drm/bridge: tc358767: fix missing of_node_put() in for_each_endpoint_of_node()
[drm/drm-misc.git] / lib / test_hmm.c
blob056f2e411d7b403d9d76a2379c972f221bda5a0e
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * This is a module to test the HMM (Heterogeneous Memory Management)
4 * mirror and zone device private memory migration APIs of the kernel.
5 * Userspace programs can register with the driver to mirror their own address
6 * space and can use the device to read/write any valid virtual address.
7 */
8 #include <linux/init.h>
9 #include <linux/fs.h>
10 #include <linux/mm.h>
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/cdev.h>
14 #include <linux/device.h>
15 #include <linux/memremap.h>
16 #include <linux/mutex.h>
17 #include <linux/rwsem.h>
18 #include <linux/sched.h>
19 #include <linux/slab.h>
20 #include <linux/highmem.h>
21 #include <linux/delay.h>
22 #include <linux/pagemap.h>
23 #include <linux/hmm.h>
24 #include <linux/vmalloc.h>
25 #include <linux/swap.h>
26 #include <linux/swapops.h>
27 #include <linux/sched/mm.h>
28 #include <linux/platform_device.h>
29 #include <linux/rmap.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/migrate.h>
33 #include "test_hmm_uapi.h"
35 #define DMIRROR_NDEVICES 4
36 #define DMIRROR_RANGE_FAULT_TIMEOUT 1000
37 #define DEVMEM_CHUNK_SIZE (256 * 1024 * 1024U)
38 #define DEVMEM_CHUNKS_RESERVE 16
41 * For device_private pages, dpage is just a dummy struct page
42 * representing a piece of device memory. dmirror_devmem_alloc_page
43 * allocates a real system memory page as backing storage to fake a
44 * real device. zone_device_data points to that backing page. But
45 * for device_coherent memory, the struct page represents real
46 * physical CPU-accessible memory that we can use directly.
48 #define BACKING_PAGE(page) (is_device_private_page((page)) ? \
49 (page)->zone_device_data : (page))
51 static unsigned long spm_addr_dev0;
52 module_param(spm_addr_dev0, long, 0644);
53 MODULE_PARM_DESC(spm_addr_dev0,
54 "Specify start address for SPM (special purpose memory) used for device 0. By setting this Coherent device type will be used. Make sure spm_addr_dev1 is set too. Minimum SPM size should be DEVMEM_CHUNK_SIZE.");
56 static unsigned long spm_addr_dev1;
57 module_param(spm_addr_dev1, long, 0644);
58 MODULE_PARM_DESC(spm_addr_dev1,
59 "Specify start address for SPM (special purpose memory) used for device 1. By setting this Coherent device type will be used. Make sure spm_addr_dev0 is set too. Minimum SPM size should be DEVMEM_CHUNK_SIZE.");
61 static const struct dev_pagemap_ops dmirror_devmem_ops;
62 static const struct mmu_interval_notifier_ops dmirror_min_ops;
63 static dev_t dmirror_dev;
65 struct dmirror_device;
67 struct dmirror_bounce {
68 void *ptr;
69 unsigned long size;
70 unsigned long addr;
71 unsigned long cpages;
74 #define DPT_XA_TAG_ATOMIC 1UL
75 #define DPT_XA_TAG_WRITE 3UL
78 * Data structure to track address ranges and register for mmu interval
79 * notifier updates.
81 struct dmirror_interval {
82 struct mmu_interval_notifier notifier;
83 struct dmirror *dmirror;
87 * Data attached to the open device file.
88 * Note that it might be shared after a fork().
90 struct dmirror {
91 struct dmirror_device *mdevice;
92 struct xarray pt;
93 struct mmu_interval_notifier notifier;
94 struct mutex mutex;
98 * ZONE_DEVICE pages for migration and simulating device memory.
100 struct dmirror_chunk {
101 struct dev_pagemap pagemap;
102 struct dmirror_device *mdevice;
103 bool remove;
107 * Per device data.
109 struct dmirror_device {
110 struct cdev cdevice;
111 unsigned int zone_device_type;
112 struct device device;
114 unsigned int devmem_capacity;
115 unsigned int devmem_count;
116 struct dmirror_chunk **devmem_chunks;
117 struct mutex devmem_lock; /* protects the above */
119 unsigned long calloc;
120 unsigned long cfree;
121 struct page *free_pages;
122 spinlock_t lock; /* protects the above */
125 static struct dmirror_device dmirror_devices[DMIRROR_NDEVICES];
127 static int dmirror_bounce_init(struct dmirror_bounce *bounce,
128 unsigned long addr,
129 unsigned long size)
131 bounce->addr = addr;
132 bounce->size = size;
133 bounce->cpages = 0;
134 bounce->ptr = vmalloc(size);
135 if (!bounce->ptr)
136 return -ENOMEM;
137 return 0;
140 static bool dmirror_is_private_zone(struct dmirror_device *mdevice)
142 return (mdevice->zone_device_type ==
143 HMM_DMIRROR_MEMORY_DEVICE_PRIVATE) ? true : false;
146 static enum migrate_vma_direction
147 dmirror_select_device(struct dmirror *dmirror)
149 return (dmirror->mdevice->zone_device_type ==
150 HMM_DMIRROR_MEMORY_DEVICE_PRIVATE) ?
151 MIGRATE_VMA_SELECT_DEVICE_PRIVATE :
152 MIGRATE_VMA_SELECT_DEVICE_COHERENT;
155 static void dmirror_bounce_fini(struct dmirror_bounce *bounce)
157 vfree(bounce->ptr);
160 static int dmirror_fops_open(struct inode *inode, struct file *filp)
162 struct cdev *cdev = inode->i_cdev;
163 struct dmirror *dmirror;
164 int ret;
166 /* Mirror this process address space */
167 dmirror = kzalloc(sizeof(*dmirror), GFP_KERNEL);
168 if (dmirror == NULL)
169 return -ENOMEM;
171 dmirror->mdevice = container_of(cdev, struct dmirror_device, cdevice);
172 mutex_init(&dmirror->mutex);
173 xa_init(&dmirror->pt);
175 ret = mmu_interval_notifier_insert(&dmirror->notifier, current->mm,
176 0, ULONG_MAX & PAGE_MASK, &dmirror_min_ops);
177 if (ret) {
178 kfree(dmirror);
179 return ret;
182 filp->private_data = dmirror;
183 return 0;
186 static int dmirror_fops_release(struct inode *inode, struct file *filp)
188 struct dmirror *dmirror = filp->private_data;
190 mmu_interval_notifier_remove(&dmirror->notifier);
191 xa_destroy(&dmirror->pt);
192 kfree(dmirror);
193 return 0;
196 static struct dmirror_chunk *dmirror_page_to_chunk(struct page *page)
198 return container_of(page->pgmap, struct dmirror_chunk, pagemap);
201 static struct dmirror_device *dmirror_page_to_device(struct page *page)
204 return dmirror_page_to_chunk(page)->mdevice;
207 static int dmirror_do_fault(struct dmirror *dmirror, struct hmm_range *range)
209 unsigned long *pfns = range->hmm_pfns;
210 unsigned long pfn;
212 for (pfn = (range->start >> PAGE_SHIFT);
213 pfn < (range->end >> PAGE_SHIFT);
214 pfn++, pfns++) {
215 struct page *page;
216 void *entry;
219 * Since we asked for hmm_range_fault() to populate pages,
220 * it shouldn't return an error entry on success.
