1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * fs/eventpoll.c (Efficient event retrieval implementation)
4 * Copyright (C) 2001,...,2009 Davide Libenzi
6 * Davide Libenzi <davidel@xmailserver.org>
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/sched/signal.h>
13 #include <linux/file.h>
14 #include <linux/signal.h>
15 #include <linux/errno.h>
17 #include <linux/slab.h>
18 #include <linux/poll.h>
19 #include <linux/string.h>
20 #include <linux/list.h>
21 #include <linux/hash.h>
22 #include <linux/spinlock.h>
23 #include <linux/syscalls.h>
24 #include <linux/rbtree.h>
25 #include <linux/wait.h>
26 #include <linux/eventpoll.h>
27 #include <linux/mount.h>
28 #include <linux/bitops.h>
29 #include <linux/mutex.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/device.h>
32 #include <linux/uaccess.h>
35 #include <linux/atomic.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/compat.h>
39 #include <linux/rculist.h>
40 #include <linux/capability.h>
41 #include <net/busy_poll.h>
45 * There are three level of locking required by epoll :
47 * 1) epnested_mutex (mutex)
49 * 3) ep->lock (rwlock)
51 * The acquire order is the one listed above, from 1 to 3.
52 * We need a rwlock (ep->lock) because we manipulate objects
53 * from inside the poll callback, that might be triggered from
54 * a wake_up() that in turn might be called from IRQ context.
55 * So we can't sleep inside the poll callback and hence we need
56 * a spinlock. During the event transfer loop (from kernel to
57 * user space) we could end up sleeping due a copy_to_user(), so
58 * we need a lock that will allow us to sleep. This lock is a
59 * mutex (ep->mtx). It is acquired during the event transfer loop,
60 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
61 * The epnested_mutex is acquired when inserting an epoll fd onto another
62 * epoll fd. We do this so that we walk the epoll tree and ensure that this
63 * insertion does not create a cycle of epoll file descriptors, which
64 * could lead to deadlock. We need a global mutex to prevent two
65 * simultaneous inserts (A into B and B into A) from racing and
66 * constructing a cycle without either insert observing that it is
68 * It is necessary to acquire multiple "ep->mtx"es at once in the
69 * case when one epoll fd is added to another. In this case, we
70 * always acquire the locks in the order of nesting (i.e. after
71 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
72 * before e2->mtx). Since we disallow cycles of epoll file
73 * descriptors, this ensures that the mutexes are well-ordered. In
74 * order to communicate this nesting to lockdep, when walking a tree
75 * of epoll file descriptors, we use the current recursion depth as
77 * It is possible to drop the "ep->mtx" and to use the global
78 * mutex "epnested_mutex" (together with "ep->lock") to have it working,
79 * but having "ep->mtx" will make the interface more scalable.
80 * Events that require holding "epnested_mutex" are very rare, while for
81 * normal operations the epoll private "ep->mtx" will guarantee
82 * a better scalability.
85 /* Epoll private bits inside the event mask */
86 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
88 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
90 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
91 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
93 /* Maximum number of nesting allowed inside epoll sets */
94 #define EP_MAX_NESTS 4
96 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
98 #define EP_UNACTIVE_PTR ((void *) -1L)
100 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
102 struct epoll_filefd
{
107 /* Wait structure used by the poll hooks */
108 struct eppoll_entry
{
109 /* List header used to link this structure to the "struct epitem" */
110 struct eppoll_entry
*next
;
112 /* The "base" pointer is set to the container "struct epitem" */
116 * Wait queue item that will be linked to the target file wait
119 wait_queue_entry_t wait
;
121 /* The wait queue head that linked the "wait" wait queue item */
122 wait_queue_head_t
*whead
;
126 * Each file descriptor added to the eventpoll interface will
127 * have an entry of this type linked to the "rbr" RB tree.
128 * Avoid increasing the size of this struct, there can be many thousands
129 * of these on a server and we do not want this to take another cache line.
133 /* RB tree node links this structure to the eventpoll RB tree */
135 /* Used to free the struct epitem */
139 /* List header used to link this structure to the eventpoll ready list */
140 struct list_head rdllink
;
143 * Works together "struct eventpoll"->ovflist in keeping the
144 * single linked chain of items.
148 /* The file descriptor information this item refers to */
149 struct epoll_filefd ffd
;
152 * Protected by file->f_lock, true for to-be-released epitem already
153 * removed from the "struct file" items list; together with
154 * eventpoll->refcount orchestrates "struct eventpoll" disposal
158 /* List containing poll wait queues */
159 struct eppoll_entry
*pwqlist
;
161 /* The "container" of this item */
162 struct eventpoll
*ep
;
164 /* List header used to link this item to the "struct file" items list */
165 struct hlist_node fllink
;
167 /* wakeup_source used when EPOLLWAKEUP is set */
168 struct wakeup_source __rcu
*ws
;
170 /* The structure that describe the interested events and the source fd */
171 struct epoll_event event
;
175 * This structure is stored inside the "private_data" member of the file
176 * structure and represents the main data structure for the eventpoll
181 * This mutex is used to ensure that files are not removed
182 * while epoll is using them. This is held during the event
183 * collection loop, the file cleanup path, the epoll file exit
184 * code and the ctl operations.
188 /* Wait queue used by sys_epoll_wait() */
189 wait_queue_head_t wq
;
191 /* Wait queue used by file->poll() */
192 wait_queue_head_t poll_wait
;
194 /* List of ready file descriptors */
195 struct list_head rdllist
;
197 /* Lock which protects rdllist and ovflist */
200 /* RB tree root used to store monitored fd structs */
201 struct rb_root_cached rbr
;
204 * This is a single linked list that chains all the "struct epitem" that
205 * happened while transferring ready events to userspace w/out
208 struct epitem
*ovflist
;
210 /* wakeup_source used when ep_send_events or __ep_eventpoll_poll is running */
211 struct wakeup_source
*ws
;
213 /* The user that created the eventpoll descriptor */
214 struct user_struct
*user
;
218 /* used to optimize loop detection check */
220 struct hlist_head refs
;
223 * usage count, used together with epitem->dying to
224 * orchestrate the disposal of this struct
228 #ifdef CONFIG_NET_RX_BUSY_POLL
229 /* used to track busy poll napi_id */
230 unsigned int napi_id
;
231 /* busy poll timeout */
233 /* busy poll packet budget */
234 u16 busy_poll_budget
;
235 bool prefer_busy_poll
;
238 #ifdef CONFIG_DEBUG_LOCK_ALLOC
239 /* tracks wakeup nests for lockdep validation */
244 /* Wrapper struct used by poll queueing */
251 * Configuration options available inside /proc/sys/fs/epoll/
253 /* Maximum number of epoll watched descriptors, per user */
254 static long max_user_watches __read_mostly
;
256 /* Used for cycles detection */
257 static DEFINE_MUTEX(epnested_mutex
);
259 static u64 loop_check_gen
= 0;
261 /* Used to check for epoll file descriptor inclusion loops */
262 static struct eventpoll
*inserting_into
;
264 /* Slab cache used to allocate "struct epitem" */
265 static struct kmem_cache
*epi_cache __ro_after_init
;
267 /* Slab cache used to allocate "struct eppoll_entry" */
268 static struct kmem_cache
*pwq_cache __ro_after_init
;
271 * List of files with newly added links, where we may need to limit the number
272 * of emanating paths. Protected by the epnested_mutex.
274 struct epitems_head
{
275 struct hlist_head epitems
;
276 struct epitems_head
*next
;
278 static struct epitems_head
*tfile_check_list
= EP_UNACTIVE_PTR
;
280 static struct kmem_cache
*ephead_cache __ro_after_init
;
282 static inline void free_ephead(struct epitems_head
*head
)
285 kmem_cache_free(ephead_cache
, head
);
288 static void list_file(struct file
*file
)
290 struct epitems_head
*head
;
292 head
= container_of(file
->f_ep
, struct epitems_head
, epitems
);
294 head
->next
= tfile_check_list
;
295 tfile_check_list
= head
;
299 static void unlist_file(struct epitems_head
*head
)
301 struct epitems_head
*to_free
= head
;
302 struct hlist_node
*p
= rcu_dereference(hlist_first_rcu(&head
->epitems
));
304 struct epitem
*epi
= container_of(p
, struct epitem
, fllink
);
305 spin_lock(&epi
->ffd
.file
->f_lock
);
306 if (!hlist_empty(&head
->epitems
))
309 spin_unlock(&epi
->ffd
.file
->f_lock
);
311 free_ephead(to_free
);
316 #include <linux/sysctl.h>
318 static long long_zero
;
319 static long long_max
= LONG_MAX
;
321 static struct ctl_table epoll_table
[] = {
323 .procname
= "max_user_watches",
324 .data
= &max_user_watches
,
325 .maxlen
= sizeof(max_user_watches
),
327 .proc_handler
= proc_doulongvec_minmax
,
328 .extra1
= &long_zero
,
333 static void __init
epoll_sysctls_init(void)
335 register_sysctl("fs/epoll", epoll_table
);
338 #define epoll_sysctls_init() do { } while (0)
339 #endif /* CONFIG_SYSCTL */
341 static const struct file_operations eventpoll_fops
;
343 static inline int is_file_epoll(struct file
*f
)
345 return f
->f_op
== &eventpoll_fops
;
348 /* Setup the structure that is used as key for the RB tree */
349 static inline void ep_set_ffd(struct epoll_filefd
*ffd
,
350 struct file
*file
, int fd
)
356 /* Compare RB tree keys */
357 static inline int ep_cmp_ffd(struct epoll_filefd
*p1
,
358 struct epoll_filefd
*p2
)
360 return (p1
->file
> p2
->file
? +1:
361 (p1
->file
< p2
->file
? -1 : p1
->fd
- p2
->fd
));
364 /* Tells us if the item is currently linked */
365 static inline int ep_is_linked(struct epitem
*epi
)
367 return !list_empty(&epi
->rdllink
);
370 static inline struct eppoll_entry
*ep_pwq_from_wait(wait_queue_entry_t
*p
)
372 return container_of(p
, struct eppoll_entry
, wait
);
375 /* Get the "struct epitem" from a wait queue pointer */
376 static inline struct epitem
*ep_item_from_wait(wait_queue_entry_t
*p
)
378 return container_of(p
, struct eppoll_entry
, wait
)->base
;
382 * ep_events_available - Checks if ready events might be available.
