drm/panthor: Don't declare a queue blocked if deferred operations are pending
[drm/drm-misc.git] / fs / udf / balloc.c
blobd8fc11765d6127473356241a1ffe0af84808b9cf
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * balloc.c
5 * PURPOSE
6 * Block allocation handling routines for the OSTA-UDF(tm) filesystem.
8 * COPYRIGHT
9 * (C) 1999-2001 Ben Fennema
10 * (C) 1999 Stelias Computing Inc
12 * HISTORY
14 * 02/24/99 blf Created.
18 #include "udfdecl.h"
20 #include <linux/bitops.h>
21 #include <linux/overflow.h>
23 #include "udf_i.h"
24 #include "udf_sb.h"
26 #define udf_clear_bit __test_and_clear_bit_le
27 #define udf_set_bit __test_and_set_bit_le
28 #define udf_test_bit test_bit_le
29 #define udf_find_next_one_bit find_next_bit_le
31 static int read_block_bitmap(struct super_block *sb,
32 struct udf_bitmap *bitmap, unsigned int block,
33 unsigned long bitmap_nr)
35 struct buffer_head *bh = NULL;
36 int i;
37 int max_bits, off, count;
38 struct kernel_lb_addr loc;
40 loc.logicalBlockNum = bitmap->s_extPosition;
41 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
43 bh = sb_bread(sb, udf_get_lb_pblock(sb, &loc, block));
44 bitmap->s_block_bitmap[bitmap_nr] = bh;
45 if (!bh)
46 return -EIO;
48 /* Check consistency of Space Bitmap buffer. */
49 max_bits = sb->s_blocksize * 8;
50 if (!bitmap_nr) {
51 off = sizeof(struct spaceBitmapDesc) << 3;
52 count = min(max_bits - off, bitmap->s_nr_groups);
53 } else {
55 * Rough check if bitmap number is too big to have any bitmap
56 * blocks reserved.
58 if (bitmap_nr >
59 (bitmap->s_nr_groups >> (sb->s_blocksize_bits + 3)) + 2)
60 return 0;
61 off = 0;
62 count = bitmap->s_nr_groups - bitmap_nr * max_bits +
63 (sizeof(struct spaceBitmapDesc) << 3);
64 count = min(count, max_bits);
67 for (i = 0; i < count; i++)
68 if (udf_test_bit(i + off, bh->b_data)) {
69 bitmap->s_block_bitmap[bitmap_nr] =
70 ERR_PTR(-EFSCORRUPTED);
71 brelse(bh);
72 return -EFSCORRUPTED;
74 return 0;
77 static int load_block_bitmap(struct super_block *sb,
78 struct udf_bitmap *bitmap,
79 unsigned int block_group)
81 int retval = 0;
82 int nr_groups = bitmap->s_nr_groups;
84 if (block_group >= nr_groups) {
85 udf_debug("block_group (%u) > nr_groups (%d)\n",
86 block_group, nr_groups);
89 if (bitmap->s_block_bitmap[block_group]) {
91 * The bitmap failed verification in the past. No point in
92 * trying again.