222 WARN_ON(*pfns & HMM_PFN_ERROR);
223 WARN_ON(!(*pfns & HMM_PFN_VALID));
225 page = hmm_pfn_to_page(*pfns);
226 WARN_ON(!page);
228 entry = page;
229 if (*pfns & HMM_PFN_WRITE)
230 entry = xa_tag_pointer(entry, DPT_XA_TAG_WRITE);
231 else if (WARN_ON(range->default_flags & HMM_PFN_WRITE))
232 return -EFAULT;
233 entry = xa_store(&dmirror->pt, pfn, entry, GFP_ATOMIC);
234 if (xa_is_err(entry))
235 return xa_err(entry);
238 return 0;
241 static void dmirror_do_update(struct dmirror *dmirror, unsigned long start,
242 unsigned long end)
244 unsigned long pfn;
245 void *entry;
248 * The XArray doesn't hold references to pages since it relies on
249 * the mmu notifier to clear page pointers when they become stale.
250 * Therefore, it is OK to just clear the entry.
252 xa_for_each_range(&dmirror->pt, pfn, entry, start >> PAGE_SHIFT,
253 end >> PAGE_SHIFT)
254 xa_erase(&dmirror->pt, pfn);
257 static bool dmirror_interval_invalidate(struct mmu_interval_notifier *mni,
258 const struct mmu_notifier_range *range,
259 unsigned long cur_seq)
261 struct dmirror *dmirror = container_of(mni, struct dmirror, notifier);
264 * Ignore invalidation callbacks for device private pages since
265 * the invalidation is handled as part of the migration process.
267 if (range->event == MMU_NOTIFY_MIGRATE &&
268 range->owner == dmirror->mdevice)
269 return true;
271 if (mmu_notifier_range_blockable(range))
272 mutex_lock(&dmirror->mutex);
273 else if (!mutex_trylock(&dmirror->mutex))
274 return false;
276 mmu_interval_set_seq(mni, cur_seq);
277 dmirror_do_update(dmirror, range->start, range->end);
279 mutex_unlock(&dmirror->mutex);
280 return true;
283 static const struct mmu_interval_notifier_ops dmirror_min_ops = {
284 .invalidate = dmirror_interval_invalidate,
287 static int dmirror_range_fault(struct dmirror *dmirror,
288 struct hmm_range *range)
290 struct mm_struct *mm = dmirror->notifier.mm;
291 unsigned long timeout =
292 jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
293 int ret;
295 while (true) {
296 if (time_after(jiffies, timeout)) {
297 ret = -EBUSY;
298 goto out;
301 range->notifier_seq = mmu_interval_read_begin(range->notifier);
302 mmap_read_lock(mm);
303 ret = hmm_range_fault(range);
304 mmap_read_unlock(mm);
305 if (ret) {
306 if (ret == -EBUSY)
307 continue;
308 goto out;
311 mutex_lock(&dmirror->mutex);
312 if (mmu_interval_read_retry(range->notifier,
313 range->notifier_seq)) {
314 mutex_unlock(&dmirror->mutex);
315 continue;
317 break;
320 ret = dmirror_do_fault(dmirror, range);
322 mutex_unlock(&dmirror->mutex);
323 out:
324 return ret;
327 static int dmirror_fault(struct dmirror *dmirror, unsigned long start,
328 unsigned long end, bool write)
330 struct mm_struct *mm = dmirror->notifier.mm;
331 unsigned long addr;
332 unsigned long pfns[64];
333 struct hmm_range range = {
334 .notifier = &dmirror->notifier,
335 .hmm_pfns = pfns,
336 .pfn_flags_mask = 0,
337 .default_flags =
338 HMM_PFN_REQ_FAULT | (write ? HMM_PFN_REQ_WRITE : 0),
339 .dev_private_owner = dmirror->mdevice,
341 int ret = 0;
343 /* Since the mm is for the mirrored process, get a reference first. */
344 if (!mmget_not_zero(mm))
345 return 0;
347 for (addr = start; addr < end; addr = range.end) {
348 range.start = addr;
349 range.end = min(addr + (ARRAY_SIZE(pfns) << PAGE_SHIFT), end);
351 ret = dmirror_range_fault(dmirror, &range);
352 if (ret)
353 break;
356 mmput(mm);
357 return ret;
360 static int dmirror_do_read(struct dmirror *dmirror, unsigned long start,
361 unsigned long end, struct dmirror_bounce *bounce)
363 unsigned long pfn;
364 void *ptr;
366 ptr = bounce->ptr + ((start - bounce->addr) & PAGE_MASK);
368 for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++) {
369 void *entry;
370 struct page *page;
372 entry = xa_load(&dmirror->pt, pfn);
373 page = xa_untag_pointer(entry);
374 if (!page)
375 return -ENOENT;
377 memcpy_from_page(ptr, page, 0, PAGE_SIZE);
379 ptr += PAGE_SIZE;
380 bounce->cpages++;
383 return 0;
386 static int dmirror_read(struct dmirror *dmirror, struct hmm_dmirror_cmd *cmd)
388 struct dmirror_bounce bounce;
389 unsigned long start, end;
390 unsigned long size = cmd->npages << PAGE_SHIFT;
391 int ret;
393 start = cmd->addr;
394 end = start + size;
395 if (end < start)
396 return -EINVAL;
398 ret = dmirror_bounce_init(&bounce, start, size);
399 if (ret)
400 return ret;
402 while (1) {
403 mutex_lock(&dmirror->mutex);
404 ret = dmirror_do_read(dmirror, start, end, &bounce);
405 mutex_unlock(&dmirror->mutex);
406 if (ret != -ENOENT)
407 break;
409 start = cmd->addr + (bounce.cpages << PAGE_SHIFT);
410 ret = dmirror_fault(dmirror, start, end, false);
411 if (ret)
412 break;
413 cmd->faults++;
416 if (ret == 0) {
417 if (copy_to_user(u64_to_user_ptr(cmd->ptr), bounce.ptr,
418 bounce.size))
419 ret = -EFAULT;
421 cmd->cpages = bounce.cpages;
422 dmirror_bounce_fini(&bounce);
