1 // SPDX-License-Identifier: GPL-2.0-only
3 * (C) 1997 Linus Torvalds
4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
6 #include <linux/export.h>
8 #include <linux/filelock.h>
10 #include <linux/backing-dev.h>
11 #include <linux/hash.h>
12 #include <linux/swap.h>
13 #include <linux/security.h>
14 #include <linux/cdev.h>
15 #include <linux/memblock.h>
16 #include <linux/fsnotify.h>
17 #include <linux/mount.h>
18 #include <linux/posix_acl.h>
19 #include <linux/buffer_head.h> /* for inode_has_buffers */
20 #include <linux/ratelimit.h>
21 #include <linux/list_lru.h>
22 #include <linux/iversion.h>
23 #include <linux/rw_hint.h>
24 #include <linux/seq_file.h>
25 #include <linux/debugfs.h>
26 #include <trace/events/writeback.h>
27 #define CREATE_TRACE_POINTS
28 #include <trace/events/timestamp.h>
33 * Inode locking rules:
35 * inode->i_lock protects:
36 * inode->i_state, inode->i_hash, __iget(), inode->i_io_list
37 * Inode LRU list locks protect:
38 * inode->i_sb->s_inode_lru, inode->i_lru
39 * inode->i_sb->s_inode_list_lock protects:
40 * inode->i_sb->s_inodes, inode->i_sb_list
41 * bdi->wb.list_lock protects:
42 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
43 * inode_hash_lock protects:
44 * inode_hashtable, inode->i_hash
48 * inode->i_sb->s_inode_list_lock
50 * Inode LRU list locks
56 * inode->i_sb->s_inode_list_lock
63 static unsigned int i_hash_mask __ro_after_init
;
64 static unsigned int i_hash_shift __ro_after_init
;
65 static struct hlist_head
*inode_hashtable __ro_after_init
;
66 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(inode_hash_lock
);
69 * Empty aops. Can be used for the cases where the user does not
70 * define any of the address_space operations.
72 const struct address_space_operations empty_aops
= {
74 EXPORT_SYMBOL(empty_aops
);
76 static DEFINE_PER_CPU(unsigned long, nr_inodes
);
77 static DEFINE_PER_CPU(unsigned long, nr_unused
);
79 static struct kmem_cache
*inode_cachep __ro_after_init
;
81 static long get_nr_inodes(void)
85 for_each_possible_cpu(i
)
86 sum
+= per_cpu(nr_inodes
, i
);
87 return sum
< 0 ? 0 : sum
;
90 static inline long get_nr_inodes_unused(void)
94 for_each_possible_cpu(i
)
95 sum
+= per_cpu(nr_unused
, i
);
96 return sum
< 0 ? 0 : sum
;
99 long get_nr_dirty_inodes(void)
101 /* not actually dirty inodes, but a wild approximation */
102 long nr_dirty
= get_nr_inodes() - get_nr_inodes_unused();
103 return nr_dirty
> 0 ? nr_dirty
: 0;
106 #ifdef CONFIG_DEBUG_FS
107 static DEFINE_PER_CPU(long, mg_ctime_updates
);
108 static DEFINE_PER_CPU(long, mg_fine_stamps
);
109 static DEFINE_PER_CPU(long, mg_ctime_swaps
);
111 static unsigned long get_mg_ctime_updates(void)
113 unsigned long sum
= 0;
116 for_each_possible_cpu(i
)
117 sum
+= data_race(per_cpu(mg_ctime_updates
, i
));
121 static unsigned long get_mg_fine_stamps(void)
123 unsigned long sum
= 0;
126 for_each_possible_cpu(i
)
127 sum
+= data_race(per_cpu(mg_fine_stamps
, i
));
131 static unsigned long get_mg_ctime_swaps(void)
133 unsigned long sum
= 0;
136 for_each_possible_cpu(i
)
137 sum
+= data_race(per_cpu(mg_ctime_swaps
, i
));
141 #define mgtime_counter_inc(__var) this_cpu_inc(__var)
143 static int mgts_show(struct seq_file
*s
, void *p
)
145 unsigned long ctime_updates
= get_mg_ctime_updates();
146 unsigned long ctime_swaps
= get_mg_ctime_swaps();
147 unsigned long fine_stamps
= get_mg_fine_stamps();
148 unsigned long floor_swaps
= timekeeping_get_mg_floor_swaps();
150 seq_printf(s
, "%lu %lu %lu %lu\n",
151 ctime_updates
, ctime_swaps
, fine_stamps
, floor_swaps
);
155 DEFINE_SHOW_ATTRIBUTE(mgts
);
157 static int __init
mg_debugfs_init(void)
159 debugfs_create_file("multigrain_timestamps", S_IFREG
| S_IRUGO
, NULL
, NULL
, &mgts_fops
);
162 late_initcall(mg_debugfs_init
);
164 #else /* ! CONFIG_DEBUG_FS */
166 #define mgtime_counter_inc(__var) do { } while (0)
168 #endif /* CONFIG_DEBUG_FS */
171 * Handle nr_inode sysctl
175 * Statistics gathering..
177 static struct inodes_stat_t inodes_stat
;
179 static int proc_nr_inodes(const struct ctl_table
*table
, int write
, void *buffer
,
180 size_t *lenp
, loff_t
*ppos
)
182 inodes_stat
.nr_inodes
= get_nr_inodes();
183 inodes_stat
.nr_unused
= get_nr_inodes_unused();
184 return proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
187 static struct ctl_table inodes_sysctls
[] = {
189 .procname
= "inode-nr",
190 .data
= &inodes_stat
,
191 .maxlen
= 2*sizeof(long),
193 .proc_handler
= proc_nr_inodes
,
196 .procname
= "inode-state",
197 .data
= &inodes_stat
,
198 .maxlen
= 7*sizeof(long),
200 .proc_handler
= proc_nr_inodes
,
204 static int __init
init_fs_inode_sysctls(void)
206 register_sysctl_init("fs", inodes_sysctls
);
209 early_initcall(init_fs_inode_sysctls
);
212 static int no_open(struct inode
*inode
, struct file
*file
)
218 * inode_init_always_gfp - perform inode structure initialisation
219 * @sb: superblock inode belongs to
220 * @inode: inode to initialise
221 * @gfp: allocation flags
223 * These are initializations that need to be done on every inode
224 * allocation as the fields are not initialised by slab allocation.
225 * If there are additional allocations required @gfp is used.
227 int inode_init_always_gfp(struct super_block
*sb
, struct inode
*inode
, gfp_t gfp
)
229 static const struct inode_operations empty_iops
;
230 static const struct file_operations no_open_fops
= {.open
= no_open
};
231 struct address_space
*const mapping
= &inode
->i_data
;
234 inode
->i_blkbits
= sb
->s_blocksize_bits
;
237 atomic64_set(&inode
->i_sequence
, 0);
238 atomic_set(&inode
->i_count
, 1);
239 inode
->i_op
= &empty_iops
;
240 inode
->i_fop
= &no_open_fops
;
242 inode
->__i_nlink
= 1;
243 inode
->i_opflags
= 0;
245 inode
->i_opflags
|= IOP_XATTR
;
246 if (sb
->s_type
->fs_flags
& FS_MGTIME
)
247 inode
->i_opflags
|= IOP_MGTIME
;
248 i_uid_write(inode
, 0);
249 i_gid_write(inode
, 0);
250 atomic_set(&inode
->i_writecount
, 0);
252 inode
->i_write_hint
= WRITE_LIFE_NOT_SET
;
255 inode
->i_generation
= 0;
256 inode
->i_pipe
= NULL
;
257 inode
->i_cdev
= NULL
;
258 inode
->i_link
= NULL
;
259 inode
->i_dir_seq
= 0;
261 inode
->dirtied_when
= 0;
263 #ifdef CONFIG_CGROUP_WRITEBACK
264 inode
->i_wb_frn_winner
= 0;
265 inode
->i_wb_frn_avg_time
= 0;
266 inode
->i_wb_frn_history
= 0;
269 spin_lock_init(&inode
->i_lock
);
270 lockdep_set_class(&inode
->i_lock
, &sb
->s_type
->i_lock_key
);
272 init_rwsem(&inode
->i_rwsem
);
273 lockdep_set_class(&inode
->i_rwsem
, &sb
->s_type
->i_mutex_key
);
275 atomic_set(&inode
->i_dio_count
, 0);
277 mapping
->a_ops
= &empty_aops
;
278 mapping
->host
= inode
;
281 atomic_set(&mapping
->i_mmap_writable
, 0);
282 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
283 atomic_set(&mapping
->nr_thps
, 0);
285 mapping_set_gfp_mask(mapping
, GFP_HIGHUSER_MOVABLE
);
286 mapping
->i_private_data
= NULL
;
287 mapping
->writeback_index
= 0;
288 init_rwsem(&mapping
->invalidate_lock
);
289 lockdep_set_class_and_name(&mapping
->invalidate_lock
,
290 &sb
->s_type
->invalidate_lock_key
,
291 "mapping.invalidate_lock");
292 if (sb
->s_iflags
& SB_I_STABLE_WRITES
)
293 mapping_set_stable_writes(mapping
);
294 inode
->i_private
= NULL
;
295 inode
->i_mapping
= mapping
;
296 INIT_HLIST_HEAD(&inode
->i_dentry
); /* buggered by rcu freeing */
297 #ifdef CONFIG_FS_POSIX_ACL
298 inode
->i_acl
= inode
->i_default_acl
= ACL_NOT_CACHED
;
301 #ifdef CONFIG_FSNOTIFY
302 inode
->i_fsnotify_mask
= 0;
304 inode
->i_flctx
= NULL
;
306 if (unlikely(security_inode_alloc(inode
, gfp
)))
309 this_cpu_inc(nr_inodes
);
313 EXPORT_SYMBOL(inode_init_always_gfp
);
315 void free_inode_nonrcu(struct inode
*inode
)
317 kmem_cache_free(inode_cachep
, inode
);
319 EXPORT_SYMBOL(free_inode_nonrcu
);
321 static void i_callback(struct rcu_head
*head
)
323 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
324 if (inode
->free_inode
)
325 inode
->free_inode(inode
);
327 free_inode_nonrcu(inode
);
330 static struct inode
*alloc_inode(struct super_block
*sb
)
332 const struct super_operations
*ops
= sb
->s_op
;
335 if (ops
->alloc_inode
)
336 inode
= ops
->alloc_inode(sb
);
338 inode
= alloc_inode_sb(sb
, inode_cachep
, GFP_KERNEL
);
343 if (unlikely(inode_init_always(sb
, inode
))) {
344 if (ops
->destroy_inode
) {
345 ops
->destroy_inode(inode
);
346 if (!ops
->free_inode
)
349 inode
->free_inode
= ops
->free_inode
;
350 i_callback(&inode
->i_rcu
);
357 void __destroy_inode(struct inode
*inode
)
359 BUG_ON(inode_has_buffers(inode
));
360 inode_detach_wb(inode
);
361 security_inode_free(inode
);
362 fsnotify_inode_delete(inode
);
363 locks_free_lock_context(inode
);
364 if (!inode
->i_nlink
) {
365 WARN_ON(atomic_long_read(&inode
->i_sb
->s_remove_count
) == 0);
366 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
369 #ifdef CONFIG_FS_POSIX_ACL
370 if (inode
->i_acl
&& !is_uncached_acl(inode
->i_acl
))
371 posix_acl_release(inode
->i_acl
);
372 if (inode
->i_default_acl
&& !is_uncached_acl(inode
->i_default_acl
))
373 posix_acl_release(inode
->i_default_acl
);
375 this_cpu_dec(nr_inodes
);
377 EXPORT_SYMBOL(__destroy_inode
);
379 static void destroy_inode(struct inode
*inode
)
381 const struct super_operations
*ops
= inode
->i_sb
->s_op
;
383 BUG_ON(!list_empty(&inode
->i_lru
));
384 __destroy_inode(inode
);
385 if (ops
->destroy_inode
) {
386 ops
->destroy_inode(inode
);
387 if (!ops
->free_inode
)
390 inode
->free_inode
= ops
->free_inode
;
391 call_rcu(&inode
->i_rcu
, i_callback
);
395 * drop_nlink - directly drop an inode's link count
398 * This is a low-level filesystem helper to replace any
399 * direct filesystem manipulation of i_nlink. In cases
400 * where we are attempting to track writes to the
401 * filesystem, a decrement to zero means an imminent
402 * write when the file is truncated and actually unlinked
405 void drop_nlink(struct inode
*inode
)
407 WARN_ON(inode
->i_nlink
== 0);
410 atomic_long_inc(&inode
->i_sb
->s_remove_count
);
412 EXPORT_SYMBOL(drop_nlink
);
415 * clear_nlink - directly zero an inode's link count
418 * This is a low-level filesystem helper to replace any
419 * direct filesystem manipulation of i_nlink. See
420 * drop_nlink() for why we care about i_nlink hitting zero.
