tracing: Use guard() rather than scoped_guard()
[drm/drm-misc.git] / fs / inode.c
blobb13b778257ae6cd48785d68e8da4040161e2f76b
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * (C) 1997 Linus Torvalds
4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5 */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/filelock.h>
9 #include <linux/mm.h>
10 #include <linux/backing-dev.h>
11 #include <linux/hash.h>
12 #include <linux/swap.h>
13 #include <linux/security.h>
14 #include <linux/cdev.h>
15 #include <linux/memblock.h>
16 #include <linux/fsnotify.h>
17 #include <linux/mount.h>
18 #include <linux/posix_acl.h>
19 #include <linux/buffer_head.h> /* for inode_has_buffers */
20 #include <linux/ratelimit.h>
21 #include <linux/list_lru.h>
22 #include <linux/iversion.h>
23 #include <linux/rw_hint.h>
24 #include <linux/seq_file.h>
25 #include <linux/debugfs.h>
26 #include <trace/events/writeback.h>
27 #define CREATE_TRACE_POINTS
28 #include <trace/events/timestamp.h>
30 #include "internal.h"
33 * Inode locking rules:
35 * inode->i_lock protects:
36 * inode->i_state, inode->i_hash, __iget(), inode->i_io_list
37 * Inode LRU list locks protect:
38 * inode->i_sb->s_inode_lru, inode->i_lru
39 * inode->i_sb->s_inode_list_lock protects:
40 * inode->i_sb->s_inodes, inode->i_sb_list
41 * bdi->wb.list_lock protects:
42 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
43 * inode_hash_lock protects:
44 * inode_hashtable, inode->i_hash
46 * Lock ordering:
48 * inode->i_sb->s_inode_list_lock
49 * inode->i_lock
50 * Inode LRU list locks
52 * bdi->wb.list_lock
53 * inode->i_lock
55 * inode_hash_lock
56 * inode->i_sb->s_inode_list_lock
57 * inode->i_lock
59 * iunique_lock
60 * inode_hash_lock
63 static unsigned int i_hash_mask __ro_after_init;
64 static unsigned int i_hash_shift __ro_after_init;
65 static struct hlist_head *inode_hashtable __ro_after_init;
66 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
69 * Empty aops. Can be used for the cases where the user does not
70 * define any of the address_space operations.
72 const struct address_space_operations empty_aops = {
74 EXPORT_SYMBOL(empty_aops);
76 static DEFINE_PER_CPU(unsigned long, nr_inodes);
77 static DEFINE_PER_CPU(unsigned long, nr_unused);
79 static struct kmem_cache *inode_cachep __ro_after_init;
81 static long get_nr_inodes(void)
83 int i;
84 long sum = 0;
85 for_each_possible_cpu(i)
86 sum += per_cpu(nr_inodes, i);
87 return sum < 0 ? 0 : sum;
90 static inline long get_nr_inodes_unused(void)
92 int i;
93 long sum = 0;
94 for_each_possible_cpu(i)
95 sum += per_cpu(nr_unused, i);
96 return sum < 0 ? 0 : sum;
99 long get_nr_dirty_inodes(void)
101 /* not actually dirty inodes, but a wild approximation */
102 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
103 return nr_dirty > 0 ? nr_dirty : 0;
106 #ifdef CONFIG_DEBUG_FS
107 static DEFINE_PER_CPU(long, mg_ctime_updates);
108 static DEFINE_PER_CPU(long, mg_fine_stamps);
109 static DEFINE_PER_CPU(long, mg_ctime_swaps);
111 static unsigned long get_mg_ctime_updates(void)
113 unsigned long sum = 0;
114 int i;
116 for_each_possible_cpu(i)
117 sum += data_race(per_cpu(mg_ctime_updates, i));
118 return sum;
121 static unsigned long get_mg_fine_stamps(void)
123 unsigned long sum = 0;
124 int i;
126 for_each_possible_cpu(i)
127 sum += data_race(per_cpu(mg_fine_stamps, i));
128 return sum;
131 static unsigned long get_mg_ctime_swaps(void)
133 unsigned long sum = 0;
134 int i;
136 for_each_possible_cpu(i)
137 sum += data_race(per_cpu(mg_ctime_swaps, i));
138 return sum;
141 #define mgtime_counter_inc(__var) this_cpu_inc(__var)
143 static int mgts_show(struct seq_file *s, void *p)
145 unsigned long ctime_updates = get_mg_ctime_updates();
146 unsigned long ctime_swaps = get_mg_ctime_swaps();
147 unsigned long fine_stamps = get_mg_fine_stamps();
148 unsigned long floor_swaps = timekeeping_get_mg_floor_swaps();
150 seq_printf(s, "%lu %lu %lu %lu\n",
151 ctime_updates, ctime_swaps, fine_stamps, floor_swaps);
152 return 0;
155 DEFINE_SHOW_ATTRIBUTE(mgts);
157 static int __init mg_debugfs_init(void)
159 debugfs_create_file("multigrain_timestamps", S_IFREG | S_IRUGO, NULL, NULL, &mgts_fops);
160 return 0;
162 late_initcall(mg_debugfs_init);
164 #else /* ! CONFIG_DEBUG_FS */
166 #define mgtime_counter_inc(__var) do { } while (0)
168 #endif /* CONFIG_DEBUG_FS */
171 * Handle nr_inode sysctl
173 #ifdef CONFIG_SYSCTL
175 * Statistics gathering..
177 static struct inodes_stat_t inodes_stat;
179 static int proc_nr_inodes(const struct ctl_table *table, int write, void *buffer,
180 size_t *lenp, loff_t *ppos)
182 inodes_stat.nr_inodes = get_nr_inodes();
183 inodes_stat.nr_unused = get_nr_inodes_unused();
184 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
187 static struct ctl_table inodes_sysctls[] = {
189 .procname = "inode-nr",
190 .data = &inodes_stat,
191 .maxlen = 2*sizeof(long),
192 .mode = 0444,
193 .proc_handler = proc_nr_inodes,
196 .procname = "inode-state",
197 .data = &inodes_stat,
198 .maxlen = 7*sizeof(long),
199 .mode = 0444,
200 .proc_handler = proc_nr_inodes,
204 static int __init init_fs_inode_sysctls(void)
206 register_sysctl_init("fs", inodes_sysctls);
207 return 0;
209 early_initcall(init_fs_inode_sysctls);
210 #endif
212 static int no_open(struct inode *inode, struct file *file)
214 return -ENXIO;
218 * inode_init_always_gfp - perform inode structure initialisation
219 * @sb: superblock inode belongs to
220 * @inode: inode to initialise
221 * @gfp: allocation flags
223 * These are initializations that need to be done on every inode
224 * allocation as the fields are not initialised by slab allocation.
225 * If there are additional allocations required @gfp is used.
227 int inode_init_always_gfp(struct super_block *sb, struct inode *inode, gfp_t gfp)
229 static const struct inode_operations empty_iops;
230 static const struct file_operations no_open_fops = {.open = no_open};
231 struct address_space *const mapping = &inode->i_data;
233 inode->i_sb = sb;
234 inode->i_blkbits = sb->s_blocksize_bits;
235 inode->i_flags = 0;
236 inode->i_state = 0;
237 atomic64_set(&inode->i_sequence, 0);
238 atomic_set(&inode->i_count, 1);
239 inode->i_op = &empty_iops;
240 inode->i_fop = &no_open_fops;
241 inode->i_ino = 0;
242 inode->__i_nlink = 1;
243 inode->i_opflags = 0;
244 if (sb->s_xattr)
245 inode->i_opflags |= IOP_XATTR;
246 if (sb->s_type->fs_flags & FS_MGTIME)
247 inode->i_opflags |= IOP_MGTIME;
248 i_uid_write(inode, 0);
249 i_gid_write(inode, 0);
250 atomic_set(&inode->i_writecount, 0);
251 inode->i_size = 0;
252 inode->i_write_hint = WRITE_LIFE_NOT_SET;
253 inode->i_blocks = 0;
254 inode->i_bytes = 0;
255 inode->i_generation = 0;
256 inode->i_pipe = NULL;
257 inode->i_cdev = NULL;
258 inode->i_link = NULL;
259 inode->i_dir_seq = 0;
260 inode->i_rdev = 0;
261 inode->dirtied_when = 0;
263 #ifdef CONFIG_CGROUP_WRITEBACK
264 inode->i_wb_frn_winner = 0;
265 inode->i_wb_frn_avg_time = 0;
266 inode->i_wb_frn_history = 0;
267 #endif
269 spin_lock_init(&inode->i_lock);
270 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
272 init_rwsem(&inode->i_rwsem);
273 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
275 atomic_set(&inode->i_dio_count, 0);
277 mapping->a_ops = &empty_aops;
278 mapping->host = inode;
279 mapping->flags = 0;
280 mapping->wb_err = 0;
281 atomic_set(&mapping->i_mmap_writable, 0);
282 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
283 atomic_set(&mapping->nr_thps, 0);
284 #endif
285 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
286 mapping->i_private_data = NULL;
287 mapping->writeback_index = 0;
288 init_rwsem(&mapping->invalidate_lock);
289 lockdep_set_class_and_name(&mapping->invalidate_lock,
290 &sb->s_type->invalidate_lock_key,
291 "mapping.invalidate_lock");
292 if (sb->s_iflags & SB_I_STABLE_WRITES)
293 mapping_set_stable_writes(mapping);
294 inode->i_private = NULL;
295 inode->i_mapping = mapping;
296 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
297 #ifdef CONFIG_FS_POSIX_ACL
298 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
299 #endif
301 #ifdef CONFIG_FSNOTIFY
302 inode->i_fsnotify_mask = 0;
303 #endif
304 inode->i_flctx = NULL;
306 if (unlikely(security_inode_alloc(inode, gfp)))
307 return -ENOMEM;
309 this_cpu_inc(nr_inodes);
311 return 0;
313 EXPORT_SYMBOL(inode_init_always_gfp);
315 void free_inode_nonrcu(struct inode *inode)
317 kmem_cache_free(inode_cachep, inode);
319 EXPORT_SYMBOL(free_inode_nonrcu);
321 static void i_callback(struct rcu_head *head)
323 struct inode *inode = container_of(head, struct inode, i_rcu);
324 if (inode->free_inode)
325 inode->free_inode(inode);
326 else
327 free_inode_nonrcu(inode);
330 static struct inode *alloc_inode(struct super_block *sb)
332 const struct super_operations *ops = sb->s_op;
333 struct inode *inode;
335 if (ops->alloc_inode)
336 inode = ops->alloc_inode(sb);
337 else
338 inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL);
340 if (!inode)
341 return NULL;
343 if (unlikely(inode_init_always(sb, inode))) {
344 if (ops->destroy_inode) {
345 ops->destroy_inode(inode);
346 if (!ops->free_inode)
347 return NULL;
349 inode->free_inode = ops->free_inode;
350 i_callback(&inode->i_rcu);
351 return NULL;
354 return inode;
357 void __destroy_inode(struct inode *inode)
359 BUG_ON(inode_has_buffers(inode));
360 inode_detach_wb(inode);
361 security_inode_free(inode);
362 fsnotify_inode_delete(inode);
363 locks_free_lock_context(inode);
364 if (!inode->i_nlink) {
365 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
366 atomic_long_dec(&inode->i_sb->s_remove_count);
369 #ifdef CONFIG_FS_POSIX_ACL
370 if (inode->i_acl && !is_uncached_acl(inode->i_acl))
371 posix_acl_release(inode->i_acl);
372 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
373 posix_acl_release(inode->i_default_acl);
374 #endif
375 this_cpu_dec(nr_inodes);
377 EXPORT_SYMBOL(__destroy_inode);
379 static void destroy_inode(struct inode *inode)
381 const struct super_operations *ops = inode->i_sb->s_op;
383 BUG_ON(!list_empty(&inode->i_lru));
384 __destroy_inode(inode);
385 if (ops->destroy_inode) {
386 ops->destroy_inode(inode);
387 if (!ops->free_inode)
388 return;
390 inode->free_inode = ops->free_inode;
391 call_rcu(&inode->i_rcu, i_callback);
395 * drop_nlink - directly drop an inode's link count
396 * @inode: inode
398 * This is a low-level filesystem helper to replace any
399 * direct filesystem manipulation of i_nlink. In cases
400 * where we are attempting to track writes to the
401 * filesystem, a decrement to zero means an imminent
402 * write when the file is truncated and actually unlinked
403 * on the filesystem.
