drm/panthor: Don't declare a queue blocked if deferred operations are pending
[drm/drm-misc.git] / fs / xfs / scrub / rmap_repair.c
blobe8080eba37d29bf5a854e51547d6a2501d21bef6
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (c) 2018-2024 Oracle. All Rights Reserved.
4 * Author: Darrick J. Wong <djwong@kernel.org>
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_defer.h"
13 #include "xfs_btree.h"
14 #include "xfs_btree_staging.h"
15 #include "xfs_buf_mem.h"
16 #include "xfs_btree_mem.h"
17 #include "xfs_bit.h"
18 #include "xfs_log_format.h"
19 #include "xfs_trans.h"
20 #include "xfs_sb.h"
21 #include "xfs_alloc.h"
22 #include "xfs_alloc_btree.h"
23 #include "xfs_ialloc.h"
24 #include "xfs_ialloc_btree.h"
25 #include "xfs_rmap.h"
26 #include "xfs_rmap_btree.h"
27 #include "xfs_inode.h"
28 #include "xfs_icache.h"
29 #include "xfs_bmap.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_refcount.h"
32 #include "xfs_refcount_btree.h"
33 #include "xfs_ag.h"
34 #include "scrub/xfs_scrub.h"
35 #include "scrub/scrub.h"
36 #include "scrub/common.h"
37 #include "scrub/btree.h"
38 #include "scrub/trace.h"
39 #include "scrub/repair.h"
40 #include "scrub/bitmap.h"
41 #include "scrub/agb_bitmap.h"
42 #include "scrub/xfile.h"
43 #include "scrub/xfarray.h"
44 #include "scrub/iscan.h"
45 #include "scrub/newbt.h"
46 #include "scrub/reap.h"
49 * Reverse Mapping Btree Repair
50 * ============================
52 * This is the most involved of all the AG space btree rebuilds. Everywhere
53 * else in XFS we lock inodes and then AG data structures, but generating the
54 * list of rmap records requires that we be able to scan both block mapping
55 * btrees of every inode in the filesystem to see if it owns any extents in
56 * this AG. We can't tolerate any inode updates while we do this, so we
57 * freeze the filesystem to lock everyone else out, and grant ourselves
58 * special privileges to run transactions with regular background reclamation
59 * turned off.
61 * We also have to be very careful not to allow inode reclaim to start a
62 * transaction because all transactions (other than our own) will block.
63 * Deferred inode inactivation helps us out there.
65 * I) Reverse mappings for all non-space metadata and file data are collected
66 * according to the following algorithm:
68 * 1. For each fork of each inode:
69 * 1.1. Create a bitmap BMBIT to track bmbt blocks if necessary.
70 * 1.2. If the incore extent map isn't loaded, walk the bmbt to accumulate
71 * bmaps into rmap records (see 1.1.4). Set bits in BMBIT for each btree
72 * block.
73 * 1.3. If the incore extent map is loaded but the fork is in btree format,
74 * just visit the bmbt blocks to set the corresponding BMBIT areas.
75 * 1.4. From the incore extent map, accumulate each bmap that falls into our
76 * target AG. Remember, multiple bmap records can map to a single rmap
77 * record, so we cannot simply emit rmap records 1:1.
78 * 1.5. Emit rmap records for each extent in BMBIT and free it.
79 * 2. Create bitmaps INOBIT and ICHUNKBIT.
80 * 3. For each record in the inobt, set the corresponding areas in ICHUNKBIT,
81 * and set bits in INOBIT for each btree block. If the inobt has no records
82 * at all, we must be careful to record its root in INOBIT.
83 * 4. For each block in the finobt, set the corresponding INOBIT area.
84 * 5. Emit rmap records for each extent in INOBIT and ICHUNKBIT and free them.
85 * 6. Create bitmaps REFCBIT and COWBIT.
86 * 7. For each CoW staging extent in the refcountbt, set the corresponding
87 * areas in COWBIT.
88 * 8. For each block in the refcountbt, set the corresponding REFCBIT area.
89 * 9. Emit rmap records for each extent in REFCBIT and COWBIT and free them.
90 * A. Emit rmap for the AG headers.
91 * B. Emit rmap for the log, if there is one.
93 * II) The rmapbt shape and space metadata rmaps are computed as follows:
95 * 1. Count the rmaps collected in the previous step. (= NR)
96 * 2. Estimate the number of rmapbt blocks needed to store NR records. (= RMB)
97 * 3. Reserve RMB blocks through the newbt using the allocator in normap mode.
98 * 4. Create bitmap AGBIT.
99 * 5. For each reservation in the newbt, set the corresponding areas in AGBIT.
100 * 6. For each block in the AGFL, bnobt, and cntbt, set the bits in AGBIT.
101 * 7. Count the extents in AGBIT. (= AGNR)
102 * 8. Estimate the number of rmapbt blocks needed for NR + AGNR rmaps. (= RMB')
103 * 9. If RMB' >= RMB, reserve RMB' - RMB more newbt blocks, set RMB = RMB',
104 * and clear AGBIT. Go to step 5.
105 * A. Emit rmaps for each extent in AGBIT.
107 * III) The rmapbt is constructed and set in place as follows:
109 * 1. Sort the rmap records.
110 * 2. Bulk load the rmaps.
112 * IV) Reap the old btree blocks.
114 * 1. Create a bitmap OLDRMBIT.
115 * 2. For each gap in the new rmapbt, set the corresponding areas of OLDRMBIT.
116 * 3. For each extent in the bnobt, clear the corresponding parts of OLDRMBIT.
117 * 4. Reap the extents corresponding to the set areas in OLDRMBIT. These are
118 * the parts of the AG that the rmap didn't find during its scan of the
119 * primary metadata and aren't known to be in the free space, which implies
120 * that they were the old rmapbt blocks.
121 * 5. Commit.
123 * We use the 'xrep_rmap' prefix for all the rmap functions.