422 void clear_nlink(struct inode
*inode
)
424 if (inode
->i_nlink
) {
425 inode
->__i_nlink
= 0;
426 atomic_long_inc(&inode
->i_sb
->s_remove_count
);
429 EXPORT_SYMBOL(clear_nlink
);
432 * set_nlink - directly set an inode's link count
434 * @nlink: new nlink (should be non-zero)
436 * This is a low-level filesystem helper to replace any
437 * direct filesystem manipulation of i_nlink.
439 void set_nlink(struct inode
*inode
, unsigned int nlink
)
444 /* Yes, some filesystems do change nlink from zero to one */
445 if (inode
->i_nlink
== 0)
446 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
448 inode
->__i_nlink
= nlink
;
451 EXPORT_SYMBOL(set_nlink
);
454 * inc_nlink - directly increment an inode's link count
457 * This is a low-level filesystem helper to replace any
458 * direct filesystem manipulation of i_nlink. Currently,
459 * it is only here for parity with dec_nlink().
461 void inc_nlink(struct inode
*inode
)
463 if (unlikely(inode
->i_nlink
== 0)) {
464 WARN_ON(!(inode
->i_state
& I_LINKABLE
));
465 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
470 EXPORT_SYMBOL(inc_nlink
);
472 static void __address_space_init_once(struct address_space
*mapping
)
474 xa_init_flags(&mapping
->i_pages
, XA_FLAGS_LOCK_IRQ
| XA_FLAGS_ACCOUNT
);
475 init_rwsem(&mapping
->i_mmap_rwsem
);
476 INIT_LIST_HEAD(&mapping
->i_private_list
);
477 spin_lock_init(&mapping
->i_private_lock
);
478 mapping
->i_mmap
= RB_ROOT_CACHED
;
481 void address_space_init_once(struct address_space
*mapping
)
483 memset(mapping
, 0, sizeof(*mapping
));
484 __address_space_init_once(mapping
);
486 EXPORT_SYMBOL(address_space_init_once
);
489 * These are initializations that only need to be done
490 * once, because the fields are idempotent across use
491 * of the inode, so let the slab aware of that.
493 void inode_init_once(struct inode
*inode
)
495 memset(inode
, 0, sizeof(*inode
));
496 INIT_HLIST_NODE(&inode
->i_hash
);
497 INIT_LIST_HEAD(&inode
->i_devices
);
498 INIT_LIST_HEAD(&inode
->i_io_list
);
499 INIT_LIST_HEAD(&inode
->i_wb_list
);
500 INIT_LIST_HEAD(&inode
->i_lru
);
501 INIT_LIST_HEAD(&inode
->i_sb_list
);
502 __address_space_init_once(&inode
->i_data
);
503 i_size_ordered_init(inode
);
505 EXPORT_SYMBOL(inode_init_once
);
507 static void init_once(void *foo
)
509 struct inode
*inode
= (struct inode
*) foo
;
511 inode_init_once(inode
);
515 * get additional reference to inode; caller must already hold one.
517 void ihold(struct inode
*inode
)
519 WARN_ON(atomic_inc_return(&inode
->i_count
) < 2);
521 EXPORT_SYMBOL(ihold
);
523 static void __inode_add_lru(struct inode
*inode
, bool rotate
)
525 if (inode
->i_state
& (I_DIRTY_ALL
| I_SYNC
| I_FREEING
| I_WILL_FREE
))
527 if (atomic_read(&inode
->i_count
))
529 if (!(inode
->i_sb
->s_flags
& SB_ACTIVE
))
531 if (!mapping_shrinkable(&inode
->i_data
))
534 if (list_lru_add_obj(&inode
->i_sb
->s_inode_lru
, &inode
->i_lru
))
535 this_cpu_inc(nr_unused
);
537 inode
->i_state
|= I_REFERENCED
;
540 struct wait_queue_head
*inode_bit_waitqueue(struct wait_bit_queue_entry
*wqe
,
541 struct inode
*inode
, u32 bit
)
545 bit_address
= inode_state_wait_address(inode
, bit
);
546 init_wait_var_entry(wqe
, bit_address
, 0);
547 return __var_waitqueue(bit_address
);
549 EXPORT_SYMBOL(inode_bit_waitqueue
);
552 * Add inode to LRU if needed (inode is unused and clean).
554 * Needs inode->i_lock held.
556 void inode_add_lru(struct inode
*inode
)
558 __inode_add_lru(inode
, false);
561 static void inode_lru_list_del(struct inode
*inode
)
563 if (list_lru_del_obj(&inode
->i_sb
->s_inode_lru
, &inode
->i_lru
))
564 this_cpu_dec(nr_unused
);
567 static void inode_pin_lru_isolating(struct inode
*inode
)
569 lockdep_assert_held(&inode
->i_lock
);
570 WARN_ON(inode
->i_state
& (I_LRU_ISOLATING
| I_FREEING
| I_WILL_FREE
));
571 inode
->i_state
|= I_LRU_ISOLATING
;
574 static void inode_unpin_lru_isolating(struct inode
*inode
)
576 spin_lock(&inode
->i_lock
);
577 WARN_ON(!(inode
->i_state
& I_LRU_ISOLATING
));
578 inode
->i_state
&= ~I_LRU_ISOLATING
;
579 /* Called with inode->i_lock which ensures memory ordering. */
580 inode_wake_up_bit(inode
, __I_LRU_ISOLATING
);
581 spin_unlock(&inode
->i_lock
);
584 static void inode_wait_for_lru_isolating(struct inode
*inode
)
586 struct wait_bit_queue_entry wqe
;
587 struct wait_queue_head
*wq_head
;
589 lockdep_assert_held(&inode
->i_lock
);
590 if (!(inode
->i_state
& I_LRU_ISOLATING
))
593 wq_head
= inode_bit_waitqueue(&wqe
, inode
, __I_LRU_ISOLATING
);
595 prepare_to_wait_event(wq_head
, &wqe
.wq_entry
, TASK_UNINTERRUPTIBLE
);
597 * Checking I_LRU_ISOLATING with inode->i_lock guarantees
600 if (!(inode
->i_state
& I_LRU_ISOLATING
))
602 spin_unlock(&inode
->i_lock
);
604 spin_lock(&inode
->i_lock
);
606 finish_wait(wq_head
, &wqe
.wq_entry
);
607 WARN_ON(inode
->i_state
& I_LRU_ISOLATING
);
611 * inode_sb_list_add - add inode to the superblock list of inodes
612 * @inode: inode to add
614 void inode_sb_list_add(struct inode
*inode
)
616 spin_lock(&inode
->i_sb
->s_inode_list_lock
);
617 list_add(&inode
->i_sb_list
, &inode
->i_sb
->s_inodes
);
618 spin_unlock(&inode
->i_sb
->s_inode_list_lock
);
620 EXPORT_SYMBOL_GPL(inode_sb_list_add
);
622 static inline void inode_sb_list_del(struct inode
*inode
)
624 if (!list_empty(&inode
->i_sb_list
)) {
625 spin_lock(&inode
->i_sb
->s_inode_list_lock
);
626 list_del_init(&inode
->i_sb_list
);
627 spin_unlock(&inode
->i_sb
->s_inode_list_lock
);
631 static unsigned long hash(struct super_block
*sb
, unsigned long hashval
)
635 tmp
= (hashval
* (unsigned long)sb
) ^ (GOLDEN_RATIO_PRIME
+ hashval
) /
637 tmp
= tmp
^ ((tmp
^ GOLDEN_RATIO_PRIME
) >> i_hash_shift
);
638 return tmp
& i_hash_mask
;
642 * __insert_inode_hash - hash an inode
643 * @inode: unhashed inode
644 * @hashval: unsigned long value used to locate this object in the
647 * Add an inode to the inode hash for this superblock.
649 void __insert_inode_hash(struct inode
*inode
, unsigned long hashval
)
651 struct hlist_head
*b
= inode_hashtable
+ hash(inode
->i_sb
, hashval
);
653 spin_lock(&inode_hash_lock
);
654 spin_lock(&inode
->i_lock
);
655 hlist_add_head_rcu(&inode
->i_hash
, b
);
656 spin_unlock(&inode
->i_lock
);
657 spin_unlock(&inode_hash_lock
);
659 EXPORT_SYMBOL(__insert_inode_hash
);
662 * __remove_inode_hash - remove an inode from the hash
663 * @inode: inode to unhash
665 * Remove an inode from the superblock.
667 void __remove_inode_hash(struct inode
*inode
)
669 spin_lock(&inode_hash_lock
);
670 spin_lock(&inode
->i_lock
);
671 hlist_del_init_rcu(&inode
->i_hash
);
672 spin_unlock(&inode
->i_lock
);
673 spin_unlock(&inode_hash_lock
);
675 EXPORT_SYMBOL(__remove_inode_hash
);
677 void dump_mapping(const struct address_space
*mapping
)
680 const struct address_space_operations
*a_ops
;
681 struct hlist_node
*dentry_first
;
682 struct dentry
*dentry_ptr
;
683 struct dentry dentry
;
688 * If mapping is an invalid pointer, we don't want to crash
689 * accessing it, so probe everything depending on it carefully.
691 if (get_kernel_nofault(host
, &mapping
->host
) ||
692 get_kernel_nofault(a_ops
, &mapping
->a_ops
)) {
693 pr_warn("invalid mapping:%px\n", mapping
);
698 pr_warn("aops:%ps\n", a_ops
);
702 if (get_kernel_nofault(dentry_first
, &host
->i_dentry
.first
) ||
703 get_kernel_nofault(ino
, &host
->i_ino
)) {
704 pr_warn("aops:%ps invalid inode:%px\n", a_ops
, host
);
709 pr_warn("aops:%ps ino:%lx\n", a_ops
, ino
);
713 dentry_ptr
= container_of(dentry_first
, struct dentry
, d_u
.d_alias
);
714 if (get_kernel_nofault(dentry
, dentry_ptr
) ||
715 !dentry
.d_parent
|| !dentry
.d_name
.name
) {
716 pr_warn("aops:%ps ino:%lx invalid dentry:%px\n",
717 a_ops
, ino
, dentry_ptr
);
721 if (strncpy_from_kernel_nofault(fname
, dentry
.d_name
.name
, 63) < 0)
722 strscpy(fname
, "<invalid>");
724 * Even if strncpy_from_kernel_nofault() succeeded,
725 * the fname could be unreliable
727 pr_warn("aops:%ps ino:%lx dentry name(?):\"%s\"\n",
731 void clear_inode(struct inode
*inode
)
734 * We have to cycle the i_pages lock here because reclaim can be in the
735 * process of removing the last page (in __filemap_remove_folio())
736 * and we must not free the mapping under it.