423 return ret;
426 static int dmirror_do_write(struct dmirror *dmirror, unsigned long start,
427 unsigned long end, struct dmirror_bounce *bounce)
429 unsigned long pfn;
430 void *ptr;
432 ptr = bounce->ptr + ((start - bounce->addr) & PAGE_MASK);
434 for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++) {
435 void *entry;
436 struct page *page;
438 entry = xa_load(&dmirror->pt, pfn);
439 page = xa_untag_pointer(entry);
440 if (!page || xa_pointer_tag(entry) != DPT_XA_TAG_WRITE)
441 return -ENOENT;
443 memcpy_to_page(page, 0, ptr, PAGE_SIZE);
445 ptr += PAGE_SIZE;
446 bounce->cpages++;
449 return 0;
452 static int dmirror_write(struct dmirror *dmirror, struct hmm_dmirror_cmd *cmd)
454 struct dmirror_bounce bounce;
455 unsigned long start, end;
456 unsigned long size = cmd->npages << PAGE_SHIFT;
457 int ret;
459 start = cmd->addr;
460 end = start + size;
461 if (end < start)
462 return -EINVAL;
464 ret = dmirror_bounce_init(&bounce, start, size);
465 if (ret)
466 return ret;
467 if (copy_from_user(bounce.ptr, u64_to_user_ptr(cmd->ptr),
468 bounce.size)) {
469 ret = -EFAULT;
470 goto fini;
473 while (1) {
474 mutex_lock(&dmirror->mutex);
475 ret = dmirror_do_write(dmirror, start, end, &bounce);
476 mutex_unlock(&dmirror->mutex);
477 if (ret != -ENOENT)
478 break;
480 start = cmd->addr + (bounce.cpages << PAGE_SHIFT);
481 ret = dmirror_fault(dmirror, start, end, true);
482 if (ret)
483 break;
484 cmd->faults++;
487 fini:
488 cmd->cpages = bounce.cpages;
489 dmirror_bounce_fini(&bounce);
490 return ret;
493 static int dmirror_allocate_chunk(struct dmirror_device *mdevice,
494 struct page **ppage)
496 struct dmirror_chunk *devmem;
497 struct resource *res = NULL;
498 unsigned long pfn;
499 unsigned long pfn_first;
500 unsigned long pfn_last;
501 void *ptr;
502 int ret = -ENOMEM;
504 devmem = kzalloc(sizeof(*devmem), GFP_KERNEL);
505 if (!devmem)
506 return ret;
508 switch (mdevice->zone_device_type) {
509 case HMM_DMIRROR_MEMORY_DEVICE_PRIVATE:
510 res = request_free_mem_region(&iomem_resource, DEVMEM_CHUNK_SIZE,
511 "hmm_dmirror");
512 if (IS_ERR_OR_NULL(res))
513 goto err_devmem;
514 devmem->pagemap.range.start = res->start;
515 devmem->pagemap.range.end = res->end;
516 devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
517 break;
518 case HMM_DMIRROR_MEMORY_DEVICE_COHERENT:
519 devmem->pagemap.range.start = (MINOR(mdevice->cdevice.dev) - 2) ?
520 spm_addr_dev0 :
521 spm_addr_dev1;
522 devmem->pagemap.range.end = devmem->pagemap.range.start +
523 DEVMEM_CHUNK_SIZE - 1;
524 devmem->pagemap.type = MEMORY_DEVICE_COHERENT;
525 break;
526 default:
527 ret = -EINVAL;
528 goto err_devmem;
531 devmem->pagemap.nr_range = 1;
532 devmem->pagemap.ops = &dmirror_devmem_ops;
533 devmem->pagemap.owner = mdevice;
535 mutex_lock(&mdevice->devmem_lock);
537 if (mdevice->devmem_count == mdevice->devmem_capacity) {
538 struct dmirror_chunk **new_chunks;
539 unsigned int new_capacity;
541 new_capacity = mdevice->devmem_capacity +
542 DEVMEM_CHUNKS_RESERVE;
543 new_chunks = krealloc(mdevice->devmem_chunks,
544 sizeof(new_chunks[0]) * new_capacity,
545 GFP_KERNEL);
546 if (!new_chunks)
547 goto err_release;
548 mdevice->devmem_capacity = new_capacity;
549 mdevice->devmem_chunks = new_chunks;
551 ptr = memremap_pages(&devmem->pagemap, numa_node_id());
552 if (IS_ERR_OR_NULL(ptr)) {
553 if (ptr)
554 ret = PTR_ERR(ptr);
555 else
556 ret = -EFAULT;
557 goto err_release;
560 devmem->mdevice = mdevice;
561 pfn_first = devmem->pagemap.range.start >> PAGE_SHIFT;
562 pfn_last = pfn_first + (range_len(&devmem->pagemap.range) >> PAGE_SHIFT);
563 mdevice->devmem_chunks[mdevice->devmem_count++] = devmem;
565 mutex_unlock(&mdevice->devmem_lock);
567 pr_info("added new %u MB chunk (total %u chunks, %u MB) PFNs [0x%lx 0x%lx)\n",
568 DEVMEM_CHUNK_SIZE / (1024 * 1024),
569 mdevice->devmem_count,
570 mdevice->devmem_count * (DEVMEM_CHUNK_SIZE / (1024 * 1024)),
571 pfn_first, pfn_last);
573 spin_lock(&mdevice->lock);
574 for (pfn = pfn_first; pfn < pfn_last; pfn++) {
575 struct page *page = pfn_to_page(pfn);
577 page->zone_device_data = mdevice->free_pages;
578 mdevice->free_pages = page;
580 if (ppage) {
581 *ppage = mdevice->free_pages;
582 mdevice->free_pages = (*ppage)->zone_device_data;
583 mdevice->calloc++;
585 spin_unlock(&mdevice->lock);
587 return 0;
589 err_release:
590 mutex_unlock(&mdevice->devmem_lock);
591 if (res && devmem->pagemap.type == MEMORY_DEVICE_PRIVATE)
592 release_mem_region(devmem->pagemap.range.start,
593 range_len(&devmem->pagemap.range));
594 err_devmem:
595 kfree(devmem);
597 return ret;
600 static struct page *dmirror_devmem_alloc_page(struct dmirror_device *mdevice)
602 struct page *dpage = NULL;
603 struct page *rpage = NULL;
606 * For ZONE_DEVICE private type, this is a fake device so we allocate
607 * real system memory to store our device memory.