384 * @ep: Pointer to the eventpoll context.
386 * Return: a value different than %zero if ready events are available,
387 * or %zero otherwise.
389 static inline int ep_events_available(struct eventpoll
*ep
)
391 return !list_empty_careful(&ep
->rdllist
) ||
392 READ_ONCE(ep
->ovflist
) != EP_UNACTIVE_PTR
;
395 #ifdef CONFIG_NET_RX_BUSY_POLL
397 * busy_loop_ep_timeout - check if busy poll has timed out. The timeout value
398 * from the epoll instance ep is preferred, but if it is not set fallback to
399 * the system-wide global via busy_loop_timeout.
401 * @start_time: The start time used to compute the remaining time until timeout.
402 * @ep: Pointer to the eventpoll context.
404 * Return: true if the timeout has expired, false otherwise.
406 static bool busy_loop_ep_timeout(unsigned long start_time
,
407 struct eventpoll
*ep
)
409 unsigned long bp_usec
= READ_ONCE(ep
->busy_poll_usecs
);
412 unsigned long end_time
= start_time
+ bp_usec
;
413 unsigned long now
= busy_loop_current_time();
415 return time_after(now
, end_time
);
417 return busy_loop_timeout(start_time
);
421 static bool ep_busy_loop_on(struct eventpoll
*ep
)
423 return !!READ_ONCE(ep
->busy_poll_usecs
) || net_busy_loop_on();
426 static bool ep_busy_loop_end(void *p
, unsigned long start_time
)
428 struct eventpoll
*ep
= p
;
430 return ep_events_available(ep
) || busy_loop_ep_timeout(start_time
, ep
);
434 * Busy poll if globally on and supporting sockets found && no events,
435 * busy loop will return if need_resched or ep_events_available.
437 * we must do our busy polling with irqs enabled
439 static bool ep_busy_loop(struct eventpoll
*ep
, int nonblock
)
441 unsigned int napi_id
= READ_ONCE(ep
->napi_id
);
442 u16 budget
= READ_ONCE(ep
->busy_poll_budget
);
443 bool prefer_busy_poll
= READ_ONCE(ep
->prefer_busy_poll
);
446 budget
= BUSY_POLL_BUDGET
;
448 if (napi_id
>= MIN_NAPI_ID
&& ep_busy_loop_on(ep
)) {
449 napi_busy_loop(napi_id
, nonblock
? NULL
: ep_busy_loop_end
,
450 ep
, prefer_busy_poll
, budget
);
451 if (ep_events_available(ep
))
454 * Busy poll timed out. Drop NAPI ID for now, we can add
455 * it back in when we have moved a socket with a valid NAPI
456 * ID onto the ready list.
465 * Set epoll busy poll NAPI ID from sk.
467 static inline void ep_set_busy_poll_napi_id(struct epitem
*epi
)
469 struct eventpoll
*ep
= epi
->ep
;
470 unsigned int napi_id
;
474 if (!ep_busy_loop_on(ep
))
477 sock
= sock_from_file(epi
->ffd
.file
);
485 napi_id
= READ_ONCE(sk
->sk_napi_id
);
487 /* Non-NAPI IDs can be rejected
489 * Nothing to do if we already have this ID
491 if (napi_id
< MIN_NAPI_ID
|| napi_id
== ep
->napi_id
)
494 /* record NAPI ID for use in next busy poll */
495 ep
->napi_id
= napi_id
;
498 static long ep_eventpoll_bp_ioctl(struct file
*file
, unsigned int cmd
,
501 struct eventpoll
*ep
= file
->private_data
;
502 void __user
*uarg
= (void __user
*)arg
;
503 struct epoll_params epoll_params
;
507 if (copy_from_user(&epoll_params
, uarg
, sizeof(epoll_params
)))
510 /* pad byte must be zero */
511 if (epoll_params
.__pad
)
514 if (epoll_params
.busy_poll_usecs
> S32_MAX
)
517 if (epoll_params
.prefer_busy_poll
> 1)
520 if (epoll_params
.busy_poll_budget
> NAPI_POLL_WEIGHT
&&
521 !capable(CAP_NET_ADMIN
))
524 WRITE_ONCE(ep
->busy_poll_usecs
, epoll_params
.busy_poll_usecs
);
525 WRITE_ONCE(ep
->busy_poll_budget
, epoll_params
.busy_poll_budget
);
526 WRITE_ONCE(ep
->prefer_busy_poll
, epoll_params
.prefer_busy_poll
);
529 memset(&epoll_params
, 0, sizeof(epoll_params
));
530 epoll_params
.busy_poll_usecs
= READ_ONCE(ep
->busy_poll_usecs
);
531 epoll_params
.busy_poll_budget
= READ_ONCE(ep
->busy_poll_budget
);
532 epoll_params
.prefer_busy_poll
= READ_ONCE(ep
->prefer_busy_poll
);
533 if (copy_to_user(uarg
, &epoll_params
, sizeof(epoll_params
)))
543 static inline bool ep_busy_loop(struct eventpoll
*ep
, int nonblock
)
548 static inline void ep_set_busy_poll_napi_id(struct epitem
*epi
)
552 static long ep_eventpoll_bp_ioctl(struct file
*file
, unsigned int cmd
,
558 #endif /* CONFIG_NET_RX_BUSY_POLL */
561 * As described in commit 0ccf831cb lockdep: annotate epoll
562 * the use of wait queues used by epoll is done in a very controlled
563 * manner. Wake ups can nest inside each other, but are never done
564 * with the same locking. For example:
567 * efd1 = epoll_create();
568 * efd2 = epoll_create();
569 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
570 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
572 * When a packet arrives to the device underneath "dfd", the net code will
573 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
574 * callback wakeup entry on that queue, and the wake_up() performed by the
575 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
576 * (efd1) notices that it may have some event ready, so it needs to wake up
577 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
578 * that ends up in another wake_up(), after having checked about the
579 * recursion constraints. That are, no more than EP_MAX_NESTS, to avoid
582 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
583 * this special case of epoll.
585 #ifdef CONFIG_DEBUG_LOCK_ALLOC
587 static void ep_poll_safewake(struct eventpoll
*ep
, struct epitem
*epi
,
590 struct eventpoll
*ep_src
;
595 * To set the subclass or nesting level for spin_lock_irqsave_nested()
596 * it might be natural to create a per-cpu nest count. However, since
597 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
598 * schedule() in the -rt kernel, the per-cpu variable are no longer
599 * protected. Thus, we are introducing a per eventpoll nest field.
600 * If we are not being call from ep_poll_callback(), epi is NULL and
601 * we are at the first level of nesting, 0. Otherwise, we are being
602 * called from ep_poll_callback() and if a previous wakeup source is
603 * not an epoll file itself, we are at depth 1 since the wakeup source
604 * is depth 0. If the wakeup source is a previous epoll file in the
605 * wakeup chain then we use its nests value and record ours as
606 * nests + 1. The previous epoll file nests value is stable since its
607 * already holding its own poll_wait.lock.
610 if ((is_file_epoll(epi
->ffd
.file
))) {
611 ep_src
= epi
->ffd
.file
->private_data
;
612 nests
= ep_src
->nests
;
617 spin_lock_irqsave_nested(&ep
->poll_wait
.lock
, flags
, nests
);
618 ep
->nests
= nests
+ 1;
619 wake_up_locked_poll(&ep
->poll_wait
, EPOLLIN
| pollflags
);
621 spin_unlock_irqrestore(&ep
->poll_wait
.lock
, flags
);
626 static void ep_poll_safewake(struct eventpoll
*ep
, struct epitem
*epi
,
629 wake_up_poll(&ep
->poll_wait
, EPOLLIN
| pollflags
);
634 static void ep_remove_wait_queue(struct eppoll_entry
*pwq
)
636 wait_queue_head_t
*whead
;
640 * If it is cleared by POLLFREE, it should be rcu-safe.
641 * If we read NULL we need a barrier paired with
642 * smp_store_release() in ep_poll_callback(), otherwise
643 * we rely on whead->lock.
645 whead
= smp_load_acquire(&pwq
->whead
);
647 remove_wait_queue(whead
, &pwq
->wait
);
652 * This function unregisters poll callbacks from the associated file
653 * descriptor. Must be called with "mtx" held.