405 void drop_nlink(struct inode *inode)
407 WARN_ON(inode->i_nlink == 0);
408 inode->__i_nlink--;
409 if (!inode->i_nlink)
410 atomic_long_inc(&inode->i_sb->s_remove_count);
412 EXPORT_SYMBOL(drop_nlink);
415 * clear_nlink - directly zero an inode's link count
416 * @inode: inode
418 * This is a low-level filesystem helper to replace any
419 * direct filesystem manipulation of i_nlink. See
420 * drop_nlink() for why we care about i_nlink hitting zero.
422 void clear_nlink(struct inode *inode)
424 if (inode->i_nlink) {
425 inode->__i_nlink = 0;
426 atomic_long_inc(&inode->i_sb->s_remove_count);
429 EXPORT_SYMBOL(clear_nlink);
432 * set_nlink - directly set an inode's link count
433 * @inode: inode
434 * @nlink: new nlink (should be non-zero)
436 * This is a low-level filesystem helper to replace any
437 * direct filesystem manipulation of i_nlink.
439 void set_nlink(struct inode *inode, unsigned int nlink)
441 if (!nlink) {
442 clear_nlink(inode);
443 } else {
444 /* Yes, some filesystems do change nlink from zero to one */
445 if (inode->i_nlink == 0)
446 atomic_long_dec(&inode->i_sb->s_remove_count);
448 inode->__i_nlink = nlink;
451 EXPORT_SYMBOL(set_nlink);
454 * inc_nlink - directly increment an inode's link count
455 * @inode: inode
457 * This is a low-level filesystem helper to replace any
458 * direct filesystem manipulation of i_nlink. Currently,
459 * it is only here for parity with dec_nlink().
461 void inc_nlink(struct inode *inode)
463 if (unlikely(inode->i_nlink == 0)) {
464 WARN_ON(!(inode->i_state & I_LINKABLE));
465 atomic_long_dec(&inode->i_sb->s_remove_count);
468 inode->__i_nlink++;
470 EXPORT_SYMBOL(inc_nlink);
472 static void __address_space_init_once(struct address_space *mapping)
474 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
475 init_rwsem(&mapping->i_mmap_rwsem);
476 INIT_LIST_HEAD(&mapping->i_private_list);
477 spin_lock_init(&mapping->i_private_lock);
478 mapping->i_mmap = RB_ROOT_CACHED;
481 void address_space_init_once(struct address_space *mapping)
483 memset(mapping, 0, sizeof(*mapping));
484 __address_space_init_once(mapping);
486 EXPORT_SYMBOL(address_space_init_once);
489 * These are initializations that only need to be done
490 * once, because the fields are idempotent across use
491 * of the inode, so let the slab aware of that.
493 void inode_init_once(struct inode *inode)
495 memset(inode, 0, sizeof(*inode));
496 INIT_HLIST_NODE(&inode->i_hash);
497 INIT_LIST_HEAD(&inode->i_devices);
498 INIT_LIST_HEAD(&inode->i_io_list);
499 INIT_LIST_HEAD(&inode->i_wb_list);
500 INIT_LIST_HEAD(&inode->i_lru);
501 INIT_LIST_HEAD(&inode->i_sb_list);
502 __address_space_init_once(&inode->i_data);
503 i_size_ordered_init(inode);
505 EXPORT_SYMBOL(inode_init_once);
507 static void init_once(void *foo)
509 struct inode *inode = (struct inode *) foo;
511 inode_init_once(inode);
515 * get additional reference to inode; caller must already hold one.
517 void ihold(struct inode *inode)
519 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
521 EXPORT_SYMBOL(ihold);
523 static void __inode_add_lru(struct inode *inode, bool rotate)
525 if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE))
526 return;
527 if (atomic_read(&inode->i_count))
528 return;
529 if (!(inode->i_sb->s_flags & SB_ACTIVE))
530 return;
531 if (!mapping_shrinkable(&inode->i_data))
532 return;
534 if (list_lru_add_obj(&inode->i_sb->s_inode_lru, &inode->i_lru))
535 this_cpu_inc(nr_unused);
536 else if (rotate)
537 inode->i_state |= I_REFERENCED;
540 struct wait_queue_head *inode_bit_waitqueue(struct wait_bit_queue_entry *wqe,
541 struct inode *inode, u32 bit)
543 void *bit_address;
545 bit_address = inode_state_wait_address(inode, bit);
546 init_wait_var_entry(wqe, bit_address, 0);
547 return __var_waitqueue(bit_address);
549 EXPORT_SYMBOL(inode_bit_waitqueue);
552 * Add inode to LRU if needed (inode is unused and clean).
554 * Needs inode->i_lock held.
556 void inode_add_lru(struct inode *inode)
558 __inode_add_lru(inode, false);
561 static void inode_lru_list_del(struct inode *inode)
563 if (list_lru_del_obj(&inode->i_sb->s_inode_lru, &inode->i_lru))
564 this_cpu_dec(nr_unused);
567 static void inode_pin_lru_isolating(struct inode *inode)
569 lockdep_assert_held(&inode->i_lock);
570 WARN_ON(inode->i_state & (I_LRU_ISOLATING | I_FREEING | I_WILL_FREE));
571 inode->i_state |= I_LRU_ISOLATING;
574 static void inode_unpin_lru_isolating(struct inode *inode)
576 spin_lock(&inode->i_lock);
577 WARN_ON(!(inode->i_state & I_LRU_ISOLATING));
578 inode->i_state &= ~I_LRU_ISOLATING;
579 /* Called with inode->i_lock which ensures memory ordering. */
580 inode_wake_up_bit(inode, __I_LRU_ISOLATING);
581 spin_unlock(&inode->i_lock);
584 static void inode_wait_for_lru_isolating(struct inode *inode)
586 struct wait_bit_queue_entry wqe;
587 struct wait_queue_head *wq_head;
589 lockdep_assert_held(&inode->i_lock);
590 if (!(inode->i_state & I_LRU_ISOLATING))
591 return;
593 wq_head = inode_bit_waitqueue(&wqe, inode, __I_LRU_ISOLATING);
594 for (;;) {
595 prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
597 * Checking I_LRU_ISOLATING with inode->i_lock guarantees
598 * memory ordering.
600 if (!(inode->i_state & I_LRU_ISOLATING))
601 break;
602 spin_unlock(&inode->i_lock);
603 schedule();
604 spin_lock(&inode->i_lock);
606 finish_wait(wq_head, &wqe.wq_entry);
607 WARN_ON(inode->i_state & I_LRU_ISOLATING);
611 * inode_sb_list_add - add inode to the superblock list of inodes
612 * @inode: inode to add
614 void inode_sb_list_add(struct inode *inode)
616 spin_lock(&inode->i_sb->s_inode_list_lock);
617 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
618 spin_unlock(&inode->i_sb->s_inode_list_lock);
620 EXPORT_SYMBOL_GPL(inode_sb_list_add);
622 static inline void inode_sb_list_del(struct inode *inode)
624 if (!list_empty(&inode->i_sb_list)) {
625 spin_lock(&inode->i_sb->s_inode_list_lock);
626 list_del_init(&inode->i_sb_list);
627 spin_unlock(&inode->i_sb->s_inode_list_lock);
631 static unsigned long hash(struct super_block *sb, unsigned long hashval)
633 unsigned long tmp;
635 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
636 L1_CACHE_BYTES;
637 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
638 return tmp & i_hash_mask;
642 * __insert_inode_hash - hash an inode
643 * @inode: unhashed inode
644 * @hashval: unsigned long value used to locate this object in the
645 * inode_hashtable.
647 * Add an inode to the inode hash for this superblock.
649 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
651 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
653 spin_lock(&inode_hash_lock);
654 spin_lock(&inode->i_lock);
655 hlist_add_head_rcu(&inode->i_hash, b);
656 spin_unlock(&inode->i_lock);
657 spin_unlock(&inode_hash_lock);
659 EXPORT_SYMBOL(__insert_inode_hash);
662 * __remove_inode_hash - remove an inode from the hash
663 * @inode: inode to unhash
665 * Remove an inode from the superblock.
667 void __remove_inode_hash(struct inode *inode)
669 spin_lock(&inode_hash_lock);
670 spin_lock(&inode->i_lock);
671 hlist_del_init_rcu(&inode->i_hash);
672 spin_unlock(&inode->i_lock);
673 spin_unlock(&inode_hash_lock);
675 EXPORT_SYMBOL(__remove_inode_hash);
677 void dump_mapping(const struct address_space *mapping)
679 struct inode *host;
680 const struct address_space_operations *a_ops;
681 struct hlist_node *dentry_first;
682 struct dentry *dentry_ptr;
683 struct dentry dentry;
684 char fname[64] = {};
685 unsigned long ino;
688 * If mapping is an invalid pointer, we don't want to crash
689 * accessing it, so probe everything depending on it carefully.
691 if (get_kernel_nofault(host, &mapping->host) ||
692 get_kernel_nofault(a_ops, &mapping->a_ops)) {
693 pr_warn("invalid mapping:%px\n", mapping);
694 return;
697 if (!host) {
698 pr_warn("aops:%ps\n", a_ops);
699 return;
702 if (get_kernel_nofault(dentry_first, &host->i_dentry.first) ||
703 get_kernel_nofault(ino, &host->i_ino)) {
704 pr_warn("aops:%ps invalid inode:%px\n", a_ops, host);
705 return;
708 if (!dentry_first) {
709 pr_warn("aops:%ps ino:%lx\n", a_ops, ino);
710 return;
713 dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias);
714 if (get_kernel_nofault(dentry, dentry_ptr) ||
715 !dentry.d_parent || !dentry.d_name.name) {
716 pr_warn("aops:%ps ino:%lx invalid dentry:%px\n",
717 a_ops, ino, dentry_ptr);
718 return;
721 if (strncpy_from_kernel_nofault(fname, dentry.d_name.name, 63) < 0)
722 strscpy(fname, "<invalid>");
724 * Even if strncpy_from_kernel_nofault() succeeded,
725 * the fname could be unreliable
727 pr_warn("aops:%ps ino:%lx dentry name(?):\"%s\"\n",
728 a_ops, ino, fname);
731 void clear_inode(struct inode *inode)
734 * We have to cycle the i_pages lock here because reclaim can be in the
735 * process of removing the last page (in __filemap_remove_folio())
736 * and we must not free the mapping under it.