608 * For ZONE_DEVICE coherent type we use the actual dpage to store the
609 * data and ignore rpage.
611 if (dmirror_is_private_zone(mdevice)) {
612 rpage = alloc_page(GFP_HIGHUSER);
613 if (!rpage)
614 return NULL;
616 spin_lock(&mdevice->lock);
618 if (mdevice->free_pages) {
619 dpage = mdevice->free_pages;
620 mdevice->free_pages = dpage->zone_device_data;
621 mdevice->calloc++;
622 spin_unlock(&mdevice->lock);
623 } else {
624 spin_unlock(&mdevice->lock);
625 if (dmirror_allocate_chunk(mdevice, &dpage))
626 goto error;
629 zone_device_page_init(dpage);
630 dpage->zone_device_data = rpage;
631 return dpage;
633 error:
634 if (rpage)
635 __free_page(rpage);
636 return NULL;
639 static void dmirror_migrate_alloc_and_copy(struct migrate_vma *args,
640 struct dmirror *dmirror)
642 struct dmirror_device *mdevice = dmirror->mdevice;
643 const unsigned long *src = args->src;
644 unsigned long *dst = args->dst;
645 unsigned long addr;
647 for (addr = args->start; addr < args->end; addr += PAGE_SIZE,
648 src++, dst++) {
649 struct page *spage;
650 struct page *dpage;
651 struct page *rpage;
653 if (!(*src & MIGRATE_PFN_MIGRATE))
654 continue;
657 * Note that spage might be NULL which is OK since it is an
658 * unallocated pte_none() or read-only zero page.
660 spage = migrate_pfn_to_page(*src);
661 if (WARN(spage && is_zone_device_page(spage),
662 "page already in device spage pfn: 0x%lx\n",
663 page_to_pfn(spage)))
664 continue;
666 dpage = dmirror_devmem_alloc_page(mdevice);
667 if (!dpage)
668 continue;
670 rpage = BACKING_PAGE(dpage);
671 if (spage)
672 copy_highpage(rpage, spage);
673 else
674 clear_highpage(rpage);
677 * Normally, a device would use the page->zone_device_data to
678 * point to the mirror but here we use it to hold the page for
679 * the simulated device memory and that page holds the pointer
680 * to the mirror.
682 rpage->zone_device_data = dmirror;
684 pr_debug("migrating from sys to dev pfn src: 0x%lx pfn dst: 0x%lx\n",
685 page_to_pfn(spage), page_to_pfn(dpage));
686 *dst = migrate_pfn(page_to_pfn(dpage));
687 if ((*src & MIGRATE_PFN_WRITE) ||
688 (!spage && args->vma->vm_flags & VM_WRITE))
689 *dst |= MIGRATE_PFN_WRITE;
693 static int dmirror_check_atomic(struct dmirror *dmirror, unsigned long start,
694 unsigned long end)
696 unsigned long pfn;
698 for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++) {
699 void *entry;
701 entry = xa_load(&dmirror->pt, pfn);
702 if (xa_pointer_tag(entry) == DPT_XA_TAG_ATOMIC)
703 return -EPERM;
706 return 0;
709 static int dmirror_atomic_map(unsigned long start, unsigned long end,
710 struct page **pages, struct dmirror *dmirror)
712 unsigned long pfn, mapped = 0;
713 int i;
715 /* Map the migrated pages into the device's page tables. */
716 mutex_lock(&dmirror->mutex);
718 for (i = 0, pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++, i++) {
719 void *entry;
721 if (!pages[i])
722 continue;
724 entry = pages[i];
725 entry = xa_tag_pointer(entry, DPT_XA_TAG_ATOMIC);
726 entry = xa_store(&dmirror->pt, pfn, entry, GFP_ATOMIC);
727 if (xa_is_err(entry)) {
728 mutex_unlock(&dmirror->mutex);
729 return xa_err(entry);
732 mapped++;
735 mutex_unlock(&dmirror->mutex);
736 return mapped;
739 static int dmirror_migrate_finalize_and_map(struct migrate_vma *args,
740 struct dmirror *dmirror)
742 unsigned long start = args->start;
743 unsigned long end = args->end;
744 const unsigned long *src = args->src;
745 const unsigned long *dst = args->dst;
746 unsigned long pfn;
748 /* Map the migrated pages into the device's page tables. */
749 mutex_lock(&dmirror->mutex);
751 for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++,
752 src++, dst++) {
753 struct page *dpage;
754 void *entry;
756 if (!(*src & MIGRATE_PFN_MIGRATE))
757 continue;
759 dpage = migrate_pfn_to_page(*dst);
760 if (!dpage)
761 continue;
763 entry = BACKING_PAGE(dpage);
764 if (*dst & MIGRATE_PFN_WRITE)
765 entry = xa_tag_pointer(entry, DPT_XA_TAG_WRITE);
766 entry = xa_store(&dmirror->pt, pfn, entry, GFP_ATOMIC);
767 if (xa_is_err(entry)) {
768 mutex_unlock(&dmirror->mutex);
769 return xa_err(entry);
773 mutex_unlock(&dmirror->mutex);
774 return 0;
777 static int dmirror_exclusive(struct dmirror *dmirror,
778 struct hmm_dmirror_cmd *cmd)
780 unsigned long start, end, addr;
781 unsigned long size = cmd->npages << PAGE_SHIFT;
782 struct mm_struct *mm = dmirror->notifier.mm;
783 struct page *pages[64];
784 struct dmirror_bounce bounce;
785 unsigned long next;
786 int ret;
788 start = cmd->addr;
789 end = start + size;
790 if (end < start)
791 return -EINVAL;
793 /* Since the mm is for the mirrored process, get a reference first. */
794 if (!mmget_not_zero(mm))
795 return -EINVAL;
797 mmap_read_lock(mm);
798 for (addr = start; addr < end; addr = next) {
799 unsigned long mapped = 0;
800 int i;
802 next = min(end, addr + (ARRAY_SIZE(pages) << PAGE_SHIFT));
804 ret = make_device_exclusive_range(mm, addr, next, pages, NULL);
806 * Do dmirror_atomic_map() iff all pages are marked for
807 * exclusive access to avoid accessing uninitialized
808 * fields of pages.