655 static void ep_unregister_pollwait(struct eventpoll
*ep
, struct epitem
*epi
)
657 struct eppoll_entry
**p
= &epi
->pwqlist
;
658 struct eppoll_entry
*pwq
;
660 while ((pwq
= *p
) != NULL
) {
662 ep_remove_wait_queue(pwq
);
663 kmem_cache_free(pwq_cache
, pwq
);
667 /* call only when ep->mtx is held */
668 static inline struct wakeup_source
*ep_wakeup_source(struct epitem
*epi
)
670 return rcu_dereference_check(epi
->ws
, lockdep_is_held(&epi
->ep
->mtx
));
673 /* call only when ep->mtx is held */
674 static inline void ep_pm_stay_awake(struct epitem
*epi
)
676 struct wakeup_source
*ws
= ep_wakeup_source(epi
);
682 static inline bool ep_has_wakeup_source(struct epitem
*epi
)
684 return rcu_access_pointer(epi
->ws
) ? true : false;
687 /* call when ep->mtx cannot be held (ep_poll_callback) */
688 static inline void ep_pm_stay_awake_rcu(struct epitem
*epi
)
690 struct wakeup_source
*ws
;
693 ws
= rcu_dereference(epi
->ws
);
701 * ep->mutex needs to be held because we could be hit by
702 * eventpoll_release_file() and epoll_ctl().
704 static void ep_start_scan(struct eventpoll
*ep
, struct list_head
*txlist
)
707 * Steal the ready list, and re-init the original one to the
708 * empty list. Also, set ep->ovflist to NULL so that events
709 * happening while looping w/out locks, are not lost. We cannot
710 * have the poll callback to queue directly on ep->rdllist,
711 * because we want the "sproc" callback to be able to do it
714 lockdep_assert_irqs_enabled();
715 write_lock_irq(&ep
->lock
);
716 list_splice_init(&ep
->rdllist
, txlist
);
717 WRITE_ONCE(ep
->ovflist
, NULL
);
718 write_unlock_irq(&ep
->lock
);
721 static void ep_done_scan(struct eventpoll
*ep
,
722 struct list_head
*txlist
)
724 struct epitem
*epi
, *nepi
;
726 write_lock_irq(&ep
->lock
);
728 * During the time we spent inside the "sproc" callback, some
729 * other events might have been queued by the poll callback.
730 * We re-insert them inside the main ready-list here.
732 for (nepi
= READ_ONCE(ep
->ovflist
); (epi
= nepi
) != NULL
;
733 nepi
= epi
->next
, epi
->next
= EP_UNACTIVE_PTR
) {
735 * We need to check if the item is already in the list.
736 * During the "sproc" callback execution time, items are
737 * queued into ->ovflist but the "txlist" might already
738 * contain them, and the list_splice() below takes care of them.
740 if (!ep_is_linked(epi
)) {
742 * ->ovflist is LIFO, so we have to reverse it in order
745 list_add(&epi
->rdllink
, &ep
->rdllist
);
746 ep_pm_stay_awake(epi
);
750 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
751 * releasing the lock, events will be queued in the normal way inside
754 WRITE_ONCE(ep
->ovflist
, EP_UNACTIVE_PTR
);
757 * Quickly re-inject items left on "txlist".
759 list_splice(txlist
, &ep
->rdllist
);
762 if (!list_empty(&ep
->rdllist
)) {
763 if (waitqueue_active(&ep
->wq
))
767 write_unlock_irq(&ep
->lock
);
770 static void ep_get(struct eventpoll
*ep
)
772 refcount_inc(&ep
->refcount
);
776 * Returns true if the event poll can be disposed
778 static bool ep_refcount_dec_and_test(struct eventpoll
*ep
)
780 if (!refcount_dec_and_test(&ep
->refcount
))
783 WARN_ON_ONCE(!RB_EMPTY_ROOT(&ep
->rbr
.rb_root
));
787 static void ep_free(struct eventpoll
*ep
)
789 mutex_destroy(&ep
->mtx
);
791 wakeup_source_unregister(ep
->ws
);
796 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
797 * all the associated resources. Must be called with "mtx" held.
798 * If the dying flag is set, do the removal only if force is true.
799 * This prevents ep_clear_and_put() from dropping all the ep references
800 * while running concurrently with eventpoll_release_file().
801 * Returns true if the eventpoll can be disposed.
803 static bool __ep_remove(struct eventpoll
*ep
, struct epitem
*epi
, bool force
)
805 struct file
*file
= epi
->ffd
.file
;
806 struct epitems_head
*to_free
;
807 struct hlist_head
*head
;
809 lockdep_assert_irqs_enabled();
812 * Removes poll wait queue hooks.
814 ep_unregister_pollwait(ep
, epi
);
816 /* Remove the current item from the list of epoll hooks */
817 spin_lock(&file
->f_lock
);
818 if (epi
->dying
&& !force
) {
819 spin_unlock(&file
->f_lock
);
825 if (head
->first
== &epi
->fllink
&& !epi
->fllink
.next
) {
827 if (!is_file_epoll(file
)) {
828 struct epitems_head
*v
;
829 v
= container_of(head
, struct epitems_head
, epitems
);
830 if (!smp_load_acquire(&v
->next
))
834 hlist_del_rcu(&epi
->fllink
);
835 spin_unlock(&file
->f_lock
);
836 free_ephead(to_free
);
838 rb_erase_cached(&epi
->rbn
, &ep
->rbr
);
840 write_lock_irq(&ep
->lock
);
841 if (ep_is_linked(epi
))
842 list_del_init(&epi
->rdllink
);
843 write_unlock_irq(&ep
->lock
);
845 wakeup_source_unregister(ep_wakeup_source(epi
));
847 * At this point it is safe to free the eventpoll item. Use the union
848 * field epi->rcu, since we are trying to minimize the size of
849 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
850 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
851 * use of the rbn field.
855 percpu_counter_dec(&ep
->user
->epoll_watches
);
856 return ep_refcount_dec_and_test(ep
);
860 * ep_remove variant for callers owing an additional reference to the ep
862 static void ep_remove_safe(struct eventpoll
*ep
, struct epitem
*epi
)
864 WARN_ON_ONCE(__ep_remove(ep
, epi
, false));
867 static void ep_clear_and_put(struct eventpoll
*ep
)
869 struct rb_node
*rbp
, *next
;
873 /* We need to release all tasks waiting for these file */
874 if (waitqueue_active(&ep
->poll_wait
))
875 ep_poll_safewake(ep
, NULL
, 0);
877 mutex_lock(&ep
->mtx
);
880 * Walks through the whole tree by unregistering poll callbacks.
882 for (rbp
= rb_first_cached(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
883 epi
= rb_entry(rbp
, struct epitem
, rbn
);
885 ep_unregister_pollwait(ep
, epi
);
890 * Walks through the whole tree and try to free each "struct epitem".
891 * Note that ep_remove_safe() will not remove the epitem in case of a
892 * racing eventpoll_release_file(); the latter will do the removal.
893 * At this point we are sure no poll callbacks will be lingering around.
894 * Since we still own a reference to the eventpoll struct, the loop can't
897 for (rbp
= rb_first_cached(&ep
->rbr
); rbp
; rbp
= next
) {
899 epi
= rb_entry(rbp
, struct epitem
, rbn
);
900 ep_remove_safe(ep
, epi
);
904 dispose
= ep_refcount_dec_and_test(ep
);
905 mutex_unlock(&ep
->mtx
);
911 static long ep_eventpoll_ioctl(struct file
*file
, unsigned int cmd
,
916 if (!is_file_epoll(file
))
922 ret
= ep_eventpoll_bp_ioctl(file
, cmd
, arg
);
932 static int ep_eventpoll_release(struct inode
*inode
, struct file
*file
)
934 struct eventpoll
*ep
= file
->private_data
;
937 ep_clear_and_put(ep
);
942 static __poll_t
ep_item_poll(const struct epitem
*epi
, poll_table
*pt
, int depth
);
944 static __poll_t
__ep_eventpoll_poll(struct file
*file
, poll_table
*wait
, int depth
)
946 struct eventpoll
*ep
= file
->private_data
;
948 struct epitem
*epi
, *tmp
;
952 init_poll_funcptr(&pt
, NULL
);
954 /* Insert inside our poll wait queue */
955 poll_wait(file
, &ep
->poll_wait
, wait
);
958 * Proceed to find out if wanted events are really available inside
961 mutex_lock_nested(&ep
->mtx
, depth
);
962 ep_start_scan(ep
, &txlist
);
963 list_for_each_entry_safe(epi
, tmp
, &txlist
, rdllink
) {
964 if (ep_item_poll(epi
, &pt
, depth
+ 1)) {
965 res
= EPOLLIN
| EPOLLRDNORM
;
969 * Item has been dropped into the ready list by the poll
970 * callback, but it's not actually ready, as far as
971 * caller requested events goes. We can remove it here.
973 __pm_relax(ep_wakeup_source(epi
));
974 list_del_init(&epi
->rdllink
);
977 ep_done_scan(ep
, &txlist
);
978 mutex_unlock(&ep
->mtx
);
983 * The ffd.file pointer may be in the process of being torn down due to
984 * being closed, but we may not have finished eventpoll_release() yet.
986 * Normally, even with the atomic_long_inc_not_zero, the file may have
987 * been free'd and then gotten re-allocated to something else (since
988 * files are not RCU-delayed, they are SLAB_TYPESAFE_BY_RCU).
990 * But for epoll, users hold the ep->mtx mutex, and as such any file in
991 * the process of being free'd will block in eventpoll_release_file()
992 * and thus the underlying file allocation will not be free'd, and the
993 * file re-use cannot happen.