126 /* Context for collecting rmaps */
127 struct xrep_rmap {
128 /* new rmapbt information */
129 struct xrep_newbt new_btree;
131 /* lock for the xfbtree and xfile */
132 struct mutex lock;
134 /* rmap records generated from primary metadata */
135 struct xfbtree rmap_btree;
137 struct xfs_scrub *sc;
139 /* in-memory btree cursor for the xfs_btree_bload iteration */
140 struct xfs_btree_cur *mcur;
142 /* Hooks into rmap update code. */
143 struct xfs_rmap_hook rhook;
145 /* inode scan cursor */
146 struct xchk_iscan iscan;
148 /* Number of non-freespace records found. */
149 unsigned long long nr_records;
151 /* bnobt/cntbt contribution to btreeblks */
152 xfs_agblock_t freesp_btblocks;
154 /* old agf_rmap_blocks counter */
155 unsigned int old_rmapbt_fsbcount;
158 /* Set us up to repair reverse mapping btrees. */
160 xrep_setup_ag_rmapbt(
161 struct xfs_scrub *sc)
163 struct xrep_rmap *rr;
164 char *descr;
165 int error;
167 xchk_fsgates_enable(sc, XCHK_FSGATES_RMAP);
169 descr = xchk_xfile_ag_descr(sc, "reverse mapping records");
170 error = xrep_setup_xfbtree(sc, descr);
171 kfree(descr);
172 if (error)
173 return error;
175 rr = kzalloc(sizeof(struct xrep_rmap), XCHK_GFP_FLAGS);
176 if (!rr)
177 return -ENOMEM;
179 rr->sc = sc;
180 sc->buf = rr;
181 return 0;
184 /* Make sure there's nothing funny about this mapping. */
185 STATIC int
186 xrep_rmap_check_mapping(
187 struct xfs_scrub *sc,
188 const struct xfs_rmap_irec *rec)
190 enum xbtree_recpacking outcome;
191 int error;
193 if (xfs_rmap_check_irec(sc->sa.pag, rec) != NULL)
194 return -EFSCORRUPTED;
196 /* Make sure this isn't free space. */
197 error = xfs_alloc_has_records(sc->sa.bno_cur, rec->rm_startblock,
198 rec->rm_blockcount, &outcome);
199 if (error)
200 return error;
201 if (outcome != XBTREE_RECPACKING_EMPTY)
202 return -EFSCORRUPTED;
204 return 0;
207 /* Store a reverse-mapping record. */
208 static inline int
209 xrep_rmap_stash(
210 struct xrep_rmap *rr,
211 xfs_agblock_t startblock,
212 xfs_extlen_t blockcount,
213 uint64_t owner,
214 uint64_t offset,
215 unsigned int flags)
217 struct xfs_rmap_irec rmap = {
218 .rm_startblock = startblock,
219 .rm_blockcount = blockcount,
220 .rm_owner = owner,
221 .rm_offset = offset,
222 .rm_flags = flags,
224 struct xfs_scrub *sc = rr->sc;
225 struct xfs_btree_cur *mcur;
226 int error = 0;
228 if (xchk_should_terminate(sc, &error))
229 return error;
231 if (xchk_iscan_aborted(&rr->iscan))
232 return -EFSCORRUPTED;
234 trace_xrep_rmap_found(sc->mp, sc->sa.pag->pag_agno, &rmap);
236 mutex_lock(&rr->lock);
237 mcur = xfs_rmapbt_mem_cursor(sc->sa.pag, sc->tp, &rr->rmap_btree);
238 error = xfs_rmap_map_raw(mcur, &rmap);
239 xfs_btree_del_cursor(mcur, error);
240 if (error)
241 goto out_cancel;
243 error = xfbtree_trans_commit(&rr->rmap_btree, sc->tp);
244 if (error)
245 goto out_abort;
247 mutex_unlock(&rr->lock);
248 return 0;
250 out_cancel:
251 xfbtree_trans_cancel(&rr->rmap_btree, sc->tp);
252 out_abort:
253 xchk_iscan_abort(&rr->iscan);
254 mutex_unlock(&rr->lock);
255 return error;
258 struct xrep_rmap_stash_run {
259 struct xrep_rmap *rr;
260 uint64_t owner;
261 unsigned int rmap_flags;
264 static int
265 xrep_rmap_stash_run(
266 uint32_t start,
267 uint32_t len,
268 void *priv)
270 struct xrep_rmap_stash_run *rsr = priv;
271 struct xrep_rmap *rr = rsr->rr;
273 return xrep_rmap_stash(rr, start, len, rsr->owner, 0, rsr->rmap_flags);
277 * Emit rmaps for every extent of bits set in the bitmap. Caller must ensure
278 * that the ranges are in units of FS blocks.
280 STATIC int
281 xrep_rmap_stash_bitmap(
282 struct xrep_rmap *rr,
283 struct xagb_bitmap *bitmap,
284 const struct xfs_owner_info *oinfo)
286 struct xrep_rmap_stash_run rsr = {
287 .rr = rr,
288 .owner = oinfo->oi_owner,
289 .rmap_flags = 0,
292 if (oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK)
293 rsr.rmap_flags |= XFS_RMAP_ATTR_FORK;
294 if (oinfo->oi_flags & XFS_OWNER_INFO_BMBT_BLOCK)
295 rsr.rmap_flags |= XFS_RMAP_BMBT_BLOCK;
297 return xagb_bitmap_walk(bitmap, xrep_rmap_stash_run, &rsr);
300 /* Section (I): Finding all file and bmbt extents. */
302 /* Context for accumulating rmaps for an inode fork. */
303 struct xrep_rmap_ifork {
305 * Accumulate rmap data here to turn multiple adjacent bmaps into a
306 * single rmap.
308 struct xfs_rmap_irec accum;
310 /* Bitmap of bmbt blocks in this AG. */
311 struct xagb_bitmap bmbt_blocks;
313 struct xrep_rmap *rr;
315 /* Which inode fork? */
316 int whichfork;
319 /* Stash an rmap that we accumulated while walking an inode fork. */
320 STATIC int
321 xrep_rmap_stash_accumulated(
322 struct xrep_rmap_ifork *rf)
324 if (rf->accum.rm_blockcount == 0)
325 return 0;
327 return xrep_rmap_stash(rf->rr, rf->accum.rm_startblock,
328 rf->accum.rm_blockcount, rf->accum.rm_owner,
329 rf->accum.rm_offset, rf->accum.rm_flags);
332 /* Accumulate a bmbt record. */
333 STATIC int
334 xrep_rmap_visit_bmbt(
335 struct xfs_btree_cur *cur,
336 struct xfs_bmbt_irec *rec,
337 void *priv)
339 struct xrep_rmap_ifork *rf = priv;
340 struct xfs_mount *mp = rf->rr->sc->mp;
341 struct xfs_rmap_irec *accum = &rf->accum;
342 xfs_agblock_t agbno;
343 unsigned int rmap_flags = 0;
344 int error;
346 if (XFS_FSB_TO_AGNO(mp, rec->br_startblock) !=
347 rf->rr->sc->sa.pag->pag_agno)
348 return 0;
350 agbno = XFS_FSB_TO_AGBNO(mp, rec->br_startblock);
351 if (rf->whichfork == XFS_ATTR_FORK)
352 rmap_flags |= XFS_RMAP_ATTR_FORK;
353 if (rec->br_state == XFS_EXT_UNWRITTEN)
354 rmap_flags |= XFS_RMAP_UNWRITTEN;
356 /* If this bmap is adjacent to the previous one, just add it. */
357 if (accum->rm_blockcount > 0 &&
358 rec->br_startoff == accum->rm_offset + accum->rm_blockcount &&
359 agbno == accum->rm_startblock + accum->rm_blockcount &&
360 rmap_flags == accum->rm_flags) {
361 accum->rm_blockcount += rec->br_blockcount;
362 return 0;
365 /* Otherwise stash the old rmap and start accumulating a new one. */
366 error = xrep_rmap_stash_accumulated(rf);
367 if (error)
368 return error;
370 accum->rm_startblock = agbno;
371 accum->rm_blockcount = rec->br_blockcount;
372 accum->rm_offset = rec->br_startoff;
373 accum->rm_flags = rmap_flags;
374 return 0;
377 /* Add a btree block to the bitmap. */
378 STATIC int
379 xrep_rmap_visit_iroot_btree_block(
380 struct xfs_btree_cur *cur,
381 int level,
382 void *priv)
384 struct xrep_rmap_ifork *rf = priv;
385 struct xfs_buf *bp;
386 xfs_fsblock_t fsbno;
387 xfs_agblock_t agbno;
389 xfs_btree_get_block(cur, level, &bp);
390 if (!bp)
391 return 0;
393 fsbno = XFS_DADDR_TO_FSB(cur->bc_mp, xfs_buf_daddr(bp));
394 if (XFS_FSB_TO_AGNO(cur->bc_mp, fsbno) != rf->rr->sc->sa.pag->pag_agno)
395 return 0;
397 agbno = XFS_FSB_TO_AGBNO(cur->bc_mp, fsbno);
398 return xagb_bitmap_set(&rf->bmbt_blocks, agbno, 1);
402 * Iterate a metadata btree rooted in an inode to collect rmap records for
403 * anything in this fork that matches the AG.