810 if (ret == (next - addr) >> PAGE_SHIFT)
811 mapped = dmirror_atomic_map(addr, next, pages, dmirror);
812 for (i = 0; i < ret; i++) {
813 if (pages[i]) {
814 unlock_page(pages[i]);
815 put_page(pages[i]);
819 if (addr + (mapped << PAGE_SHIFT) < next) {
820 mmap_read_unlock(mm);
821 mmput(mm);
822 return -EBUSY;
825 mmap_read_unlock(mm);
826 mmput(mm);
828 /* Return the migrated data for verification. */
829 ret = dmirror_bounce_init(&bounce, start, size);
830 if (ret)
831 return ret;
832 mutex_lock(&dmirror->mutex);
833 ret = dmirror_do_read(dmirror, start, end, &bounce);
834 mutex_unlock(&dmirror->mutex);
835 if (ret == 0) {
836 if (copy_to_user(u64_to_user_ptr(cmd->ptr), bounce.ptr,
837 bounce.size))
838 ret = -EFAULT;
841 cmd->cpages = bounce.cpages;
842 dmirror_bounce_fini(&bounce);
843 return ret;
846 static vm_fault_t dmirror_devmem_fault_alloc_and_copy(struct migrate_vma *args,
847 struct dmirror *dmirror)
849 const unsigned long *src = args->src;
850 unsigned long *dst = args->dst;
851 unsigned long start = args->start;
852 unsigned long end = args->end;
853 unsigned long addr;
855 for (addr = start; addr < end; addr += PAGE_SIZE,
856 src++, dst++) {
857 struct page *dpage, *spage;
859 spage = migrate_pfn_to_page(*src);
860 if (!spage || !(*src & MIGRATE_PFN_MIGRATE))
861 continue;
863 if (WARN_ON(!is_device_private_page(spage) &&
864 !is_device_coherent_page(spage)))
865 continue;
866 spage = BACKING_PAGE(spage);
867 dpage = alloc_page_vma(GFP_HIGHUSER_MOVABLE, args->vma, addr);
868 if (!dpage)
869 continue;
870 pr_debug("migrating from dev to sys pfn src: 0x%lx pfn dst: 0x%lx\n",
871 page_to_pfn(spage), page_to_pfn(dpage));
873 lock_page(dpage);
874 xa_erase(&dmirror->pt, addr >> PAGE_SHIFT);
875 copy_highpage(dpage, spage);
876 *dst = migrate_pfn(page_to_pfn(dpage));
877 if (*src & MIGRATE_PFN_WRITE)
878 *dst |= MIGRATE_PFN_WRITE;
880 return 0;
883 static unsigned long
884 dmirror_successful_migrated_pages(struct migrate_vma *migrate)
886 unsigned long cpages = 0;
887 unsigned long i;
889 for (i = 0; i < migrate->npages; i++) {
890 if (migrate->src[i] & MIGRATE_PFN_VALID &&
891 migrate->src[i] & MIGRATE_PFN_MIGRATE)
892 cpages++;
894 return cpages;
897 static int dmirror_migrate_to_system(struct dmirror *dmirror,
898 struct hmm_dmirror_cmd *cmd)
900 unsigned long start, end, addr;
901 unsigned long size = cmd->npages << PAGE_SHIFT;
902 struct mm_struct *mm = dmirror->notifier.mm;
903 struct vm_area_struct *vma;
904 unsigned long src_pfns[64] = { 0 };
905 unsigned long dst_pfns[64] = { 0 };
906 struct migrate_vma args = { 0 };
907 unsigned long next;
908 int ret;
910 start = cmd->addr;
911 end = start + size;
912 if (end < start)
913 return -EINVAL;
915 /* Since the mm is for the mirrored process, get a reference first. */
916 if (!mmget_not_zero(mm))
917 return -EINVAL;
919 cmd->cpages = 0;
920 mmap_read_lock(mm);
921 for (addr = start; addr < end; addr = next) {
922 vma = vma_lookup(mm, addr);
923 if (!vma || !(vma->vm_flags & VM_READ)) {
924 ret = -EINVAL;
925 goto out;
927 next = min(end, addr + (ARRAY_SIZE(src_pfns) << PAGE_SHIFT));
928 if (next > vma->vm_end)
929 next = vma->vm_end;
931 args.vma = vma;
932 args.src = src_pfns;
933 args.dst = dst_pfns;
934 args.start = addr;
935 args.end = next;
936 args.pgmap_owner = dmirror->mdevice;
937 args.flags = dmirror_select_device(dmirror);
939 ret = migrate_vma_setup(&args);
940 if (ret)
941 goto out;
943 pr_debug("Migrating from device mem to sys mem\n");
944 dmirror_devmem_fault_alloc_and_copy(&args, dmirror);
946 migrate_vma_pages(&args);
947 cmd->cpages += dmirror_successful_migrated_pages(&args);
948 migrate_vma_finalize(&args);
950 out:
951 mmap_read_unlock(mm);
952 mmput(mm);
954 return ret;
957 static int dmirror_migrate_to_device(struct dmirror *dmirror,
958 struct hmm_dmirror_cmd *cmd)
960 unsigned long start, end, addr;
961 unsigned long size = cmd->npages << PAGE_SHIFT;
962 struct mm_struct *mm = dmirror->notifier.mm;
963 struct vm_area_struct *vma;
964 unsigned long src_pfns[64] = { 0 };
965 unsigned long dst_pfns[64] = { 0 };
966 struct dmirror_bounce bounce;
967 struct migrate_vma args = { 0 };
968 unsigned long next;
969 int ret;
971 start = cmd->addr;
972 end = start + size;
973 if (end < start)
974 return -EINVAL;
976 /* Since the mm is for the mirrored process, get a reference first. */
977 if (!mmget_not_zero(mm))
978 return -EINVAL;
980 mmap_read_lock(mm);
981 for (addr = start; addr < end; addr = next) {
982 vma = vma_lookup(mm, addr);
983 if (!vma || !(vma->vm_flags & VM_READ)) {
984 ret = -EINVAL;
985 goto out;
987 next = min(end, addr + (ARRAY_SIZE(src_pfns) << PAGE_SHIFT));
988 if (next > vma->vm_end)
989 next = vma->vm_end;
991 args.vma = vma;
992 args.src = src_pfns;
993 args.dst = dst_pfns;
994 args.start = addr;
995 args.end = next;
996 args.pgmap_owner = dmirror->mdevice;
997 args.flags = MIGRATE_VMA_SELECT_SYSTEM;
998 ret = migrate_vma_setup(&args);
999 if (ret)
1000 goto out;
1002 pr_debug("Migrating from sys mem to device mem\n");
1003 dmirror_migrate_alloc_and_copy(&args, dmirror);
1004 migrate_vma_pages(&args);
1005 dmirror_migrate_finalize_and_map(&args, dmirror);
1006 migrate_vma_finalize(&args);
1008 mmap_read_unlock(mm);
1009 mmput(mm);
1012 * Return the migrated data for verification.