995 * For the same reason we can avoid a rcu_read_lock() around the
996 * operation - 'ffd.file' cannot go away even if the refcount has
997 * reached zero (but we must still not call out to ->poll() functions
1000 static struct file
*epi_fget(const struct epitem
*epi
)
1004 file
= epi
->ffd
.file
;
1005 if (!atomic_long_inc_not_zero(&file
->f_count
))
1011 * Differs from ep_eventpoll_poll() in that internal callers already have
1012 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
1013 * is correctly annotated.
1015 static __poll_t
ep_item_poll(const struct epitem
*epi
, poll_table
*pt
,
1018 struct file
*file
= epi_fget(epi
);
1022 * We could return EPOLLERR | EPOLLHUP or something, but let's
1023 * treat this more as "file doesn't exist, poll didn't happen".
1028 pt
->_key
= epi
->event
.events
;
1029 if (!is_file_epoll(file
))
1030 res
= vfs_poll(file
, pt
);
1032 res
= __ep_eventpoll_poll(file
, pt
, depth
);
1034 return res
& epi
->event
.events
;
1037 static __poll_t
ep_eventpoll_poll(struct file
*file
, poll_table
*wait
)
1039 return __ep_eventpoll_poll(file
, wait
, 0);
1042 #ifdef CONFIG_PROC_FS
1043 static void ep_show_fdinfo(struct seq_file
*m
, struct file
*f
)
1045 struct eventpoll
*ep
= f
->private_data
;
1046 struct rb_node
*rbp
;
1048 mutex_lock(&ep
->mtx
);
1049 for (rbp
= rb_first_cached(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
1050 struct epitem
*epi
= rb_entry(rbp
, struct epitem
, rbn
);
1051 struct inode
*inode
= file_inode(epi
->ffd
.file
);
1053 seq_printf(m
, "tfd: %8d events: %8x data: %16llx "
1054 " pos:%lli ino:%lx sdev:%x\n",
1055 epi
->ffd
.fd
, epi
->event
.events
,
1056 (long long)epi
->event
.data
,
1057 (long long)epi
->ffd
.file
->f_pos
,
1058 inode
->i_ino
, inode
->i_sb
->s_dev
);
1059 if (seq_has_overflowed(m
))
1062 mutex_unlock(&ep
->mtx
);
1066 /* File callbacks that implement the eventpoll file behaviour */
1067 static const struct file_operations eventpoll_fops
= {
1068 #ifdef CONFIG_PROC_FS
1069 .show_fdinfo
= ep_show_fdinfo
,
1071 .release
= ep_eventpoll_release
,
1072 .poll
= ep_eventpoll_poll
,
1073 .llseek
= noop_llseek
,
1074 .unlocked_ioctl
= ep_eventpoll_ioctl
,
1075 .compat_ioctl
= compat_ptr_ioctl
,
1079 * This is called from eventpoll_release() to unlink files from the eventpoll
1080 * interface. We need to have this facility to cleanup correctly files that are
1081 * closed without being removed from the eventpoll interface.
1083 void eventpoll_release_file(struct file
*file
)
1085 struct eventpoll
*ep
;
1090 * Use the 'dying' flag to prevent a concurrent ep_clear_and_put() from
1091 * touching the epitems list before eventpoll_release_file() can access
1095 spin_lock(&file
->f_lock
);
1096 if (file
->f_ep
&& file
->f_ep
->first
) {
1097 epi
= hlist_entry(file
->f_ep
->first
, struct epitem
, fllink
);
1099 spin_unlock(&file
->f_lock
);
1102 * ep access is safe as we still own a reference to the ep
1106 mutex_lock(&ep
->mtx
);
1107 dispose
= __ep_remove(ep
, epi
, true);
1108 mutex_unlock(&ep
->mtx
);
1114 spin_unlock(&file
->f_lock
);
1117 static int ep_alloc(struct eventpoll
**pep
)
1119 struct eventpoll
*ep
;
1121 ep
= kzalloc(sizeof(*ep
), GFP_KERNEL
);
1125 mutex_init(&ep
->mtx
);
1126 rwlock_init(&ep
->lock
);
1127 init_waitqueue_head(&ep
->wq
);
1128 init_waitqueue_head(&ep
->poll_wait
);
1129 INIT_LIST_HEAD(&ep
->rdllist
);
1130 ep
->rbr
= RB_ROOT_CACHED
;
1131 ep
->ovflist
= EP_UNACTIVE_PTR
;
1132 ep
->user
= get_current_user();
1133 refcount_set(&ep
->refcount
, 1);
1141 * Search the file inside the eventpoll tree. The RB tree operations
1142 * are protected by the "mtx" mutex, and ep_find() must be called with
1145 static struct epitem
*ep_find(struct eventpoll
*ep
, struct file
*file
, int fd
)
1148 struct rb_node
*rbp
;
1149 struct epitem
*epi
, *epir
= NULL
;
1150 struct epoll_filefd ffd
;
1152 ep_set_ffd(&ffd
, file
, fd
);
1153 for (rbp
= ep
->rbr
.rb_root
.rb_node
; rbp
; ) {
1154 epi
= rb_entry(rbp
, struct epitem
, rbn
);
1155 kcmp
= ep_cmp_ffd(&ffd
, &epi
->ffd
);
1157 rbp
= rbp
->rb_right
;
1170 static struct epitem
*ep_find_tfd(struct eventpoll
*ep
, int tfd
, unsigned long toff
)
1172 struct rb_node
*rbp
;
1175 for (rbp
= rb_first_cached(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
1176 epi
= rb_entry(rbp
, struct epitem
, rbn
);
1177 if (epi
->ffd
.fd
== tfd
) {
1189 struct file
*get_epoll_tfile_raw_ptr(struct file
*file
, int tfd
,
1192 struct file
*file_raw
;
1193 struct eventpoll
*ep
;
1196 if (!is_file_epoll(file
))
1197 return ERR_PTR(-EINVAL
);
1199 ep
= file
->private_data
;
1201 mutex_lock(&ep
->mtx
);
1202 epi
= ep_find_tfd(ep
, tfd
, toff
);
1204 file_raw
= epi
->ffd
.file
;
1206 file_raw
= ERR_PTR(-ENOENT
);
1207 mutex_unlock(&ep
->mtx
);
1211 #endif /* CONFIG_KCMP */
1214 * Adds a new entry to the tail of the list in a lockless way, i.e.
1215 * multiple CPUs are allowed to call this function concurrently.
1217 * Beware: it is necessary to prevent any other modifications of the
1218 * existing list until all changes are completed, in other words
1219 * concurrent list_add_tail_lockless() calls should be protected
1220 * with a read lock, where write lock acts as a barrier which
1221 * makes sure all list_add_tail_lockless() calls are fully
1224 * Also an element can be locklessly added to the list only in one
1225 * direction i.e. either to the tail or to the head, otherwise
1226 * concurrent access will corrupt the list.
1228 * Return: %false if element has been already added to the list, %true
1231 static inline bool list_add_tail_lockless(struct list_head
*new,
1232 struct list_head
*head
)
1234 struct list_head
*prev
;
1237 * This is simple 'new->next = head' operation, but cmpxchg()
1238 * is used in order to detect that same element has been just
1239 * added to the list from another CPU: the winner observes
1242 if (!try_cmpxchg(&new->next
, &new, head
))
1246 * Initially ->next of a new element must be updated with the head
1247 * (we are inserting to the tail) and only then pointers are atomically
1248 * exchanged. XCHG guarantees memory ordering, thus ->next should be
1249 * updated before pointers are actually swapped and pointers are
1250 * swapped before prev->next is updated.
1253 prev
= xchg(&head
->prev
, new);
1256 * It is safe to modify prev->next and new->prev, because a new element
1257 * is added only to the tail and new->next is updated before XCHG.
1267 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1268 * i.e. multiple CPUs are allowed to call this function concurrently.
1270 * Return: %false if epi element has been already chained, %true otherwise.
1272 static inline bool chain_epi_lockless(struct epitem
*epi
)
1274 struct eventpoll
*ep
= epi
->ep
;
1276 /* Fast preliminary check */
1277 if (epi
->next
!= EP_UNACTIVE_PTR
)
1280 /* Check that the same epi has not been just chained from another CPU */
1281 if (cmpxchg(&epi
->next
, EP_UNACTIVE_PTR
, NULL
) != EP_UNACTIVE_PTR
)
1284 /* Atomically exchange tail */
1285 epi
->next
= xchg(&ep
->ovflist
, epi
);
1291 * This is the callback that is passed to the wait queue wakeup
1292 * mechanism. It is called by the stored file descriptors when they
1293 * have events to report.
1295 * This callback takes a read lock in order not to contend with concurrent
1296 * events from another file descriptor, thus all modifications to ->rdllist
1297 * or ->ovflist are lockless. Read lock is paired with the write lock from
1298 * ep_start/done_scan(), which stops all list modifications and guarantees
1299 * that lists state is seen correctly.
1301 * Another thing worth to mention is that ep_poll_callback() can be called
1302 * concurrently for the same @epi from different CPUs if poll table was inited
1303 * with several wait queues entries. Plural wakeup from different CPUs of a
1304 * single wait queue is serialized by wq.lock, but the case when multiple wait
1305 * queues are used should be detected accordingly. This is detected using
1306 * cmpxchg() operation.
