PMD_SHIFT
);
2484 pmdp
= (pmd_t
*)entry
;
2485 gaddr
= __gmap_segment_gaddr(entry
);
2486 pmdp_notify_gmap(gmap
, pmdp
, gaddr
);
2487 WARN_ON(*entry
& ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE
|
2488 _SEGMENT_ENTRY_GMAP_UC
));
2489 if (MACHINE_HAS_TLB_GUEST
)
2490 __pmdp_idte(gaddr
, pmdp
, IDTE_GUEST_ASCE
,
2491 gmap
->asce
, IDTE_GLOBAL
);
2492 else if (MACHINE_HAS_IDTE
)
2493 __pmdp_idte(gaddr
, pmdp
, 0, 0, IDTE_GLOBAL
);
2496 *entry
= _SEGMENT_ENTRY_EMPTY
;
2498 spin_unlock(&gmap
->guest_table_lock
);
2502 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_global
);
2505 * gmap_test_and_clear_dirty_pmd - test and reset segment dirty status
2506 * @gmap: pointer to guest address space
2507 * @pmdp: pointer to the pmd to be tested
2508 * @gaddr: virtual address in the guest address space
2510 * This function is assumed to be called with the guest_table_lock
2513 static bool gmap_test_and_clear_dirty_pmd(struct gmap
*gmap
, pmd_t
*pmdp
,
2514 unsigned long gaddr
)
2516 if (pmd_val(*pmdp
) & _SEGMENT_ENTRY_INVALID
)
2519 /* Already protected memory, which did not change is clean */
2520 if (pmd_val(*pmdp
) & _SEGMENT_ENTRY_PROTECT
&&
2521 !(pmd_val(*pmdp
) & _SEGMENT_ENTRY_GMAP_UC
))
2524 /* Clear UC indication and reset protection */
2525 set_pmd(pmdp
, clear_pmd_bit(*pmdp
, __pgprot(_SEGMENT_ENTRY_GMAP_UC
)));
2526 gmap_protect_pmd(gmap
, gaddr
, pmdp
, PROT_READ
, 0);
2531 * gmap_sync_dirty_log_pmd - set bitmap based on dirty status of segment
2532 * @gmap: pointer to guest address space
2533 * @bitmap: dirty bitmap for this pmd
2534 * @gaddr: virtual address in the guest address space
2535 * @vmaddr: virtual address in the host address space
2537 * This function is assumed to be called with the guest_table_lock
2540 void gmap_sync_dirty_log_pmd(struct gmap
*gmap
, unsigned long bitmap
[4],
2541 unsigned long gaddr
, unsigned long vmaddr
)
2548 pmdp
= gmap_pmd_op_walk(gmap
, gaddr
);
2552 if (pmd_leaf(*pmdp
)) {
2553 if (gmap_test_and_clear_dirty_pmd(gmap
, pmdp
, gaddr
))
2554 bitmap_fill(bitmap
, _PAGE_ENTRIES
);
2556 for (i
= 0; i
< _PAGE_ENTRIES
; i
++, vmaddr
+= PAGE_SIZE
) {
2557 ptep
= pte_alloc_map_lock(gmap
->mm
, pmdp
, vmaddr
, &ptl
);
2560 if (ptep_test_and_clear_uc(gmap
->mm
, vmaddr
, ptep
))
2562 pte_unmap_unlock(ptep
, ptl
);
2565 gmap_pmd_op_end(gmap
, pmdp
);
2567 EXPORT_SYMBOL_GPL(gmap_sync_dirty_log_pmd
);
2569 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2570 static int thp_split_walk_pmd_entry(pmd_t
*pmd
, unsigned long addr
,
2571 unsigned long end
, struct mm_walk
*walk
)
2573 struct vm_area_struct
*vma
= walk
->vma
;
2575 split_huge_pmd(vma
, pmd
, addr
);
2579 static const struct mm_walk_ops thp_split_walk_ops
= {
2580 .pmd_entry
= thp_split_walk_pmd_entry
,
2581 .walk_lock
= PGWALK_WRLOCK_VERIFY
,
2584 static inline void thp_split_mm(struct mm_struct
*mm
)
2586 struct vm_area_struct
*vma
;
2587 VMA_ITERATOR(vmi
, mm
, 0);
2589 for_each_vma(vmi