1013 * Only for pages in device zone
1015 ret = dmirror_bounce_init(&bounce, start, size);
1016 if (ret)
1017 return ret;
1018 mutex_lock(&dmirror->mutex);
1019 ret = dmirror_do_read(dmirror, start, end, &bounce);
1020 mutex_unlock(&dmirror->mutex);
1021 if (ret == 0) {
1022 if (copy_to_user(u64_to_user_ptr(cmd->ptr), bounce.ptr,
1023 bounce.size))
1024 ret = -EFAULT;
1026 cmd->cpages = bounce.cpages;
1027 dmirror_bounce_fini(&bounce);
1028 return ret;
1030 out:
1031 mmap_read_unlock(mm);
1032 mmput(mm);
1033 return ret;
1036 static void dmirror_mkentry(struct dmirror *dmirror, struct hmm_range *range,
1037 unsigned char *perm, unsigned long entry)
1039 struct page *page;
1041 if (entry & HMM_PFN_ERROR) {
1042 *perm = HMM_DMIRROR_PROT_ERROR;
1043 return;
1045 if (!(entry & HMM_PFN_VALID)) {
1046 *perm = HMM_DMIRROR_PROT_NONE;
1047 return;
1050 page = hmm_pfn_to_page(entry);
1051 if (is_device_private_page(page)) {
1052 /* Is the page migrated to this device or some other? */
1053 if (dmirror->mdevice == dmirror_page_to_device(page))
1054 *perm = HMM_DMIRROR_PROT_DEV_PRIVATE_LOCAL;
1055 else
1056 *perm = HMM_DMIRROR_PROT_DEV_PRIVATE_REMOTE;
1057 } else if (is_device_coherent_page(page)) {
1058 /* Is the page migrated to this device or some other? */
1059 if (dmirror->mdevice == dmirror_page_to_device(page))
1060 *perm = HMM_DMIRROR_PROT_DEV_COHERENT_LOCAL;
1061 else
1062 *perm = HMM_DMIRROR_PROT_DEV_COHERENT_REMOTE;
1063 } else if (is_zero_pfn(page_to_pfn(page)))
1064 *perm = HMM_DMIRROR_PROT_ZERO;
1065 else
1066 *perm = HMM_DMIRROR_PROT_NONE;
1067 if (entry & HMM_PFN_WRITE)
1068 *perm |= HMM_DMIRROR_PROT_WRITE;
1069 else
1070 *perm |= HMM_DMIRROR_PROT_READ;
1071 if (hmm_pfn_to_map_order(entry) + PAGE_SHIFT == PMD_SHIFT)
1072 *perm |= HMM_DMIRROR_PROT_PMD;
1073 else if (hmm_pfn_to_map_order(entry) + PAGE_SHIFT == PUD_SHIFT)
1074 *perm |= HMM_DMIRROR_PROT_PUD;
1077 static bool dmirror_snapshot_invalidate(struct mmu_interval_notifier *mni,
1078 const struct mmu_notifier_range *range,
1079 unsigned long cur_seq)
1081 struct dmirror_interval *dmi =
1082 container_of(mni, struct dmirror_interval, notifier);
1083 struct dmirror *dmirror = dmi->dmirror;
1085 if (mmu_notifier_range_blockable(range))
1086 mutex_lock(&dmirror->mutex);
1087 else if (!mutex_trylock(&dmirror->mutex))
1088 return false;
1091 * Snapshots only need to set the sequence number since any
1092 * invalidation in the interval invalidates the whole snapshot.
1094 mmu_interval_set_seq(mni, cur_seq);
1096 mutex_unlock(&dmirror->mutex);
1097 return true;
1100 static const struct mmu_interval_notifier_ops dmirror_mrn_ops = {
1101 .invalidate = dmirror_snapshot_invalidate,
1104 static int dmirror_range_snapshot(struct dmirror *dmirror,
1105 struct hmm_range *range,
1106 unsigned char *perm)
1108 struct mm_struct *mm = dmirror->notifier.mm;
1109 struct dmirror_interval notifier;
1110 unsigned long timeout =
1111 jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
1112 unsigned long i;
1113 unsigned long n;
1114 int ret = 0;
1116 notifier.dmirror = dmirror;
1117 range->notifier = &notifier.notifier;
1119 ret = mmu_interval_notifier_insert(range->notifier, mm,
1120 range->start, range->end - range->start,
1121 &dmirror_mrn_ops);
1122 if (ret)
1123 return ret;
1125 while (true) {
1126 if (time_after(jiffies, timeout)) {
1127 ret = -EBUSY;
1128 goto out;
1131 range->notifier_seq = mmu_interval_read_begin(range->notifier);
1133 mmap_read_lock(mm);
1134 ret = hmm_range_fault(range);
1135 mmap_read_unlock(mm);
1136 if (ret) {
1137 if (ret == -EBUSY)
1138 continue;
1139 goto out;
1142 mutex_lock(&dmirror->mutex);
1143 if (mmu_interval_read_retry(range->notifier,
1144 range->notifier_seq)) {
1145 mutex_unlock(&dmirror->mutex);
1146 continue;
1148 break;
1151 n = (range->end - range->start) >> PAGE_SHIFT;
1152 for (i = 0; i < n; i++)
1153 dmirror_mkentry(dmirror, range, perm + i, range->hmm_pfns[i]);
1155 mutex_unlock(&dmirror->mutex);
1156 out:
1157 mmu_interval_notifier_remove(range->notifier);
1158 return ret;
1161 static int dmirror_snapshot(struct dmirror *dmirror,
1162 struct hmm_dmirror_cmd *cmd)
1164 struct mm_struct *mm = dmirror->notifier.mm;
1165 unsigned long start, end;
1166 unsigned long size = cmd->npages << PAGE_SHIFT;
1167 unsigned long addr;
1168 unsigned long next;
1169 unsigned long pfns[64];
1170 unsigned char perm[64];
1171 char __user *uptr;
1172 struct hmm_range range = {
1173 .hmm_pfns = pfns,
1174 .dev_private_owner = dmirror->mdevice,
1176 int ret = 0;
1178 start = cmd->addr;
1179 end = start + size;
1180 if (end < start)
1181 return -EINVAL;
1183 /* Since the mm is for the mirrored process, get a reference first. */
1184 if (!mmget_not_zero(mm))
1185 return -EINVAL;
1188 * Register a temporary notifier to detect invalidations even if it
1189 * overlaps with other mmu_interval_notifiers.