738 xa_lock_irq(&inode
->i_data
.i_pages
);
739 BUG_ON(inode
->i_data
.nrpages
);
741 * Almost always, mapping_empty(&inode->i_data) here; but there are
742 * two known and long-standing ways in which nodes may get left behind
743 * (when deep radix-tree node allocation failed partway; or when THP
744 * collapse_file() failed). Until those two known cases are cleaned up,
745 * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
746 * nor even WARN_ON(!mapping_empty).
748 xa_unlock_irq(&inode
->i_data
.i_pages
);
749 BUG_ON(!list_empty(&inode
->i_data
.i_private_list
));
750 BUG_ON(!(inode
->i_state
& I_FREEING
));
751 BUG_ON(inode
->i_state
& I_CLEAR
);
752 BUG_ON(!list_empty(&inode
->i_wb_list
));
753 /* don't need i_lock here, no concurrent mods to i_state */
754 inode
->i_state
= I_FREEING
| I_CLEAR
;
756 EXPORT_SYMBOL(clear_inode
);
759 * Free the inode passed in, removing it from the lists it is still connected
760 * to. We remove any pages still attached to the inode and wait for any IO that
761 * is still in progress before finally destroying the inode.
763 * An inode must already be marked I_FREEING so that we avoid the inode being
764 * moved back onto lists if we race with other code that manipulates the lists
765 * (e.g. writeback_single_inode). The caller is responsible for setting this.
767 * An inode must already be removed from the LRU list before being evicted from
768 * the cache. This should occur atomically with setting the I_FREEING state
769 * flag, so no inodes here should ever be on the LRU when being evicted.
771 static void evict(struct inode
*inode
)
773 const struct super_operations
*op
= inode
->i_sb
->s_op
;
775 BUG_ON(!(inode
->i_state
& I_FREEING
));
776 BUG_ON(!list_empty(&inode
->i_lru
));
778 if (!list_empty(&inode
->i_io_list
))
779 inode_io_list_del(inode
);
781 inode_sb_list_del(inode
);
783 spin_lock(&inode
->i_lock
);
784 inode_wait_for_lru_isolating(inode
);
787 * Wait for flusher thread to be done with the inode so that filesystem
788 * does not start destroying it while writeback is still running. Since
789 * the inode has I_FREEING set, flusher thread won't start new work on
790 * the inode. We just have to wait for running writeback to finish.
792 inode_wait_for_writeback(inode
);
793 spin_unlock(&inode
->i_lock
);
795 if (op
->evict_inode
) {
796 op
->evict_inode(inode
);
798 truncate_inode_pages_final(&inode
->i_data
);
801 if (S_ISCHR(inode
->i_mode
) && inode
->i_cdev
)
804 remove_inode_hash(inode
);
807 * Wake up waiters in __wait_on_freeing_inode().
809 * Lockless hash lookup may end up finding the inode before we removed
810 * it above, but only lock it *after* we are done with the wakeup below.
811 * In this case the potential waiter cannot safely block.
813 * The inode being unhashed after the call to remove_inode_hash() is
814 * used as an indicator whether blocking on it is safe.
816 spin_lock(&inode
->i_lock
);
818 * Pairs with the barrier in prepare_to_wait_event() to make sure
819 * ___wait_var_event() either sees the bit cleared or
820 * waitqueue_active() check in wake_up_var() sees the waiter.
822 smp_mb__after_spinlock();
823 inode_wake_up_bit(inode
, __I_NEW
);
824 BUG_ON(inode
->i_state
!= (I_FREEING
| I_CLEAR
));
825 spin_unlock(&inode
->i_lock
);
827 destroy_inode(inode
);
831 * dispose_list - dispose of the contents of a local list
832 * @head: the head of the list to free
834 * Dispose-list gets a local list with local inodes in it, so it doesn't
835 * need to worry about list corruption and SMP locks.
837 static void dispose_list(struct list_head
*head
)
839 while (!list_empty(head
)) {
842 inode
= list_first_entry(head
, struct inode
, i_lru
);
843 list_del_init(&inode
->i_lru
);
851 * evict_inodes - evict all evictable inodes for a superblock
852 * @sb: superblock to operate on
854 * Make sure that no inodes with zero refcount are retained. This is
855 * called by superblock shutdown after having SB_ACTIVE flag removed,
856 * so any inode reaching zero refcount during or after that call will
857 * be immediately evicted.
859 void evict_inodes(struct super_block
*sb
)
861 struct inode
*inode
, *next
;
865 spin_lock(&sb
->s_inode_list_lock
);
866 list_for_each_entry_safe(inode
, next
, &sb
->s_inodes
, i_sb_list
) {
867 if (atomic_read(&inode
->i_count
))
870 spin_lock(&inode
->i_lock
);
871 if (atomic_read(&inode
->i_count
)) {
872 spin_unlock(&inode
->i_lock
);
875 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
876 spin_unlock(&inode
->i_lock
);
880 inode
->i_state
|= I_FREEING
;
881 inode_lru_list_del(inode
);
882 spin_unlock(&inode
->i_lock
);
883 list_add(&inode
->i_lru
, &dispose
);
886 * We can have a ton of inodes to evict at unmount time given
887 * enough memory, check to see if we need to go to sleep for a
888 * bit so we don't livelock.
890 if (need_resched()) {
891 spin_unlock(&sb
->s_inode_list_lock
);
893 dispose_list(&dispose
);
897 spin_unlock(&sb
->s_inode_list_lock
);
899 dispose_list(&dispose
);
901 EXPORT_SYMBOL_GPL(evict_inodes
);
904 * invalidate_inodes - attempt to free all inodes on a superblock
905 * @sb: superblock to operate on
907 * Attempts to free all inodes (including dirty inodes) for a given superblock.
909 void invalidate_inodes(struct super_block
*sb
)
911 struct inode
*inode
, *next
;
915 spin_lock(&sb
->s_inode_list_lock
);
916 list_for_each_entry_safe(inode
, next
, &sb
->s_inodes
, i_sb_list
) {
917 spin_lock(&inode
->i_lock
);
918 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
919 spin_unlock(&inode
->i_lock
);
922 if (atomic_read(&inode
->i_count
)) {
923 spin_unlock(&inode
->i_lock
);
927 inode
->i_state
|= I_FREEING
;
928 inode_lru_list_del(inode
);
929 spin_unlock(&inode
->i_lock
);
930 list_add(&inode
->i_lru
, &dispose
);
931 if (need_resched()) {
932 spin_unlock(&sb
->s_inode_list_lock
);
934 dispose_list(&dispose
);
938 spin_unlock(&sb
->s_inode_list_lock
);
940 dispose_list(&dispose
);
944 * Isolate the inode from the LRU in preparation for freeing it.
946 * If the inode has the I_REFERENCED flag set, then it means that it has been
947 * used recently - the flag is set in iput_final(). When we encounter such an
948 * inode, clear the flag and move it to the back of the LRU so it gets another
949 * pass through the LRU before it gets reclaimed. This is necessary because of
950 * the fact we are doing lazy LRU updates to minimise lock contention so the
951 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
952 * with this flag set because they are the inodes that are out of order.
954 static enum lru_status
inode_lru_isolate(struct list_head
*item
,
955 struct list_lru_one
*lru
, spinlock_t
*lru_lock
, void *arg
)
957 struct list_head
*freeable
= arg
;
958 struct inode
*inode
= container_of(item
, struct inode
, i_lru
);
961 * We are inverting the lru lock/inode->i_lock here, so use a
962 * trylock. If we fail to get the lock, just skip it.
964 if (!spin_trylock(&inode
->i_lock
))
968 * Inodes can get referenced, redirtied, or repopulated while
969 * they're already on the LRU, and this can make them
970 * unreclaimable for a while. Remove them lazily here; iput,
971 * sync, or the last page cache deletion will requeue them.
973 if (atomic_read(&inode
->i_count
) ||
974 (inode
->i_state
& ~I_REFERENCED
) ||
975 !mapping_shrinkable(&inode
->i_data
)) {
976 list_lru_isolate(lru
, &inode
->i_lru
);
977 spin_unlock(&inode
->i_lock
);
978 this_cpu_dec(nr_unused
);
982 /* Recently referenced inodes get one more pass */
983 if (inode
->i_state
& I_REFERENCED
) {
984 inode
->i_state
&= ~I_REFERENCED
;
985 spin_unlock(&inode
->i_lock
);
990 * On highmem systems, mapping_shrinkable() permits dropping
991 * page cache in order to free up struct inodes: lowmem might
992 * be under pressure before the cache inside the highmem zone.
994 if (inode_has_buffers(inode
) || !mapping_empty(&inode
->i_data
)) {
995 inode_pin_lru_isolating(inode
);
996 spin_unlock(&inode
->i_lock
);
997 spin_unlock(lru_lock
);
998 if (remove_inode_buffers(inode
)) {
1000 reap
= invalidate_mapping_pages(&inode
->i_data
, 0, -1);
1001 if (current_is_kswapd())
1002 __count_vm_events(KSWAPD_INODESTEAL
, reap
);
1004 __count_vm_events(PGINODESTEAL
, reap
);
1005 mm_account_reclaimed_pages(reap
);
1007 inode_unpin_lru_isolating(inode
);
1008 spin_lock(lru_lock
);
1012 WARN_ON(inode
->i_state
& I_NEW
);
1013 inode
->i_state
|= I_FREEING
;
1014 list_lru_isolate_move(lru
, &inode
->i_lru
, freeable
);
1015 spin_unlock(&inode
->i_lock
);
1017 this_cpu_dec(nr_unused
);
1022 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
1023 * This is called from the superblock shrinker function with a number of inodes
1024 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
1025 * then are freed outside inode_lock by dispose_list().
1027 long prune_icache_sb(struct super_block
*sb
, struct shrink_control
*sc
)
1029 LIST_HEAD(freeable
);
1032 freed
= list_lru_shrink_walk(&sb
->s_inode_lru
, sc
,
1033 inode_lru_isolate
, &freeable
);
1034 dispose_list(&freeable
);
1038 static void __wait_on_freeing_inode(struct inode
*inode
, bool is_inode_hash_locked
);
1040 * Called with the inode lock held.
1042 static struct inode
*find_inode(struct super_block
*sb
,
1043 struct hlist_head
*head
,
1044 int (*test
)(struct inode
*, void *),
1045 void *data
, bool is_inode_hash_locked
)
1047 struct inode
*inode
= NULL
;
1049 if (is_inode_hash_locked
)
1050 lockdep_assert_held(&inode_hash_lock
);
1052 lockdep_assert_not_held(&inode_hash_lock
);
1056 hlist_for_each_entry_rcu(inode
, head
, i_hash
) {
1057 if (inode
->i_sb
!= sb
)
1059 if (!test(inode
, data
))
1061 spin_lock(&inode
->i_lock
);
1062 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
1063 __wait_on_freeing_inode(inode
, is_inode_hash_locked
);
1066 if (unlikely(inode
->i_state
& I_CREATING
)) {
1067 spin_unlock(&inode
->i_lock
);
1069 return ERR_PTR(-ESTALE
);
1072 spin_unlock(&inode
->i_lock
);
1081 * find_inode_fast is the fast path version of find_inode, see the comment at
1082 * iget_locked for details.