, vma
) {
2590 vm_flags_mod(vma
, VM_NOHUGEPAGE
, VM_HUGEPAGE
);
2591 walk_page_vma(vma
, &thp_split_walk_ops
, NULL
);
2593 mm
->def_flags
|= VM_NOHUGEPAGE
;
2596 static inline void thp_split_mm(struct mm_struct
*mm
)
2599 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2602 * switch on pgstes for its userspace process (for kvm)
2604 int s390_enable_sie(void)
2606 struct mm_struct
*mm
= current
->mm
;
2608 /* Do we have pgstes? if yes, we are done */
2609 if (mm_has_pgste(mm
))
2611 /* Fail if the page tables are 2K */
2612 if (!mm_alloc_pgste(mm
))
2614 mmap_write_lock(mm
);
2615 mm
->context
.has_pgste
= 1;
2616 /* split thp mappings and disable thp for future mappings */
2618 mmap_write_unlock(mm
);
2621 EXPORT_SYMBOL_GPL(s390_enable_sie
);
2623 static int find_zeropage_pte_entry(pte_t
*pte
, unsigned long addr
,
2624 unsigned long end
, struct mm_walk
*walk
)
2626 unsigned long *found_addr
= walk
->private;
2628 /* Return 1 of the page is a zeropage. */
2629 if (is_zero_pfn(pte_pfn(*pte
))) {
2631 * Shared zeropage in e.g., a FS DAX mapping? We cannot do the
2632 * right thing and likely don't care: FAULT_FLAG_UNSHARE
2633 * currently only works in COW mappings, which is also where
2634 * mm_forbids_zeropage() is checked.
2636 if (!is_cow_mapping(walk
->vma
->vm_flags
))
2645 static const struct mm_walk_ops find_zeropage_ops
= {
2646 .pte_entry
= find_zeropage_pte_entry
,
2647 .walk_lock
= PGWALK_WRLOCK
,
2651 * Unshare all shared zeropages, replacing them by anonymous pages. Note that
2652 * we cannot simply zap all shared zeropages, because this could later
2653 * trigger unexpected userfaultfd missing events.
2655 * This must be called after mm->context.allow_cow_sharing was
2656 * set to 0, to avoid future mappings of shared zeropages.
2658 * mm contracts with s390, that even if mm were to remove a page table,
2659 * and racing with walk_page_range_vma() calling pte_offset_map_lock()
2660 * would fail, it will never insert a page table containing empty zero
2661 * pages once mm_forbids_zeropage(mm) i.e.
2662 * mm->context.allow_cow_sharing is set to 0.
2664 static int __s390_unshare_zeropages(struct mm_struct
*mm
)
2666 struct vm_area_struct
*vma
;
2667 VMA_ITERATOR(vmi
, mm
, 0);
2672 for_each_vma(vmi
, vma
) {
2674 * We could only look at COW mappings, but it's more future
2675 * proof to catch unexpected zeropages in other mappings and
2678 if ((vma
->vm_flags
& VM_PFNMAP
) || is_vm_hugetlb_page(vma
))
2680 addr
= vma
->vm_start
;
2683 rc
= walk_page_range_vma(vma
, addr
, vma
->vm_end
,
2684 &find_zeropage_ops
, &addr
);
2690 /* addr was updated by find_zeropage_pte_entry() */
2691 fault
= handle_mm_fault(vma
, addr
,
2692 FAULT_FLAG_UNSHARE
| FAULT_FLAG_REMOTE
,
2694 if (fault
& VM_FAULT_OOM
)
2697 * See break_ksm(): even after handle_mm_fault() returned 0, we
2698 * must start the lookup from the current address, because
2699 * handle_mm_fault() may back out if there's any difficulty.