94 if (IS_ERR(bitmap->s_block_bitmap[block_group]))
95 return PTR_ERR(bitmap->s_block_bitmap[block_group]);
96 return block_group;
99 retval = read_block_bitmap(sb, bitmap, block_group, block_group);
100 if (retval < 0)
101 return retval;
103 return block_group;
106 static void udf_add_free_space(struct super_block *sb, u16 partition, u32 cnt)
108 struct udf_sb_info *sbi = UDF_SB(sb);
109 struct logicalVolIntegrityDesc *lvid;
111 if (!sbi->s_lvid_bh)
112 return;
114 lvid = (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
115 le32_add_cpu(&lvid->freeSpaceTable[partition], cnt);
116 udf_updated_lvid(sb);
119 static void udf_bitmap_free_blocks(struct super_block *sb,
120 struct udf_bitmap *bitmap,
121 struct kernel_lb_addr *bloc,
122 uint32_t offset,
123 uint32_t count)
125 struct udf_sb_info *sbi = UDF_SB(sb);
126 struct buffer_head *bh = NULL;
127 unsigned long block;
128 unsigned long block_group;
129 unsigned long bit;
130 unsigned long i;
131 int bitmap_nr;
132 unsigned long overflow;
134 mutex_lock(&sbi->s_alloc_mutex);
135 /* We make sure this cannot overflow when mounting the filesystem */
136 block = bloc->logicalBlockNum + offset +
137 (sizeof(struct spaceBitmapDesc) << 3);
138 do {
139 overflow = 0;
140 block_group = block >> (sb->s_blocksize_bits + 3);
141 bit = block % (sb->s_blocksize << 3);
144 * Check to see if we are freeing blocks across a group boundary.
146 if (bit + count > (sb->s_blocksize << 3)) {
147 overflow = bit + count - (sb->s_blocksize << 3);
148 count -= overflow;
150 bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
151 if (bitmap_nr < 0)
152 goto error_return;
154 bh = bitmap->s_block_bitmap[bitmap_nr];
155 for (i = 0; i < count; i++) {
156 if (udf_set_bit(bit + i, bh->b_data)) {
157 udf_debug("bit %lu already set\n", bit + i);
158 udf_debug("byte=%2x\n",
159 ((__u8 *)bh->b_data)[(bit + i) >> 3]);
162 udf_add_free_space(sb, sbi->s_partition, count);
163 mark_buffer_dirty(bh);
164 if (overflow) {
165 block += count;
166 count = overflow;
168 } while (overflow);
170 error_return:
171 mutex_unlock(&sbi->s_alloc_mutex);
174 static int udf_bitmap_prealloc_blocks(struct super_block *sb,
175 struct udf_bitmap *bitmap,
176 uint16_t partition, uint32_t first_block,
177 uint32_t block_count)
179 struct udf_sb_info *sbi = UDF_SB(sb);
180 int alloc_count = 0;
181 int bit, block, block_group;
182 int bitmap_nr;
183 struct buffer_head *bh;
184 __u32 part_len;
186 mutex_lock(&sbi->s_alloc_mutex);
187 part_len = sbi->s_partmaps[partition].s_partition_len;
188 if (first_block >= part_len)
189 goto out;
191 if (first_block + block_count > part_len)
192 block_count = part_len - first_block;
194 do {
195 block = first_block + (sizeof(struct spaceBitmapDesc) << 3);
196 block_group = block >> (sb->s_blocksize_bits + 3);
198 bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
199 if (bitmap_nr < 0)
200 goto out;
201 bh = bitmap->s_block_bitmap[bitmap_nr];
203 bit = block % (sb->s_blocksize << 3);
205 while (bit < (sb->s_blocksize << 3) && block_count > 0) {
206 if (!udf_clear_bit(bit, bh->b_data))
207 goto out;
208 block_count--;
209 alloc_count++;
210 bit++;
211 block++;
213 mark_buffer_dirty(bh);