1084 static struct inode
*find_inode_fast(struct super_block
*sb
,
1085 struct hlist_head
*head
, unsigned long ino
,
1086 bool is_inode_hash_locked
)
1088 struct inode
*inode
= NULL
;
1090 if (is_inode_hash_locked
)
1091 lockdep_assert_held(&inode_hash_lock
);
1093 lockdep_assert_not_held(&inode_hash_lock
);
1097 hlist_for_each_entry_rcu(inode
, head
, i_hash
) {
1098 if (inode
->i_ino
!= ino
)
1100 if (inode
->i_sb
!= sb
)
1102 spin_lock(&inode
->i_lock
);
1103 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
1104 __wait_on_freeing_inode(inode
, is_inode_hash_locked
);
1107 if (unlikely(inode
->i_state
& I_CREATING
)) {
1108 spin_unlock(&inode
->i_lock
);
1110 return ERR_PTR(-ESTALE
);
1113 spin_unlock(&inode
->i_lock
);
1122 * Each cpu owns a range of LAST_INO_BATCH numbers.
1123 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
1124 * to renew the exhausted range.
1126 * This does not significantly increase overflow rate because every CPU can
1127 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
1128 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
1129 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
1130 * overflow rate by 2x, which does not seem too significant.
1132 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1133 * error if st_ino won't fit in target struct field. Use 32bit counter
1134 * here to attempt to avoid that.
1136 #define LAST_INO_BATCH 1024
1137 static DEFINE_PER_CPU(unsigned int, last_ino
);
1139 unsigned int get_next_ino(void)
1141 unsigned int *p
= &get_cpu_var(last_ino
);
1142 unsigned int res
= *p
;
1145 if (unlikely((res
& (LAST_INO_BATCH
-1)) == 0)) {
1146 static atomic_t shared_last_ino
;
1147 int next
= atomic_add_return(LAST_INO_BATCH
, &shared_last_ino
);
1149 res
= next
- LAST_INO_BATCH
;
1154 /* get_next_ino should not provide a 0 inode number */
1158 put_cpu_var(last_ino
);
1161 EXPORT_SYMBOL(get_next_ino
);
1164 * new_inode_pseudo - obtain an inode
1167 * Allocates a new inode for given superblock.
1168 * Inode wont be chained in superblock s_inodes list
1170 * - fs can't be unmount
1171 * - quotas, fsnotify, writeback can't work
1173 struct inode
*new_inode_pseudo(struct super_block
*sb
)
1175 return alloc_inode(sb
);
1179 * new_inode - obtain an inode
1182 * Allocates a new inode for given superblock. The default gfp_mask
1183 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
1184 * If HIGHMEM pages are unsuitable or it is known that pages allocated
1185 * for the page cache are not reclaimable or migratable,
1186 * mapping_set_gfp_mask() must be called with suitable flags on the
1187 * newly created inode's mapping
1190 struct inode
*new_inode(struct super_block
*sb
)
1192 struct inode
*inode
;
1194 inode
= new_inode_pseudo(sb
);
1196 inode_sb_list_add(inode
);
1199 EXPORT_SYMBOL(new_inode
);
1201 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1202 void lockdep_annotate_inode_mutex_key(struct inode
*inode
)
1204 if (S_ISDIR(inode
->i_mode
)) {
1205 struct file_system_type
*type
= inode
->i_sb
->s_type
;
1207 /* Set new key only if filesystem hasn't already changed it */
1208 if (lockdep_match_class(&inode
->i_rwsem
, &type
->i_mutex_key
)) {
1210 * ensure nobody is actually holding i_mutex
1212 // mutex_destroy(&inode->i_mutex);
1213 init_rwsem(&inode
->i_rwsem
);
1214 lockdep_set_class(&inode
->i_rwsem
,
1215 &type
->i_mutex_dir_key
);
1219 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key
);
1223 * unlock_new_inode - clear the I_NEW state and wake up any waiters
1224 * @inode: new inode to unlock
1226 * Called when the inode is fully initialised to clear the new state of the
1227 * inode and wake up anyone waiting for the inode to finish initialisation.
1229 void unlock_new_inode(struct inode
*inode
)
1231 lockdep_annotate_inode_mutex_key(inode
);
1232 spin_lock(&inode
->i_lock
);
1233 WARN_ON(!(inode
->i_state
& I_NEW
));
1234 inode
->i_state
&= ~I_NEW
& ~I_CREATING
;
1236 * Pairs with the barrier in prepare_to_wait_event() to make sure
1237 * ___wait_var_event() either sees the bit cleared or
1238 * waitqueue_active() check in wake_up_var() sees the waiter.
1241 inode_wake_up_bit(inode
, __I_NEW
);
1242 spin_unlock(&inode
->i_lock
);
1244 EXPORT_SYMBOL(unlock_new_inode
);
1246 void discard_new_inode(struct inode
*inode
)
1248 lockdep_annotate_inode_mutex_key(inode
);
1249 spin_lock(&inode
->i_lock
);
1250 WARN_ON(!(inode
->i_state
& I_NEW
));
1251 inode
->i_state
&= ~I_NEW
;
1253 * Pairs with the barrier in prepare_to_wait_event() to make sure
1254 * ___wait_var_event() either sees the bit cleared or
1255 * waitqueue_active() check in wake_up_var() sees the waiter.
1258 inode_wake_up_bit(inode
, __I_NEW
);
1259 spin_unlock(&inode
->i_lock
);
1262 EXPORT_SYMBOL(discard_new_inode
);
1265 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1267 * Lock any non-NULL argument. Passed objects must not be directories.
1268 * Zero, one or two objects may be locked by this function.
1270 * @inode1: first inode to lock
1271 * @inode2: second inode to lock
1273 void lock_two_nondirectories(struct inode
*inode1
, struct inode
*inode2
)
1276 WARN_ON_ONCE(S_ISDIR(inode1
->i_mode
));
1278 WARN_ON_ONCE(S_ISDIR(inode2
->i_mode
));
1279 if (inode1
> inode2
)
1280 swap(inode1
, inode2
);
1283 if (inode2
&& inode2
!= inode1
)
1284 inode_lock_nested(inode2
, I_MUTEX_NONDIR2
);
1286 EXPORT_SYMBOL(lock_two_nondirectories
);
1289 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1290 * @inode1: first inode to unlock
1291 * @inode2: second inode to unlock
1293 void unlock_two_nondirectories(struct inode
*inode1
, struct inode
*inode2
)
1296 WARN_ON_ONCE(S_ISDIR(inode1
->i_mode
));
1297 inode_unlock(inode1
);
1299 if (inode2
&& inode2
!= inode1
) {
1300 WARN_ON_ONCE(S_ISDIR(inode2
->i_mode
));
1301 inode_unlock(inode2
);
1304 EXPORT_SYMBOL(unlock_two_nondirectories
);
1307 * inode_insert5 - obtain an inode from a mounted file system
1308 * @inode: pre-allocated inode to use for insert to cache
1309 * @hashval: hash value (usually inode number) to get
1310 * @test: callback used for comparisons between inodes
1311 * @set: callback used to initialize a new struct inode
1312 * @data: opaque data pointer to pass to @test and @set
1314 * Search for the inode specified by @hashval and @data in the inode cache,
1315 * and if present return it with an increased reference count. This is a
1316 * variant of iget5_locked() that doesn't allocate an inode.
1318 * If the inode is not present in the cache, insert the pre-allocated inode and
1319 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1320 * to fill it in before unlocking it via unlock_new_inode().
1322 * Note that both @test and @set are called with the inode_hash_lock held, so
1325 struct inode
*inode_insert5(struct inode
*inode
, unsigned long hashval
,
1326 int (*test
)(struct inode
*, void *),
1327 int (*set
)(struct inode
*, void *), void *data
)
1329 struct hlist_head
*head
= inode_hashtable
+ hash(inode
->i_sb
, hashval
);
1333 spin_lock(&inode_hash_lock
);
1334 old
= find_inode(inode
->i_sb
, head
, test
, data
, true);
1335 if (unlikely(old
)) {
1337 * Uhhuh, somebody else created the same inode under us.
1338 * Use the old inode instead of the preallocated one.
1340 spin_unlock(&inode_hash_lock
);
1344 if (unlikely(inode_unhashed(old
))) {
1351 if (set
&& unlikely(set(inode
, data
))) {
1357 * Return the locked inode with I_NEW set, the
1358 * caller is responsible for filling in the contents
1360 spin_lock(&inode
->i_lock
);
1361 inode
->i_state
|= I_NEW
;
1362 hlist_add_head_rcu(&inode
->i_hash
, head
);
1363 spin_unlock(&inode
->i_lock
);
1366 * Add inode to the sb list if it's not already. It has I_NEW at this
1367 * point, so it should be safe to test i_sb_list locklessly.
1369 if (list_empty(&inode
->i_sb_list
))
1370 inode_sb_list_add(inode
);
1372 spin_unlock(&inode_hash_lock
);
1376 EXPORT_SYMBOL(inode_insert5
);
1379 * iget5_locked - obtain an inode from a mounted file system
1380 * @sb: super block of file system
1381 * @hashval: hash value (usually inode number) to get
1382 * @test: callback used for comparisons between inodes
1383 * @set: callback used to initialize a new struct inode
1384 * @data: opaque data pointer to pass to @test and @set
1386 * Search for the inode specified by @hashval and @data in the inode cache,
1387 * and if present return it with an increased reference count. This is a
1388 * generalized version of iget_locked() for file systems where the inode
1389 * number is not sufficient for unique identification of an inode.
1391 * If the inode is not present in the cache, allocate and insert a new inode
1392 * and return it locked, hashed, and with the I_NEW flag set. The file system
1393 * gets to fill it in before unlocking it via unlock_new_inode().
1395 * Note that both @test and @set are called with the inode_hash_lock held, so
1398 struct inode
*iget5_locked(struct super_block
*sb
, unsigned long hashval
,
1399 int (*test
)(struct inode
*, void *),
1400 int (*set
)(struct inode
*, void *), void *data
)
1402 struct inode
*inode
= ilookup5(sb
, hashval
, test
, data
);
1405 struct inode
*new = alloc_inode(sb
);
1408 inode
= inode_insert5(new, hashval
, test
, set
, data
);
1409 if (unlikely(inode
!= new))
1415 EXPORT_SYMBOL(iget5_locked
);
1418 * iget5_locked_rcu - obtain an inode from a mounted file system
1419 * @sb: super block of file system
1420 * @hashval: hash value (usually inode number) to get
1421 * @test: callback used for comparisons between inodes
1422 * @set: callback used to initialize a new struct inode
1423 * @data: opaque data pointer to pass to @test and @set
1425 * This is equivalent to iget5_locked, except the @test callback must
1426 * tolerate the inode not being stable, including being mid-teardown.
1428 struct inode
*iget5_locked_rcu(struct super_block
*sb
, unsigned long hashval
,
1429 int (*test
)(struct inode
*, void *),
1430 int (*set
)(struct inode
*, void *), void *data
)
1432 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1433 struct inode
*inode
, *new;
1436 inode
= find_inode(sb
, head
, test
, data
, false);
1440 wait_on_inode(inode
);
1441 if (unlikely(inode_unhashed(inode
))) {
1448 new = alloc_inode(sb
);
1450 inode
= inode_insert5(new, hashval
, test
, set
, data
);
1451 if (unlikely(inode
!= new))
1456 EXPORT_SYMBOL_GPL(iget5_locked_rcu
);
1459 * iget_locked - obtain an inode from a mounted file system
1460 * @sb: super block of file system
1461 * @ino: inode number to get
1463 * Search for the inode specified by @ino in the inode cache and if present
1464 * return it with an increased reference count. This is for file systems
1465 * where the inode number is sufficient for unique identification of an inode.