738 xa_lock_irq(&inode->i_data.i_pages);
739 BUG_ON(inode->i_data.nrpages);
741 * Almost always, mapping_empty(&inode->i_data) here; but there are
742 * two known and long-standing ways in which nodes may get left behind
743 * (when deep radix-tree node allocation failed partway; or when THP
744 * collapse_file() failed). Until those two known cases are cleaned up,
745 * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
746 * nor even WARN_ON(!mapping_empty).
748 xa_unlock_irq(&inode->i_data.i_pages);
749 BUG_ON(!list_empty(&inode->i_data.i_private_list));
750 BUG_ON(!(inode->i_state & I_FREEING));
751 BUG_ON(inode->i_state & I_CLEAR);
752 BUG_ON(!list_empty(&inode->i_wb_list));
753 /* don't need i_lock here, no concurrent mods to i_state */
754 inode->i_state = I_FREEING | I_CLEAR;
756 EXPORT_SYMBOL(clear_inode);
759 * Free the inode passed in, removing it from the lists it is still connected
760 * to. We remove any pages still attached to the inode and wait for any IO that
761 * is still in progress before finally destroying the inode.
763 * An inode must already be marked I_FREEING so that we avoid the inode being
764 * moved back onto lists if we race with other code that manipulates the lists
765 * (e.g. writeback_single_inode). The caller is responsible for setting this.
767 * An inode must already be removed from the LRU list before being evicted from
768 * the cache. This should occur atomically with setting the I_FREEING state
769 * flag, so no inodes here should ever be on the LRU when being evicted.
771 static void evict(struct inode *inode)
773 const struct super_operations *op = inode->i_sb->s_op;
775 BUG_ON(!(inode->i_state & I_FREEING));
776 BUG_ON(!list_empty(&inode->i_lru));
778 if (!list_empty(&inode->i_io_list))
779 inode_io_list_del(inode);
781 inode_sb_list_del(inode);
783 spin_lock(&inode->i_lock);
784 inode_wait_for_lru_isolating(inode);
787 * Wait for flusher thread to be done with the inode so that filesystem
788 * does not start destroying it while writeback is still running. Since
789 * the inode has I_FREEING set, flusher thread won't start new work on
790 * the inode. We just have to wait for running writeback to finish.
792 inode_wait_for_writeback(inode);
793 spin_unlock(&inode->i_lock);
795 if (op->evict_inode) {
796 op->evict_inode(inode);
797 } else {
798 truncate_inode_pages_final(&inode->i_data);
799 clear_inode(inode);
801 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
802 cd_forget(inode);
804 remove_inode_hash(inode);
807 * Wake up waiters in __wait_on_freeing_inode().
809 * Lockless hash lookup may end up finding the inode before we removed
810 * it above, but only lock it *after* we are done with the wakeup below.
811 * In this case the potential waiter cannot safely block.
813 * The inode being unhashed after the call to remove_inode_hash() is
814 * used as an indicator whether blocking on it is safe.
816 spin_lock(&inode->i_lock);
818 * Pairs with the barrier in prepare_to_wait_event() to make sure
819 * ___wait_var_event() either sees the bit cleared or
820 * waitqueue_active() check in wake_up_var() sees the waiter.
822 smp_mb__after_spinlock();
823 inode_wake_up_bit(inode, __I_NEW);
824 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
825 spin_unlock(&inode->i_lock);
827 destroy_inode(inode);
831 * dispose_list - dispose of the contents of a local list
832 * @head: the head of the list to free
834 * Dispose-list gets a local list with local inodes in it, so it doesn't
835 * need to worry about list corruption and SMP locks.
837 static void dispose_list(struct list_head *head)
839 while (!list_empty(head)) {
840 struct inode *inode;
842 inode = list_first_entry(head, struct inode, i_lru);
843 list_del_init(&inode->i_lru);
845 evict(inode);
846 cond_resched();
851 * evict_inodes - evict all evictable inodes for a superblock
852 * @sb: superblock to operate on
854 * Make sure that no inodes with zero refcount are retained. This is
855 * called by superblock shutdown after having SB_ACTIVE flag removed,
856 * so any inode reaching zero refcount during or after that call will
857 * be immediately evicted.
859 void evict_inodes(struct super_block *sb)
861 struct inode *inode, *next;
862 LIST_HEAD(dispose);
864 again:
865 spin_lock(&sb->s_inode_list_lock);
866 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
867 if (atomic_read(&inode->i_count))
868 continue;
870 spin_lock(&inode->i_lock);
871 if (atomic_read(&inode->i_count)) {
872 spin_unlock(&inode->i_lock);
873 continue;
875 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
876 spin_unlock(&inode->i_lock);
877 continue;
880 inode->i_state |= I_FREEING;
881 inode_lru_list_del(inode);
882 spin_unlock(&inode->i_lock);
883 list_add(&inode->i_lru, &dispose);
886 * We can have a ton of inodes to evict at unmount time given
887 * enough memory, check to see if we need to go to sleep for a
888 * bit so we don't livelock.
890 if (need_resched()) {
891 spin_unlock(&sb->s_inode_list_lock);
892 cond_resched();
893 dispose_list(&dispose);
894 goto again;
897 spin_unlock(&sb->s_inode_list_lock);
899 dispose_list(&dispose);
901 EXPORT_SYMBOL_GPL(evict_inodes);
904 * invalidate_inodes - attempt to free all inodes on a superblock
905 * @sb: superblock to operate on
907 * Attempts to free all inodes (including dirty inodes) for a given superblock.
909 void invalidate_inodes(struct super_block *sb)
911 struct inode *inode, *next;
912 LIST_HEAD(dispose);
914 again:
915 spin_lock(&sb->s_inode_list_lock);
916 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
917 spin_lock(&inode->i_lock);
918 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
919 spin_unlock(&inode->i_lock);
920 continue;
922 if (atomic_read(&inode->i_count)) {
923 spin_unlock(&inode->i_lock);
924 continue;
927 inode->i_state |= I_FREEING;
928 inode_lru_list_del(inode);
929 spin_unlock(&inode->i_lock);
930 list_add(&inode->i_lru, &dispose);
931 if (need_resched()) {
932 spin_unlock(&sb->s_inode_list_lock);
933 cond_resched();
934 dispose_list(&dispose);
935 goto again;
938 spin_unlock(&sb->s_inode_list_lock);
940 dispose_list(&dispose);
944 * Isolate the inode from the LRU in preparation for freeing it.
946 * If the inode has the I_REFERENCED flag set, then it means that it has been
947 * used recently - the flag is set in iput_final(). When we encounter such an
948 * inode, clear the flag and move it to the back of the LRU so it gets another
949 * pass through the LRU before it gets reclaimed. This is necessary because of
950 * the fact we are doing lazy LRU updates to minimise lock contention so the
951 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
952 * with this flag set because they are the inodes that are out of order.
954 static enum lru_status inode_lru_isolate(struct list_head *item,
955 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
957 struct list_head *freeable = arg;
958 struct inode *inode = container_of(item, struct inode, i_lru);
961 * We are inverting the lru lock/inode->i_lock here, so use a
962 * trylock. If we fail to get the lock, just skip it.
964 if (!spin_trylock(&inode->i_lock))
965 return LRU_SKIP;
968 * Inodes can get referenced, redirtied, or repopulated while
969 * they're already on the LRU, and this can make them
970 * unreclaimable for a while. Remove them lazily here; iput,
971 * sync, or the last page cache deletion will requeue them.
973 if (atomic_read(&inode->i_count) ||
974 (inode->i_state & ~I_REFERENCED) ||
975 !mapping_shrinkable(&inode->i_data)) {
976 list_lru_isolate(lru, &inode->i_lru);
977 spin_unlock(&inode->i_lock);
978 this_cpu_dec(nr_unused);
979 return LRU_REMOVED;
982 /* Recently referenced inodes get one more pass */
983 if (inode->i_state & I_REFERENCED) {
984 inode->i_state &= ~I_REFERENCED;
985 spin_unlock(&inode->i_lock);
986 return LRU_ROTATE;
990 * On highmem systems, mapping_shrinkable() permits dropping
991 * page cache in order to free up struct inodes: lowmem might
992 * be under pressure before the cache inside the highmem zone.
994 if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) {
995 inode_pin_lru_isolating(inode);
996 spin_unlock(&inode->i_lock);
997 spin_unlock(lru_lock);
998 if (remove_inode_buffers(inode)) {
999 unsigned long reap;
1000 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
1001 if (current_is_kswapd())
1002 __count_vm_events(KSWAPD_INODESTEAL, reap);
1003 else
1004 __count_vm_events(PGINODESTEAL, reap);
1005 mm_account_reclaimed_pages(reap);
1007 inode_unpin_lru_isolating(inode);
1008 spin_lock(lru_lock);
1009 return LRU_RETRY;
1012 WARN_ON(inode->i_state & I_NEW);
1013 inode->i_state |= I_FREEING;
1014 list_lru_isolate_move(lru, &inode->i_lru, freeable);
1015 spin_unlock(&inode->i_lock);
1017 this_cpu_dec(nr_unused);
1018 return LRU_REMOVED;
1022 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
1023 * This is called from the superblock shrinker function with a number of inodes
1024 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
1025 * then are freed outside inode_lock by dispose_list().
1027 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
1029 LIST_HEAD(freeable);
1030 long freed;
1032 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
1033 inode_lru_isolate, &freeable);
1034 dispose_list(&freeable);
1035 return freed;
1038 static void __wait_on_freeing_inode(struct inode *inode, bool is_inode_hash_locked);
1040 * Called with the inode lock held.
1042 static struct inode *find_inode(struct super_block *sb,
1043 struct hlist_head *head,
1044 int (*test)(struct inode *, void *),
1045 void *data, bool is_inode_hash_locked)
1047 struct inode *inode = NULL;
1049 if (is_inode_hash_locked)
1050 lockdep_assert_held(&inode_hash_lock);
1051 else
1052 lockdep_assert_not_held(&inode_hash_lock);
1054 rcu_read_lock();
1055 repeat:
1056 hlist_for_each_entry_rcu(inode, head, i_hash) {
1057 if (inode->i_sb != sb)
1058 continue;
1059 if (!test(inode, data))
1060 continue;
1061 spin_lock(&inode->i_lock);
1062 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
1063 __wait_on_freeing_inode(inode, is_inode_hash_locked);
1064 goto repeat;
1066 if (unlikely(inode->i_state & I_CREATING)) {
1067 spin_unlock(&inode->i_lock);
1068 rcu_read_unlock();
1069 return ERR_PTR(-ESTALE);
1071 __iget(inode);
1072 spin_unlock(&inode->i_lock);
1073 rcu_read_unlock();
1074 return inode;
1076 rcu_read_unlock();
1077 return NULL;
1081 * find_inode_fast is the fast path version of find_inode, see the comment at
1082 * iget_locked for details.
1084 static struct inode *find_inode_fast(struct super_block *sb,
1085 struct hlist_head *head, unsigned long ino,
1086 bool is_inode_hash_locked)
1088 struct inode *inode = NULL;
1090 if (is_inode_hash_locked)
1091 lockdep_assert_held(&inode_hash_lock);
1092 else
1093 lockdep_assert_not_held(&inode_hash_lock);
1095 rcu_read_lock();
1096 repeat:
1097 hlist_for_each_entry_rcu(inode, head, i_hash) {
1098 if (inode->i_ino != ino)
1099 continue;
1100 if (inode->i_sb != sb)
1101 continue;
1102 spin_lock(&inode->i_lock);
1103 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
1104 __wait_on_freeing_inode(inode, is_inode_hash_locked);
1105 goto repeat;
1107 if (unlikely(inode->i_state & I_CREATING)) {
1108 spin_unlock(&inode->i_lock);
1109 rcu_read_unlock();
1110 return ERR_PTR(-ESTALE);
1112 __iget(inode);
1113 spin_unlock(&inode->i_lock);
1114 rcu_read_unlock();
1115 return inode;
1117 rcu_read_unlock();
1118 return NULL;
1122 * Each cpu owns a range of LAST_INO_BATCH numbers.