405 STATIC int
406 xrep_rmap_scan_iroot_btree(
407 struct xrep_rmap_ifork *rf,
408 struct xfs_btree_cur *cur)
410 struct xfs_owner_info oinfo;
411 struct xrep_rmap *rr = rf->rr;
412 int error;
414 xagb_bitmap_init(&rf->bmbt_blocks);
416 /* Record all the blocks in the btree itself. */
417 error = xfs_btree_visit_blocks(cur, xrep_rmap_visit_iroot_btree_block,
418 XFS_BTREE_VISIT_ALL, rf);
419 if (error)
420 goto out;
422 /* Emit rmaps for the btree blocks. */
423 xfs_rmap_ino_bmbt_owner(&oinfo, rf->accum.rm_owner, rf->whichfork);
424 error = xrep_rmap_stash_bitmap(rr, &rf->bmbt_blocks, &oinfo);
425 if (error)
426 goto out;
428 /* Stash any remaining accumulated rmaps. */
429 error = xrep_rmap_stash_accumulated(rf);
430 out:
431 xagb_bitmap_destroy(&rf->bmbt_blocks);
432 return error;
436 * Iterate the block mapping btree to collect rmap records for anything in this
437 * fork that matches the AG. Sets @mappings_done to true if we've scanned the
438 * block mappings in this fork.
440 STATIC int
441 xrep_rmap_scan_bmbt(
442 struct xrep_rmap_ifork *rf,
443 struct xfs_inode *ip,
444 bool *mappings_done)
446 struct xrep_rmap *rr = rf->rr;
447 struct xfs_btree_cur *cur;
448 struct xfs_ifork *ifp;
449 int error;
451 *mappings_done = false;
452 ifp = xfs_ifork_ptr(ip, rf->whichfork);
453 cur = xfs_bmbt_init_cursor(rr->sc->mp, rr->sc->tp, ip, rf->whichfork);
455 if (!xfs_ifork_is_realtime(ip, rf->whichfork) &&
456 xfs_need_iread_extents(ifp)) {
458 * If the incore extent cache isn't loaded, scan the bmbt for
459 * mapping records. This avoids loading the incore extent
460 * tree, which will increase memory pressure at a time when
461 * we're trying to run as quickly as we possibly can. Ignore
462 * realtime extents.
464 error = xfs_bmap_query_all(cur, xrep_rmap_visit_bmbt, rf);
465 if (error)
466 goto out_cur;
468 *mappings_done = true;
471 /* Scan for the bmbt blocks, which always live on the data device. */
472 error = xrep_rmap_scan_iroot_btree(rf, cur);
473 out_cur:
474 xfs_btree_del_cursor(cur, error);
475 return error;
479 * Iterate the in-core extent cache to collect rmap records for anything in
480 * this fork that matches the AG.
482 STATIC int
483 xrep_rmap_scan_iext(
484 struct xrep_rmap_ifork *rf,
485 struct xfs_ifork *ifp)
487 struct xfs_bmbt_irec rec;
488 struct xfs_iext_cursor icur;
489 int error;
491 for_each_xfs_iext(ifp, &icur, &rec) {
492 if (isnullstartblock(rec.br_startblock))
493 continue;
494 error = xrep_rmap_visit_bmbt(NULL, &rec, rf);
495 if (error)
496 return error;
499 return xrep_rmap_stash_accumulated(rf);
502 /* Find all the extents from a given AG in an inode fork. */
503 STATIC int
504 xrep_rmap_scan_ifork(
505 struct xrep_rmap *rr,
506 struct xfs_inode *ip,
507 int whichfork)
509 struct xrep_rmap_ifork rf = {
510 .accum = { .rm_owner = ip->i_ino, },
511 .rr = rr,
512 .whichfork = whichfork,
514 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork);
515 int error = 0;
517 if (!ifp)
518 return 0;
520 if (ifp->if_format == XFS_DINODE_FMT_BTREE) {
521 bool mappings_done;
524 * Scan the bmap btree for data device mappings. This includes
525 * the btree blocks themselves, even if this is a realtime
526 * file.
528 error = xrep_rmap_scan_bmbt(&rf, ip, &mappings_done);
529 if (error || mappings_done)
530 return error;
531 } else if (ifp->if_format != XFS_DINODE_FMT_EXTENTS) {
532 return 0;
535 /* Scan incore extent cache if this isn't a realtime file. */
536 if (xfs_ifork_is_realtime(ip, whichfork))
537 return 0;
539 return xrep_rmap_scan_iext(&rf, ifp);
543 * Take ILOCK on a file that we want to scan.
545 * Select ILOCK_EXCL if the file has an unloaded data bmbt or has an unloaded
546 * attr bmbt. Otherwise, take ILOCK_SHARED.