214 } while (block_count > 0);
216 out:
217 udf_add_free_space(sb, partition, -alloc_count);
218 mutex_unlock(&sbi->s_alloc_mutex);
219 return alloc_count;
222 static udf_pblk_t udf_bitmap_new_block(struct super_block *sb,
223 struct udf_bitmap *bitmap, uint16_t partition,
224 uint32_t goal, int *err)
226 struct udf_sb_info *sbi = UDF_SB(sb);
227 int newbit, bit = 0;
228 udf_pblk_t block;
229 int block_group, group_start;
230 int end_goal, nr_groups, bitmap_nr, i;
231 struct buffer_head *bh = NULL;
232 char *ptr;
233 udf_pblk_t newblock = 0;
235 *err = -ENOSPC;
236 mutex_lock(&sbi->s_alloc_mutex);
238 repeat:
239 if (goal >= sbi->s_partmaps[partition].s_partition_len)
240 goal = 0;
242 nr_groups = bitmap->s_nr_groups;
243 block = goal + (sizeof(struct spaceBitmapDesc) << 3);
244 block_group = block >> (sb->s_blocksize_bits + 3);
245 group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
247 bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
248 if (bitmap_nr < 0)
249 goto error_return;
250 bh = bitmap->s_block_bitmap[bitmap_nr];
251 ptr = memscan((char *)bh->b_data + group_start, 0xFF,
252 sb->s_blocksize - group_start);
254 if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
255 bit = block % (sb->s_blocksize << 3);
256 if (udf_test_bit(bit, bh->b_data))
257 goto got_block;
259 end_goal = (bit + 63) & ~63;
260 bit = udf_find_next_one_bit(bh->b_data, end_goal, bit);
261 if (bit < end_goal)
262 goto got_block;
264 ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF,
265 sb->s_blocksize - ((bit + 7) >> 3));
266 newbit = (ptr - ((char *)bh->b_data)) << 3;
267 if (newbit < sb->s_blocksize << 3) {
268 bit = newbit;
269 goto search_back;
272 newbit = udf_find_next_one_bit(bh->b_data,
273 sb->s_blocksize << 3, bit);
274 if (newbit < sb->s_blocksize << 3) {
275 bit = newbit;
276 goto got_block;
280 for (i = 0; i < (nr_groups * 2); i++) {
281 block_group++;
282 if (block_group >= nr_groups)
283 block_group = 0;
284 group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
286 bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
287 if (bitmap_nr < 0)
288 goto error_return;
289 bh = bitmap->s_block_bitmap[bitmap_nr];
290 if (i < nr_groups) {
291 ptr = memscan((char *)bh->b_data + group_start, 0xFF,
292 sb->s_blocksize - group_start);
293 if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
294 bit = (ptr - ((char *)bh->b_data)) << 3;
295 break;
297 } else {
298 bit = udf_find_next_one_bit(bh->b_data,
299 sb->s_blocksize << 3,
300 group_start << 3);
301 if (bit < sb->s_blocksize << 3)
302 break;
305 if (i >= (nr_groups * 2)) {
306 mutex_unlock(&sbi->s_alloc_mutex);
307 return newblock;
309 if (bit < sb->s_blocksize << 3)
310 goto search_back;
311 else
312 bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3,
313 group_start << 3);
314 if (bit >= sb->s_blocksize << 3) {
315 mutex_unlock(&sbi->s_alloc_mutex);
316 return 0;
319 search_back:
320 i = 0;
321 while (i < 7 && bit > (group_start << 3) &&
322 udf_test_bit(bit - 1, bh->b_data)) {
323 ++i;
324 --bit;
327 got_block:
328 newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) -
329 (sizeof(struct spaceBitmapDesc) << 3);
331 if (newblock >= sbi->s_partmaps[partition].s_partition_len) {