1123 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
1124 * to renew the exhausted range.
1126 * This does not significantly increase overflow rate because every CPU can
1127 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
1128 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
1129 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
1130 * overflow rate by 2x, which does not seem too significant.
1132 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1133 * error if st_ino won't fit in target struct field. Use 32bit counter
1134 * here to attempt to avoid that.
1136 #define LAST_INO_BATCH 1024
1137 static DEFINE_PER_CPU(unsigned int, last_ino);
1139 unsigned int get_next_ino(void)
1141 unsigned int *p = &get_cpu_var(last_ino);
1142 unsigned int res = *p;
1144 #ifdef CONFIG_SMP
1145 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
1146 static atomic_t shared_last_ino;
1147 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
1149 res = next - LAST_INO_BATCH;
1151 #endif
1153 res++;
1154 /* get_next_ino should not provide a 0 inode number */
1155 if (unlikely(!res))
1156 res++;
1157 *p = res;
1158 put_cpu_var(last_ino);
1159 return res;
1161 EXPORT_SYMBOL(get_next_ino);
1164 * new_inode_pseudo - obtain an inode
1165 * @sb: superblock
1167 * Allocates a new inode for given superblock.
1168 * Inode wont be chained in superblock s_inodes list
1169 * This means :
1170 * - fs can't be unmount
1171 * - quotas, fsnotify, writeback can't work
1173 struct inode *new_inode_pseudo(struct super_block *sb)
1175 return alloc_inode(sb);
1179 * new_inode - obtain an inode
1180 * @sb: superblock
1182 * Allocates a new inode for given superblock. The default gfp_mask
1183 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
1184 * If HIGHMEM pages are unsuitable or it is known that pages allocated
1185 * for the page cache are not reclaimable or migratable,
1186 * mapping_set_gfp_mask() must be called with suitable flags on the
1187 * newly created inode's mapping
1190 struct inode *new_inode(struct super_block *sb)
1192 struct inode *inode;
1194 inode = new_inode_pseudo(sb);
1195 if (inode)
1196 inode_sb_list_add(inode);
1197 return inode;
1199 EXPORT_SYMBOL(new_inode);
1201 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1202 void lockdep_annotate_inode_mutex_key(struct inode *inode)
1204 if (S_ISDIR(inode->i_mode)) {
1205 struct file_system_type *type = inode->i_sb->s_type;
1207 /* Set new key only if filesystem hasn't already changed it */
1208 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
1210 * ensure nobody is actually holding i_mutex
1212 // mutex_destroy(&inode->i_mutex);
1213 init_rwsem(&inode->i_rwsem);
1214 lockdep_set_class(&inode->i_rwsem,
1215 &type->i_mutex_dir_key);
1219 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
1220 #endif
1223 * unlock_new_inode - clear the I_NEW state and wake up any waiters
1224 * @inode: new inode to unlock
1226 * Called when the inode is fully initialised to clear the new state of the
1227 * inode and wake up anyone waiting for the inode to finish initialisation.
1229 void unlock_new_inode(struct inode *inode)
1231 lockdep_annotate_inode_mutex_key(inode);
1232 spin_lock(&inode->i_lock);
1233 WARN_ON(!(inode->i_state & I_NEW));
1234 inode->i_state &= ~I_NEW & ~I_CREATING;
1236 * Pairs with the barrier in prepare_to_wait_event() to make sure
1237 * ___wait_var_event() either sees the bit cleared or
1238 * waitqueue_active() check in wake_up_var() sees the waiter.
1240 smp_mb();
1241 inode_wake_up_bit(inode, __I_NEW);
1242 spin_unlock(&inode->i_lock);
1244 EXPORT_SYMBOL(unlock_new_inode);
1246 void discard_new_inode(struct inode *inode)
1248 lockdep_annotate_inode_mutex_key(inode);
1249 spin_lock(&inode->i_lock);
1250 WARN_ON(!(inode->i_state & I_NEW));
1251 inode->i_state &= ~I_NEW;
1253 * Pairs with the barrier in prepare_to_wait_event() to make sure
1254 * ___wait_var_event() either sees the bit cleared or
1255 * waitqueue_active() check in wake_up_var() sees the waiter.
1257 smp_mb();
1258 inode_wake_up_bit(inode, __I_NEW);
1259 spin_unlock(&inode->i_lock);
1260 iput(inode);
1262 EXPORT_SYMBOL(discard_new_inode);
1265 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1267 * Lock any non-NULL argument. Passed objects must not be directories.
1268 * Zero, one or two objects may be locked by this function.
1270 * @inode1: first inode to lock
1271 * @inode2: second inode to lock
1273 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1275 if (inode1)
1276 WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1277 if (inode2)
1278 WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1279 if (inode1 > inode2)
1280 swap(inode1, inode2);
1281 if (inode1)
1282 inode_lock(inode1);
1283 if (inode2 && inode2 != inode1)
1284 inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1286 EXPORT_SYMBOL(lock_two_nondirectories);
1289 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1290 * @inode1: first inode to unlock
1291 * @inode2: second inode to unlock
1293 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1295 if (inode1) {
1296 WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1297 inode_unlock(inode1);
1299 if (inode2 && inode2 != inode1) {
1300 WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1301 inode_unlock(inode2);
1304 EXPORT_SYMBOL(unlock_two_nondirectories);
1307 * inode_insert5 - obtain an inode from a mounted file system
1308 * @inode: pre-allocated inode to use for insert to cache
1309 * @hashval: hash value (usually inode number) to get
1310 * @test: callback used for comparisons between inodes
1311 * @set: callback used to initialize a new struct inode
1312 * @data: opaque data pointer to pass to @test and @set
1314 * Search for the inode specified by @hashval and @data in the inode cache,
1315 * and if present return it with an increased reference count. This is a
1316 * variant of iget5_locked() that doesn't allocate an inode.
1318 * If the inode is not present in the cache, insert the pre-allocated inode and
1319 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1320 * to fill it in before unlocking it via unlock_new_inode().
1322 * Note that both @test and @set are called with the inode_hash_lock held, so
1323 * they can't sleep.
1325 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1326 int (*test)(struct inode *, void *),
1327 int (*set)(struct inode *, void *), void *data)
1329 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1330 struct inode *old;
1332 again:
1333 spin_lock(&inode_hash_lock);
1334 old = find_inode(inode->i_sb, head, test, data, true);
1335 if (unlikely(old)) {
1337 * Uhhuh, somebody else created the same inode under us.
1338 * Use the old inode instead of the preallocated one.
1340 spin_unlock(&inode_hash_lock);
1341 if (IS_ERR(old))
1342 return NULL;
1343 wait_on_inode(old);
1344 if (unlikely(inode_unhashed(old))) {
1345 iput(old);
1346 goto again;
1348 return old;
1351 if (set && unlikely(set(inode, data))) {
1352 inode = NULL;
1353 goto unlock;
1357 * Return the locked inode with I_NEW set, the
1358 * caller is responsible for filling in the contents
1360 spin_lock(&inode->i_lock);
1361 inode->i_state |= I_NEW;
1362 hlist_add_head_rcu(&inode->i_hash, head);
1363 spin_unlock(&inode->i_lock);
1366 * Add inode to the sb list if it's not already. It has I_NEW at this
1367 * point, so it should be safe to test i_sb_list locklessly.
1369 if (list_empty(&inode->i_sb_list))
1370 inode_sb_list_add(inode);
1371 unlock:
1372 spin_unlock(&inode_hash_lock);
1374 return inode;
1376 EXPORT_SYMBOL(inode_insert5);
1379 * iget5_locked - obtain an inode from a mounted file system
1380 * @sb: super block of file system
1381 * @hashval: hash value (usually inode number) to get
1382 * @test: callback used for comparisons between inodes
1383 * @set: callback used to initialize a new struct inode
1384 * @data: opaque data pointer to pass to @test and @set
1386 * Search for the inode specified by @hashval and @data in the inode cache,
1387 * and if present return it with an increased reference count. This is a
1388 * generalized version of iget_locked() for file systems where the inode
1389 * number is not sufficient for unique identification of an inode.
1391 * If the inode is not present in the cache, allocate and insert a new inode
1392 * and return it locked, hashed, and with the I_NEW flag set. The file system
1393 * gets to fill it in before unlocking it via unlock_new_inode().
1395 * Note that both @test and @set are called with the inode_hash_lock held, so
1396 * they can't sleep.
1398 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1399 int (*test)(struct inode *, void *),
1400 int (*set)(struct inode *, void *), void *data)
1402 struct inode *inode = ilookup5(sb, hashval, test, data);
1404 if (!inode) {
1405 struct inode *new = alloc_inode(sb);
1407 if (new) {
1408 inode = inode_insert5(new, hashval, test, set, data);
1409 if (unlikely(inode != new))
1410 destroy_inode(new);
1413 return inode;
1415 EXPORT_SYMBOL(iget5_locked);
1418 * iget5_locked_rcu - obtain an inode from a mounted file system
1419 * @sb: super block of file system
1420 * @hashval: hash value (usually inode number) to get
1421 * @test: callback used for comparisons between inodes
1422 * @set: callback used to initialize a new struct inode
1423 * @data: opaque data pointer to pass to @test and @set
1425 * This is equivalent to iget5_locked, except the @test callback must
1426 * tolerate the inode not being stable, including being mid-teardown.
1428 struct inode *iget5_locked_rcu(struct super_block *sb, unsigned long hashval,
1429 int (*test)(struct inode *, void *),
1430 int (*set)(struct inode *, void *), void *data)
1432 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1433 struct inode *inode, *new;
1435 again:
1436 inode = find_inode(sb, head, test, data, false);
1437 if (inode) {
1438 if (IS_ERR(inode))
1439 return NULL;
1440 wait_on_inode(inode);
1441 if (unlikely(inode_unhashed(inode))) {
1442 iput(inode);
1443 goto again;
1445 return inode;
1448 new = alloc_inode(sb);
1449 if (new) {
1450 inode = inode_insert5(new, hashval, test, set, data);
1451 if (unlikely(inode != new))
1452 destroy_inode(new);
1454 return inode;
1456 EXPORT_SYMBOL_GPL(iget5_locked_rcu);
1459 * iget_locked - obtain an inode from a mounted file system
1460 * @sb: super block of file system
1461 * @ino: inode number to get
1463 * Search for the inode specified by @ino in the inode cache and if present
1464 * return it with an increased reference count. This is for file systems
1465 * where the inode number is sufficient for unique identification of an inode.
1467 * If the inode is not in cache, allocate a new inode and return it locked,
1468 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1469 * before unlocking it via unlock_new_inode().