1191 uptr = u64_to_user_ptr(cmd->ptr);
1192 for (addr = start; addr < end; addr = next) {
1193 unsigned long n;
1195 next = min(addr + (ARRAY_SIZE(pfns) << PAGE_SHIFT), end);
1196 range.start = addr;
1197 range.end = next;
1199 ret = dmirror_range_snapshot(dmirror, &range, perm);
1200 if (ret)
1201 break;
1203 n = (range.end - range.start) >> PAGE_SHIFT;
1204 if (copy_to_user(uptr, perm, n)) {
1205 ret = -EFAULT;
1206 break;
1209 cmd->cpages += n;
1210 uptr += n;
1212 mmput(mm);
1214 return ret;
1217 static void dmirror_device_evict_chunk(struct dmirror_chunk *chunk)
1219 unsigned long start_pfn = chunk->pagemap.range.start >> PAGE_SHIFT;
1220 unsigned long end_pfn = chunk->pagemap.range.end >> PAGE_SHIFT;
1221 unsigned long npages = end_pfn - start_pfn + 1;
1222 unsigned long i;
1223 unsigned long *src_pfns;
1224 unsigned long *dst_pfns;
1226 src_pfns = kvcalloc(npages, sizeof(*src_pfns), GFP_KERNEL | __GFP_NOFAIL);
1227 dst_pfns = kvcalloc(npages, sizeof(*dst_pfns), GFP_KERNEL | __GFP_NOFAIL);
1229 migrate_device_range(src_pfns, start_pfn, npages);
1230 for (i = 0; i < npages; i++) {
1231 struct page *dpage, *spage;
1233 spage = migrate_pfn_to_page(src_pfns[i]);
1234 if (!spage || !(src_pfns[i] & MIGRATE_PFN_MIGRATE))
1235 continue;
1237 if (WARN_ON(!is_device_private_page(spage) &&
1238 !is_device_coherent_page(spage)))
1239 continue;
1240 spage = BACKING_PAGE(spage);
1241 dpage = alloc_page(GFP_HIGHUSER_MOVABLE | __GFP_NOFAIL);
1242 lock_page(dpage);
1243 copy_highpage(dpage, spage);
1244 dst_pfns[i] = migrate_pfn(page_to_pfn(dpage));
1245 if (src_pfns[i] & MIGRATE_PFN_WRITE)
1246 dst_pfns[i] |= MIGRATE_PFN_WRITE;
1248 migrate_device_pages(src_pfns, dst_pfns, npages);
1249 migrate_device_finalize(src_pfns, dst_pfns, npages);
1250 kvfree(src_pfns);
1251 kvfree(dst_pfns);
1254 /* Removes free pages from the free list so they can't be re-allocated */
1255 static void dmirror_remove_free_pages(struct dmirror_chunk *devmem)
1257 struct dmirror_device *mdevice = devmem->mdevice;
1258 struct page *page;
1260 for (page = mdevice->free_pages; page; page = page->zone_device_data)
1261 if (dmirror_page_to_chunk(page) == devmem)
1262 mdevice->free_pages = page->zone_device_data;
1265 static void dmirror_device_remove_chunks(struct dmirror_device *mdevice)
1267 unsigned int i;
1269 mutex_lock(&mdevice->devmem_lock);
1270 if (mdevice->devmem_chunks) {
1271 for (i = 0; i < mdevice->devmem_count; i++) {
1272 struct dmirror_chunk *devmem =
1273 mdevice->devmem_chunks[i];
1275 spin_lock(&mdevice->lock);
1276 devmem->remove = true;
1277 dmirror_remove_free_pages(devmem);
1278 spin_unlock(&mdevice->lock);
1280 dmirror_device_evict_chunk(devmem);
1281 memunmap_pages(&devmem->pagemap);
1282 if (devmem->pagemap.type == MEMORY_DEVICE_PRIVATE)
1283 release_mem_region(devmem->pagemap.range.start,
1284 range_len(&devmem->pagemap.range));
1285 kfree(devmem);
1287 mdevice->devmem_count = 0;
1288 mdevice->devmem_capacity = 0;
1289 mdevice->free_pages = NULL;
1290 kfree(mdevice->devmem_chunks);
1291 mdevice->devmem_chunks = NULL;
1293 mutex_unlock(&mdevice->devmem_lock);
1296 static long dmirror_fops_unlocked_ioctl(struct file *filp,
1297 unsigned int command,
1298 unsigned long arg)
1300 void __user *uarg = (void __user *)arg;
1301 struct hmm_dmirror_cmd cmd;
1302 struct dmirror *dmirror;
1303 int ret;
1305 dmirror = filp->private_data;
1306 if (!dmirror)
1307 return -EINVAL;
1309 if (copy_from_user(&cmd, uarg, sizeof(cmd)))
1310 return -EFAULT;
1312 if (cmd.addr & ~PAGE_MASK)
1313 return -EINVAL;
1314 if (cmd.addr >= (cmd.addr + (cmd.npages << PAGE_SHIFT)))
1315 return -EINVAL;
1317 cmd.cpages = 0;
1318 cmd.faults = 0;
1320 switch (command) {
1321 case HMM_DMIRROR_READ:
1322 ret = dmirror_read(dmirror, &cmd);
1323 break;
1325 case HMM_DMIRROR_WRITE:
1326 ret = dmirror_write(dmirror, &cmd);
1327 break;
1329 case HMM_DMIRROR_MIGRATE_TO_DEV:
1330 ret = dmirror_migrate_to_device(dmirror, &cmd);
1331 break;
1333 case HMM_DMIRROR_MIGRATE_TO_SYS:
1334 ret = dmirror_migrate_to_system(dmirror, &cmd);
1335 break;
1337 case HMM_DMIRROR_EXCLUSIVE:
1338 ret = dmirror_exclusive(dmirror, &cmd);
1339 break;
1341 case HMM_DMIRROR_CHECK_EXCLUSIVE:
1342 ret = dmirror_check_atomic(dmirror, cmd.addr,
1343 cmd.addr + (cmd.npages << PAGE_SHIFT));
1344 break;
1346 case HMM_DMIRROR_SNAPSHOT:
1347 ret = dmirror_snapshot(dmirror, &cmd);
1348 break;
1350 case HMM_DMIRROR_RELEASE:
1351 dmirror_device_remove_chunks(dmirror->mdevice);
1352 ret = 0;
1353 break;
1355 default:
1356 return -EINVAL;
1358 if (ret)
1359 return ret;
1361 if (copy_to_user(uarg, &cmd, sizeof(cmd)))
1362 return -EFAULT;
1364 return 0;
1367 static int dmirror_fops_mmap(struct file *file, struct vm_area_struct *vma)
1369 unsigned long addr;
1371 for (addr = vma->vm_start; addr < vma->vm_end; addr += PAGE_SIZE) {
1372 struct page *page;
1373 int ret;