548 static inline unsigned int
549 xrep_rmap_scan_ilock(
550 struct xfs_inode *ip)
552 uint lock_mode = XFS_ILOCK_SHARED;
554 if (xfs_need_iread_extents(&ip->i_df)) {
555 lock_mode = XFS_ILOCK_EXCL;
556 goto lock;
559 if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af))
560 lock_mode = XFS_ILOCK_EXCL;
562 lock:
563 xfs_ilock(ip, lock_mode);
564 return lock_mode;
567 /* Record reverse mappings for a file. */
568 STATIC int
569 xrep_rmap_scan_inode(
570 struct xrep_rmap *rr,
571 struct xfs_inode *ip)
573 unsigned int lock_mode = xrep_rmap_scan_ilock(ip);
574 int error;
576 /* Check the data fork. */
577 error = xrep_rmap_scan_ifork(rr, ip, XFS_DATA_FORK);
578 if (error)
579 goto out_unlock;
581 /* Check the attr fork. */
582 error = xrep_rmap_scan_ifork(rr, ip, XFS_ATTR_FORK);
583 if (error)
584 goto out_unlock;
586 /* COW fork extents are "owned" by the refcount btree. */
588 xchk_iscan_mark_visited(&rr->iscan, ip);
589 out_unlock:
590 xfs_iunlock(ip, lock_mode);
591 return error;
594 /* Section (I): Find all AG metadata extents except for free space metadata. */
596 struct xrep_rmap_inodes {
597 struct xrep_rmap *rr;
598 struct xagb_bitmap inobt_blocks; /* INOBIT */
599 struct xagb_bitmap ichunk_blocks; /* ICHUNKBIT */
602 /* Record inode btree rmaps. */
603 STATIC int
604 xrep_rmap_walk_inobt(
605 struct xfs_btree_cur *cur,
606 const union xfs_btree_rec *rec,
607 void *priv)
609 struct xfs_inobt_rec_incore irec;
610 struct xrep_rmap_inodes *ri = priv;
611 struct xfs_mount *mp = cur->bc_mp;
612 xfs_agblock_t agbno;
613 xfs_extlen_t aglen;
614 xfs_agino_t agino;
615 xfs_agino_t iperhole;
616 unsigned int i;
617 int error;
619 /* Record the inobt blocks. */
620 error = xagb_bitmap_set_btcur_path(&ri->inobt_blocks, cur);
621 if (error)
622 return error;
624 xfs_inobt_btrec_to_irec(mp, rec, &irec);
625 if (xfs_inobt_check_irec(cur->bc_ag.pag, &irec) != NULL)
626 return -EFSCORRUPTED;
628 agino = irec.ir_startino;
630 /* Record a non-sparse inode chunk. */
631 if (!xfs_inobt_issparse(irec.ir_holemask)) {
632 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
633 aglen = max_t(xfs_extlen_t, 1,
634 XFS_INODES_PER_CHUNK / mp->m_sb.sb_inopblock);
636 return xagb_bitmap_set(&ri->ichunk_blocks, agbno, aglen);
639 /* Iterate each chunk. */
640 iperhole = max_t(xfs_agino_t, mp->m_sb.sb_inopblock,
641 XFS_INODES_PER_HOLEMASK_BIT);
642 aglen = iperhole / mp->m_sb.sb_inopblock;
643 for (i = 0, agino = irec.ir_startino;
644 i < XFS_INOBT_HOLEMASK_BITS;
645 i += iperhole / XFS_INODES_PER_HOLEMASK_BIT, agino += iperhole) {
646 /* Skip holes. */
647 if (irec.ir_holemask & (1 << i))
648 continue;
650 /* Record the inode chunk otherwise. */
651 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
652 error = xagb_bitmap_set(&ri->ichunk_blocks, agbno, aglen);
653 if (error)
654 return error;
657 return 0;
660 /* Collect rmaps for the blocks containing inode btrees and the inode chunks. */
661 STATIC int
662 xrep_rmap_find_inode_rmaps(
663 struct xrep_rmap *rr)
665 struct xrep_rmap_inodes ri = {
666 .rr = rr,
668 struct xfs_scrub *sc = rr->sc;
669 int error;
671 xagb_bitmap_init(&ri.inobt_blocks);
672 xagb_bitmap_init(&ri.ichunk_blocks);
675 * Iterate every record in the inobt so we can capture all the inode
676 * chunks and the blocks in the inobt itself.
678 error = xfs_btree_query_all(sc->sa.ino_cur, xrep_rmap_walk_inobt, &ri);
679 if (error)
680 goto out_bitmap;
683 * Note that if there are zero records in the inobt then query_all does
684 * nothing and we have to account the empty inobt root manually.
686 if (xagb_bitmap_empty(&ri.ichunk_blocks)) {
687 struct xfs_agi *agi = sc->sa.agi_bp->b_addr;
689 error = xagb_bitmap_set(&ri.inobt_blocks,
690 be32_to_cpu(agi->agi_root), 1);
691 if (error)
692 goto out_bitmap;
695 /* Scan the finobt too. */
696 if (xfs_has_finobt(sc->mp)) {
697 error = xagb_bitmap_set_btblocks(&ri.inobt_blocks,
698 sc->sa.fino_cur);
699 if (error)
700 goto out_bitmap;
703 /* Generate rmaps for everything. */
704 error = xrep_rmap_stash_bitmap(rr, &ri.inobt_blocks,
705 &XFS_RMAP_OINFO_INOBT);
706 if (error)
707 goto out_bitmap;
708 error = xrep_rmap_stash_bitmap(rr, &ri.ichunk_blocks,
709 &XFS_RMAP_OINFO_INODES);
711 out_bitmap:
712 xagb_bitmap_destroy(&ri.inobt_blocks);
713 xagb_bitmap_destroy(&ri.ichunk_blocks);
714 return error;
717 /* Record a CoW staging extent. */
718 STATIC int
719 xrep_rmap_walk_cowblocks(
720 struct xfs_btree_cur *cur,
721 const struct xfs_refcount_irec *irec,
722 void *priv)
724 struct xagb_bitmap *bitmap = priv;
726 if (!xfs_refcount_check_domain(irec) ||
727 irec->rc_domain != XFS_REFC_DOMAIN_COW)
728 return -EFSCORRUPTED;
730 return xagb_bitmap_set(bitmap, irec->rc_startblock, irec->rc_blockcount);
734 * Collect rmaps for the blocks containing the refcount btree, and all CoW
735 * staging extents.
737 STATIC int
738 xrep_rmap_find_refcount_rmaps(
739 struct xrep_rmap *rr)
741 struct xagb_bitmap refcountbt_blocks; /* REFCBIT */
742 struct xagb_bitmap cow_blocks; /* COWBIT */
743 struct xfs_refcount_irec low = {
744 .rc_startblock = 0,
745 .rc_domain = XFS_REFC_DOMAIN_COW,
747 struct xfs_refcount_irec high = {
748 .rc_startblock = -1U,
749 .rc_domain = XFS_REFC_DOMAIN_COW,
751 struct xfs_scrub *sc = rr->sc;
752 int error;
754 if (!xfs_has_reflink(sc->mp))
755 return 0;
757 xagb_bitmap_init(&refcountbt_blocks);
758 xagb_bitmap_init(&cow_blocks);
760 /* refcountbt */
761 error = xagb_bitmap_set_btblocks(&refcountbt_blocks, sc->sa.refc_cur);
762 if (error)
763 goto out_bitmap;
765 /* Collect rmaps for CoW staging extents. */
766 error = xfs_refcount_query_range(sc->sa.refc_cur, &low, &high,
767 xrep_rmap_walk_cowblocks, &cow_blocks);
768 if (error)
769 goto out_bitmap;
771 /* Generate rmaps for everything. */
772 error = xrep_rmap_stash_bitmap(rr, &cow_blocks, &XFS_RMAP_OINFO_COW);
773 if (error)
774 goto out_bitmap;
775 error = xrep_rmap_stash_bitmap(rr, &refcountbt_blocks,
776 &XFS_RMAP_OINFO_REFC);
778 out_bitmap:
779 xagb_bitmap_destroy(&cow_blocks);
780 xagb_bitmap_destroy(&refcountbt_blocks);
781 return error;
784 /* Generate rmaps for the AG headers (AGI/AGF/AGFL) */
785 STATIC int
786 xrep_rmap_find_agheader_rmaps(
787 struct xrep_rmap *rr)
789 struct xfs_scrub *sc = rr->sc;
791 /* Create a record for the AG sb->agfl. */
792 return xrep_rmap_stash(rr, XFS_SB_BLOCK(sc->mp),
793 XFS_AGFL_BLOCK(sc->mp) - XFS_SB_BLOCK(sc->mp) + 1,
794 XFS_RMAP_OWN_FS, 0, 0);
797 /* Generate rmaps for the log, if it's in this AG. */
798 STATIC int
799 xrep_rmap_find_log_rmaps(
800 struct xrep_rmap *rr)
802 struct xfs_scrub *sc = rr->sc;
804 if (!xfs_ag_contains_log(sc->mp, sc->sa.pag->pag_agno))
805 return 0;
807 return xrep_rmap_stash(rr,
808 XFS_FSB_TO_AGBNO(sc->mp, sc->mp->m_sb.sb_logstart),
809 sc->mp->m_sb.sb_logblocks, XFS_RMAP_OWN_LOG, 0, 0);
812 /* Check and count all the records that we gathered. */
813 STATIC int
814 xrep_rmap_check_record(
815 struct xfs_btree_cur *cur,
816 const struct xfs_rmap_irec *rec,
817 void *priv)
819 struct xrep_rmap *rr = priv;
820 int error;
822 error = xrep_rmap_check_mapping(rr->sc, rec);
823 if (error)
824 return error;
826 rr->nr_records++;
827 return 0;
831 * Generate all the reverse-mappings for this AG, a list of the old rmapbt
832 * blocks, and the new btreeblks count. Figure out if we have enough free
833 * space to reconstruct the inode btrees. The caller must clean up the lists
834 * if anything goes wrong. This implements section (I) above.