1471 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1473 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1474 struct inode *inode;
1475 again:
1476 inode = find_inode_fast(sb, head, ino, false);
1477 if (inode) {
1478 if (IS_ERR(inode))
1479 return NULL;
1480 wait_on_inode(inode);
1481 if (unlikely(inode_unhashed(inode))) {
1482 iput(inode);
1483 goto again;
1485 return inode;
1488 inode = alloc_inode(sb);
1489 if (inode) {
1490 struct inode *old;
1492 spin_lock(&inode_hash_lock);
1493 /* We released the lock, so.. */
1494 old = find_inode_fast(sb, head, ino, true);
1495 if (!old) {
1496 inode->i_ino = ino;
1497 spin_lock(&inode->i_lock);
1498 inode->i_state = I_NEW;
1499 hlist_add_head_rcu(&inode->i_hash, head);
1500 spin_unlock(&inode->i_lock);
1501 inode_sb_list_add(inode);
1502 spin_unlock(&inode_hash_lock);
1504 /* Return the locked inode with I_NEW set, the
1505 * caller is responsible for filling in the contents
1507 return inode;
1511 * Uhhuh, somebody else created the same inode under
1512 * us. Use the old inode instead of the one we just
1513 * allocated.
1515 spin_unlock(&inode_hash_lock);
1516 destroy_inode(inode);
1517 if (IS_ERR(old))
1518 return NULL;
1519 inode = old;
1520 wait_on_inode(inode);
1521 if (unlikely(inode_unhashed(inode))) {
1522 iput(inode);
1523 goto again;
1526 return inode;
1528 EXPORT_SYMBOL(iget_locked);
1531 * search the inode cache for a matching inode number.
1532 * If we find one, then the inode number we are trying to
1533 * allocate is not unique and so we should not use it.
1535 * Returns 1 if the inode number is unique, 0 if it is not.
1537 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1539 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1540 struct inode *inode;
1542 hlist_for_each_entry_rcu(inode, b, i_hash) {
1543 if (inode->i_ino == ino && inode->i_sb == sb)
1544 return 0;
1546 return 1;
1550 * iunique - get a unique inode number
1551 * @sb: superblock
1552 * @max_reserved: highest reserved inode number
1554 * Obtain an inode number that is unique on the system for a given
1555 * superblock. This is used by file systems that have no natural
1556 * permanent inode numbering system. An inode number is returned that
1557 * is higher than the reserved limit but unique.
1559 * BUGS:
1560 * With a large number of inodes live on the file system this function
1561 * currently becomes quite slow.
1563 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1566 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1567 * error if st_ino won't fit in target struct field. Use 32bit counter
1568 * here to attempt to avoid that.
1570 static DEFINE_SPINLOCK(iunique_lock);
1571 static unsigned int counter;
1572 ino_t res;
1574 rcu_read_lock();
1575 spin_lock(&iunique_lock);
1576 do {
1577 if (counter <= max_reserved)
1578 counter = max_reserved + 1;
1579 res = counter++;
1580 } while (!test_inode_iunique(sb, res));
1581 spin_unlock(&iunique_lock);
1582 rcu_read_unlock();
1584 return res;
1586 EXPORT_SYMBOL(iunique);
1588 struct inode *igrab(struct inode *inode)
1590 spin_lock(&inode->i_lock);
1591 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1592 __iget(inode);
1593 spin_unlock(&inode->i_lock);
1594 } else {
1595 spin_unlock(&inode->i_lock);
1597 * Handle the case where s_op->clear_inode is not been
1598 * called yet, and somebody is calling igrab
1599 * while the inode is getting freed.
1601 inode = NULL;
1603 return inode;
1605 EXPORT_SYMBOL(igrab);
1608 * ilookup5_nowait - search for an inode in the inode cache
1609 * @sb: super block of file system to search
1610 * @hashval: hash value (usually inode number) to search for
1611 * @test: callback used for comparisons between inodes
1612 * @data: opaque data pointer to pass to @test
1614 * Search for the inode specified by @hashval and @data in the inode cache.
1615 * If the inode is in the cache, the inode is returned with an incremented
1616 * reference count.
1618 * Note: I_NEW is not waited upon so you have to be very careful what you do
1619 * with the returned inode. You probably should be using ilookup5() instead.
1621 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1623 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1624 int (*test)(struct inode *, void *), void *data)
1626 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1627 struct inode *inode;
1629 spin_lock(&inode_hash_lock);
1630 inode = find_inode(sb, head, test, data, true);
1631 spin_unlock(&inode_hash_lock);
1633 return IS_ERR(inode) ? NULL : inode;
1635 EXPORT_SYMBOL(ilookup5_nowait);
1638 * ilookup5 - search for an inode in the inode cache
1639 * @sb: super block of file system to search
1640 * @hashval: hash value (usually inode number) to search for
1641 * @test: callback used for comparisons between inodes
1642 * @data: opaque data pointer to pass to @test
1644 * Search for the inode specified by @hashval and @data in the inode cache,
1645 * and if the inode is in the cache, return the inode with an incremented
1646 * reference count. Waits on I_NEW before returning the inode.
1647 * returned with an incremented reference count.
1649 * This is a generalized version of ilookup() for file systems where the
1650 * inode number is not sufficient for unique identification of an inode.
1652 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1654 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1655 int (*test)(struct inode *, void *), void *data)
1657 struct inode *inode;
1658 again:
1659 inode = ilookup5_nowait(sb, hashval, test, data);
1660 if (inode) {
1661 wait_on_inode(inode);
1662 if (unlikely(inode_unhashed(inode))) {
1663 iput(inode);
1664 goto again;
1667 return inode;
1669 EXPORT_SYMBOL(ilookup5);
1672 * ilookup - search for an inode in the inode cache
1673 * @sb: super block of file system to search
1674 * @ino: inode number to search for
1676 * Search for the inode @ino in the inode cache, and if the inode is in the
1677 * cache, the inode is returned with an incremented reference count.
1679 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1681 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1682 struct inode *inode;
1683 again:
1684 inode = find_inode_fast(sb, head, ino, false);
1686 if (inode) {
1687 if (IS_ERR(inode))
1688 return NULL;
1689 wait_on_inode(inode);
1690 if (unlikely(inode_unhashed(inode))) {
1691 iput(inode);
1692 goto again;
1695 return inode;
1697 EXPORT_SYMBOL(ilookup);
1700 * find_inode_nowait - find an inode in the inode cache
1701 * @sb: super block of file system to search
1702 * @hashval: hash value (usually inode number) to search for
1703 * @match: callback used for comparisons between inodes
1704 * @data: opaque data pointer to pass to @match
1706 * Search for the inode specified by @hashval and @data in the inode
1707 * cache, where the helper function @match will return 0 if the inode
1708 * does not match, 1 if the inode does match, and -1 if the search
1709 * should be stopped. The @match function must be responsible for
1710 * taking the i_lock spin_lock and checking i_state for an inode being
1711 * freed or being initialized, and incrementing the reference count
1712 * before returning 1. It also must not sleep, since it is called with
1713 * the inode_hash_lock spinlock held.
1715 * This is a even more generalized version of ilookup5() when the
1716 * function must never block --- find_inode() can block in
1717 * __wait_on_freeing_inode() --- or when the caller can not increment
1718 * the reference count because the resulting iput() might cause an
1719 * inode eviction. The tradeoff is that the @match funtion must be
1720 * very carefully implemented.
1722 struct inode *find_inode_nowait(struct super_block *sb,
1723 unsigned long hashval,
1724 int (*match)(struct inode *, unsigned long,
1725 void *),
1726 void *data)
1728 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1729 struct inode *inode, *ret_inode = NULL;
1730 int mval;
1732 spin_lock(&inode_hash_lock);
1733 hlist_for_each_entry(inode, head, i_hash) {
1734 if (inode->i_sb != sb)
1735 continue;
1736 mval = match(inode, hashval, data);
1737 if (mval == 0)
1738 continue;
1739 if (mval == 1)
1740 ret_inode = inode;
1741 goto out;
1743 out:
1744 spin_unlock(&inode_hash_lock);
1745 return ret_inode;
1747 EXPORT_SYMBOL(find_inode_nowait);
1750 * find_inode_rcu - find an inode in the inode cache
1751 * @sb: Super block of file system to search
1752 * @hashval: Key to hash
1753 * @test: Function to test match on an inode
1754 * @data: Data for test function
1756 * Search for the inode specified by @hashval and @data in the inode cache,
1757 * where the helper function @test will return 0 if the inode does not match
1758 * and 1 if it does. The @test function must be responsible for taking the
1759 * i_lock spin_lock and checking i_state for an inode being freed or being
1760 * initialized.
1762 * If successful, this will return the inode for which the @test function
1763 * returned 1 and NULL otherwise.
1765 * The @test function is not permitted to take a ref on any inode presented.
1766 * It is also not permitted to sleep.
1768 * The caller must hold the RCU read lock.
1770 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1771 int (*test)(struct inode *, void *), void *data)
1773 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1774 struct inode *inode;
1776 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1777 "suspicious find_inode_rcu() usage");
1779 hlist_for_each_entry_rcu(inode, head, i_hash) {
1780 if (inode->i_sb == sb &&
1781 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1782 test(inode, data))
1783 return inode;
1785 return NULL;
1787 EXPORT_SYMBOL(find_inode_rcu);
1790 * find_inode_by_ino_rcu - Find an inode in the inode cache
1791 * @sb: Super block of file system to search
1792 * @ino: The inode number to match
1794 * Search for the inode specified by @hashval and @data in the inode cache,
1795 * where the helper function @test will return 0 if the inode does not match
1796 * and 1 if it does. The @test function must be responsible for taking the
1797 * i_lock spin_lock and checking i_state for an inode being freed or being
1798 * initialized.
1800 * If successful, this will return the inode for which the @test function
1801 * returned 1 and NULL otherwise.
1803 * The @test function is not permitted to take a ref on any inode presented.
1804 * It is also not permitted to sleep.
1806 * The caller must hold the RCU read lock.
1808 struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1809 unsigned long ino)
1811 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1812 struct inode *inode;
1814 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1815 "suspicious find_inode_by_ino_rcu() usage");
1817 hlist_for_each_entry_rcu(inode, head, i_hash) {
1818 if (inode->i_ino == ino &&
1819 inode->i_sb == sb &&
1820 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1821 return inode;
1823 return NULL;
1825 EXPORT_SYMBOL(find_inode_by_ino_rcu);
1827 int insert_inode_locked(struct inode *inode)
1829 struct super_block *sb = inode->i_sb;
1830 ino_t ino = inode->i_ino;
1831 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1833 while (1) {
1834 struct inode *old = NULL;
1835 spin_lock(&inode_hash_lock);
1836 hlist_for_each_entry(old, head, i_hash) {
1837 if (old->i_ino != ino)
1838 continue;
1839 if (old->i_sb != sb)
1840 continue;
1841 spin_lock(&old->i_lock);
1842 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1843 spin_unlock(&old->i_lock);
1844 continue;
1846 break;
1848 if (likely(!old)) {
1849 spin_lock(&inode->i_lock);
1850 inode->i_state |= I_NEW | I_CREATING;
1851 hlist_add_head_rcu(&inode->i_hash, head);
1852 spin_unlock(&inode->i_lock);
1853 spin_unlock(&inode_hash_lock);
1854 return 0;
1856 if (unlikely(old->i_state & I_CREATING)) {
1857 spin_unlock(&old->i_lock);
1858 spin_unlock(&inode_hash_lock);
1859 return -EBUSY;
1861 __iget(old);
1862 spin_unlock(&old->i_lock);
1863 spin_unlock(&inode_hash_lock);
1864 wait_on_inode(old);
1865 if (unlikely(!inode_unhashed(old))) {
1866 iput(old);
1867 return -EBUSY;
1869 iput(old);
1872 EXPORT_SYMBOL(insert_inode_locked);
1874 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1875 int (*test)(struct inode *, void *), void *data)
1877 struct inode *old;
1879 inode->i_state |= I_CREATING;
1880 old = inode_insert5(inode, hashval, test, NULL, data);
1882 if (old != inode) {
1883 iput(old);
1884 return -EBUSY;
1886 return 0;
1888 EXPORT_SYMBOL(insert_inode_locked4);
1891 int generic_delete_inode(struct inode *inode)
1893 return 1;
1895 EXPORT_SYMBOL(generic_delete_inode);
1898 * Called when we're dropping the last reference
1899 * to an inode.