1375 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
1376 if (!page)
1377 return -ENOMEM;
1379 ret = vm_insert_page(vma, addr, page);
1380 if (ret) {
1381 __free_page(page);
1382 return ret;
1384 put_page(page);
1387 return 0;
1390 static const struct file_operations dmirror_fops = {
1391 .open = dmirror_fops_open,
1392 .release = dmirror_fops_release,
1393 .mmap = dmirror_fops_mmap,
1394 .unlocked_ioctl = dmirror_fops_unlocked_ioctl,
1395 .llseek = default_llseek,
1396 .owner = THIS_MODULE,
1399 static void dmirror_devmem_free(struct page *page)
1401 struct page *rpage = BACKING_PAGE(page);
1402 struct dmirror_device *mdevice;
1404 if (rpage != page)
1405 __free_page(rpage);
1407 mdevice = dmirror_page_to_device(page);
1408 spin_lock(&mdevice->lock);
1410 /* Return page to our allocator if not freeing the chunk */
1411 if (!dmirror_page_to_chunk(page)->remove) {
1412 mdevice->cfree++;
1413 page->zone_device_data = mdevice->free_pages;
1414 mdevice->free_pages = page;
1416 spin_unlock(&mdevice->lock);
1419 static vm_fault_t dmirror_devmem_fault(struct vm_fault *vmf)
1421 struct migrate_vma args = { 0 };
1422 unsigned long src_pfns = 0;
1423 unsigned long dst_pfns = 0;
1424 struct page *rpage;
1425 struct dmirror *dmirror;
1426 vm_fault_t ret;
1429 * Normally, a device would use the page->zone_device_data to point to
1430 * the mirror but here we use it to hold the page for the simulated
1431 * device memory and that page holds the pointer to the mirror.
1433 rpage = vmf->page->zone_device_data;
1434 dmirror = rpage->zone_device_data;
1436 /* FIXME demonstrate how we can adjust migrate range */
1437 args.vma = vmf->vma;
1438 args.start = vmf->address;
1439 args.end = args.start + PAGE_SIZE;
1440 args.src = &src_pfns;
1441 args.dst = &dst_pfns;
1442 args.pgmap_owner = dmirror->mdevice;
1443 args.flags = dmirror_select_device(dmirror);
1444 args.fault_page = vmf->page;
1446 if (migrate_vma_setup(&args))
1447 return VM_FAULT_SIGBUS;
1449 ret = dmirror_devmem_fault_alloc_and_copy(&args, dmirror);
1450 if (ret)
1451 return ret;
1452 migrate_vma_pages(&args);
1454 * No device finalize step is needed since
1455 * dmirror_devmem_fault_alloc_and_copy() will have already
1456 * invalidated the device page table.
1458 migrate_vma_finalize(&args);
1459 return 0;
1462 static const struct dev_pagemap_ops dmirror_devmem_ops = {
1463 .page_free = dmirror_devmem_free,
1464 .migrate_to_ram = dmirror_devmem_fault,
1467 static int dmirror_device_init(struct dmirror_device *mdevice, int id)
1469 dev_t dev;
1470 int ret;
1472 dev = MKDEV(MAJOR(dmirror_dev), id);
1473 mutex_init(&mdevice->devmem_lock);
1474 spin_lock_init(&mdevice->lock);
1476 cdev_init(&mdevice->cdevice, &dmirror_fops);
1477 mdevice->cdevice.owner = THIS_MODULE;
1478 device_initialize(&mdevice->device);
1479 mdevice->device.devt = dev;
1481 ret = dev_set_name(&mdevice->device, "hmm_dmirror%u", id);
1482 if (ret)
1483 return ret;
1485 ret = cdev_device_add(&mdevice->cdevice, &mdevice->device);
1486 if (ret)
1487 return ret;
1489 /* Build a list of free ZONE_DEVICE struct pages */
1490 return dmirror_allocate_chunk(mdevice, NULL);
1493 static void dmirror_device_remove(struct dmirror_device *mdevice)
1495 dmirror_device_remove_chunks(mdevice);
1496 cdev_device_del(&mdevice->cdevice, &mdevice->device);
1499 static int __init hmm_dmirror_init(void)
1501 int ret;
1502 int id = 0;
1503 int ndevices = 0;
1505 ret = alloc_chrdev_region(&dmirror_dev, 0, DMIRROR_NDEVICES,
1506 "HMM_DMIRROR");
1507 if (ret)
1508 goto err_unreg;
1510 memset(dmirror_devices, 0, DMIRROR_NDEVICES * sizeof(dmirror_devices[0]));
1511 dmirror_devices[ndevices++].zone_device_type =
1512 HMM_DMIRROR_MEMORY_DEVICE_PRIVATE;
1513 dmirror_devices[ndevices++].zone_device_type =
1514 HMM_DMIRROR_MEMORY_DEVICE_PRIVATE;
1515 if (spm_addr_dev0 && spm_addr_dev1) {
1516 dmirror_devices[ndevices++].zone_device_type =
1517 HMM_DMIRROR_MEMORY_DEVICE_COHERENT;
1518 dmirror_devices[ndevices++].zone_device_type =
1519 HMM_DMIRROR_MEMORY_DEVICE_COHERENT;
1521 for (id = 0; id < ndevices; id++) {
1522 ret = dmirror_device_init(dmirror_devices + id, id);
1523 if (ret)
1524 goto err_chrdev;
1527 pr_info("HMM test module loaded. This is only for testing HMM.\n");
1528 return 0;
1530 err_chrdev:
1531 while (--id >= 0)
1532 dmirror_device_remove(dmirror_devices + id);
1533 unregister_chrdev_region(dmirror_dev, DMIRROR_NDEVICES);
1534 err_unreg:
1535 return ret;
1538 static void __exit hmm_dmirror_exit(void)
1540 int id;
1542 for (id = 0; id < DMIRROR_NDEVICES; id++)
1543 if (dmirror_devices[id].zone_device_type)
1544 dmirror_device_remove(dmirror_devices + id);
1545 unregister_chrdev_region(dmirror_dev, DMIRROR_NDEVICES);
1548 module_init(hmm_dmirror_init);
1549 module_exit(hmm_dmirror_exit);
1550 MODULE_DESCRIPTION("HMM (Heterogeneous Memory Management) test module");
1551 MODULE_LICENSE("GPL");