836 STATIC int
837 xrep_rmap_find_rmaps(
838 struct xrep_rmap *rr)
840 struct xfs_scrub *sc = rr->sc;
841 struct xchk_ag *sa = &sc->sa;
842 struct xfs_inode *ip;
843 struct xfs_btree_cur *mcur;
844 int error;
846 /* Find all the per-AG metadata. */
847 xrep_ag_btcur_init(sc, &sc->sa);
849 error = xrep_rmap_find_inode_rmaps(rr);
850 if (error)
851 goto end_agscan;
853 error = xrep_rmap_find_refcount_rmaps(rr);
854 if (error)
855 goto end_agscan;
857 error = xrep_rmap_find_agheader_rmaps(rr);
858 if (error)
859 goto end_agscan;
861 error = xrep_rmap_find_log_rmaps(rr);
862 end_agscan:
863 xchk_ag_btcur_free(&sc->sa);
864 if (error)
865 return error;
868 * Set up for a potentially lengthy filesystem scan by reducing our
869 * transaction resource usage for the duration. Specifically:
871 * Unlock the AG header buffers and cancel the transaction to release
872 * the log grant space while we scan the filesystem.
874 * Create a new empty transaction to eliminate the possibility of the
875 * inode scan deadlocking on cyclical metadata.
877 * We pass the empty transaction to the file scanning function to avoid
878 * repeatedly cycling empty transactions. This can be done even though
879 * we take the IOLOCK to quiesce the file because empty transactions
880 * do not take sb_internal.
882 sa->agf_bp = NULL;
883 sa->agi_bp = NULL;
884 xchk_trans_cancel(sc);
885 error = xchk_trans_alloc_empty(sc);
886 if (error)
887 return error;
889 /* Iterate all AGs for inodes rmaps. */
890 while ((error = xchk_iscan_iter(&rr->iscan, &ip)) == 1) {
891 error = xrep_rmap_scan_inode(rr, ip);
892 xchk_irele(sc, ip);
893 if (error)
894 break;
896 if (xchk_should_terminate(sc, &error))
897 break;
899 xchk_iscan_iter_finish(&rr->iscan);
900 if (error)
901 return error;
904 * Switch out for a real transaction and lock the AG headers in
905 * preparation for building a new tree.
907 xchk_trans_cancel(sc);
908 error = xchk_setup_fs(sc);
909 if (error)
910 return error;
911 error = xchk_perag_drain_and_lock(sc);
912 if (error)
913 return error;
916 * If a hook failed to update the in-memory btree, we lack the data to
917 * continue the repair.
919 if (xchk_iscan_aborted(&rr->iscan))
920 return -EFSCORRUPTED;
923 * Now that we have everything locked again, we need to count the
924 * number of rmap records stashed in the btree. This should reflect
925 * all actively-owned space in the filesystem. At the same time, check
926 * all our records before we start building a new btree, which requires
927 * a bnobt cursor.
929 mcur = xfs_rmapbt_mem_cursor(rr->sc->sa.pag, NULL, &rr->rmap_btree);
930 sc->sa.bno_cur = xfs_bnobt_init_cursor(sc->mp, sc->tp, sc->sa.agf_bp,
931 sc->sa.pag);
933 rr->nr_records = 0;
934 error = xfs_rmap_query_all(mcur, xrep_rmap_check_record, rr);
936 xfs_btree_del_cursor(sc->sa.bno_cur, error);
937 sc->sa.bno_cur = NULL;
938 xfs_btree_del_cursor(mcur, error);
940 return error;
943 /* Section (II): Reserving space for new rmapbt and setting free space bitmap */
945 struct xrep_rmap_agfl {
946 struct xagb_bitmap *bitmap;
947 xfs_agnumber_t agno;
950 /* Add an AGFL block to the rmap list. */
951 STATIC int
952 xrep_rmap_walk_agfl(
953 struct xfs_mount *mp,
954 xfs_agblock_t agbno,
955 void *priv)
957 struct xrep_rmap_agfl *ra = priv;
959 return xagb_bitmap_set(ra->bitmap, agbno, 1);
963 * Run one round of reserving space for the new rmapbt and recomputing the
964 * number of blocks needed to store the previously observed rmapbt records and
965 * the ones we'll create for the free space metadata. When we don't need more
966 * blocks, return a bitmap of OWN_AG extents in @freesp_blocks and set @done to
967 * true.
969 STATIC int
970 xrep_rmap_try_reserve(
971 struct xrep_rmap *rr,
972 struct xfs_btree_cur *rmap_cur,
973 struct xagb_bitmap *freesp_blocks,
974 uint64_t *blocks_reserved,
975 bool *done)
977 struct xrep_rmap_agfl ra = {
978 .bitmap = freesp_blocks,
979 .agno = rr->sc->sa.pag->pag_agno,
981 struct xfs_scrub *sc = rr->sc;
982 struct xrep_newbt_resv *resv, *n;
983 struct xfs_agf *agf = sc->sa.agf_bp->b_addr;
984 struct xfs_buf *agfl_bp;
985 uint64_t nr_blocks; /* RMB */
986 uint64_t freesp_records;
987 int error;
990 * We're going to recompute new_btree.bload.nr_blocks at the end of
991 * this function to reflect however many btree blocks we need to store
992 * all the rmap records (including the ones that reflect the changes we
993 * made to support the new rmapbt blocks), so we save the old value
994 * here so we can decide if we've reserved enough blocks.
996 nr_blocks = rr->new_btree.bload.nr_blocks;
999 * Make sure we've reserved enough space for the new btree. This can
1000 * change the shape of the free space btrees, which can cause secondary
1001 * interactions with the rmap records because all three space btrees
1002 * have the same rmap owner. We'll account for all that below.