1467 * If the inode is not in cache, allocate a new inode and return it locked,
1468 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1469 * before unlocking it via unlock_new_inode().
1471 struct inode
*iget_locked(struct super_block
*sb
, unsigned long ino
)
1473 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1474 struct inode
*inode
;
1476 inode
= find_inode_fast(sb
, head
, ino
, false);
1480 wait_on_inode(inode
);
1481 if (unlikely(inode_unhashed(inode
))) {
1488 inode
= alloc_inode(sb
);
1492 spin_lock(&inode_hash_lock
);
1493 /* We released the lock, so.. */
1494 old
= find_inode_fast(sb
, head
, ino
, true);
1497 spin_lock(&inode
->i_lock
);
1498 inode
->i_state
= I_NEW
;
1499 hlist_add_head_rcu(&inode
->i_hash
, head
);
1500 spin_unlock(&inode
->i_lock
);
1501 inode_sb_list_add(inode
);
1502 spin_unlock(&inode_hash_lock
);
1504 /* Return the locked inode with I_NEW set, the
1505 * caller is responsible for filling in the contents
1511 * Uhhuh, somebody else created the same inode under
1512 * us. Use the old inode instead of the one we just
1515 spin_unlock(&inode_hash_lock
);
1516 destroy_inode(inode
);
1520 wait_on_inode(inode
);
1521 if (unlikely(inode_unhashed(inode
))) {
1528 EXPORT_SYMBOL(iget_locked
);
1531 * search the inode cache for a matching inode number.
1532 * If we find one, then the inode number we are trying to
1533 * allocate is not unique and so we should not use it.
1535 * Returns 1 if the inode number is unique, 0 if it is not.
1537 static int test_inode_iunique(struct super_block
*sb
, unsigned long ino
)
1539 struct hlist_head
*b
= inode_hashtable
+ hash(sb
, ino
);
1540 struct inode
*inode
;
1542 hlist_for_each_entry_rcu(inode
, b
, i_hash
) {
1543 if (inode
->i_ino
== ino
&& inode
->i_sb
== sb
)
1550 * iunique - get a unique inode number
1552 * @max_reserved: highest reserved inode number
1554 * Obtain an inode number that is unique on the system for a given
1555 * superblock. This is used by file systems that have no natural
1556 * permanent inode numbering system. An inode number is returned that
1557 * is higher than the reserved limit but unique.
1560 * With a large number of inodes live on the file system this function
1561 * currently becomes quite slow.
1563 ino_t
iunique(struct super_block
*sb
, ino_t max_reserved
)
1566 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1567 * error if st_ino won't fit in target struct field. Use 32bit counter
1568 * here to attempt to avoid that.
1570 static DEFINE_SPINLOCK(iunique_lock
);
1571 static unsigned int counter
;
1575 spin_lock(&iunique_lock
);
1577 if (counter
<= max_reserved
)
1578 counter
= max_reserved
+ 1;
1580 } while (!test_inode_iunique(sb
, res
));
1581 spin_unlock(&iunique_lock
);
1586 EXPORT_SYMBOL(iunique
);
1588 struct inode
*igrab(struct inode
*inode
)
1590 spin_lock(&inode
->i_lock
);
1591 if (!(inode
->i_state
& (I_FREEING
|I_WILL_FREE
))) {
1593 spin_unlock(&inode
->i_lock
);
1595 spin_unlock(&inode
->i_lock
);
1597 * Handle the case where s_op->clear_inode is not been
1598 * called yet, and somebody is calling igrab
1599 * while the inode is getting freed.
1605 EXPORT_SYMBOL(igrab
);
1608 * ilookup5_nowait - search for an inode in the inode cache
1609 * @sb: super block of file system to search
1610 * @hashval: hash value (usually inode number) to search for
1611 * @test: callback used for comparisons between inodes
1612 * @data: opaque data pointer to pass to @test
1614 * Search for the inode specified by @hashval and @data in the inode cache.
1615 * If the inode is in the cache, the inode is returned with an incremented
1618 * Note: I_NEW is not waited upon so you have to be very careful what you do
1619 * with the returned inode. You probably should be using ilookup5() instead.
1621 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1623 struct inode
*ilookup5_nowait(struct super_block
*sb
, unsigned long hashval
,
1624 int (*test
)(struct inode
*, void *), void *data
)
1626 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1627 struct inode
*inode
;
1629 spin_lock(&inode_hash_lock
);
1630 inode
= find_inode(sb
, head
, test
, data
, true);
1631 spin_unlock(&inode_hash_lock
);
1633 return IS_ERR(inode
) ? NULL
: inode
;
1635 EXPORT_SYMBOL(ilookup5_nowait
);
1638 * ilookup5 - search for an inode in the inode cache
1639 * @sb: super block of file system to search
1640 * @hashval: hash value (usually inode number) to search for
1641 * @test: callback used for comparisons between inodes
1642 * @data: opaque data pointer to pass to @test
1644 * Search for the inode specified by @hashval and @data in the inode cache,
1645 * and if the inode is in the cache, return the inode with an incremented
1646 * reference count. Waits on I_NEW before returning the inode.
1647 * returned with an incremented reference count.
1649 * This is a generalized version of ilookup() for file systems where the
1650 * inode number is not sufficient for unique identification of an inode.
1652 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1654 struct inode
*ilookup5(struct super_block
*sb
, unsigned long hashval
,
1655 int (*test
)(struct inode
*, void *), void *data
)
1657 struct inode
*inode
;
1659 inode
= ilookup5_nowait(sb
, hashval
, test
, data
);
1661 wait_on_inode(inode
);
1662 if (unlikely(inode_unhashed(inode
))) {
1669 EXPORT_SYMBOL(ilookup5
);
1672 * ilookup - search for an inode in the inode cache
1673 * @sb: super block of file system to search
1674 * @ino: inode number to search for
1676 * Search for the inode @ino in the inode cache, and if the inode is in the
1677 * cache, the inode is returned with an incremented reference count.
1679 struct inode
*ilookup(struct super_block
*sb
, unsigned long ino
)
1681 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1682 struct inode
*inode
;
1684 inode
= find_inode_fast(sb
, head
, ino
, false);
1689 wait_on_inode(inode
);
1690 if (unlikely(inode_unhashed(inode
))) {
1697 EXPORT_SYMBOL(ilookup
);
1700 * find_inode_nowait - find an inode in the inode cache
1701 * @sb: super block of file system to search
1702 * @hashval: hash value (usually inode number) to search for
1703 * @match: callback used for comparisons between inodes
1704 * @data: opaque data pointer to pass to @match
1706 * Search for the inode specified by @hashval and @data in the inode
1707 * cache, where the helper function @match will return 0 if the inode
1708 * does not match, 1 if the inode does match, and -1 if the search
1709 * should be stopped. The @match function must be responsible for
1710 * taking the i_lock spin_lock and checking i_state for an inode being
1711 * freed or being initialized, and incrementing the reference count
1712 * before returning 1. It also must not sleep, since it is called with
1713 * the inode_hash_lock spinlock held.
1715 * This is a even more generalized version of ilookup5() when the
1716 * function must never block --- find_inode() can block in
1717 * __wait_on_freeing_inode() --- or when the caller can not increment
1718 * the reference count because the resulting iput() might cause an
1719 * inode eviction. The tradeoff is that the @match funtion must be
1720 * very carefully implemented.
1722 struct inode
*find_inode_nowait(struct super_block
*sb
,
1723 unsigned long hashval
,
1724 int (*match
)(struct inode
*, unsigned long,
1728 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1729 struct inode
*inode
, *ret_inode
= NULL
;
1732 spin_lock(&inode_hash_lock
);
1733 hlist_for_each_entry(inode
, head
, i_hash
) {
1734 if (inode
->i_sb
!= sb
)
1736 mval
= match(inode
, hashval
, data
);
1744 spin_unlock(&inode_hash_lock
);
1747 EXPORT_SYMBOL(find_inode_nowait
);
1750 * find_inode_rcu - find an inode in the inode cache
1751 * @sb: Super block of file system to search
1752 * @hashval: Key to hash
1753 * @test: Function to test match on an inode
1754 * @data: Data for test function
1756 * Search for the inode specified by @hashval and @data in the inode cache,
1757 * where the helper function @test will return 0 if the inode does not match
1758 * and 1 if it does. The @test function must be responsible for taking the
1759 * i_lock spin_lock and checking i_state for an inode being freed or being
1762 * If successful, this will return the inode for which the @test function
1763 * returned 1 and NULL otherwise.
1765 * The @test function is not permitted to take a ref on any inode presented.
1766 * It is also not permitted to sleep.
1768 * The caller must hold the RCU read lock.
1770 struct inode
*find_inode_rcu(struct super_block
*sb
, unsigned long hashval
,
1771 int (*test
)(struct inode
*, void *), void *data
)
1773 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1774 struct inode
*inode
;
1776 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1777 "suspicious find_inode_rcu() usage");
1779 hlist_for_each_entry_rcu(inode
, head
, i_hash
) {
1780 if (inode
->i_sb
== sb
&&
1781 !(READ_ONCE(inode
->i_state
) & (I_FREEING
| I_WILL_FREE
)) &&
1787 EXPORT_SYMBOL(find_inode_rcu
);
1790 * find_inode_by_ino_rcu - Find an inode in the inode cache
1791 * @sb: Super block of file system to search
1792 * @ino: The inode number to match
1794 * Search for the inode specified by @hashval and @data in the inode cache,
1795 * where the helper function @test will return 0 if the inode does not match
1796 * and 1 if it does. The @test function must be responsible for taking the
1797 * i_lock spin_lock and checking i_state for an inode being freed or being
1800 * If successful, this will return the inode for which the @test function
1801 * returned 1 and NULL otherwise.
1803 * The @test function is not permitted to take a ref on any inode presented.
1804 * It is also not permitted to sleep.
1806 * The caller must hold the RCU read lock.