2701 * VM_FAULT_SIGBUS and VM_FAULT_SIGSEGV are unexpected but
2702 * maybe they could trigger in the future on concurrent
2703 * truncation. In that case, the shared zeropage would be gone
2704 * and we can simply retry and make progress.
2713 static int __s390_disable_cow_sharing(struct mm_struct
*mm
)
2717 if (!mm
->context
.allow_cow_sharing
)
2720 mm
->context
.allow_cow_sharing
= 0;
2722 /* Replace all shared zeropages by anonymous pages. */
2723 rc
= __s390_unshare_zeropages(mm
);
2725 * Make sure to disable KSM (if enabled for the whole process or
2726 * individual VMAs). Note that nothing currently hinders user space
2727 * from re-enabling it.
2730 rc
= ksm_disable(mm
);
2732 mm
->context
.allow_cow_sharing
= 1;
2737 * Disable most COW-sharing of memory pages for the whole process:
2738 * (1) Disable KSM and unmerge/unshare any KSM pages.
2739 * (2) Disallow shared zeropages and unshare any zerpages that are mapped.
2741 * Not that we currently don't bother with COW-shared pages that are shared
2742 * with parent/child processes due to fork().
2744 int s390_disable_cow_sharing(void)
2748 mmap_write_lock(current
->mm
);
2749 rc
= __s390_disable_cow_sharing(current
->mm
);
2750 mmap_write_unlock(current
->mm
);
2753 EXPORT_SYMBOL_GPL(s390_disable_cow_sharing
);
2756 * Enable storage key handling from now on and initialize the storage
2757 * keys with the default key.
2759 static int __s390_enable_skey_pte(pte_t
*pte
, unsigned long addr
,
2760 unsigned long next
, struct mm_walk
*walk
)
2762 /* Clear storage key */
2763 ptep_zap_key(walk
->mm
, addr
, pte
);
2768 * Give a chance to schedule after setting a key to 256 pages.
2769 * We only hold the mm lock, which is a rwsem and the kvm srcu.
2772 static int __s390_enable_skey_pmd(pmd_t
*pmd
, unsigned long addr
,
2773 unsigned long next
, struct mm_walk
*walk
)
2779 static int __s390_enable_skey_hugetlb(pte_t
*pte
, unsigned long addr
,
2780 unsigned long hmask
, unsigned long next
,
2781 struct mm_walk
*walk
)
2783 pmd_t
*pmd
= (pmd_t
*)pte
;
2784 unsigned long start
, end
;
2785 struct folio
*folio
= page_folio(pmd_page(*pmd
));
2788 * The write check makes sure we do not set a key on shared
2789 * memory. This is needed as the walker does not differentiate
2790 * between actual guest memory and the process executable or
2793 if (pmd_val(*pmd
) & _SEGMENT_ENTRY_INVALID
||
2794 !(pmd_val(*pmd
) & _SEGMENT_ENTRY_WRITE
))
2797 start
= pmd_val(*pmd
) & HPAGE_MASK
;
2798 end
= start
+ HPAGE_SIZE
;
2799 __storage_key_init_range(start
, end
);
2800 set_bit(PG_arch_1
, &folio
->flags
);
2805 static const struct mm_walk_ops enable_skey_walk_ops
= {
2806 .hugetlb_entry
= __s390_enable_skey_hugetlb
,
2807 .pte_entry
= __s390_enable_skey_pte
,
2808 .pmd_entry
= __s390_enable_skey_pmd
,
2809 .walk_lock
= PGWALK_WRLOCK
,
2812 int s390_enable_skey(void)
2814 struct mm_struct
*mm
= current
->mm
;
2817 mmap_write_lock(mm
);
2818 if (mm_uses_skeys(mm
))
2821 mm
->context
.uses_skeys
= 1;
2822 rc
= __s390_disable_cow_sharing(mm
);
2824 mm
->context
.uses_skeys
= 0;
2827 walk_page_range(mm
, 0, TASK_SIZE
, &enable_skey_walk_ops
, NULL
);
2830 mmap_write_unlock(mm
);
2833 EXPORT_SYMBOL_GPL(s390_enable_skey
);
2836 * Reset CMMA state, make all pages stable again.