1004 error = xrep_newbt_alloc_blocks(&rr->new_btree,
1005 nr_blocks - *blocks_reserved);
1006 if (error)
1007 return error;
1009 *blocks_reserved = rr->new_btree.bload.nr_blocks;
1011 /* Clear everything in the bitmap. */
1012 xagb_bitmap_destroy(freesp_blocks);
1014 /* Set all the bnobt blocks in the bitmap. */
1015 sc->sa.bno_cur = xfs_bnobt_init_cursor(sc->mp, sc->tp, sc->sa.agf_bp,
1016 sc->sa.pag);
1017 error = xagb_bitmap_set_btblocks(freesp_blocks, sc->sa.bno_cur);
1018 xfs_btree_del_cursor(sc->sa.bno_cur, error);
1019 sc->sa.bno_cur = NULL;
1020 if (error)
1021 return error;
1023 /* Set all the cntbt blocks in the bitmap. */
1024 sc->sa.cnt_cur = xfs_cntbt_init_cursor(sc->mp, sc->tp, sc->sa.agf_bp,
1025 sc->sa.pag);
1026 error = xagb_bitmap_set_btblocks(freesp_blocks, sc->sa.cnt_cur);
1027 xfs_btree_del_cursor(sc->sa.cnt_cur, error);
1028 sc->sa.cnt_cur = NULL;
1029 if (error)
1030 return error;
1032 /* Record our new btreeblks value. */
1033 rr->freesp_btblocks = xagb_bitmap_hweight(freesp_blocks) - 2;
1035 /* Set all the new rmapbt blocks in the bitmap. */
1036 list_for_each_entry_safe(resv, n, &rr->new_btree.resv_list, list) {
1037 error = xagb_bitmap_set(freesp_blocks, resv->agbno, resv->len);
1038 if (error)
1039 return error;
1042 /* Set all the AGFL blocks in the bitmap. */
1043 error = xfs_alloc_read_agfl(sc->sa.pag, sc->tp, &agfl_bp);
1044 if (error)
1045 return error;
1047 error = xfs_agfl_walk(sc->mp, agf, agfl_bp, xrep_rmap_walk_agfl, &ra);
1048 if (error)
1049 return error;
1051 /* Count the extents in the bitmap. */
1052 freesp_records = xagb_bitmap_count_set_regions(freesp_blocks);
1054 /* Compute how many blocks we'll need for all the rmaps. */
1055 error = xfs_btree_bload_compute_geometry(rmap_cur,
1056 &rr->new_btree.bload, rr->nr_records + freesp_records);
1057 if (error)
1058 return error;
1060 /* We're done when we don't need more blocks. */
1061 *done = nr_blocks >= rr->new_btree.bload.nr_blocks;
1062 return 0;
1066 * Iteratively reserve space for rmap btree while recording OWN_AG rmaps for
1067 * the free space metadata. This implements section (II) above.
1069 STATIC int
1070 xrep_rmap_reserve_space(
1071 struct xrep_rmap *rr,
1072 struct xfs_btree_cur *rmap_cur)
1074 struct xagb_bitmap freesp_blocks; /* AGBIT */
1075 uint64_t blocks_reserved = 0;
1076 bool done = false;
1077 int error;
1079 /* Compute how many blocks we'll need for the rmaps collected so far. */
1080 error = xfs_btree_bload_compute_geometry(rmap_cur,
1081 &rr->new_btree.bload, rr->nr_records);
1082 if (error)
1083 return error;
1085 /* Last chance to abort before we start committing fixes. */
1086 if (xchk_should_terminate(rr->sc, &error))
1087 return error;
1089 xagb_bitmap_init(&freesp_blocks);
1092 * Iteratively reserve space for the new rmapbt and recompute the
1093 * number of blocks needed to store the previously observed rmapbt
1094 * records and the ones we'll create for the free space metadata.
1095 * Finish when we don't need more blocks.
1097 do {
1098 error = xrep_rmap_try_reserve(rr, rmap_cur, &freesp_blocks,
1099 &blocks_reserved, &done);
1100 if (error)
1101 goto out_bitmap;
1102 } while (!done);
1104 /* Emit rmaps for everything in the free space bitmap. */
1105 xrep_ag_btcur_init(rr->sc, &rr->sc->sa);
1106 error = xrep_rmap_stash_bitmap(rr, &freesp_blocks, &XFS_RMAP_OINFO_AG);
1107 xchk_ag_btcur_free(&rr->sc->sa);
1109 out_bitmap:
1110 xagb_bitmap_destroy(&freesp_blocks);
1111 return error;
1114 /* Section (III): Building the new rmap btree. */
1116 /* Update the AGF counters. */
1117 STATIC int
1118 xrep_rmap_reset_counters(
1119 struct xrep_rmap *rr)
1121 struct xfs_scrub *sc = rr->sc;
1122 struct xfs_perag *pag = sc->sa.pag;
1123 struct xfs_agf *agf = sc->sa.agf_bp->b_addr;
1124 xfs_agblock_t rmap_btblocks;
1127 * The AGF header contains extra information related to the reverse
1128 * mapping btree, so we must update those fields here.
1130 rmap_btblocks = rr->new_btree.afake.af_blocks - 1;
1131 agf->agf_btreeblks = cpu_to_be32(rr->freesp_btblocks + rmap_btblocks);
1132 xfs_alloc_log_agf(sc->tp, sc->sa.agf_bp, XFS_AGF_BTREEBLKS);
1135 * After we commit the new btree to disk, it is possible that the
1136 * process to reap the old btree blocks will race with the AIL trying
1137 * to checkpoint the old btree blocks into the filesystem. If the new
1138 * tree is shorter than the old one, the rmapbt write verifier will
1139 * fail and the AIL will shut down the filesystem.
1141 * To avoid this, save the old incore btree height values as the alt
1142 * height values before re-initializing the perag info from the updated
1143 * AGF to capture all the new values.
1145 pag->pagf_repair_rmap_level = pag->pagf_rmap_level;
1147 /* Reinitialize with the values we just logged. */
1148 return xrep_reinit_pagf(sc);
1151 /* Retrieve rmapbt data for bulk load. */
1152 STATIC int
1153 xrep_rmap_get_records(
1154 struct xfs_btree_cur *cur,
1155 unsigned int idx,
1156 struct xfs_btree_block *block,
1157 unsigned int nr_wanted,
1158 void *priv)
1160 struct xrep_rmap *rr = priv;
1161 union xfs_btree_rec *block_rec;
1162 unsigned int loaded;
1163 int error;
1165 for (loaded = 0; loaded < nr_wanted; loaded++, idx++) {
1166 int stat = 0;
1168 error = xfs_btree_increment(rr->mcur, 0, &stat);
1169 if (error)
1170 return error;
1171 if (!stat)
1172 return -EFSCORRUPTED;
1174 error = xfs_rmap_get_rec(rr->mcur, &cur->bc_rec.r, &stat);
1175 if (error)
1176 return error;
1177 if (!stat)
1178 return -EFSCORRUPTED;
1180 block_rec = xfs_btree_rec_addr(cur, idx, block);
1181 cur->bc_ops->init_rec_from_cur(cur, block_rec);
1184 return loaded;
1187 /* Feed one of the new btree blocks to the bulk loader. */
1188 STATIC int
1189 xrep_rmap_claim_block(
1190 struct xfs_btree_cur *cur,
1191 union xfs_btree_ptr *ptr,
1192 void *priv)
1194 struct xrep_rmap *rr = priv;
1196 return xrep_newbt_claim_block(cur, &rr->new_btree, ptr);
1199 /* Custom allocation function for new rmap btrees. */
1200 STATIC int
1201 xrep_rmap_alloc_vextent(
1202 struct xfs_scrub *sc,
1203 struct xfs_alloc_arg *args,
1204 xfs_fsblock_t alloc_hint)
1206 int error;
1209 * We don't want an rmap update on the allocation, since we iteratively
1210 * compute the OWN_AG records /after/ allocating blocks for the records
1211 * that we already know we need to store. Therefore, fix the freelist
1212 * with the NORMAP flag set so that we don't also try to create an rmap
1213 * for new AGFL blocks.