1308 static int ep_poll_callback(wait_queue_entry_t
*wait
, unsigned mode
, int sync
, void *key
)
1311 struct epitem
*epi
= ep_item_from_wait(wait
);
1312 struct eventpoll
*ep
= epi
->ep
;
1313 __poll_t pollflags
= key_to_poll(key
);
1314 unsigned long flags
;
1317 read_lock_irqsave(&ep
->lock
, flags
);
1319 ep_set_busy_poll_napi_id(epi
);
1322 * If the event mask does not contain any poll(2) event, we consider the
1323 * descriptor to be disabled. This condition is likely the effect of the
1324 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1325 * until the next EPOLL_CTL_MOD will be issued.
1327 if (!(epi
->event
.events
& ~EP_PRIVATE_BITS
))
1331 * Check the events coming with the callback. At this stage, not
1332 * every device reports the events in the "key" parameter of the
1333 * callback. We need to be able to handle both cases here, hence the
1334 * test for "key" != NULL before the event match test.
1336 if (pollflags
&& !(pollflags
& epi
->event
.events
))
1340 * If we are transferring events to userspace, we can hold no locks
1341 * (because we're accessing user memory, and because of linux f_op->poll()
1342 * semantics). All the events that happen during that period of time are
1343 * chained in ep->ovflist and requeued later on.
1345 if (READ_ONCE(ep
->ovflist
) != EP_UNACTIVE_PTR
) {
1346 if (chain_epi_lockless(epi
))
1347 ep_pm_stay_awake_rcu(epi
);
1348 } else if (!ep_is_linked(epi
)) {
1349 /* In the usual case, add event to ready list. */
1350 if (list_add_tail_lockless(&epi
->rdllink
, &ep
->rdllist
))
1351 ep_pm_stay_awake_rcu(epi
);
1355 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1358 if (waitqueue_active(&ep
->wq
)) {
1359 if ((epi
->event
.events
& EPOLLEXCLUSIVE
) &&
1360 !(pollflags
& POLLFREE
)) {
1361 switch (pollflags
& EPOLLINOUT_BITS
) {
1363 if (epi
->event
.events
& EPOLLIN
)
1367 if (epi
->event
.events
& EPOLLOUT
)
1377 if (waitqueue_active(&ep
->poll_wait
))
1381 read_unlock_irqrestore(&ep
->lock
, flags
);
1383 /* We have to call this outside the lock */
1385 ep_poll_safewake(ep
, epi
, pollflags
& EPOLL_URING_WAKE
);
1387 if (!(epi
->event
.events
& EPOLLEXCLUSIVE
))
1390 if (pollflags
& POLLFREE
) {
1392 * If we race with ep_remove_wait_queue() it can miss
1393 * ->whead = NULL and do another remove_wait_queue() after
1394 * us, so we can't use __remove_wait_queue().
1396 list_del_init(&wait
->entry
);
1398 * ->whead != NULL protects us from the race with
1399 * ep_clear_and_put() or ep_remove(), ep_remove_wait_queue()
1400 * takes whead->lock held by the caller. Once we nullify it,
1401 * nothing protects ep/epi or even wait.
1403 smp_store_release(&ep_pwq_from_wait(wait
)->whead
, NULL
);
1410 * This is the callback that is used to add our wait queue to the
1411 * target file wakeup lists.
1413 static void ep_ptable_queue_proc(struct file
*file
, wait_queue_head_t
*whead
,
1416 struct ep_pqueue
*epq
= container_of(pt
, struct ep_pqueue
, pt
);
1417 struct epitem
*epi
= epq
->epi
;
1418 struct eppoll_entry
*pwq
;
1420 if (unlikely(!epi
)) // an earlier allocation has failed
1423 pwq
= kmem_cache_alloc(pwq_cache
, GFP_KERNEL
);
1424 if (unlikely(!pwq
)) {
1429 init_waitqueue_func_entry(&pwq
->wait
, ep_poll_callback
);
1432 if (epi
->event
.events
& EPOLLEXCLUSIVE
)
1433 add_wait_queue_exclusive(whead
, &pwq
->wait
);
1435 add_wait_queue(whead
, &pwq
->wait
);
1436 pwq
->next
= epi
->pwqlist
;
1440 static void ep_rbtree_insert(struct eventpoll
*ep
, struct epitem
*epi
)
1443 struct rb_node
**p
= &ep
->rbr
.rb_root
.rb_node
, *parent
= NULL
;
1444 struct epitem
*epic
;
1445 bool leftmost
= true;
1449 epic
= rb_entry(parent
, struct epitem
, rbn
);
1450 kcmp
= ep_cmp_ffd(&epi
->ffd
, &epic
->ffd
);
1452 p
= &parent
->rb_right
;
1455 p
= &parent
->rb_left
;
1457 rb_link_node(&epi
->rbn
, parent
, p
);
1458 rb_insert_color_cached(&epi
->rbn
, &ep
->rbr
, leftmost
);
1463 #define PATH_ARR_SIZE 5
1465 * These are the number paths of length 1 to 5, that we are allowing to emanate
1466 * from a single file of interest. For example, we allow 1000 paths of length
1467 * 1, to emanate from each file of interest. This essentially represents the
1468 * potential wakeup paths, which need to be limited in order to avoid massive
1469 * uncontrolled wakeup storms. The common use case should be a single ep which
1470 * is connected to n file sources. In this case each file source has 1 path
1471 * of length 1. Thus, the numbers below should be more than sufficient. These
1472 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1473 * and delete can't add additional paths. Protected by the epnested_mutex.
1475 static const int path_limits
[PATH_ARR_SIZE
] = { 1000, 500, 100, 50, 10 };
1476 static int path_count
[PATH_ARR_SIZE
];
1478 static int path_count_inc(int nests
)
1480 /* Allow an arbitrary number of depth 1 paths */
1484 if (++path_count
[nests
] > path_limits
[nests
])
1489 static void path_count_init(void)
1493 for (i
= 0; i
< PATH_ARR_SIZE
; i
++)
1497 static int reverse_path_check_proc(struct hlist_head
*refs
, int depth
)
1502 if (depth
> EP_MAX_NESTS
) /* too deep nesting */
1505 /* CTL_DEL can remove links here, but that can't increase our count */
1506 hlist_for_each_entry_rcu(epi
, refs
, fllink
) {
1507 struct hlist_head
*refs
= &epi
->ep
->refs
;
1508 if (hlist_empty(refs
))
1509 error
= path_count_inc(depth
);
1511 error
= reverse_path_check_proc(refs
, depth
+ 1);
1519 * reverse_path_check - The tfile_check_list is list of epitem_head, which have
1520 * links that are proposed to be newly added. We need to
1521 * make sure that those added links don't add too many
1522 * paths such that we will spend all our time waking up
1523 * eventpoll objects.
1525 * Return: %zero if the proposed links don't create too many paths,
1528 static int reverse_path_check(void)
1530 struct epitems_head
*p
;
1532 for (p
= tfile_check_list
; p
!= EP_UNACTIVE_PTR
; p
= p
->next
) {
1536 error
= reverse_path_check_proc(&p
->epitems
, 0);
1544 static int ep_create_wakeup_source(struct epitem
*epi
)
1546 struct name_snapshot n
;
1547 struct wakeup_source
*ws
;
1550 epi
->ep
->ws
= wakeup_source_register(NULL
, "eventpoll");
1555 take_dentry_name_snapshot(&n
, epi
->ffd
.file
->f_path
.dentry
);
1556 ws
= wakeup_source_register(NULL
, n
.name
.name
);
1557 release_dentry_name_snapshot(&n
);
1561 rcu_assign_pointer(epi
->ws
, ws
);
1566 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1567 static noinline
void ep_destroy_wakeup_source(struct epitem
*epi
)
1569 struct wakeup_source
*ws
= ep_wakeup_source(epi
);
1571 RCU_INIT_POINTER(epi
->ws
, NULL
);
1574 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1575 * used internally by wakeup_source_remove, too (called by
1576 * wakeup_source_unregister), so we cannot use call_rcu
1579 wakeup_source_unregister(ws
);
1582 static int attach_epitem(struct file
*file
, struct epitem
*epi
)
1584 struct epitems_head
*to_free
= NULL
;
1585 struct hlist_head
*head
= NULL
;
1586 struct eventpoll
*ep
= NULL
;
1588 if (is_file_epoll(file
))
1589 ep
= file
->private_data
;
1593 } else if (!READ_ONCE(file
->f_ep
)) {
1595 to_free
= kmem_cache_zalloc(ephead_cache
, GFP_KERNEL
);
1598 head
= &to_free
->epitems
;
1600 spin_lock(&file
->f_lock
);
1602 if (unlikely(!head
)) {
1603 spin_unlock(&file
->f_lock
);
1609 hlist_add_head_rcu(&epi
->fllink
, file
->f_ep
);
1610 spin_unlock(&file
->f_lock
);
1611 free_ephead(to_free
);
1616 * Must be called with "mtx" held.