1901 * Call the FS "drop_inode()" function, defaulting to
1902 * the legacy UNIX filesystem behaviour. If it tells
1903 * us to evict inode, do so. Otherwise, retain inode
1904 * in cache if fs is alive, sync and evict if fs is
1905 * shutting down.
1907 static void iput_final(struct inode *inode)
1909 struct super_block *sb = inode->i_sb;
1910 const struct super_operations *op = inode->i_sb->s_op;
1911 unsigned long state;
1912 int drop;
1914 WARN_ON(inode->i_state & I_NEW);
1916 if (op->drop_inode)
1917 drop = op->drop_inode(inode);
1918 else
1919 drop = generic_drop_inode(inode);
1921 if (!drop &&
1922 !(inode->i_state & I_DONTCACHE) &&
1923 (sb->s_flags & SB_ACTIVE)) {
1924 __inode_add_lru(inode, true);
1925 spin_unlock(&inode->i_lock);
1926 return;
1929 state = inode->i_state;
1930 if (!drop) {
1931 WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1932 spin_unlock(&inode->i_lock);
1934 write_inode_now(inode, 1);
1936 spin_lock(&inode->i_lock);
1937 state = inode->i_state;
1938 WARN_ON(state & I_NEW);
1939 state &= ~I_WILL_FREE;
1942 WRITE_ONCE(inode->i_state, state | I_FREEING);
1943 if (!list_empty(&inode->i_lru))
1944 inode_lru_list_del(inode);
1945 spin_unlock(&inode->i_lock);
1947 evict(inode);
1951 * iput - put an inode
1952 * @inode: inode to put
1954 * Puts an inode, dropping its usage count. If the inode use count hits
1955 * zero, the inode is then freed and may also be destroyed.
1957 * Consequently, iput() can sleep.
1959 void iput(struct inode *inode)
1961 if (!inode)
1962 return;
1963 BUG_ON(inode->i_state & I_CLEAR);
1964 retry:
1965 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1966 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1967 atomic_inc(&inode->i_count);
1968 spin_unlock(&inode->i_lock);
1969 trace_writeback_lazytime_iput(inode);
1970 mark_inode_dirty_sync(inode);
1971 goto retry;
1973 iput_final(inode);
1976 EXPORT_SYMBOL(iput);
1978 #ifdef CONFIG_BLOCK
1980 * bmap - find a block number in a file
1981 * @inode: inode owning the block number being requested
1982 * @block: pointer containing the block to find
1984 * Replaces the value in ``*block`` with the block number on the device holding
1985 * corresponding to the requested block number in the file.
1986 * That is, asked for block 4 of inode 1 the function will replace the
1987 * 4 in ``*block``, with disk block relative to the disk start that holds that
1988 * block of the file.
1990 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1991 * hole, returns 0 and ``*block`` is also set to 0.
1993 int bmap(struct inode *inode, sector_t *block)
1995 if (!inode->i_mapping->a_ops->bmap)
1996 return -EINVAL;
1998 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1999 return 0;
2001 EXPORT_SYMBOL(bmap);
2002 #endif
2005 * With relative atime, only update atime if the previous atime is
2006 * earlier than or equal to either the ctime or mtime,
2007 * or if at least a day has passed since the last atime update.
2009 static bool relatime_need_update(struct vfsmount *mnt, struct inode *inode,
2010 struct timespec64 now)
2012 struct timespec64 atime, mtime, ctime;
2014 if (!(mnt->mnt_flags & MNT_RELATIME))
2015 return true;
2017 * Is mtime younger than or equal to atime? If yes, update atime:
2019 atime = inode_get_atime(inode);
2020 mtime = inode_get_mtime(inode);
2021 if (timespec64_compare(&mtime, &atime) >= 0)
2022 return true;
2024 * Is ctime younger than or equal to atime? If yes, update atime:
2026 ctime = inode_get_ctime(inode);
2027 if (timespec64_compare(&ctime, &atime) >= 0)
2028 return true;
2031 * Is the previous atime value older than a day? If yes,
2032 * update atime:
2034 if ((long)(now.tv_sec - atime.tv_sec) >= 24*60*60)
2035 return true;
2037 * Good, we can skip the atime update:
2039 return false;
2043 * inode_update_timestamps - update the timestamps on the inode
2044 * @inode: inode to be updated
2045 * @flags: S_* flags that needed to be updated
2047 * The update_time function is called when an inode's timestamps need to be
2048 * updated for a read or write operation. This function handles updating the
2049 * actual timestamps. It's up to the caller to ensure that the inode is marked
2050 * dirty appropriately.
2052 * In the case where any of S_MTIME, S_CTIME, or S_VERSION need to be updated,
2053 * attempt to update all three of them. S_ATIME updates can be handled
2054 * independently of the rest.
2056 * Returns a set of S_* flags indicating which values changed.
2058 int inode_update_timestamps(struct inode *inode, int flags)
2060 int updated = 0;
2061 struct timespec64 now;
2063 if (flags & (S_MTIME|S_CTIME|S_VERSION)) {
2064 struct timespec64 ctime = inode_get_ctime(inode);
2065 struct timespec64 mtime = inode_get_mtime(inode);
2067 now = inode_set_ctime_current(inode);
2068 if (!timespec64_equal(&now, &ctime))
2069 updated |= S_CTIME;
2070 if (!timespec64_equal(&now, &mtime)) {
2071 inode_set_mtime_to_ts(inode, now);
2072 updated |= S_MTIME;
2074 if (IS_I_VERSION(inode) && inode_maybe_inc_iversion(inode, updated))
2075 updated |= S_VERSION;
2076 } else {
2077 now = current_time(inode);
2080 if (flags & S_ATIME) {
2081 struct timespec64 atime = inode_get_atime(inode);
2083 if (!timespec64_equal(&now, &atime)) {
2084 inode_set_atime_to_ts(inode, now);
2085 updated |= S_ATIME;
2088 return updated;
2090 EXPORT_SYMBOL(inode_update_timestamps);
2093 * generic_update_time - update the timestamps on the inode
2094 * @inode: inode to be updated
2095 * @flags: S_* flags that needed to be updated
2097 * The update_time function is called when an inode's timestamps need to be
2098 * updated for a read or write operation. In the case where any of S_MTIME, S_CTIME,
2099 * or S_VERSION need to be updated we attempt to update all three of them. S_ATIME
2100 * updates can be handled done independently of the rest.
2102 * Returns a S_* mask indicating which fields were updated.
2104 int generic_update_time(struct inode *inode, int flags)
2106 int updated = inode_update_timestamps(inode, flags);
2107 int dirty_flags = 0;
2109 if (updated & (S_ATIME|S_MTIME|S_CTIME))
2110 dirty_flags = inode->i_sb->s_flags & SB_LAZYTIME ? I_DIRTY_TIME : I_DIRTY_SYNC;
2111 if (updated & S_VERSION)
2112 dirty_flags |= I_DIRTY_SYNC;
2113 __mark_inode_dirty(inode, dirty_flags);
2114 return updated;
2116 EXPORT_SYMBOL(generic_update_time);
2119 * This does the actual work of updating an inodes time or version. Must have
2120 * had called mnt_want_write() before calling this.
2122 int inode_update_time(struct inode *inode, int flags)
2124 if (inode->i_op->update_time)
2125 return inode->i_op->update_time(inode, flags);
2126 generic_update_time(inode, flags);
2127 return 0;
2129 EXPORT_SYMBOL(inode_update_time);
2132 * atime_needs_update - update the access time
2133 * @path: the &struct path to update
2134 * @inode: inode to update
2136 * Update the accessed time on an inode and mark it for writeback.
2137 * This function automatically handles read only file systems and media,
2138 * as well as the "noatime" flag and inode specific "noatime" markers.
2140 bool atime_needs_update(const struct path *path, struct inode *inode)
2142 struct vfsmount *mnt = path->mnt;
2143 struct timespec64 now, atime;
2145 if (inode->i_flags & S_NOATIME)
2146 return false;
2148 /* Atime updates will likely cause i_uid and i_gid to be written
2149 * back improprely if their true value is unknown to the vfs.
2151 if (HAS_UNMAPPED_ID(mnt_idmap(mnt), inode))
2152 return false;
2154 if (IS_NOATIME(inode))
2155 return false;
2156 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
2157 return false;
2159 if (mnt->mnt_flags & MNT_NOATIME)
2160 return false;
2161 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
2162 return false;
2164 now = current_time(inode);
2166 if (!relatime_need_update(mnt, inode, now))
2167 return false;
2169 atime = inode_get_atime(inode);
2170 if (timespec64_equal(&atime, &now))
2171 return false;
2173 return true;
2176 void touch_atime(const struct path *path)
2178 struct vfsmount *mnt = path->mnt;
2179 struct inode *inode = d_inode(path->dentry);
2181 if (!atime_needs_update(path, inode))
2182 return;
2184 if (!sb_start_write_trylock(inode->i_sb))
2185 return;
2187 if (mnt_get_write_access(mnt) != 0)
2188 goto skip_update;
2190 * File systems can error out when updating inodes if they need to
2191 * allocate new space to modify an inode (such is the case for
2192 * Btrfs), but since we touch atime while walking down the path we
2193 * really don't care if we failed to update the atime of the file,
2194 * so just ignore the return value.
2195 * We may also fail on filesystems that have the ability to make parts
2196 * of the fs read only, e.g. subvolumes in Btrfs.
2198 inode_update_time(inode, S_ATIME);
2199 mnt_put_write_access(mnt);
2200 skip_update:
2201 sb_end_write(inode->i_sb);
2203 EXPORT_SYMBOL(touch_atime);
2206 * Return mask of changes for notify_change() that need to be done as a
2207 * response to write or truncate. Return 0 if nothing has to be changed.
2208 * Negative value on error (change should be denied).
2210 int dentry_needs_remove_privs(struct mnt_idmap *idmap,
2211 struct dentry *dentry)
2213 struct inode *inode = d_inode(dentry);
2214 int mask = 0;
2215 int ret;
2217 if (IS_NOSEC(inode))
2218 return 0;
2220 mask = setattr_should_drop_suidgid(idmap, inode);
2221 ret = security_inode_need_killpriv(dentry);
2222 if (ret < 0)
2223 return ret;
2224 if (ret)
2225 mask |= ATTR_KILL_PRIV;
2226 return mask;
2229 static int __remove_privs(struct mnt_idmap *idmap,
2230 struct dentry *dentry, int kill)
2232 struct iattr newattrs;
2234 newattrs.ia_valid = ATTR_FORCE | kill;
2236 * Note we call this on write, so notify_change will not
2237 * encounter any conflicting delegations:
2239 return notify_change(idmap, dentry, &newattrs, NULL);
2242 int file_remove_privs_flags(struct file *file, unsigned int flags)
2244 struct dentry *dentry = file_dentry(file);
2245 struct inode *inode = file_inode(file);
2246 int error = 0;
2247 int kill;
2249 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
2250 return 0;
2252 kill = dentry_needs_remove_privs(file_mnt_idmap(file), dentry);
2253 if (kill < 0)
2254 return kill;
2256 if (kill) {
2257 if (flags & IOCB_NOWAIT)
2258 return -EAGAIN;
2260 error = __remove_privs(file_mnt_idmap(file), dentry, kill);
2263 if (!error)
2264 inode_has_no_xattr(inode);
2265 return error;
2267 EXPORT_SYMBOL_GPL(file_remove_privs_flags);
2270 * file_remove_privs - remove special file privileges (suid, capabilities)
2271 * @file: file to remove privileges from
2273 * When file is modified by a write or truncation ensure that special
2274 * file privileges are removed.