333 * Ran off the end of the bitmap, and bits following are
334 * non-compliant (not all zero)
336 udf_err(sb, "bitmap for partition %d corrupted (block %u marked"
337 " as free, partition length is %u)\n", partition,
338 newblock, sbi->s_partmaps[partition].s_partition_len);
339 goto error_return;
342 if (!udf_clear_bit(bit, bh->b_data)) {
343 udf_debug("bit already cleared for block %d\n", bit);
344 goto repeat;
347 mark_buffer_dirty(bh);
349 udf_add_free_space(sb, partition, -1);
350 mutex_unlock(&sbi->s_alloc_mutex);
351 *err = 0;
352 return newblock;
354 error_return:
355 *err = -EIO;
356 mutex_unlock(&sbi->s_alloc_mutex);
357 return 0;
360 static void udf_table_free_blocks(struct super_block *sb,
361 struct inode *table,
362 struct kernel_lb_addr *bloc,
363 uint32_t offset,
364 uint32_t count)
366 struct udf_sb_info *sbi = UDF_SB(sb);
367 uint32_t start, end;
368 uint32_t elen;
369 struct kernel_lb_addr eloc;
370 struct extent_position oepos, epos;
371 int8_t etype;
372 struct udf_inode_info *iinfo;
374 mutex_lock(&sbi->s_alloc_mutex);
375 iinfo = UDF_I(table);
376 udf_add_free_space(sb, sbi->s_partition, count);
378 start = bloc->logicalBlockNum + offset;
379 end = bloc->logicalBlockNum + offset + count - 1;
381 epos.offset = oepos.offset = sizeof(struct unallocSpaceEntry);
382 elen = 0;
383 epos.block = oepos.block = iinfo->i_location;
384 epos.bh = oepos.bh = NULL;
386 while (count &&
387 (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
388 if (((eloc.logicalBlockNum +
389 (elen >> sb->s_blocksize_bits)) == start)) {
390 if ((0x3FFFFFFF - elen) <
391 (count << sb->s_blocksize_bits)) {
392 uint32_t tmp = ((0x3FFFFFFF - elen) >>
393 sb->s_blocksize_bits);
394 count -= tmp;
395 start += tmp;
396 elen = (etype << 30) |
397 (0x40000000 - sb->s_blocksize);
398 } else {
399 elen = (etype << 30) |
400 (elen +
401 (count << sb->s_blocksize_bits));
402 start += count;
403 count = 0;
405 udf_write_aext(table, &oepos, &eloc, elen, 1);
406 } else if (eloc.logicalBlockNum == (end + 1)) {
407 if ((0x3FFFFFFF - elen) <
408 (count << sb->s_blocksize_bits)) {
409 uint32_t tmp = ((0x3FFFFFFF - elen) >>
410 sb->s_blocksize_bits);
411 count -= tmp;
412 end -= tmp;
413 eloc.logicalBlockNum -= tmp;
414 elen = (etype << 30) |
415 (0x40000000 - sb->s_blocksize);
416 } else {
417 eloc.logicalBlockNum = start;
418 elen = (etype << 30) |
419 (elen +
420 (count << sb->s_blocksize_bits));
421 end -= count;
422 count = 0;
424 udf_write_aext(table, &oepos, &eloc, elen, 1);
427 if (epos.bh != oepos.bh) {
428 oepos.block = epos.block;
429 brelse(oepos.bh);
430 get_bh(epos.bh);
431 oepos.bh = epos.bh;
432 oepos.offset = 0;
433 } else {
434 oepos.offset = epos.offset;
438 if (count) {
440 * NOTE: we CANNOT use udf_add_aext here, as it can try to
441 * allocate a new block, and since we hold the super block
442 * lock already very bad things would happen :)
444 * We copy the behavior of udf_add_aext, but instead of
445 * trying to allocate a new block close to the existing one,
446 * we just steal a block from the extent we are trying to add.
448 * It would be nice if the blocks were close together, but it
449 * isn't required.