1618 static int ep_insert(struct eventpoll
*ep
, const struct epoll_event
*event
,
1619 struct file
*tfile
, int fd
, int full_check
)
1621 int error
, pwake
= 0;
1624 struct ep_pqueue epq
;
1625 struct eventpoll
*tep
= NULL
;
1627 if (is_file_epoll(tfile
))
1628 tep
= tfile
->private_data
;
1630 lockdep_assert_irqs_enabled();
1632 if (unlikely(percpu_counter_compare(&ep
->user
->epoll_watches
,
1633 max_user_watches
) >= 0))
1635 percpu_counter_inc(&ep
->user
->epoll_watches
);
1637 if (!(epi
= kmem_cache_zalloc(epi_cache
, GFP_KERNEL
))) {
1638 percpu_counter_dec(&ep
->user
->epoll_watches
);
1642 /* Item initialization follow here ... */
1643 INIT_LIST_HEAD(&epi
->rdllink
);
1645 ep_set_ffd(&epi
->ffd
, tfile
, fd
);
1646 epi
->event
= *event
;
1647 epi
->next
= EP_UNACTIVE_PTR
;
1650 mutex_lock_nested(&tep
->mtx
, 1);
1651 /* Add the current item to the list of active epoll hook for this file */
1652 if (unlikely(attach_epitem(tfile
, epi
) < 0)) {
1654 mutex_unlock(&tep
->mtx
);
1655 kmem_cache_free(epi_cache
, epi
);
1656 percpu_counter_dec(&ep
->user
->epoll_watches
);
1660 if (full_check
&& !tep
)
1664 * Add the current item to the RB tree. All RB tree operations are
1665 * protected by "mtx", and ep_insert() is called with "mtx" held.
1667 ep_rbtree_insert(ep
, epi
);
1669 mutex_unlock(&tep
->mtx
);
1672 * ep_remove_safe() calls in the later error paths can't lead to
1673 * ep_free() as the ep file itself still holds an ep reference.
1677 /* now check if we've created too many backpaths */
1678 if (unlikely(full_check
&& reverse_path_check())) {
1679 ep_remove_safe(ep
, epi
);
1683 if (epi
->event
.events
& EPOLLWAKEUP
) {
1684 error
= ep_create_wakeup_source(epi
);
1686 ep_remove_safe(ep
, epi
);
1691 /* Initialize the poll table using the queue callback */
1693 init_poll_funcptr(&epq
.pt
, ep_ptable_queue_proc
);
1696 * Attach the item to the poll hooks and get current event bits.
1697 * We can safely use the file* here because its usage count has
1698 * been increased by the caller of this function. Note that after
1699 * this operation completes, the poll callback can start hitting
1702 revents
= ep_item_poll(epi
, &epq
.pt
, 1);
1705 * We have to check if something went wrong during the poll wait queue
1706 * install process. Namely an allocation for a wait queue failed due
1707 * high memory pressure.
1709 if (unlikely(!epq
.epi
)) {
1710 ep_remove_safe(ep
, epi
);
1714 /* We have to drop the new item inside our item list to keep track of it */
1715 write_lock_irq(&ep
->lock
);
1717 /* record NAPI ID of new item if present */
1718 ep_set_busy_poll_napi_id(epi
);
1720 /* If the file is already "ready" we drop it inside the ready list */
1721 if (revents
&& !ep_is_linked(epi
)) {
1722 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1723 ep_pm_stay_awake(epi
);
1725 /* Notify waiting tasks that events are available */
1726 if (waitqueue_active(&ep
->wq
))
1728 if (waitqueue_active(&ep
->poll_wait
))
1732 write_unlock_irq(&ep
->lock
);
1734 /* We have to call this outside the lock */
1736 ep_poll_safewake(ep
, NULL
, 0);
1742 * Modify the interest event mask by dropping an event if the new mask
1743 * has a match in the current file status. Must be called with "mtx" held.
1745 static int ep_modify(struct eventpoll
*ep
, struct epitem
*epi
,
1746 const struct epoll_event
*event
)
1751 lockdep_assert_irqs_enabled();
1753 init_poll_funcptr(&pt
, NULL
);
1756 * Set the new event interest mask before calling f_op->poll();
1757 * otherwise we might miss an event that happens between the
1758 * f_op->poll() call and the new event set registering.
1760 epi
->event
.events
= event
->events
; /* need barrier below */
1761 epi
->event
.data
= event
->data
; /* protected by mtx */
1762 if (epi
->event
.events
& EPOLLWAKEUP
) {
1763 if (!ep_has_wakeup_source(epi
))
1764 ep_create_wakeup_source(epi
);
1765 } else if (ep_has_wakeup_source(epi
)) {
1766 ep_destroy_wakeup_source(epi
);
1770 * The following barrier has two effects:
1772 * 1) Flush epi changes above to other CPUs. This ensures
1773 * we do not miss events from ep_poll_callback if an
1774 * event occurs immediately after we call f_op->poll().
1775 * We need this because we did not take ep->lock while
1776 * changing epi above (but ep_poll_callback does take
1779 * 2) We also need to ensure we do not miss _past_ events
1780 * when calling f_op->poll(). This barrier also
1781 * pairs with the barrier in wq_has_sleeper (see
1782 * comments for wq_has_sleeper).
1784 * This barrier will now guarantee ep_poll_callback or f_op->poll
1785 * (or both) will notice the readiness of an item.
1790 * Get current event bits. We can safely use the file* here because
1791 * its usage count has been increased by the caller of this function.
1792 * If the item is "hot" and it is not registered inside the ready
1793 * list, push it inside.
1795 if (ep_item_poll(epi
, &pt
, 1)) {
1796 write_lock_irq(&ep
->lock
);
1797 if (!ep_is_linked(epi
)) {
1798 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1799 ep_pm_stay_awake(epi
);
1801 /* Notify waiting tasks that events are available */
1802 if (waitqueue_active(&ep
->wq
))
1804 if (waitqueue_active(&ep
->poll_wait
))
1807 write_unlock_irq(&ep
->lock
);
1810 /* We have to call this outside the lock */
1812 ep_poll_safewake(ep
, NULL
, 0);
1817 static int ep_send_events(struct eventpoll
*ep
,
1818 struct epoll_event __user
*events
, int maxevents
)
1820 struct epitem
*epi
, *tmp
;
1826 * Always short-circuit for fatal signals to allow threads to make a
1827 * timely exit without the chance of finding more events available and
1828 * fetching repeatedly.
1830 if (fatal_signal_pending(current
))
1833 init_poll_funcptr(&pt
, NULL
);
1835 mutex_lock(&ep
->mtx
);
1836 ep_start_scan(ep
, &txlist
);
1839 * We can loop without lock because we are passed a task private list.
1840 * Items cannot vanish during the loop we are holding ep->mtx.
1842 list_for_each_entry_safe(epi
, tmp
, &txlist
, rdllink
) {
1843 struct wakeup_source
*ws
;
1846 if (res
>= maxevents
)
1850 * Activate ep->ws before deactivating epi->ws to prevent
1851 * triggering auto-suspend here (in case we reactive epi->ws
1854 * This could be rearranged to delay the deactivation of epi->ws
1855 * instead, but then epi->ws would temporarily be out of sync
1856 * with ep_is_linked().
1858 ws
= ep_wakeup_source(epi
);
1861 __pm_stay_awake(ep
->ws
);
1865 list_del_init(&epi
->rdllink
);
1868 * If the event mask intersect the caller-requested one,
1869 * deliver the event to userspace. Again, we are holding ep->mtx,
1870 * so no operations coming from userspace can change the item.
1872 revents
= ep_item_poll(epi
, &pt
, 1);
1876 events
= epoll_put_uevent(revents
, epi
->event
.data
, events
);
1878 list_add(&epi
->rdllink
, &txlist
);
1879 ep_pm_stay_awake(epi
);
1885 if (epi
->event
.events
& EPOLLONESHOT
)
1886 epi
->event
.events
&= EP_PRIVATE_BITS
;
1887 else if (!(epi
->event
.events
& EPOLLET
)) {
1889 * If this file has been added with Level
1890 * Trigger mode, we need to insert back inside
1891 * the ready list, so that the next call to
1892 * epoll_wait() will check again the events
1893 * availability. At this point, no one can insert
1894 * into ep->rdllist besides us. The epoll_ctl()
1895 * callers are locked out by
1896 * ep_send_events() holding "mtx" and the
1897 * poll callback will queue them in ep->ovflist.
1899 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1900 ep_pm_stay_awake(epi
);
1903 ep_done_scan(ep
, &txlist
);
1904 mutex_unlock(&ep
->mtx
);
1909 static struct timespec64
*ep_timeout_to_timespec(struct timespec64
*to
, long ms
)
1911 struct timespec64 now
;
1922 to
->tv_sec
= ms
/ MSEC_PER_SEC
;
1923 to
->tv_nsec
= NSEC_PER_MSEC
* (ms
% MSEC_PER_SEC
);
1925 ktime_get_ts64(&now
);
1926 *to
= timespec64_add_safe(now
, *to
);
1931 * autoremove_wake_function, but remove even on failure to wake up, because we
1932 * know that default_wake_function/ttwu will only fail if the thread is already
1933 * woken, and in that case the ep_poll loop will remove the entry anyways, not
1936 static int ep_autoremove_wake_function(struct wait_queue_entry
*wq_entry
,
1937 unsigned int mode
, int sync
, void *key
)
1939 int ret
= default_wake_function(wq_entry
, mode
, sync
, key
);
1942 * Pairs with list_empty_careful in ep_poll, and ensures future loop
1943 * iterations see the cause of this wakeup.
1945 list_del_init_careful(&wq_entry
->entry
);
1950 * ep_poll - Retrieves ready events, and delivers them to the caller-supplied
1953 * @ep: Pointer to the eventpoll context.
1954 * @events: Pointer to the userspace buffer where the ready events should be
1956 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1957 * @timeout: Maximum timeout for the ready events fetch operation, in
1958 * timespec. If the timeout is zero, the function will not block,
1959 * while if the @timeout ptr is NULL, the function will block
1960 * until at least one event has been retrieved (or an error
1963 * Return: the number of ready events which have been fetched, or an
1964 * error code, in case of error.