2838 static int __s390_reset_cmma(pte_t
*pte
, unsigned long addr
,
2839 unsigned long next
, struct mm_walk
*walk
)
2841 ptep_zap_unused(walk
->mm
, addr
, pte
, 1);
2845 static const struct mm_walk_ops reset_cmma_walk_ops
= {
2846 .pte_entry
= __s390_reset_cmma
,
2847 .walk_lock
= PGWALK_WRLOCK
,
2850 void s390_reset_cmma(struct mm_struct
*mm
)
2852 mmap_write_lock(mm
);
2853 walk_page_range(mm
, 0, TASK_SIZE
, &reset_cmma_walk_ops
, NULL
);
2854 mmap_write_unlock(mm
);
2856 EXPORT_SYMBOL_GPL(s390_reset_cmma
);
2858 #define GATHER_GET_PAGES 32
2860 struct reset_walk_state
{
2862 unsigned long count
;
2863 unsigned long pfns
[GATHER_GET_PAGES
];
2866 static int s390_gather_pages(pte_t
*ptep
, unsigned long addr
,
2867 unsigned long next
, struct mm_walk
*walk
)
2869 struct reset_walk_state
*p
= walk
->private;
2870 pte_t pte
= READ_ONCE(*ptep
);
2872 if (pte_present(pte
)) {
2873 /* we have a reference from the mapping, take an extra one */
2874 get_page(phys_to_page(pte_val(pte
)));
2875 p
->pfns
[p
->count
] = phys_to_pfn(pte_val(pte
));
2879 return p
->count
>= GATHER_GET_PAGES
;
2882 static const struct mm_walk_ops gather_pages_ops
= {
2883 .pte_entry
= s390_gather_pages
,
2884 .walk_lock
= PGWALK_RDLOCK
,
2888 * Call the Destroy secure page UVC on each page in the given array of PFNs.
2889 * Each page needs to have an extra reference, which will be released here.
2891 void s390_uv_destroy_pfns(unsigned long count
, unsigned long *pfns
)
2893 struct folio
*folio
;
2896 for (i
= 0; i
< count
; i
++) {
2897 folio
= pfn_folio(pfns
[i
]);
2898 /* we always have an extra reference */
2899 uv_destroy_folio(folio
);
2900 /* get rid of the extra reference */
2905 EXPORT_SYMBOL_GPL(s390_uv_destroy_pfns
);
2908 * __s390_uv_destroy_range - Call the destroy secure page UVC on each page
2909 * in the given range of the given address space.
2910 * @mm: the mm to operate on
2911 * @start: the start of the range
2912 * @end: the end of the range
2913 * @interruptible: if not 0, stop when a fatal signal is received
2915 * Walk the given range of the given address space and call the destroy
2916 * secure page UVC on each page. Optionally exit early if a fatal signal is
2919 * Return: 0 on success, -EINTR if the function stopped before completing
2921 int __s390_uv_destroy_range(struct mm_struct
*mm
, unsigned long start
,
2922 unsigned long end
, bool interruptible
)
2924 struct reset_walk_state state
= { .next
= start
};
2930 r
= walk_page_range(mm
, state
.next
, end
, &gather_pages_ops
, &state
);
2931 mmap_read_unlock(mm
);
2933 s390_uv_destroy_pfns(state
.count
, state
.pfns
);
2934 if (interruptible
&& fatal_signal_pending(current
))
2939 EXPORT_SYMBOL_GPL(__s390_uv_destroy_range
);
2942 * s390_unlist_old_asce - Remove the topmost level of page tables from the
2943 * list of page tables of the gmap.