452 int adsize;
454 eloc.logicalBlockNum = start;
455 elen = EXT_RECORDED_ALLOCATED |
456 (count << sb->s_blocksize_bits);
458 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
459 adsize = sizeof(struct short_ad);
460 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
461 adsize = sizeof(struct long_ad);
462 else {
463 brelse(oepos.bh);
464 brelse(epos.bh);
465 goto error_return;
468 if (epos.offset + (2 * adsize) > sb->s_blocksize) {
469 /* Steal a block from the extent being free'd */
470 udf_setup_indirect_aext(table, eloc.logicalBlockNum,
471 &epos);
473 eloc.logicalBlockNum++;
474 elen -= sb->s_blocksize;
477 /* It's possible that stealing the block emptied the extent */
478 if (elen)
479 __udf_add_aext(table, &epos, &eloc, elen, 1);
482 brelse(epos.bh);
483 brelse(oepos.bh);
485 error_return:
486 mutex_unlock(&sbi->s_alloc_mutex);
487 return;
490 static int udf_table_prealloc_blocks(struct super_block *sb,
491 struct inode *table, uint16_t partition,
492 uint32_t first_block, uint32_t block_count)
494 struct udf_sb_info *sbi = UDF_SB(sb);
495 int alloc_count = 0;
496 uint32_t elen, adsize;
497 struct kernel_lb_addr eloc;
498 struct extent_position epos;
499 int8_t etype = -1;
500 struct udf_inode_info *iinfo;
502 if (first_block >= sbi->s_partmaps[partition].s_partition_len)
503 return 0;
505 iinfo = UDF_I(table);
506 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
507 adsize = sizeof(struct short_ad);
508 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
509 adsize = sizeof(struct long_ad);
510 else
511 return 0;
513 mutex_lock(&sbi->s_alloc_mutex);
514 epos.offset = sizeof(struct unallocSpaceEntry);
515 epos.block = iinfo->i_location;
516 epos.bh = NULL;
517 eloc.logicalBlockNum = 0xFFFFFFFF;
519 while (first_block != eloc.logicalBlockNum &&
520 (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
521 udf_debug("eloc=%u, elen=%u, first_block=%u\n",
522 eloc.logicalBlockNum, elen, first_block);
523 ; /* empty loop body */
526 if (first_block == eloc.logicalBlockNum) {
527 epos.offset -= adsize;
529 alloc_count = (elen >> sb->s_blocksize_bits);
530 if (alloc_count > block_count) {
531 alloc_count = block_count;
532 eloc.logicalBlockNum += alloc_count;
533 elen -= (alloc_count << sb->s_blocksize_bits);
534 udf_write_aext(table, &epos, &eloc,
535 (etype << 30) | elen, 1);
536 } else
537 udf_delete_aext(table, epos);
538 } else {
539 alloc_count = 0;
542 brelse(epos.bh);
544 if (alloc_count)
545 udf_add_free_space(sb, partition, -alloc_count);
546 mutex_unlock(&sbi->s_alloc_mutex);
547 return alloc_count;
550 static udf_pblk_t udf_table_new_block(struct super_block *sb,
551 struct inode *table, uint16_t partition,
552 uint32_t goal, int *err)
554 struct udf_sb_info *sbi = UDF_SB(sb);
555 uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF;
556 udf_pblk_t newblock = 0;
557 uint32_t adsize;
558 uint32_t elen, goal_elen = 0;
559 struct kernel_lb_addr eloc, goal_eloc;
560 struct extent_position epos, goal_epos;
561 int8_t etype;
562 struct udf_inode_info *iinfo = UDF_I(table);
564 *err = -ENOSPC;
566 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
567 adsize = sizeof(struct short_ad);
568 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
569 adsize = sizeof(struct long_ad);
570 else
571 return newblock;
573 mutex_lock(&sbi->s_alloc_mutex);
574 if (goal >= sbi->s_partmaps[partition].s_partition_len)
575 goal = 0;
577 /* We search for the closest matching block to goal. If we find
578 a exact hit, we stop. Otherwise we keep going till we run out
579 of extents. We store the buffer_head, bloc, and extoffset
580 of the current closest match and use that when we are done.