1966 static int ep_poll(struct eventpoll
*ep
, struct epoll_event __user
*events
,
1967 int maxevents
, struct timespec64
*timeout
)
1969 int res
, eavail
, timed_out
= 0;
1971 wait_queue_entry_t wait
;
1972 ktime_t expires
, *to
= NULL
;
1974 lockdep_assert_irqs_enabled();
1976 if (timeout
&& (timeout
->tv_sec
| timeout
->tv_nsec
)) {
1977 slack
= select_estimate_accuracy(timeout
);
1979 *to
= timespec64_to_ktime(*timeout
);
1980 } else if (timeout
) {
1982 * Avoid the unnecessary trip to the wait queue loop, if the
1983 * caller specified a non blocking operation.
1989 * This call is racy: We may or may not see events that are being added
1990 * to the ready list under the lock (e.g., in IRQ callbacks). For cases
1991 * with a non-zero timeout, this thread will check the ready list under
1992 * lock and will add to the wait queue. For cases with a zero
1993 * timeout, the user by definition should not care and will have to
1996 eavail
= ep_events_available(ep
);
2001 * Try to transfer events to user space. In case we get
2002 * 0 events and there's still timeout left over, we go
2003 * trying again in search of more luck.
2005 res
= ep_send_events(ep
, events
, maxevents
);
2013 eavail
= ep_busy_loop(ep
, timed_out
);
2017 if (signal_pending(current
))
2021 * Internally init_wait() uses autoremove_wake_function(),
2022 * thus wait entry is removed from the wait queue on each
2023 * wakeup. Why it is important? In case of several waiters
2024 * each new wakeup will hit the next waiter, giving it the
2025 * chance to harvest new event. Otherwise wakeup can be
2026 * lost. This is also good performance-wise, because on
2027 * normal wakeup path no need to call __remove_wait_queue()
2028 * explicitly, thus ep->lock is not taken, which halts the
2031 * In fact, we now use an even more aggressive function that
2032 * unconditionally removes, because we don't reuse the wait
2033 * entry between loop iterations. This lets us also avoid the
2034 * performance issue if a process is killed, causing all of its
2035 * threads to wake up without being removed normally.
2038 wait
.func
= ep_autoremove_wake_function
;
2040 write_lock_irq(&ep
->lock
);
2042 * Barrierless variant, waitqueue_active() is called under
2043 * the same lock on wakeup ep_poll_callback() side, so it
2044 * is safe to avoid an explicit barrier.
2046 __set_current_state(TASK_INTERRUPTIBLE
);
2049 * Do the final check under the lock. ep_start/done_scan()
2050 * plays with two lists (->rdllist and ->ovflist) and there
2051 * is always a race when both lists are empty for short
2052 * period of time although events are pending, so lock is
2055 eavail
= ep_events_available(ep
);
2057 __add_wait_queue_exclusive(&ep
->wq
, &wait
);
2059 write_unlock_irq(&ep
->lock
);
2062 timed_out
= !schedule_hrtimeout_range(to
, slack
,
2064 __set_current_state(TASK_RUNNING
);
2067 * We were woken up, thus go and try to harvest some events.
2068 * If timed out and still on the wait queue, recheck eavail
2069 * carefully under lock, below.
2073 if (!list_empty_careful(&wait
.entry
)) {
2074 write_lock_irq(&ep
->lock
);
2076 * If the thread timed out and is not on the wait queue,
2077 * it means that the thread was woken up after its
2078 * timeout expired before it could reacquire the lock.
2079 * Thus, when wait.entry is empty, it needs to harvest
2083 eavail
= list_empty(&wait
.entry
);
2084 __remove_wait_queue(&ep
->wq
, &wait
);
2085 write_unlock_irq(&ep
->lock
);
2091 * ep_loop_check_proc - verify that adding an epoll file inside another
2092 * epoll structure does not violate the constraints, in
2093 * terms of closed loops, or too deep chains (which can
2094 * result in excessive stack usage).
2096 * @ep: the &struct eventpoll to be currently checked.
2097 * @depth: Current depth of the path being checked.
2099 * Return: %zero if adding the epoll @file inside current epoll
2100 * structure @ep does not violate the constraints, or %-1 otherwise.
2102 static int ep_loop_check_proc(struct eventpoll
*ep
, int depth
)
2105 struct rb_node
*rbp
;
2108 mutex_lock_nested(&ep
->mtx
, depth
+ 1);
2109 ep
->gen
= loop_check_gen
;
2110 for (rbp
= rb_first_cached(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
2111 epi
= rb_entry(rbp
, struct epitem
, rbn
);
2112 if (unlikely(is_file_epoll(epi
->ffd
.file
))) {
2113 struct eventpoll
*ep_tovisit
;
2114 ep_tovisit
= epi
->ffd
.file
->private_data
;
2115 if (ep_tovisit
->gen
== loop_check_gen
)
2117 if (ep_tovisit
== inserting_into
|| depth
> EP_MAX_NESTS
)
2120 error
= ep_loop_check_proc(ep_tovisit
, depth
+ 1);
2125 * If we've reached a file that is not associated with
2126 * an ep, then we need to check if the newly added
2127 * links are going to add too many wakeup paths. We do
2128 * this by adding it to the tfile_check_list, if it's
2129 * not already there, and calling reverse_path_check()
2130 * during ep_insert().
2132 list_file(epi
->ffd
.file
);
2135 mutex_unlock(&ep
->mtx
);
2141 * ep_loop_check - Performs a check to verify that adding an epoll file (@to)
2142 * into another epoll file (represented by @ep) does not create
2143 * closed loops or too deep chains.
2145 * @ep: Pointer to the epoll we are inserting into.
2146 * @to: Pointer to the epoll to be inserted.
2148 * Return: %zero if adding the epoll @to inside the epoll @from
2149 * does not violate the constraints, or %-1 otherwise.
2151 static int ep_loop_check(struct eventpoll
*ep
, struct eventpoll
*to
)
2153 inserting_into
= ep
;
2154 return ep_loop_check_proc(to
, 0);
2157 static void clear_tfile_check_list(void)
2160 while (tfile_check_list
!= EP_UNACTIVE_PTR
) {
2161 struct epitems_head
*head
= tfile_check_list
;
2162 tfile_check_list
= head
->next
;
2169 * Open an eventpoll file descriptor.
2171 static int do_epoll_create(int flags
)
2174 struct eventpoll
*ep
= NULL
;
2177 /* Check the EPOLL_* constant for consistency. */
2178 BUILD_BUG_ON(EPOLL_CLOEXEC
!= O_CLOEXEC
);
2180 if (flags
& ~EPOLL_CLOEXEC
)
2183 * Create the internal data structure ("struct eventpoll").
2185 error
= ep_alloc(&ep
);
2189 * Creates all the items needed to setup an eventpoll file. That is,
2190 * a file structure and a free file descriptor.
2192 fd
= get_unused_fd_flags(O_RDWR
| (flags
& O_CLOEXEC
));
2197 file
= anon_inode_getfile("[eventpoll]", &eventpoll_fops
, ep
,
2198 O_RDWR
| (flags
& O_CLOEXEC
));
2200 error
= PTR_ERR(file
);
2204 fd_install(fd
, file
);
2210 ep_clear_and_put(ep
);
2214 SYSCALL_DEFINE1(epoll_create1
, int, flags
)
2216 return do_epoll_create(flags
);
2219 SYSCALL_DEFINE1(epoll_create
, int, size
)
2224 return do_epoll_create(0);
2227 #ifdef CONFIG_PM_SLEEP
2228 static inline void ep_take_care_of_epollwakeup(struct epoll_event
*epev
)
2230 if ((epev
->events
& EPOLLWAKEUP
) && !capable(CAP_BLOCK_SUSPEND
))
2231 epev
->events
&= ~EPOLLWAKEUP
;
2234 static inline void ep_take_care_of_epollwakeup(struct epoll_event
*epev
)
2236 epev
->events
&= ~EPOLLWAKEUP
;
2240 static inline int epoll_mutex_lock(struct mutex
*mutex
, int depth
,
2244 mutex_lock_nested(mutex
, depth
);
2247 if (mutex_trylock(mutex
))
2252 int do_epoll_ctl(int epfd
, int op
, int fd
, struct epoll_event
*epds
,
2258 struct eventpoll
*ep
;
2260 struct eventpoll
*tep
= NULL
;
2267 /* Get the "struct file *" for the target file */
2272 /* The target file descriptor must support poll */
2274 if (!file_can_poll(fd_file(tf
)))
2275 goto error_tgt_fput
;
2277 /* Check if EPOLLWAKEUP is allowed */
2278 if (ep_op_has_event(op
))
2279 ep_take_care_of_epollwakeup(epds
);
2282 * We have to check that the file structure underneath the file descriptor
2283 * the user passed to us _is_ an eventpoll file. And also we do not permit
2284 * adding an epoll file descriptor inside itself.
2287 if (fd_file(f
) == fd_file(tf
) || !is_file_epoll(fd_file(f
)))
2288 goto error_tgt_fput
;
2291 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2292 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2293 * Also, we do not currently supported nested exclusive wakeups.