2276 * Return: 0 on success, negative errno on failure.
2278 int file_remove_privs(struct file *file)
2280 return file_remove_privs_flags(file, 0);
2282 EXPORT_SYMBOL(file_remove_privs);
2285 * current_time - Return FS time (possibly fine-grained)
2286 * @inode: inode.
2288 * Return the current time truncated to the time granularity supported by
2289 * the fs, as suitable for a ctime/mtime change. If the ctime is flagged
2290 * as having been QUERIED, get a fine-grained timestamp, but don't update
2291 * the floor.
2293 * For a multigrain inode, this is effectively an estimate of the timestamp
2294 * that a file would receive. An actual update must go through
2295 * inode_set_ctime_current().
2297 struct timespec64 current_time(struct inode *inode)
2299 struct timespec64 now;
2300 u32 cns;
2302 ktime_get_coarse_real_ts64_mg(&now);
2304 if (!is_mgtime(inode))
2305 goto out;
2307 /* If nothing has queried it, then coarse time is fine */
2308 cns = smp_load_acquire(&inode->i_ctime_nsec);
2309 if (cns & I_CTIME_QUERIED) {
2311 * If there is no apparent change, then get a fine-grained
2312 * timestamp.
2314 if (now.tv_nsec == (cns & ~I_CTIME_QUERIED))
2315 ktime_get_real_ts64(&now);
2317 out:
2318 return timestamp_truncate(now, inode);
2320 EXPORT_SYMBOL(current_time);
2322 static int inode_needs_update_time(struct inode *inode)
2324 struct timespec64 now, ts;
2325 int sync_it = 0;
2327 /* First try to exhaust all avenues to not sync */
2328 if (IS_NOCMTIME(inode))
2329 return 0;
2331 now = current_time(inode);
2333 ts = inode_get_mtime(inode);
2334 if (!timespec64_equal(&ts, &now))
2335 sync_it |= S_MTIME;
2337 ts = inode_get_ctime(inode);
2338 if (!timespec64_equal(&ts, &now))
2339 sync_it |= S_CTIME;
2341 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
2342 sync_it |= S_VERSION;
2344 return sync_it;
2347 static int __file_update_time(struct file *file, int sync_mode)
2349 int ret = 0;
2350 struct inode *inode = file_inode(file);
2352 /* try to update time settings */
2353 if (!mnt_get_write_access_file(file)) {
2354 ret = inode_update_time(inode, sync_mode);
2355 mnt_put_write_access_file(file);
2358 return ret;
2362 * file_update_time - update mtime and ctime time
2363 * @file: file accessed
2365 * Update the mtime and ctime members of an inode and mark the inode for
2366 * writeback. Note that this function is meant exclusively for usage in
2367 * the file write path of filesystems, and filesystems may choose to
2368 * explicitly ignore updates via this function with the _NOCMTIME inode
2369 * flag, e.g. for network filesystem where these imestamps are handled
2370 * by the server. This can return an error for file systems who need to
2371 * allocate space in order to update an inode.
2373 * Return: 0 on success, negative errno on failure.
2375 int file_update_time(struct file *file)
2377 int ret;
2378 struct inode *inode = file_inode(file);
2380 ret = inode_needs_update_time(inode);
2381 if (ret <= 0)
2382 return ret;
2384 return __file_update_time(file, ret);
2386 EXPORT_SYMBOL(file_update_time);
2389 * file_modified_flags - handle mandated vfs changes when modifying a file
2390 * @file: file that was modified
2391 * @flags: kiocb flags
2393 * When file has been modified ensure that special
2394 * file privileges are removed and time settings are updated.
2396 * If IOCB_NOWAIT is set, special file privileges will not be removed and
2397 * time settings will not be updated. It will return -EAGAIN.
2399 * Context: Caller must hold the file's inode lock.
2401 * Return: 0 on success, negative errno on failure.
2403 static int file_modified_flags(struct file *file, int flags)
2405 int ret;
2406 struct inode *inode = file_inode(file);
2409 * Clear the security bits if the process is not being run by root.
2410 * This keeps people from modifying setuid and setgid binaries.
2412 ret = file_remove_privs_flags(file, flags);
2413 if (ret)
2414 return ret;
2416 if (unlikely(file->f_mode & FMODE_NOCMTIME))
2417 return 0;
2419 ret = inode_needs_update_time(inode);
2420 if (ret <= 0)
2421 return ret;
2422 if (flags & IOCB_NOWAIT)
2423 return -EAGAIN;
2425 return __file_update_time(file, ret);
2429 * file_modified - handle mandated vfs changes when modifying a file
2430 * @file: file that was modified
2432 * When file has been modified ensure that special
2433 * file privileges are removed and time settings are updated.
2435 * Context: Caller must hold the file's inode lock.
2437 * Return: 0 on success, negative errno on failure.
2439 int file_modified(struct file *file)
2441 return file_modified_flags(file, 0);
2443 EXPORT_SYMBOL(file_modified);
2446 * kiocb_modified - handle mandated vfs changes when modifying a file
2447 * @iocb: iocb that was modified
2449 * When file has been modified ensure that special
2450 * file privileges are removed and time settings are updated.
2452 * Context: Caller must hold the file's inode lock.
2454 * Return: 0 on success, negative errno on failure.
2456 int kiocb_modified(struct kiocb *iocb)
2458 return file_modified_flags(iocb->ki_filp, iocb->ki_flags);
2460 EXPORT_SYMBOL_GPL(kiocb_modified);
2462 int inode_needs_sync(struct inode *inode)
2464 if (IS_SYNC(inode))
2465 return 1;
2466 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2467 return 1;
2468 return 0;
2470 EXPORT_SYMBOL(inode_needs_sync);
2473 * If we try to find an inode in the inode hash while it is being
2474 * deleted, we have to wait until the filesystem completes its
2475 * deletion before reporting that it isn't found. This function waits
2476 * until the deletion _might_ have completed. Callers are responsible
2477 * to recheck inode state.
2479 * It doesn't matter if I_NEW is not set initially, a call to
2480 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2481 * will DTRT.
2483 static void __wait_on_freeing_inode(struct inode *inode, bool is_inode_hash_locked)
2485 struct wait_bit_queue_entry wqe;
2486 struct wait_queue_head *wq_head;
2489 * Handle racing against evict(), see that routine for more details.
2491 if (unlikely(inode_unhashed(inode))) {
2492 WARN_ON(is_inode_hash_locked);
2493 spin_unlock(&inode->i_lock);
2494 return;
2497 wq_head = inode_bit_waitqueue(&wqe, inode, __I_NEW);
2498 prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
2499 spin_unlock(&inode->i_lock);
2500 rcu_read_unlock();
2501 if (is_inode_hash_locked)
2502 spin_unlock(&inode_hash_lock);
2503 schedule();
2504 finish_wait(wq_head, &wqe.wq_entry);
2505 if (is_inode_hash_locked)
2506 spin_lock(&inode_hash_lock);
2507 rcu_read_lock();
2510 static __initdata unsigned long ihash_entries;
2511 static int __init set_ihash_entries(char *str)
2513 if (!str)
2514 return 0;
2515 ihash_entries = simple_strtoul(str, &str, 0);
2516 return 1;
2518 __setup("ihash_entries=", set_ihash_entries);
2521 * Initialize the waitqueues and inode hash table.
2523 void __init inode_init_early(void)
2525 /* If hashes are distributed across NUMA nodes, defer
2526 * hash allocation until vmalloc space is available.
2528 if (hashdist)
2529 return;
2531 inode_hashtable =
2532 alloc_large_system_hash("Inode-cache",
2533 sizeof(struct hlist_head),
2534 ihash_entries,
2536 HASH_EARLY | HASH_ZERO,
2537 &i_hash_shift,
2538 &i_hash_mask,
2543 void __init inode_init(void)
2545 /* inode slab cache */
2546 inode_cachep = kmem_cache_create("inode_cache",
2547 sizeof(struct inode),
2549 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2550 SLAB_ACCOUNT),
2551 init_once);
2553 /* Hash may have been set up in inode_init_early */
2554 if (!hashdist)
2555 return;
2557 inode_hashtable =
2558 alloc_large_system_hash("Inode-cache",
2559 sizeof(struct hlist_head),
2560 ihash_entries,
2562 HASH_ZERO,
2563 &i_hash_shift,
2564 &i_hash_mask,
2569 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2571 inode->i_mode = mode;
2572 if (S_ISCHR(mode)) {
2573 inode->i_fop = &def_chr_fops;
2574 inode->i_rdev = rdev;
2575 } else if (S_ISBLK(mode)) {
2576 if (IS_ENABLED(CONFIG_BLOCK))
2577 inode->i_fop = &def_blk_fops;
2578 inode->i_rdev = rdev;
2579 } else if (S_ISFIFO(mode))
2580 inode->i_fop = &pipefifo_fops;
2581 else if (S_ISSOCK(mode))
2582 ; /* leave it no_open_fops */
2583 else
2584 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2585 " inode %s:%lu\n", mode, inode->i_sb->s_id,
2586 inode->i_ino);
2588 EXPORT_SYMBOL(init_special_inode);
2591 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2592 * @idmap: idmap of the mount the inode was created from
2593 * @inode: New inode
2594 * @dir: Directory inode
2595 * @mode: mode of the new inode
2597 * If the inode has been created through an idmapped mount the idmap of
2598 * the vfsmount must be passed through @idmap. This function will then take
2599 * care to map the inode according to @idmap before checking permissions
2600 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2601 * checking is to be performed on the raw inode simply pass @nop_mnt_idmap.
2603 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode,
2604 const struct inode *dir, umode_t mode)
2606 inode_fsuid_set(inode, idmap);
2607 if (dir && dir->i_mode & S_ISGID) {
2608 inode->i_gid = dir->i_gid;
2610 /* Directories are special, and always inherit S_ISGID */
2611 if (S_ISDIR(mode))
2612 mode |= S_ISGID;
2613 } else
2614 inode_fsgid_set(inode, idmap);
2615 inode->i_mode = mode;
2617 EXPORT_SYMBOL(inode_init_owner);
2620 * inode_owner_or_capable - check current task permissions to inode
2621 * @idmap: idmap of the mount the inode was found from
2622 * @inode: inode being checked
2624 * Return true if current either has CAP_FOWNER in a namespace with the
2625 * inode owner uid mapped, or owns the file.
2627 * If the inode has been found through an idmapped mount the idmap of
2628 * the vfsmount must be passed through @idmap. This function will then take
2629 * care to map the inode according to @idmap before checking permissions.
2630 * On non-idmapped mounts or if permission checking is to be performed on the
2631 * raw inode simply pass @nop_mnt_idmap.