1215 error = xrep_fix_freelist(sc, XFS_ALLOC_FLAG_NORMAP);
1216 if (error)
1217 return error;
1220 * If xrep_fix_freelist fixed the freelist by moving blocks from the
1221 * free space btrees or by removing blocks from the AGFL and queueing
1222 * an EFI to free the block, the transaction will be dirty. This
1223 * second case is of interest to us.
1225 * Later on, we will need to compare gaps in the new recordset against
1226 * the block usage of all OWN_AG owners in order to free the old
1227 * btree's blocks, which means that we can't have EFIs for former AGFL
1228 * blocks attached to the repair transaction when we commit the new
1229 * btree.
1231 * xrep_newbt_alloc_blocks guarantees this for us by calling
1232 * xrep_defer_finish to commit anything that fix_freelist may have
1233 * added to the transaction.
1235 return xfs_alloc_vextent_near_bno(args, alloc_hint);
1239 /* Count the records in this btree. */
1240 STATIC int
1241 xrep_rmap_count_records(
1242 struct xfs_btree_cur *cur,
1243 unsigned long long *nr)
1245 int running = 1;
1246 int error;
1248 *nr = 0;
1250 error = xfs_btree_goto_left_edge(cur);
1251 if (error)
1252 return error;
1254 while (running && !(error = xfs_btree_increment(cur, 0, &running))) {
1255 if (running)
1256 (*nr)++;
1259 return error;
1262 * Use the collected rmap information to stage a new rmap btree. If this is
1263 * successful we'll return with the new btree root information logged to the
1264 * repair transaction but not yet committed. This implements section (III)
1265 * above.
1267 STATIC int
1268 xrep_rmap_build_new_tree(
1269 struct xrep_rmap *rr)
1271 struct xfs_scrub *sc = rr->sc;
1272 struct xfs_perag *pag = sc->sa.pag;
1273 struct xfs_agf *agf = sc->sa.agf_bp->b_addr;
1274 struct xfs_btree_cur *rmap_cur;
1275 xfs_fsblock_t fsbno;
1276 int error;
1279 * Preserve the old rmapbt block count so that we can adjust the
1280 * per-AG rmapbt reservation after we commit the new btree root and
1281 * want to dispose of the old btree blocks.
1283 rr->old_rmapbt_fsbcount = be32_to_cpu(agf->agf_rmap_blocks);
1286 * Prepare to construct the new btree by reserving disk space for the
1287 * new btree and setting up all the accounting information we'll need
1288 * to root the new btree while it's under construction and before we
1289 * attach it to the AG header. The new blocks are accounted to the
1290 * rmapbt per-AG reservation, which we will adjust further after
1291 * committing the new btree.
1293 fsbno = XFS_AGB_TO_FSB(sc->mp, pag->pag_agno, XFS_RMAP_BLOCK(sc->mp));
1294 xrep_newbt_init_ag(&rr->new_btree, sc, &XFS_RMAP_OINFO_SKIP_UPDATE,
1295 fsbno, XFS_AG_RESV_RMAPBT);
1296 rr->new_btree.bload.get_records = xrep_rmap_get_records;
1297 rr->new_btree.bload.claim_block = xrep_rmap_claim_block;
1298 rr->new_btree.alloc_vextent = xrep_rmap_alloc_vextent;
1299 rmap_cur = xfs_rmapbt_init_cursor(sc->mp, NULL, NULL, pag);
1300 xfs_btree_stage_afakeroot(rmap_cur, &rr->new_btree.afake);
1303 * Initialize @rr->new_btree, reserve space for the new rmapbt,
1304 * and compute OWN_AG rmaps.
1306 error = xrep_rmap_reserve_space(rr, rmap_cur);
1307 if (error)
1308 goto err_cur;
1311 * Count the rmapbt records again, because the space reservation
1312 * for the rmapbt itself probably added more records to the btree.
1314 rr->mcur = xfs_rmapbt_mem_cursor(rr->sc->sa.pag, NULL,
1315 &rr->rmap_btree);
1317 error = xrep_rmap_count_records(rr->mcur, &rr->nr_records);
1318 if (error)
1319 goto err_mcur;
1322 * Due to btree slack factors, it's possible for a new btree to be one
1323 * level taller than the old btree. Update the incore btree height so
1324 * that we don't trip the verifiers when writing the new btree blocks
1325 * to disk.
1327 pag->pagf_repair_rmap_level = rr->new_btree.bload.btree_height;
1330 * Move the cursor to the left edge of the tree so that the first
1331 * increment in ->get_records positions us at the first record.
1333 error = xfs_btree_goto_left_edge(rr->mcur);
1334 if (error)
1335 goto err_level;
1337 /* Add all observed rmap records. */
1338 error = xfs_btree_bload(rmap_cur, &rr->new_btree.bload, rr);
1339 if (error)
1340 goto err_level;
1343 * Install the new btree in the AG header. After this point the old
1344 * btree is no longer accessible and the new tree is live.
1346 xfs_rmapbt_commit_staged_btree(rmap_cur, sc->tp, sc->sa.agf_bp);
1347 xfs_btree_del_cursor(rmap_cur, 0);
1348 xfs_btree_del_cursor(rr->mcur, 0);
1349 rr->mcur = NULL;
1352 * Now that we've written the new btree to disk, we don't need to keep
1353 * updating the in-memory btree. Abort the scan to stop live updates.
1355 xchk_iscan_abort(&rr->iscan);
1358 * The newly committed rmap recordset includes mappings for the blocks
1359 * that we reserved to build the new btree. If there is excess space
1360 * reservation to be freed, the corresponding rmap records must also be
1361 * removed.
1363 rr->new_btree.oinfo = XFS_RMAP_OINFO_AG;
1365 /* Reset the AGF counters now that we've changed the btree shape. */
1366 error = xrep_rmap_reset_counters(rr);
1367 if (error)
1368 goto err_newbt;
1370 /* Dispose of any unused blocks and the accounting information. */
1371 error = xrep_newbt_commit(&rr->new_btree);
1372 if (error)
1373 return error;
1375 return xrep_roll_ag_trans(sc);
1377 err_level:
1378 pag->pagf_repair_rmap_level = 0;
1379 err_mcur:
1380 xfs_btree_del_cursor(rr->mcur, error);
1381 err_cur:
1382 xfs_btree_del_cursor(rmap_cur, error);
1383 err_newbt:
1384 xrep_newbt_cancel(&rr->new_btree);
1385 return error;
1388 /* Section (IV): Reaping the old btree. */
1390 struct xrep_rmap_find_gaps {
1391 struct xagb_bitmap rmap_gaps;
1392 xfs_agblock_t next_agbno;
1395 /* Subtract each free extent in the bnobt from the rmap gaps. */
1396 STATIC int
1397 xrep_rmap_find_freesp(
1398 struct xfs_btree_cur *cur,
1399 const struct xfs_alloc_rec_incore *rec,
1400 void *priv)
1402 struct xrep_rmap_find_gaps *rfg = priv;
1404 return xagb_bitmap_clear(&rfg->rmap_gaps, rec->ar_startblock,
1405 rec->ar_blockcount);
1408 /* Record the free space we find, as part of cleaning out the btree. */
1409 STATIC int
1410 xrep_rmap_find_gaps(
1411 struct xfs_btree_cur *cur,
1412 const struct xfs_rmap_irec *rec,
1413 void *priv)
1415 struct xrep_rmap_find_gaps *rfg = priv;
1416 int error;
1418 if (rec->rm_startblock > rfg->next_agbno) {
1419 error = xagb_bitmap_set(&rfg->rmap_gaps, rfg->next_agbno,
1420 rec->rm_startblock - rfg->next_agbno);
1421 if (error)
1422 return error;
1425 rfg->next_agbno = max_t(xfs_agblock_t, rfg->next_agbno,
1426 rec->rm_startblock + rec->rm_blockcount);
1427 return 0;
1431 * Reap the old rmapbt blocks. Now that the rmapbt is fully rebuilt, we make
1432 * a list of gaps in the rmap records and a list of the extents mentioned in
1433 * the bnobt. Any block that's in the new rmapbt gap list but not mentioned
1434 * in the bnobt is a block from the old rmapbt and can be removed.