2944 * @gmap: the gmap whose table is to be removed
2946 * On s390x, KVM keeps a list of all pages containing the page tables of the
2947 * gmap (the CRST list). This list is used at tear down time to free all
2948 * pages that are now not needed anymore.
2950 * This function removes the topmost page of the tree (the one pointed to by
2951 * the ASCE) from the CRST list.
2953 * This means that it will not be freed when the VM is torn down, and needs
2954 * to be handled separately by the caller, unless a leak is actually
2955 * intended. Notice that this function will only remove the page from the
2956 * list, the page will still be used as a top level page table (and ASCE).
2958 void s390_unlist_old_asce(struct gmap
*gmap
)
2962 old
= virt_to_page(gmap
->table
);
2963 spin_lock(&gmap
->guest_table_lock
);
2964 list_del(&old
->lru
);
2966 * Sometimes the topmost page might need to be "removed" multiple
2967 * times, for example if the VM is rebooted into secure mode several
2968 * times concurrently, or if s390_replace_asce fails after calling
2969 * s390_remove_old_asce and is attempted again later. In that case
2970 * the old asce has been removed from the list, and therefore it
2971 * will not be freed when the VM terminates, but the ASCE is still
2972 * in use and still pointed to.
2973 * A subsequent call to replace_asce will follow the pointer and try
2974 * to remove the same page from the list again.
2975 * Therefore it's necessary that the page of the ASCE has valid
2976 * pointers, so list_del can work (and do nothing) without
2977 * dereferencing stale or invalid pointers.
2979 INIT_LIST_HEAD(&old
->lru
);
2980 spin_unlock(&gmap
->guest_table_lock
);
2982 EXPORT_SYMBOL_GPL(s390_unlist_old_asce
);
2985 * s390_replace_asce - Try to replace the current ASCE of a gmap with a copy
2986 * @gmap: the gmap whose ASCE needs to be replaced
2988 * If the ASCE is a SEGMENT type then this function will return -EINVAL,
2989 * otherwise the pointers in the host_to_guest radix tree will keep pointing
2990 * to the wrong pages, causing use-after-free and memory corruption.
2991 * If the allocation of the new top level page table fails, the ASCE is not
2993 * In any case, the old ASCE is always removed from the gmap CRST list.
2994 * Therefore the caller has to make sure to save a pointer to it
2995 * beforehand, unless a leak is actually intended.
2997 int s390_replace_asce(struct gmap
*gmap
)
3003 s390_unlist_old_asce(gmap
);
3005 /* Replacing segment type ASCEs would cause serious issues */
3006 if ((gmap
->asce
& _ASCE_TYPE_MASK
) == _ASCE_TYPE_SEGMENT
)
3009 page
= gmap_alloc_crst();
3013 table
= page_to_virt(page
);
3014 memcpy(table
, gmap
->table
, 1UL << (CRST_ALLOC_ORDER
+ PAGE_SHIFT
));
3017 * The caller has to deal with the old ASCE, but here we make sure
3018 * the new one is properly added to the CRST list, so that
3019 * it will be freed when the VM is torn down.
3021 spin_lock(&gmap
->guest_table_lock
);
3022 list_add(&page
->lru
, &gmap
->crst_list
);
3023 spin_unlock(&gmap
->guest_table_lock
);
3025 /* Set new table origin while preserving existing ASCE control bits */
3026 asce
= (gmap
->asce
& ~_ASCE_ORIGIN
) | __pa(table
);
3027 WRITE_ONCE(gmap
->asce
, asce
);
3028 WRITE_ONCE(gmap
->mm
->context
.gmap_asce
, asce
);
3029 WRITE_ONCE(gmap
->table
, table
);
3033 EXPORT_SYMBOL_GPL(s390_replace_asce
);