2295 if (ep_op_has_event(op
) && (epds
->events
& EPOLLEXCLUSIVE
)) {
2296 if (op
== EPOLL_CTL_MOD
)
2297 goto error_tgt_fput
;
2298 if (op
== EPOLL_CTL_ADD
&& (is_file_epoll(fd_file(tf
)) ||
2299 (epds
->events
& ~EPOLLEXCLUSIVE_OK_BITS
)))
2300 goto error_tgt_fput
;
2304 * At this point it is safe to assume that the "private_data" contains
2305 * our own data structure.
2307 ep
= fd_file(f
)->private_data
;
2310 * When we insert an epoll file descriptor inside another epoll file
2311 * descriptor, there is the chance of creating closed loops, which are
2312 * better be handled here, than in more critical paths. While we are
2313 * checking for loops we also determine the list of files reachable
2314 * and hang them on the tfile_check_list, so we can check that we
2315 * haven't created too many possible wakeup paths.
2317 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2318 * the epoll file descriptor is attaching directly to a wakeup source,
2319 * unless the epoll file descriptor is nested. The purpose of taking the
2320 * 'epnested_mutex' on add is to prevent complex toplogies such as loops and
2321 * deep wakeup paths from forming in parallel through multiple
2322 * EPOLL_CTL_ADD operations.
2324 error
= epoll_mutex_lock(&ep
->mtx
, 0, nonblock
);
2326 goto error_tgt_fput
;
2327 if (op
== EPOLL_CTL_ADD
) {
2328 if (READ_ONCE(fd_file(f
)->f_ep
) || ep
->gen
== loop_check_gen
||
2329 is_file_epoll(fd_file(tf
))) {
2330 mutex_unlock(&ep
->mtx
);
2331 error
= epoll_mutex_lock(&epnested_mutex
, 0, nonblock
);
2333 goto error_tgt_fput
;
2336 if (is_file_epoll(fd_file(tf
))) {
2337 tep
= fd_file(tf
)->private_data
;
2339 if (ep_loop_check(ep
, tep
) != 0)
2340 goto error_tgt_fput
;
2342 error
= epoll_mutex_lock(&ep
->mtx
, 0, nonblock
);
2344 goto error_tgt_fput
;
2349 * Try to lookup the file inside our RB tree. Since we grabbed "mtx"
2350 * above, we can be sure to be able to use the item looked up by
2351 * ep_find() till we release the mutex.
2353 epi
= ep_find(ep
, fd_file(tf
), fd
);
2359 epds
->events
|= EPOLLERR
| EPOLLHUP
;
2360 error
= ep_insert(ep
, epds
, fd_file(tf
), fd
, full_check
);
2367 * The eventpoll itself is still alive: the refcount
2368 * can't go to zero here.
2370 ep_remove_safe(ep
, epi
);
2378 if (!(epi
->event
.events
& EPOLLEXCLUSIVE
)) {
2379 epds
->events
|= EPOLLERR
| EPOLLHUP
;
2380 error
= ep_modify(ep
, epi
, epds
);
2386 mutex_unlock(&ep
->mtx
);
2390 clear_tfile_check_list();
2392 mutex_unlock(&epnested_mutex
);
2404 * The following function implements the controller interface for
2405 * the eventpoll file that enables the insertion/removal/change of
2406 * file descriptors inside the interest set.
2408 SYSCALL_DEFINE4(epoll_ctl
, int, epfd
, int, op
, int, fd
,
2409 struct epoll_event __user
*, event
)
2411 struct epoll_event epds
;
2413 if (ep_op_has_event(op
) &&
2414 copy_from_user(&epds
, event
, sizeof(struct epoll_event
)))
2417 return do_epoll_ctl(epfd
, op
, fd
, &epds
, false);
2421 * Implement the event wait interface for the eventpoll file. It is the kernel
2422 * part of the user space epoll_wait(2).
2424 static int do_epoll_wait(int epfd
, struct epoll_event __user
*events
,
2425 int maxevents
, struct timespec64
*to
)
2429 struct eventpoll
*ep
;
2431 /* The maximum number of event must be greater than zero */
2432 if (maxevents
<= 0 || maxevents
> EP_MAX_EVENTS
)
2435 /* Verify that the area passed by the user is writeable */
2436 if (!access_ok(events
, maxevents
* sizeof(struct epoll_event
)))
2439 /* Get the "struct file *" for the eventpoll file */
2445 * We have to check that the file structure underneath the fd
2446 * the user passed to us _is_ an eventpoll file.
2449 if (!is_file_epoll(fd_file(f
)))
2453 * At this point it is safe to assume that the "private_data" contains
2454 * our own data structure.
2456 ep
= fd_file(f
)->private_data
;
2458 /* Time to fish for events ... */
2459 error
= ep_poll(ep
, events
, maxevents
, to
);
2466 SYSCALL_DEFINE4(epoll_wait
, int, epfd
, struct epoll_event __user
*, events
,
2467 int, maxevents
, int, timeout
)
2469 struct timespec64 to
;
2471 return do_epoll_wait(epfd
, events
, maxevents
,
2472 ep_timeout_to_timespec(&to
, timeout
));
2476 * Implement the event wait interface for the eventpoll file. It is the kernel
2477 * part of the user space epoll_pwait(2).
2479 static int do_epoll_pwait(int epfd
, struct epoll_event __user
*events
,
2480 int maxevents
, struct timespec64
*to
,
2481 const sigset_t __user
*sigmask
, size_t sigsetsize
)
2486 * If the caller wants a certain signal mask to be set during the wait,
2489 error
= set_user_sigmask(sigmask
, sigsetsize
);
2493 error
= do_epoll_wait(epfd
, events
, maxevents
, to
);
2495 restore_saved_sigmask_unless(error
== -EINTR
);
2500 SYSCALL_DEFINE6(epoll_pwait
, int, epfd
, struct epoll_event __user
*, events
,
2501 int, maxevents
, int, timeout
, const sigset_t __user
*, sigmask
,
2504 struct timespec64 to
;
2506 return do_epoll_pwait(epfd
, events
, maxevents
,
2507 ep_timeout_to_timespec(&to
, timeout
),
2508 sigmask
, sigsetsize
);
2511 SYSCALL_DEFINE6(epoll_pwait2
, int, epfd
, struct epoll_event __user
*, events
,
2512 int, maxevents
, const struct __kernel_timespec __user
*, timeout
,
2513 const sigset_t __user
*, sigmask
, size_t, sigsetsize
)
2515 struct timespec64 ts
, *to
= NULL
;
2518 if (get_timespec64(&ts
, timeout
))
2521 if (poll_select_set_timeout(to
, ts
.tv_sec
, ts
.tv_nsec
))
2525 return do_epoll_pwait(epfd
, events
, maxevents
, to
,
2526 sigmask
, sigsetsize
);
2529 #ifdef CONFIG_COMPAT
2530 static int do_compat_epoll_pwait(int epfd
, struct epoll_event __user
*events
,
2531 int maxevents
, struct timespec64
*timeout
,
2532 const compat_sigset_t __user
*sigmask
,
2533 compat_size_t sigsetsize
)
2538 * If the caller wants a certain signal mask to be set during the wait,
2541 err
= set_compat_user_sigmask(sigmask
, sigsetsize
);
2545 err
= do_epoll_wait(epfd
, events
, maxevents
, timeout
);
2547 restore_saved_sigmask_unless(err
== -EINTR
);
2552 COMPAT_SYSCALL_DEFINE6(epoll_pwait
, int, epfd
,
2553 struct epoll_event __user
*, events
,
2554 int, maxevents
, int, timeout
,
2555 const compat_sigset_t __user
*, sigmask
,
2556 compat_size_t
, sigsetsize
)
2558 struct timespec64 to
;
2560 return do_compat_epoll_pwait(epfd
, events
, maxevents
,
2561 ep_timeout_to_timespec(&to
, timeout
),
2562 sigmask
, sigsetsize
);
2565 COMPAT_SYSCALL_DEFINE6(epoll_pwait2
, int, epfd
,
2566 struct epoll_event __user
*, events
,
2568 const struct __kernel_timespec __user
*, timeout
,
2569 const compat_sigset_t __user
*, sigmask
,
2570 compat_size_t
, sigsetsize
)
2572 struct timespec64 ts
, *to
= NULL
;
2575 if (get_timespec64(&ts
, timeout
))
2578 if (poll_select_set_timeout(to
, ts
.tv_sec
, ts
.tv_nsec
))
2582 return do_compat_epoll_pwait(epfd
, events
, maxevents
, to
,
2583 sigmask
, sigsetsize
);
2588 static int __init
eventpoll_init(void)
2594 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2596 max_user_watches
= (((si
.totalram
- si
.totalhigh
) / 25) << PAGE_SHIFT
) /
2598 BUG_ON(max_user_watches
< 0);
2601 * We can have many thousands of epitems, so prevent this from
2602 * using an extra cache line on 64-bit (and smaller) CPUs
2604 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem
) > 128);
2606 /* Allocates slab cache used to allocate "struct epitem" items */
2607 epi_cache
= kmem_cache_create("eventpoll_epi", sizeof(struct epitem
),
2608 0, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_ACCOUNT
, NULL
);
2610 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2611 pwq_cache
= kmem_cache_create("eventpoll_pwq",
2612 sizeof(struct eppoll_entry
), 0, SLAB_PANIC
|SLAB_ACCOUNT
, NULL
);
2613 epoll_sysctls_init();
2615 ephead_cache
= kmem_cache_create("ep_head",
2616 sizeof(struct epitems_head
), 0, SLAB_PANIC
|SLAB_ACCOUNT
, NULL
);
2620 fs_initcall(eventpoll_init
);