1808 struct inode
*find_inode_by_ino_rcu(struct super_block
*sb
,
1811 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1812 struct inode
*inode
;
1814 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1815 "suspicious find_inode_by_ino_rcu() usage");
1817 hlist_for_each_entry_rcu(inode
, head
, i_hash
) {
1818 if (inode
->i_ino
== ino
&&
1819 inode
->i_sb
== sb
&&
1820 !(READ_ONCE(inode
->i_state
) & (I_FREEING
| I_WILL_FREE
)))
1825 EXPORT_SYMBOL(find_inode_by_ino_rcu
);
1827 int insert_inode_locked(struct inode
*inode
)
1829 struct super_block
*sb
= inode
->i_sb
;
1830 ino_t ino
= inode
->i_ino
;
1831 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1834 struct inode
*old
= NULL
;
1835 spin_lock(&inode_hash_lock
);
1836 hlist_for_each_entry(old
, head
, i_hash
) {
1837 if (old
->i_ino
!= ino
)
1839 if (old
->i_sb
!= sb
)
1841 spin_lock(&old
->i_lock
);
1842 if (old
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
1843 spin_unlock(&old
->i_lock
);
1849 spin_lock(&inode
->i_lock
);
1850 inode
->i_state
|= I_NEW
| I_CREATING
;
1851 hlist_add_head_rcu(&inode
->i_hash
, head
);
1852 spin_unlock(&inode
->i_lock
);
1853 spin_unlock(&inode_hash_lock
);
1856 if (unlikely(old
->i_state
& I_CREATING
)) {
1857 spin_unlock(&old
->i_lock
);
1858 spin_unlock(&inode_hash_lock
);
1862 spin_unlock(&old
->i_lock
);
1863 spin_unlock(&inode_hash_lock
);
1865 if (unlikely(!inode_unhashed(old
))) {
1872 EXPORT_SYMBOL(insert_inode_locked
);
1874 int insert_inode_locked4(struct inode
*inode
, unsigned long hashval
,
1875 int (*test
)(struct inode
*, void *), void *data
)
1879 inode
->i_state
|= I_CREATING
;
1880 old
= inode_insert5(inode
, hashval
, test
, NULL
, data
);
1888 EXPORT_SYMBOL(insert_inode_locked4
);
1891 int generic_delete_inode(struct inode
*inode
)
1895 EXPORT_SYMBOL(generic_delete_inode
);
1898 * Called when we're dropping the last reference
1901 * Call the FS "drop_inode()" function, defaulting to
1902 * the legacy UNIX filesystem behaviour. If it tells
1903 * us to evict inode, do so. Otherwise, retain inode
1904 * in cache if fs is alive, sync and evict if fs is
1907 static void iput_final(struct inode
*inode
)
1909 struct super_block
*sb
= inode
->i_sb
;
1910 const struct super_operations
*op
= inode
->i_sb
->s_op
;
1911 unsigned long state
;
1914 WARN_ON(inode
->i_state
& I_NEW
);
1917 drop
= op
->drop_inode(inode
);
1919 drop
= generic_drop_inode(inode
);
1922 !(inode
->i_state
& I_DONTCACHE
) &&
1923 (sb
->s_flags
& SB_ACTIVE
)) {
1924 __inode_add_lru(inode
, true);
1925 spin_unlock(&inode
->i_lock
);
1929 state
= inode
->i_state
;
1931 WRITE_ONCE(inode
->i_state
, state
| I_WILL_FREE
);
1932 spin_unlock(&inode
->i_lock
);
1934 write_inode_now(inode
, 1);
1936 spin_lock(&inode
->i_lock
);
1937 state
= inode
->i_state
;
1938 WARN_ON(state
& I_NEW
);
1939 state
&= ~I_WILL_FREE
;
1942 WRITE_ONCE(inode
->i_state
, state
| I_FREEING
);
1943 if (!list_empty(&inode
->i_lru
))
1944 inode_lru_list_del(inode
);
1945 spin_unlock(&inode
->i_lock
);
1951 * iput - put an inode
1952 * @inode: inode to put
1954 * Puts an inode, dropping its usage count. If the inode use count hits
1955 * zero, the inode is then freed and may also be destroyed.
1957 * Consequently, iput() can sleep.
1959 void iput(struct inode
*inode
)
1963 BUG_ON(inode
->i_state
& I_CLEAR
);
1965 if (atomic_dec_and_lock(&inode
->i_count
, &inode
->i_lock
)) {
1966 if (inode
->i_nlink
&& (inode
->i_state
& I_DIRTY_TIME
)) {
1967 atomic_inc(&inode
->i_count
);
1968 spin_unlock(&inode
->i_lock
);
1969 trace_writeback_lazytime_iput(inode
);
1970 mark_inode_dirty_sync(inode
);
1976 EXPORT_SYMBOL(iput
);
1980 * bmap - find a block number in a file
1981 * @inode: inode owning the block number being requested
1982 * @block: pointer containing the block to find
1984 * Replaces the value in ``*block`` with the block number on the device holding
1985 * corresponding to the requested block number in the file.
1986 * That is, asked for block 4 of inode 1 the function will replace the
1987 * 4 in ``*block``, with disk block relative to the disk start that holds that
1988 * block of the file.
1990 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1991 * hole, returns 0 and ``*block`` is also set to 0.
1993 int bmap(struct inode
*inode
, sector_t
*block
)
1995 if (!inode
->i_mapping
->a_ops
->bmap
)
1998 *block
= inode
->i_mapping
->a_ops
->bmap(inode
->i_mapping
, *block
);
2001 EXPORT_SYMBOL(bmap
);
2005 * With relative atime, only update atime if the previous atime is
2006 * earlier than or equal to either the ctime or mtime,
2007 * or if at least a day has passed since the last atime update.
2009 static bool relatime_need_update(struct vfsmount
*mnt
, struct inode
*inode
,
2010 struct timespec64 now
)
2012 struct timespec64 atime
, mtime
, ctime
;
2014 if (!(mnt
->mnt_flags
& MNT_RELATIME
))
2017 * Is mtime younger than or equal to atime? If yes, update atime:
2019 atime
= inode_get_atime(inode
);
2020 mtime
= inode_get_mtime(inode
);
2021 if (timespec64_compare(&mtime
, &atime
) >= 0)
2024 * Is ctime younger than or equal to atime? If yes, update atime:
2026 ctime
= inode_get_ctime(inode
);
2027 if (timespec64_compare(&ctime
, &atime
) >= 0)
2031 * Is the previous atime value older than a day? If yes,
2034 if ((long)(now
.tv_sec
- atime
.tv_sec
) >= 24*60*60)
2037 * Good, we can skip the atime update:
2043 * inode_update_timestamps - update the timestamps on the inode
2044 * @inode: inode to be updated
2045 * @flags: S_* flags that needed to be updated
2047 * The update_time function is called when an inode's timestamps need to be
2048 * updated for a read or write operation. This function handles updating the
2049 * actual timestamps. It's up to the caller to ensure that the inode is marked
2050 * dirty appropriately.
2052 * In the case where any of S_MTIME, S_CTIME, or S_VERSION need to be updated,
2053 * attempt to update all three of them. S_ATIME updates can be handled
2054 * independently of the rest.
2056 * Returns a set of S_* flags indicating which values changed.
2058 int inode_update_timestamps(struct inode
*inode
, int flags
)
2061 struct timespec64 now
;
2063 if (flags
& (S_MTIME
|S_CTIME
|S_VERSION
)) {
2064 struct timespec64 ctime
= inode_get_ctime(inode
);
2065 struct timespec64 mtime
= inode_get_mtime(inode
);
2067 now
= inode_set_ctime_current(inode
);
2068 if (!timespec64_equal(&now
, &ctime
))
2070 if (!timespec64_equal(&now
, &mtime
)) {
2071 inode_set_mtime_to_ts(inode
, now
);
2074 if (IS_I_VERSION(inode
) && inode_maybe_inc_iversion(inode
, updated
))
2075 updated
|= S_VERSION
;
2077 now
= current_time(inode
);
2080 if (flags
& S_ATIME
) {
2081 struct timespec64 atime
= inode_get_atime(inode
);
2083 if (!timespec64_equal(&now
, &atime
)) {
2084 inode_set_atime_to_ts(inode
, now
);
2090 EXPORT_SYMBOL(inode_update_timestamps
);
2093 * generic_update_time - update the timestamps on the inode
2094 * @inode: inode to be updated
2095 * @flags: S_* flags that needed to be updated
2097 * The update_time function is called when an inode's timestamps need to be
2098 * updated for a read or write operation. In the case where any of S_MTIME, S_CTIME,
2099 * or S_VERSION need to be updated we attempt to update all three of them. S_ATIME
2100 * updates can be handled done independently of the rest.
2102 * Returns a S_* mask indicating which fields were updated.
2104 int generic_update_time(struct inode
*inode
, int flags
)
2106 int updated
= inode_update_timestamps(inode
, flags
);
2107 int dirty_flags
= 0;
2109 if (updated
& (S_ATIME
|S_MTIME
|S_CTIME
))
2110 dirty_flags
= inode
->i_sb
->s_flags
& SB_LAZYTIME
? I_DIRTY_TIME
: I_DIRTY_SYNC
;
2111 if (updated
& S_VERSION
)
2112 dirty_flags
|= I_DIRTY_SYNC
;
2113 __mark_inode_dirty(inode
, dirty_flags
);
2116 EXPORT_SYMBOL(generic_update_time
);
2119 * This does the actual work of updating an inodes time or version. Must have
2120 * had called mnt_want_write() before calling this.
2122 int inode_update_time(struct inode
*inode
, int flags
)
2124 if (inode
->i_op
->update_time
)
2125 return inode
->i_op
->update_time(inode
, flags
);
2126 generic_update_time(inode
, flags
);
2129 EXPORT_SYMBOL(inode_update_time
);
2132 * atime_needs_update - update the access time
2133 * @path: the &struct path to update
2134 * @inode: inode to update
2136 * Update the accessed time on an inode and mark it for writeback.
2137 * This function automatically handles read only file systems and media,
2138 * as well as the "noatime" flag and inode specific "noatime" markers.
2140 bool atime_needs_update(const struct path
*path
, struct inode
*inode
)
2142 struct vfsmount
*mnt
= path
->mnt
;
2143 struct timespec64 now
, atime
;
2145 if (inode
->i_flags
& S_NOATIME
)
2148 /* Atime updates will likely cause i_uid and i_gid to be written
2149 * back improprely if their true value is unknown to the vfs.
2151 if (HAS_UNMAPPED_ID(mnt_idmap(mnt
), inode
))
2154 if (IS_NOATIME(inode
))
2156 if ((inode
->i_sb
->s_flags
& SB_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
2159 if (mnt
->mnt_flags
& MNT_NOATIME
)
2161 if ((mnt
->mnt_flags
& MNT_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
2164 now
= current_time(inode
);
2166 if (!relatime_need_update(mnt
, inode
, now
))
2169 atime
= inode_get_atime(inode
);
2170 if (timespec64_equal(&atime
, &now
))
2176 void touch_atime(const struct path
*path
)
2178 struct vfsmount
*mnt
= path
->mnt
;
2179 struct inode
*inode
= d_inode(path
->dentry
);
2181 if (!atime_needs_update(path
, inode
))
2184 if (!sb_start_write_trylock(inode
->i_sb
))
2187 if (mnt_get_write_access(mnt
) != 0)
2190 * File systems can error out when updating inodes if they need to
2191 * allocate new space to modify an inode (such is the case for
2192 * Btrfs), but since we touch atime while walking down the path we
2193 * really don't care if we failed to update the atime of the file,
2194 * so just ignore the return value.
2195 * We may also fail on filesystems that have the ability to make parts
2196 * of the fs read only, e.g. subvolumes in Btrfs.
2198 inode_update_time(inode
, S_ATIME
);
2199 mnt_put_write_access(mnt
);
2201 sb_end_write(inode
->i_sb
);
2203 EXPORT_SYMBOL(touch_atime
);
2206 * Return mask of changes for notify_change() that need to be done as a
2207 * response to write or truncate. Return 0 if nothing has to be changed.
2208 * Negative value on error (change should be denied).
2210 int dentry_needs_remove_privs(struct mnt_idmap
*idmap
,
2211 struct dentry
*dentry
)
2213 struct inode
*inode
= d_inode(dentry
);
2217 if (IS_NOSEC(inode
))
2220 mask
= setattr_should_drop_suidgid(idmap
, inode
);
2221 ret
= security_inode_need_killpriv(dentry
);
2225 mask
|= ATTR_KILL_PRIV
;
2229 static int __remove_privs(struct mnt_idmap
*idmap
,
2230 struct dentry
*dentry
, int kill
)
2232 struct iattr newattrs
;
2234 newattrs
.ia_valid
= ATTR_FORCE
| kill
;
2236 * Note we call this on write, so notify_change will not
2237 * encounter any conflicting delegations:
2239 return notify_change(idmap
, dentry
, &newattrs
, NULL
);
2242 int file_remove_privs_flags(struct file
*file
, unsigned int flags
)
2244 struct dentry
*dentry
= file_dentry(file
);
2245 struct inode
*inode
= file_inode(file
);
2249 if (IS_NOSEC(inode
) || !S_ISREG(inode
->i_mode
))
2252 kill
= dentry_needs_remove_privs(file_mnt_idmap(file
), dentry
);
2257 if (flags
& IOCB_NOWAIT
)
2260 error
= __remove_privs(file_mnt_idmap(file
), dentry
, kill
);
2264 inode_has_no_xattr(inode
);
2267 EXPORT_SYMBOL_GPL(file_remove_privs_flags
);
2270 * file_remove_privs - remove special file privileges (suid, capabilities)
2271 * @file: file to remove privileges from
2273 * When file is modified by a write or truncation ensure that special
2274 * file privileges are removed.