582 epos.offset = sizeof(struct unallocSpaceEntry);
583 epos.block = iinfo->i_location;
584 epos.bh = goal_epos.bh = NULL;
586 while (spread &&
587 (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
588 if (goal >= eloc.logicalBlockNum) {
589 if (goal < eloc.logicalBlockNum +
590 (elen >> sb->s_blocksize_bits))
591 nspread = 0;
592 else
593 nspread = goal - eloc.logicalBlockNum -
594 (elen >> sb->s_blocksize_bits);
595 } else {
596 nspread = eloc.logicalBlockNum - goal;
599 if (nspread < spread) {
600 spread = nspread;
601 if (goal_epos.bh != epos.bh) {
602 brelse(goal_epos.bh);
603 goal_epos.bh = epos.bh;
604 get_bh(goal_epos.bh);
606 goal_epos.block = epos.block;
607 goal_epos.offset = epos.offset - adsize;
608 goal_eloc = eloc;
609 goal_elen = (etype << 30) | elen;
613 brelse(epos.bh);
615 if (spread == 0xFFFFFFFF) {
616 brelse(goal_epos.bh);
617 mutex_unlock(&sbi->s_alloc_mutex);
618 return 0;
621 /* Only allocate blocks from the beginning of the extent.
622 That way, we only delete (empty) extents, never have to insert an
623 extent because of splitting */
624 /* This works, but very poorly.... */
626 newblock = goal_eloc.logicalBlockNum;
627 goal_eloc.logicalBlockNum++;
628 goal_elen -= sb->s_blocksize;
630 if (goal_elen)
631 udf_write_aext(table, &goal_epos, &goal_eloc, goal_elen, 1);
632 else
633 udf_delete_aext(table, goal_epos);
634 brelse(goal_epos.bh);
636 udf_add_free_space(sb, partition, -1);
638 mutex_unlock(&sbi->s_alloc_mutex);
639 *err = 0;
640 return newblock;
643 void udf_free_blocks(struct super_block *sb, struct inode *inode,
644 struct kernel_lb_addr *bloc, uint32_t offset,
645 uint32_t count)
647 uint16_t partition = bloc->partitionReferenceNum;
648 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
649 uint32_t blk;
651 if (check_add_overflow(bloc->logicalBlockNum, offset, &blk) ||
652 check_add_overflow(blk, count, &blk) ||
653 bloc->logicalBlockNum + count > map->s_partition_len) {
654 udf_debug("Invalid request to free blocks: (%d, %u), off %u, "
655 "len %u, partition len %u\n",
656 partition, bloc->logicalBlockNum, offset, count,
657 map->s_partition_len);
658 return;
661 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
662 udf_bitmap_free_blocks(sb, map->s_uspace.s_bitmap,
663 bloc, offset, count);
664 } else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
665 udf_table_free_blocks(sb, map->s_uspace.s_table,
666 bloc, offset, count);
669 if (inode) {
670 inode_sub_bytes(inode,
671 ((sector_t)count) << sb->s_blocksize_bits);
675 inline int udf_prealloc_blocks(struct super_block *sb,
676 struct inode *inode,
677 uint16_t partition, uint32_t first_block,
678 uint32_t block_count)
680 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
681 int allocated;
683 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
684 allocated = udf_bitmap_prealloc_blocks(sb,
685 map->s_uspace.s_bitmap,
686 partition, first_block,
687 block_count);
688 else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
689 allocated = udf_table_prealloc_blocks(sb,
690 map->s_uspace.s_table,
691 partition, first_block,
692 block_count);
693 else
694 return 0;
696 if (inode && allocated > 0)
697 inode_add_bytes(inode, allocated << sb->s_blocksize_bits);
698 return allocated;
701 inline udf_pblk_t udf_new_block(struct super_block *sb,
702 struct inode *inode,
703 uint16_t partition, uint32_t goal, int *err)
705 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
706 udf_pblk_t block;
708 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
709 block = udf_bitmap_new_block(sb,
710 map->s_uspace.s_bitmap,
711 partition, goal, err);
712 else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
713 block = udf_table_new_block(sb,
714 map->s_uspace.s_table,
715 partition, goal, err);
716 else {
717 *err = -EIO;
718 return 0;
720 if (inode && block)
721 inode_add_bytes(inode, sb->s_blocksize);
722 return block;