2633 bool inode_owner_or_capable(struct mnt_idmap *idmap,
2634 const struct inode *inode)
2636 vfsuid_t vfsuid;
2637 struct user_namespace *ns;
2639 vfsuid = i_uid_into_vfsuid(idmap, inode);
2640 if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
2641 return true;
2643 ns = current_user_ns();
2644 if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER))
2645 return true;
2646 return false;
2648 EXPORT_SYMBOL(inode_owner_or_capable);
2651 * Direct i/o helper functions
2653 bool inode_dio_finished(const struct inode *inode)
2655 return atomic_read(&inode->i_dio_count) == 0;
2657 EXPORT_SYMBOL(inode_dio_finished);
2660 * inode_dio_wait - wait for outstanding DIO requests to finish
2661 * @inode: inode to wait for
2663 * Waits for all pending direct I/O requests to finish so that we can
2664 * proceed with a truncate or equivalent operation.
2666 * Must be called under a lock that serializes taking new references
2667 * to i_dio_count, usually by inode->i_mutex.
2669 void inode_dio_wait(struct inode *inode)
2671 wait_var_event(&inode->i_dio_count, inode_dio_finished(inode));
2673 EXPORT_SYMBOL(inode_dio_wait);
2675 void inode_dio_wait_interruptible(struct inode *inode)
2677 wait_var_event_interruptible(&inode->i_dio_count,
2678 inode_dio_finished(inode));
2680 EXPORT_SYMBOL(inode_dio_wait_interruptible);
2683 * inode_set_flags - atomically set some inode flags
2685 * Note: the caller should be holding i_mutex, or else be sure that
2686 * they have exclusive access to the inode structure (i.e., while the
2687 * inode is being instantiated). The reason for the cmpxchg() loop
2688 * --- which wouldn't be necessary if all code paths which modify
2689 * i_flags actually followed this rule, is that there is at least one
2690 * code path which doesn't today so we use cmpxchg() out of an abundance
2691 * of caution.
2693 * In the long run, i_mutex is overkill, and we should probably look
2694 * at using the i_lock spinlock to protect i_flags, and then make sure
2695 * it is so documented in include/linux/fs.h and that all code follows
2696 * the locking convention!!
2698 void inode_set_flags(struct inode *inode, unsigned int flags,
2699 unsigned int mask)
2701 WARN_ON_ONCE(flags & ~mask);
2702 set_mask_bits(&inode->i_flags, mask, flags);
2704 EXPORT_SYMBOL(inode_set_flags);
2706 void inode_nohighmem(struct inode *inode)
2708 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2710 EXPORT_SYMBOL(inode_nohighmem);
2712 struct timespec64 inode_set_ctime_to_ts(struct inode *inode, struct timespec64 ts)
2714 trace_inode_set_ctime_to_ts(inode, &ts);
2715 set_normalized_timespec64(&ts, ts.tv_sec, ts.tv_nsec);
2716 inode->i_ctime_sec = ts.tv_sec;
2717 inode->i_ctime_nsec = ts.tv_nsec;
2718 return ts;
2720 EXPORT_SYMBOL(inode_set_ctime_to_ts);
2723 * timestamp_truncate - Truncate timespec to a granularity
2724 * @t: Timespec
2725 * @inode: inode being updated
2727 * Truncate a timespec to the granularity supported by the fs
2728 * containing the inode. Always rounds down. gran must
2729 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2731 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2733 struct super_block *sb = inode->i_sb;
2734 unsigned int gran = sb->s_time_gran;
2736 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2737 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2738 t.tv_nsec = 0;
2740 /* Avoid division in the common cases 1 ns and 1 s. */
2741 if (gran == 1)
2742 ; /* nothing */
2743 else if (gran == NSEC_PER_SEC)
2744 t.tv_nsec = 0;
2745 else if (gran > 1 && gran < NSEC_PER_SEC)
2746 t.tv_nsec -= t.tv_nsec % gran;
2747 else
2748 WARN(1, "invalid file time granularity: %u", gran);
2749 return t;
2751 EXPORT_SYMBOL(timestamp_truncate);
2754 * inode_set_ctime_current - set the ctime to current_time
2755 * @inode: inode
2757 * Set the inode's ctime to the current value for the inode. Returns the
2758 * current value that was assigned. If this is not a multigrain inode, then we
2759 * set it to the later of the coarse time and floor value.
2761 * If it is multigrain, then we first see if the coarse-grained timestamp is
2762 * distinct from what is already there. If so, then use that. Otherwise, get a
2763 * fine-grained timestamp.
2765 * After that, try to swap the new value into i_ctime_nsec. Accept the
2766 * resulting ctime, regardless of the outcome of the swap. If it has
2767 * already been replaced, then that timestamp is later than the earlier
2768 * unacceptable one, and is thus acceptable.
2770 struct timespec64 inode_set_ctime_current(struct inode *inode)
2772 struct timespec64 now;
2773 u32 cns, cur;
2775 ktime_get_coarse_real_ts64_mg(&now);
2776 now = timestamp_truncate(now, inode);
2778 /* Just return that if this is not a multigrain fs */
2779 if (!is_mgtime(inode)) {
2780 inode_set_ctime_to_ts(inode, now);
2781 goto out;
2785 * A fine-grained time is only needed if someone has queried
2786 * for timestamps, and the current coarse grained time isn't
2787 * later than what's already there.
2789 cns = smp_load_acquire(&inode->i_ctime_nsec);
2790 if (cns & I_CTIME_QUERIED) {
2791 struct timespec64 ctime = { .tv_sec = inode->i_ctime_sec,
2792 .tv_nsec = cns & ~I_CTIME_QUERIED };
2794 if (timespec64_compare(&now, &ctime) <= 0) {
2795 ktime_get_real_ts64_mg(&now);
2796 now = timestamp_truncate(now, inode);
2797 mgtime_counter_inc(mg_fine_stamps);
2800 mgtime_counter_inc(mg_ctime_updates);
2802 /* No need to cmpxchg if it's exactly the same */
2803 if (cns == now.tv_nsec && inode->i_ctime_sec == now.tv_sec) {
2804 trace_ctime_xchg_skip(inode, &now);
2805 goto out;
2807 cur = cns;
2808 retry:
2809 /* Try to swap the nsec value into place. */
2810 if (try_cmpxchg(&inode->i_ctime_nsec, &cur, now.tv_nsec)) {
2811 /* If swap occurred, then we're (mostly) done */
2812 inode->i_ctime_sec = now.tv_sec;
2813 trace_ctime_ns_xchg(inode, cns, now.tv_nsec, cur);
2814 mgtime_counter_inc(mg_ctime_swaps);
2815 } else {
2817 * Was the change due to someone marking the old ctime QUERIED?
2818 * If so then retry the swap. This can only happen once since
2819 * the only way to clear I_CTIME_QUERIED is to stamp the inode
2820 * with a new ctime.
2822 if (!(cns & I_CTIME_QUERIED) && (cns | I_CTIME_QUERIED) == cur) {
2823 cns = cur;
2824 goto retry;
2826 /* Otherwise, keep the existing ctime */
2827 now.tv_sec = inode->i_ctime_sec;
2828 now.tv_nsec = cur & ~I_CTIME_QUERIED;
2830 out:
2831 return now;
2833 EXPORT_SYMBOL(inode_set_ctime_current);
2836 * inode_set_ctime_deleg - try to update the ctime on a delegated inode
2837 * @inode: inode to update
2838 * @update: timespec64 to set the ctime
2840 * Attempt to atomically update the ctime on behalf of a delegation holder.
2842 * The nfs server can call back the holder of a delegation to get updated
2843 * inode attributes, including the mtime. When updating the mtime, update
2844 * the ctime to a value at least equal to that.
2846 * This can race with concurrent updates to the inode, in which
2847 * case the update is skipped.
2849 * Note that this works even when multigrain timestamps are not enabled,
2850 * so it is used in either case.
2852 struct timespec64 inode_set_ctime_deleg(struct inode *inode, struct timespec64 update)
2854 struct timespec64 now, cur_ts;
2855 u32 cur, old;
2857 /* pairs with try_cmpxchg below */
2858 cur = smp_load_acquire(&inode->i_ctime_nsec);
2859 cur_ts.tv_nsec = cur & ~I_CTIME_QUERIED;
2860 cur_ts.tv_sec = inode->i_ctime_sec;
2862 /* If the update is older than the existing value, skip it. */
2863 if (timespec64_compare(&update, &cur_ts) <= 0)
2864 return cur_ts;
2866 ktime_get_coarse_real_ts64_mg(&now);
2868 /* Clamp the update to "now" if it's in the future */
2869 if (timespec64_compare(&update, &now) > 0)
2870 update = now;
2872 update = timestamp_truncate(update, inode);
2874 /* No need to update if the values are already the same */
2875 if (timespec64_equal(&update, &cur_ts))
2876 return cur_ts;
2879 * Try to swap the nsec value into place. If it fails, that means
2880 * it raced with an update due to a write or similar activity. That
2881 * stamp takes precedence, so just skip the update.
2883 retry:
2884 old = cur;
2885 if (try_cmpxchg(&inode->i_ctime_nsec, &cur, update.tv_nsec)) {
2886 inode->i_ctime_sec = update.tv_sec;
2887 mgtime_counter_inc(mg_ctime_swaps);
2888 return update;
2892 * Was the change due to another task marking the old ctime QUERIED?
2894 * If so, then retry the swap. This can only happen once since
2895 * the only way to clear I_CTIME_QUERIED is to stamp the inode
2896 * with a new ctime.
2898 if (!(old & I_CTIME_QUERIED) && (cur == (old | I_CTIME_QUERIED)))
2899 goto retry;
2901 /* Otherwise, it was a new timestamp. */
2902 cur_ts.tv_sec = inode->i_ctime_sec;
2903 cur_ts.tv_nsec = cur & ~I_CTIME_QUERIED;
2904 return cur_ts;
2906 EXPORT_SYMBOL(inode_set_ctime_deleg);
2909 * in_group_or_capable - check whether caller is CAP_FSETID privileged
2910 * @idmap: idmap of the mount @inode was found from
2911 * @inode: inode to check
2912 * @vfsgid: the new/current vfsgid of @inode
2914 * Check whether @vfsgid is in the caller's group list or if the caller is
2915 * privileged with CAP_FSETID over @inode. This can be used to determine
2916 * whether the setgid bit can be kept or must be dropped.
2918 * Return: true if the caller is sufficiently privileged, false if not.
2920 bool in_group_or_capable(struct mnt_idmap *idmap,
2921 const struct inode *inode, vfsgid_t vfsgid)
2923 if (vfsgid_in_group_p(vfsgid))
2924 return true;
2925 if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID))
2926 return true;
2927 return false;
2929 EXPORT_SYMBOL(in_group_or_capable);
2932 * mode_strip_sgid - handle the sgid bit for non-directories
2933 * @idmap: idmap of the mount the inode was created from
2934 * @dir: parent directory inode
2935 * @mode: mode of the file to be created in @dir
2937 * If the @mode of the new file has both the S_ISGID and S_IXGRP bit
2938 * raised and @dir has the S_ISGID bit raised ensure that the caller is
2939 * either in the group of the parent directory or they have CAP_FSETID
2940 * in their user namespace and are privileged over the parent directory.
2941 * In all other cases, strip the S_ISGID bit from @mode.
2943 * Return: the new mode to use for the file
2945 umode_t mode_strip_sgid(struct mnt_idmap *idmap,
2946 const struct inode *dir, umode_t mode)
2948 if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP))
2949 return mode;
2950 if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID))
2951 return mode;
2952 if (in_group_or_capable(idmap, dir, i_gid_into_vfsgid(idmap, dir)))
2953 return mode;
2954 return mode & ~S_ISGID;
2956 EXPORT_SYMBOL(mode_strip_sgid);