2276 * Return: 0 on success, negative errno on failure.
2278 int file_remove_privs(struct file
*file
)
2280 return file_remove_privs_flags(file
, 0);
2282 EXPORT_SYMBOL(file_remove_privs
);
2285 * current_time - Return FS time (possibly fine-grained)
2288 * Return the current time truncated to the time granularity supported by
2289 * the fs, as suitable for a ctime/mtime change. If the ctime is flagged
2290 * as having been QUERIED, get a fine-grained timestamp, but don't update
2293 * For a multigrain inode, this is effectively an estimate of the timestamp
2294 * that a file would receive. An actual update must go through
2295 * inode_set_ctime_current().
2297 struct timespec64
current_time(struct inode
*inode
)
2299 struct timespec64 now
;
2302 ktime_get_coarse_real_ts64_mg(&now
);
2304 if (!is_mgtime(inode
))
2307 /* If nothing has queried it, then coarse time is fine */
2308 cns
= smp_load_acquire(&inode
->i_ctime_nsec
);
2309 if (cns
& I_CTIME_QUERIED
) {
2311 * If there is no apparent change, then get a fine-grained
2314 if (now
.tv_nsec
== (cns
& ~I_CTIME_QUERIED
))
2315 ktime_get_real_ts64(&now
);
2318 return timestamp_truncate(now
, inode
);
2320 EXPORT_SYMBOL(current_time
);
2322 static int inode_needs_update_time(struct inode
*inode
)
2324 struct timespec64 now
, ts
;
2327 /* First try to exhaust all avenues to not sync */
2328 if (IS_NOCMTIME(inode
))
2331 now
= current_time(inode
);
2333 ts
= inode_get_mtime(inode
);
2334 if (!timespec64_equal(&ts
, &now
))
2337 ts
= inode_get_ctime(inode
);
2338 if (!timespec64_equal(&ts
, &now
))
2341 if (IS_I_VERSION(inode
) && inode_iversion_need_inc(inode
))
2342 sync_it
|= S_VERSION
;
2347 static int __file_update_time(struct file
*file
, int sync_mode
)
2350 struct inode
*inode
= file_inode(file
);
2352 /* try to update time settings */
2353 if (!mnt_get_write_access_file(file
)) {
2354 ret
= inode_update_time(inode
, sync_mode
);
2355 mnt_put_write_access_file(file
);
2362 * file_update_time - update mtime and ctime time
2363 * @file: file accessed
2365 * Update the mtime and ctime members of an inode and mark the inode for
2366 * writeback. Note that this function is meant exclusively for usage in
2367 * the file write path of filesystems, and filesystems may choose to
2368 * explicitly ignore updates via this function with the _NOCMTIME inode
2369 * flag, e.g. for network filesystem where these imestamps are handled
2370 * by the server. This can return an error for file systems who need to
2371 * allocate space in order to update an inode.
2373 * Return: 0 on success, negative errno on failure.
2375 int file_update_time(struct file
*file
)
2378 struct inode
*inode
= file_inode(file
);
2380 ret
= inode_needs_update_time(inode
);
2384 return __file_update_time(file
, ret
);
2386 EXPORT_SYMBOL(file_update_time
);
2389 * file_modified_flags - handle mandated vfs changes when modifying a file
2390 * @file: file that was modified
2391 * @flags: kiocb flags
2393 * When file has been modified ensure that special
2394 * file privileges are removed and time settings are updated.
2396 * If IOCB_NOWAIT is set, special file privileges will not be removed and
2397 * time settings will not be updated. It will return -EAGAIN.
2399 * Context: Caller must hold the file's inode lock.
2401 * Return: 0 on success, negative errno on failure.
2403 static int file_modified_flags(struct file
*file
, int flags
)
2406 struct inode
*inode
= file_inode(file
);
2409 * Clear the security bits if the process is not being run by root.
2410 * This keeps people from modifying setuid and setgid binaries.
2412 ret
= file_remove_privs_flags(file
, flags
);
2416 if (unlikely(file
->f_mode
& FMODE_NOCMTIME
))
2419 ret
= inode_needs_update_time(inode
);
2422 if (flags
& IOCB_NOWAIT
)
2425 return __file_update_time(file
, ret
);
2429 * file_modified - handle mandated vfs changes when modifying a file
2430 * @file: file that was modified
2432 * When file has been modified ensure that special
2433 * file privileges are removed and time settings are updated.
2435 * Context: Caller must hold the file's inode lock.
2437 * Return: 0 on success, negative errno on failure.
2439 int file_modified(struct file
*file
)
2441 return file_modified_flags(file
, 0);
2443 EXPORT_SYMBOL(file_modified
);
2446 * kiocb_modified - handle mandated vfs changes when modifying a file
2447 * @iocb: iocb that was modified
2449 * When file has been modified ensure that special
2450 * file privileges are removed and time settings are updated.
2452 * Context: Caller must hold the file's inode lock.
2454 * Return: 0 on success, negative errno on failure.
2456 int kiocb_modified(struct kiocb
*iocb
)
2458 return file_modified_flags(iocb
->ki_filp
, iocb
->ki_flags
);
2460 EXPORT_SYMBOL_GPL(kiocb_modified
);
2462 int inode_needs_sync(struct inode
*inode
)
2466 if (S_ISDIR(inode
->i_mode
) && IS_DIRSYNC(inode
))
2470 EXPORT_SYMBOL(inode_needs_sync
);
2473 * If we try to find an inode in the inode hash while it is being
2474 * deleted, we have to wait until the filesystem completes its
2475 * deletion before reporting that it isn't found. This function waits
2476 * until the deletion _might_ have completed. Callers are responsible
2477 * to recheck inode state.
2479 * It doesn't matter if I_NEW is not set initially, a call to
2480 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2483 static void __wait_on_freeing_inode(struct inode
*inode
, bool is_inode_hash_locked
)
2485 struct wait_bit_queue_entry wqe
;
2486 struct wait_queue_head
*wq_head
;
2489 * Handle racing against evict(), see that routine for more details.
2491 if (unlikely(inode_unhashed(inode
))) {
2492 WARN_ON(is_inode_hash_locked
);
2493 spin_unlock(&inode
->i_lock
);
2497 wq_head
= inode_bit_waitqueue(&wqe
, inode
, __I_NEW
);
2498 prepare_to_wait_event(wq_head
, &wqe
.wq_entry
, TASK_UNINTERRUPTIBLE
);
2499 spin_unlock(&inode
->i_lock
);
2501 if (is_inode_hash_locked
)
2502 spin_unlock(&inode_hash_lock
);
2504 finish_wait(wq_head
, &wqe
.wq_entry
);
2505 if (is_inode_hash_locked
)
2506 spin_lock(&inode_hash_lock
);
2510 static __initdata
unsigned long ihash_entries
;
2511 static int __init
set_ihash_entries(char *str
)
2515 ihash_entries
= simple_strtoul(str
, &str
, 0);
2518 __setup("ihash_entries=", set_ihash_entries
);
2521 * Initialize the waitqueues and inode hash table.
2523 void __init
inode_init_early(void)
2525 /* If hashes are distributed across NUMA nodes, defer
2526 * hash allocation until vmalloc space is available.
2532 alloc_large_system_hash("Inode-cache",
2533 sizeof(struct hlist_head
),
2536 HASH_EARLY
| HASH_ZERO
,
2543 void __init
inode_init(void)
2545 /* inode slab cache */
2546 inode_cachep
= kmem_cache_create("inode_cache",
2547 sizeof(struct inode
),
2549 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
2553 /* Hash may have been set up in inode_init_early */
2558 alloc_large_system_hash("Inode-cache",
2559 sizeof(struct hlist_head
),
2569 void init_special_inode(struct inode
*inode
, umode_t mode
, dev_t rdev
)
2571 inode
->i_mode
= mode
;
2572 if (S_ISCHR(mode
)) {
2573 inode
->i_fop
= &def_chr_fops
;
2574 inode
->i_rdev
= rdev
;
2575 } else if (S_ISBLK(mode
)) {
2576 if (IS_ENABLED(CONFIG_BLOCK
))
2577 inode
->i_fop
= &def_blk_fops
;
2578 inode
->i_rdev
= rdev
;
2579 } else if (S_ISFIFO(mode
))
2580 inode
->i_fop
= &pipefifo_fops
;
2581 else if (S_ISSOCK(mode
))
2582 ; /* leave it no_open_fops */
2584 printk(KERN_DEBUG
"init_special_inode: bogus i_mode (%o) for"
2585 " inode %s:%lu\n", mode
, inode
->i_sb
->s_id
,
2588 EXPORT_SYMBOL(init_special_inode
);
2591 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2592 * @idmap: idmap of the mount the inode was created from
2594 * @dir: Directory inode
2595 * @mode: mode of the new inode
2597 * If the inode has been created through an idmapped mount the idmap of
2598 * the vfsmount must be passed through @idmap. This function will then take
2599 * care to map the inode according to @idmap before checking permissions
2600 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2601 * checking is to be performed on the raw inode simply pass @nop_mnt_idmap.
2603 void inode_init_owner(struct mnt_idmap
*idmap
, struct inode
*inode
,
2604 const struct inode
*dir
, umode_t mode
)
2606 inode_fsuid_set(inode
, idmap
);
2607 if (dir
&& dir
->i_mode
& S_ISGID
) {
2608 inode
->i_gid
= dir
->i_gid
;
2610 /* Directories are special, and always inherit S_ISGID */
2614 inode_fsgid_set(inode
, idmap
);
2615 inode
->i_mode
= mode
;
2617 EXPORT_SYMBOL(inode_init_owner
);
2620 * inode_owner_or_capable - check current task permissions to inode
2621 * @idmap: idmap of the mount the inode was found from
2622 * @inode: inode being checked
2624 * Return true if current either has CAP_FOWNER in a namespace with the
2625 * inode owner uid mapped, or owns the file.
2627 * If the inode has been found through an idmapped mount the idmap of
2628 * the vfsmount must be passed through @idmap. This function will then take
2629 * care to map the inode according to @idmap before checking permissions.
2630 * On non-idmapped mounts or if permission checking is to be performed on the
2631 * raw inode simply pass @nop_mnt_idmap.
2633 bool inode_owner_or_capable(struct mnt_idmap
*idmap
,
2634 const struct inode
*inode
)
2637 struct user_namespace
*ns
;
2639 vfsuid
= i_uid_into_vfsuid(idmap
, inode
);
2640 if (vfsuid_eq_kuid(vfsuid
, current_fsuid()))
2643 ns
= current_user_ns();
2644 if (vfsuid_has_mapping(ns
, vfsuid
) && ns_capable(ns
, CAP_FOWNER
))
2648 EXPORT_SYMBOL(inode_owner_or_capable
);
2651 * Direct i/o helper functions
2653 bool inode_dio_finished(const struct inode
*inode
)
2655 return atomic_read(&inode
->i_dio_count
) == 0;
2657 EXPORT_SYMBOL(inode_dio_finished
);
2660 * inode_dio_wait - wait for outstanding DIO requests to finish
2661 * @inode: inode to wait for
2663 * Waits for all pending direct I/O requests to finish so that we can
2664 * proceed with a truncate or equivalent operation.
2666 * Must be called under a lock that serializes taking new references
2667 * to i_dio_count, usually by inode->i_mutex.
2669 void inode_dio_wait(struct inode
*inode
)
2671 wait_var_event(&inode
->i_dio_count
, inode_dio_finished(inode
));
2673 EXPORT_SYMBOL(inode_dio_wait
);
2675 void inode_dio_wait_interruptible(struct inode
*inode
)
2677 wait_var_event_interruptible(&inode
->i_dio_count
,
2678 inode_dio_finished(inode
));
2680 EXPORT_SYMBOL(inode_dio_wait_interruptible
);
2683 * inode_set_flags - atomically set some inode flags
2685 * Note: the caller should be holding i_mutex, or else be sure that
2686 * they have exclusive access to the inode structure (i.e., while the
2687 * inode is being instantiated). The reason for the cmpxchg() loop
2688 * --- which wouldn't be necessary if all code paths which modify
2689 * i_flags actually followed this rule, is that there is at least one
2690 * code path which doesn't today so we use cmpxchg() out of an abundance
2693 * In the long run, i_mutex is overkill, and we should probably look
2694 * at using the i_lock spinlock to protect i_flags, and then make sure
2695 * it is so documented in include/linux/fs.h and that all code follows
2696 * the locking convention!!
2698 void inode_set_flags(struct inode
*inode
, unsigned int flags
,
2701 WARN_ON_ONCE(flags
& ~mask
);
2702 set_mask_bits(&inode
->i_flags
, mask
, flags
);
2704 EXPORT_SYMBOL(inode_set_flags
);
2706 void inode_nohighmem(struct inode
*inode
)
2708 mapping_set_gfp_mask(inode
->i_mapping
, GFP_USER
);
2710 EXPORT_SYMBOL(inode_nohighmem
);
2712 struct timespec64
inode_set_ctime_to_ts(struct inode
*inode
, struct timespec64 ts
)
2714 trace_inode_set_ctime_to_ts(inode
, &ts
);
2715 set_normalized_timespec64(&ts
, ts
.tv_sec
, ts
.tv_nsec
);
2716 inode
->i_ctime_sec
= ts
.tv_sec
;
2717 inode
->i_ctime_nsec
= ts
.tv_nsec
;
2720 EXPORT_SYMBOL(inode_set_ctime_to_ts
);
2723 * timestamp_truncate - Truncate timespec to a granularity
2725 * @inode: inode being updated
2727 * Truncate a timespec to the granularity supported by the fs
2728 * containing the inode. Always rounds down. gran must
2729 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2731 struct timespec64
timestamp_truncate(struct timespec64 t
, struct inode
*inode
)
2733 struct super_block
*sb
= inode
->i_sb
;
2734 unsigned int gran
= sb
->s_time_gran
;
2736 t
.tv_sec
= clamp(t
.tv_sec
, sb
->s_time_min
, sb
->s_time_max
);
2737 if (unlikely(t
.tv_sec
== sb
->s_time_max
|| t
.tv_sec
== sb
->s_time_min
))
2740 /* Avoid division in the common cases 1 ns and 1 s. */
2743 else if (gran
== NSEC_PER_SEC
)
2745 else if (gran
> 1 && gran
< NSEC_PER_SEC
)
2746 t
.tv_nsec
-= t
.tv_nsec
% gran
;
2748 WARN(1, "invalid file time granularity: %u", gran
);
2751 EXPORT_SYMBOL(timestamp_truncate
);
2754 * inode_set_ctime_current - set the ctime to current_time
2757 * Set the inode's ctime to the current value for the inode. Returns the
2758 * current value that was assigned. If this is not a multigrain inode, then we
2759 * set it to the later of the coarse time and floor value.
2761 * If it is multigrain, then we first see if the coarse-grained timestamp is
2762 * distinct from what is already there. If so, then use that. Otherwise, get a
2763 * fine-grained timestamp.
2765 * After that, try to swap the new value into i_ctime_nsec. Accept the
2766 * resulting ctime, regardless of the outcome of the swap. If it has
2767 * already been replaced, then that timestamp is later than the earlier
2768 * unacceptable one, and is thus acceptable.
2770 struct timespec64
inode_set_ctime_current(struct inode
*inode
)
2772 struct timespec64 now
;
2775 ktime_get_coarse_real_ts64_mg(&now
);
2776 now
= timestamp_truncate(now
, inode
);
2778 /* Just return that if this is not a multigrain fs */
2779 if (!is_mgtime(inode
)) {
2780 inode_set_ctime_to_ts(inode
, now
);
2785 * A fine-grained time is only needed if someone has queried
2786 * for timestamps, and the current coarse grained time isn't
2787 * later than what's already there.
2789 cns
= smp_load_acquire(&inode
->i_ctime_nsec
);
2790 if (cns
& I_CTIME_QUERIED
) {
2791 struct timespec64 ctime
= { .tv_sec
= inode
->i_ctime_sec
,
2792 .tv_nsec
= cns
& ~I_CTIME_QUERIED
};
2794 if (timespec64_compare(&now
, &ctime
) <= 0) {
2795 ktime_get_real_ts64_mg(&now
);
2796 now
= timestamp_truncate(now
, inode
);
2797 mgtime_counter_inc(mg_fine_stamps
);
2800 mgtime_counter_inc(mg_ctime_updates
);
2802 /* No need to cmpxchg if it's exactly the same */
2803 if (cns
== now
.tv_nsec
&& inode
->i_ctime_sec
== now
.tv_sec
) {
2804 trace_ctime_xchg_skip(inode
, &now
);
2809 /* Try to swap the nsec value into place. */
2810 if (try_cmpxchg(&inode
->i_ctime_nsec
, &cur
, now
.tv_nsec
)) {
2811 /* If swap occurred, then we're (mostly) done */
2812 inode
->i_ctime_sec
= now
.tv_sec
;
2813 trace_ctime_ns_xchg(inode
, cns
, now
.tv_nsec
, cur
);
2814 mgtime_counter_inc(mg_ctime_swaps
);
2817 * Was the change due to someone marking the old ctime QUERIED?
2818 * If so then retry the swap. This can only happen once since
2819 * the only way to clear I_CTIME_QUERIED is to stamp the inode
2822 if (!(cns
& I_CTIME_QUERIED
) && (cns
| I_CTIME_QUERIED
) == cur
) {
2826 /* Otherwise, keep the existing ctime */
2827 now
.tv_sec
= inode
->i_ctime_sec
;
2828 now
.tv_nsec
= cur
& ~I_CTIME_QUERIED
;
2833 EXPORT_SYMBOL(inode_set_ctime_current
);
2836 * inode_set_ctime_deleg - try to update the ctime on a delegated inode
2837 * @inode: inode to update
2838 * @update: timespec64 to set the ctime
2840 * Attempt to atomically update the ctime on behalf of a delegation holder.
2842 * The nfs server can call back the holder of a delegation to get updated
2843 * inode attributes, including the mtime. When updating the mtime, update
2844 * the ctime to a value at least equal to that.
2846 * This can race with concurrent updates to the inode, in which
2847 * case the update is skipped.
2849 * Note that this works even when multigrain timestamps are not enabled,
2850 * so it is used in either case.
2852 struct timespec64
inode_set_ctime_deleg(struct inode
*inode
, struct timespec64 update
)
2854 struct timespec64 now
, cur_ts
;
2857 /* pairs with try_cmpxchg below */
2858 cur
= smp_load_acquire(&inode
->i_ctime_nsec
);
2859 cur_ts
.tv_nsec
= cur
& ~I_CTIME_QUERIED
;
2860 cur_ts
.tv_sec
= inode
->i_ctime_sec
;
2862 /* If the update is older than the existing value, skip it. */
2863 if (timespec64_compare(&update
, &cur_ts
) <= 0)
2866 ktime_get_coarse_real_ts64_mg(&now
);
2868 /* Clamp the update to "now" if it's in the future */
2869 if (timespec64_compare(&update
, &now
) > 0)
2872 update
= timestamp_truncate(update
, inode
);
2874 /* No need to update if the values are already the same */
2875 if (timespec64_equal(&update
, &cur_ts
))
2879 * Try to swap the nsec value into place. If it fails, that means
2880 * it raced with an update due to a write or similar activity. That
2881 * stamp takes precedence, so just skip the update.
2885 if (try_cmpxchg(&inode
->i_ctime_nsec
, &cur
, update
.tv_nsec
)) {
2886 inode
->i_ctime_sec
= update
.tv_sec
;
2887 mgtime_counter_inc(mg_ctime_swaps
);
2892 * Was the change due to another task marking the old ctime QUERIED?
2894 * If so, then retry the swap. This can only happen once since
2895 * the only way to clear I_CTIME_QUERIED is to stamp the inode
2898 if (!(old
& I_CTIME_QUERIED
) && (cur
== (old
| I_CTIME_QUERIED
)))
2901 /* Otherwise, it was a new timestamp. */
2902 cur_ts
.tv_sec
= inode
->i_ctime_sec
;
2903 cur_ts
.tv_nsec
= cur
& ~I_CTIME_QUERIED
;
2906 EXPORT_SYMBOL(inode_set_ctime_deleg
);
2909 * in_group_or_capable - check whether caller is CAP_FSETID privileged
2910 * @idmap: idmap of the mount @inode was found from
2911 * @inode: inode to check
2912 * @vfsgid: the new/current vfsgid of @inode
2914 * Check whether @vfsgid is in the caller's group list or if the caller is
2915 * privileged with CAP_FSETID over @inode. This can be used to determine
2916 * whether the setgid bit can be kept or must be dropped.
2918 * Return: true if the caller is sufficiently privileged, false if not.
2920 bool in_group_or_capable(struct mnt_idmap
*idmap
,
2921 const struct inode
*inode
, vfsgid_t vfsgid
)
2923 if (vfsgid_in_group_p(vfsgid
))
2925 if (capable_wrt_inode_uidgid(idmap
, inode
, CAP_FSETID
))
2929 EXPORT_SYMBOL(in_group_or_capable
);
2932 * mode_strip_sgid - handle the sgid bit for non-directories
2933 * @idmap: idmap of the mount the inode was created from
2934 * @dir: parent directory inode
2935 * @mode: mode of the file to be created in @dir
2937 * If the @mode of the new file has both the S_ISGID and S_IXGRP bit
2938 * raised and @dir has the S_ISGID bit raised ensure that the caller is
2939 * either in the group of the parent directory or they have CAP_FSETID
2940 * in their user namespace and are privileged over the parent directory.
2941 * In all other cases, strip the S_ISGID bit from @mode.
2943 * Return: the new mode to use for the file
2945 umode_t
mode_strip_sgid(struct mnt_idmap
*idmap
,
2946 const struct inode
*dir
, umode_t mode
)
2948 if ((mode
& (S_ISGID
| S_IXGRP
)) != (S_ISGID
| S_IXGRP
))
2950 if (S_ISDIR(mode
) || !dir
|| !(dir
->i_mode
& S_ISGID
))
2952 if (in_group_or_capable(idmap
, dir
, i_gid_into_vfsgid(idmap
, dir
)))
2954 return mode
& ~S_ISGID
;
2956 EXPORT_SYMBOL(mode_strip_sgid
);