1436 STATIC int
1437 xrep_rmap_remove_old_tree(
1438 struct xrep_rmap *rr)
1440 struct xrep_rmap_find_gaps rfg = {
1441 .next_agbno = 0,
1443 struct xfs_scrub *sc = rr->sc;
1444 struct xfs_agf *agf = sc->sa.agf_bp->b_addr;
1445 struct xfs_perag *pag = sc->sa.pag;
1446 struct xfs_btree_cur *mcur;
1447 xfs_agblock_t agend;
1448 int error;
1450 xagb_bitmap_init(&rfg.rmap_gaps);
1452 /* Compute free space from the new rmapbt. */
1453 mcur = xfs_rmapbt_mem_cursor(rr->sc->sa.pag, NULL, &rr->rmap_btree);
1455 error = xfs_rmap_query_all(mcur, xrep_rmap_find_gaps, &rfg);
1456 xfs_btree_del_cursor(mcur, error);
1457 if (error)
1458 goto out_bitmap;
1460 /* Insert a record for space between the last rmap and EOAG. */
1461 agend = be32_to_cpu(agf->agf_length);
1462 if (rfg.next_agbno < agend) {
1463 error = xagb_bitmap_set(&rfg.rmap_gaps, rfg.next_agbno,
1464 agend - rfg.next_agbno);
1465 if (error)
1466 goto out_bitmap;
1469 /* Compute free space from the existing bnobt. */
1470 sc->sa.bno_cur = xfs_bnobt_init_cursor(sc->mp, sc->tp, sc->sa.agf_bp,
1471 sc->sa.pag);
1472 error = xfs_alloc_query_all(sc->sa.bno_cur, xrep_rmap_find_freesp,
1473 &rfg);
1474 xfs_btree_del_cursor(sc->sa.bno_cur, error);
1475 sc->sa.bno_cur = NULL;
1476 if (error)
1477 goto out_bitmap;
1480 * Free the "free" blocks that the new rmapbt knows about but the bnobt
1481 * doesn't--these are the old rmapbt blocks. Credit the old rmapbt
1482 * block usage count back to the per-AG rmapbt reservation (and not
1483 * fdblocks, since the rmap btree lives in free space) to keep the
1484 * reservation and free space accounting correct.
1486 error = xrep_reap_agblocks(sc, &rfg.rmap_gaps,
1487 &XFS_RMAP_OINFO_ANY_OWNER, XFS_AG_RESV_RMAPBT);
1488 if (error)
1489 goto out_bitmap;
1492 * Now that we've zapped all the old rmapbt blocks we can turn off
1493 * the alternate height mechanism and reset the per-AG space
1494 * reservation.
1496 pag->pagf_repair_rmap_level = 0;
1497 sc->flags |= XREP_RESET_PERAG_RESV;
1498 out_bitmap:
1499 xagb_bitmap_destroy(&rfg.rmap_gaps);
1500 return error;
1503 static inline bool
1504 xrep_rmapbt_want_live_update(
1505 struct xchk_iscan *iscan,
1506 const struct xfs_owner_info *oi)
1508 if (xchk_iscan_aborted(iscan))
1509 return false;
1512 * Before unlocking the AG header to perform the inode scan, we
1513 * recorded reverse mappings for all AG metadata except for the OWN_AG
1514 * metadata. IOWs, the in-memory btree knows about the AG headers, the
1515 * two inode btrees, the CoW staging extents, and the refcount btrees.
1516 * For these types of metadata, we need to record the live updates in
1517 * the in-memory rmap btree.
1519 * However, we do not scan the free space btrees or the AGFL until we
1520 * have re-locked the AGF and are ready to reserve space for the new
1521 * rmap btree, so we do not want live updates for OWN_AG metadata.
1523 if (XFS_RMAP_NON_INODE_OWNER(oi->oi_owner))
1524 return oi->oi_owner != XFS_RMAP_OWN_AG;
1526 /* Ignore updates to files that the scanner hasn't visited yet. */
1527 return xchk_iscan_want_live_update(iscan, oi->oi_owner);
1531 * Apply a rmapbt update from the regular filesystem into our shadow btree.
1532 * We're running from the thread that owns the AGF buffer and is generating
1533 * the update, so we must be careful about which parts of the struct xrep_rmap
1534 * that we change.
1536 static int
1537 xrep_rmapbt_live_update(
1538 struct notifier_block *nb,
1539 unsigned long action,
1540 void *data)
1542 struct xfs_rmap_update_params *p = data;
1543 struct xrep_rmap *rr;
1544 struct xfs_mount *mp;
1545 struct xfs_btree_cur *mcur;
1546 struct xfs_trans *tp;
1547 void *txcookie;
1548 int error;
1550 rr = container_of(nb, struct xrep_rmap, rhook.rmap_hook.nb);
1551 mp = rr->sc->mp;
1553 if (!xrep_rmapbt_want_live_update(&rr->iscan, &p->oinfo))
1554 goto out_unlock;
1556 trace_xrep_rmap_live_update(mp, rr->sc->sa.pag->pag_agno, action, p);
1558 error = xrep_trans_alloc_hook_dummy(mp, &txcookie, &tp);
1559 if (error)
1560 goto out_abort;
1562 mutex_lock(&rr->lock);
1563 mcur = xfs_rmapbt_mem_cursor(rr->sc->sa.pag, tp, &rr->rmap_btree);
1564 error = __xfs_rmap_finish_intent(mcur, action, p->startblock,
1565 p->blockcount, &p->oinfo, p->unwritten);
1566 xfs_btree_del_cursor(mcur, error);
1567 if (error)
1568 goto out_cancel;
1570 error = xfbtree_trans_commit(&rr->rmap_btree, tp);
1571 if (error)
1572 goto out_cancel;
1574 xrep_trans_cancel_hook_dummy(&txcookie, tp);
1575 mutex_unlock(&rr->lock);
1576 return NOTIFY_DONE;
1578 out_cancel:
1579 xfbtree_trans_cancel(&rr->rmap_btree, tp);
1580 xrep_trans_cancel_hook_dummy(&txcookie, tp);
1581 out_abort:
1582 mutex_unlock(&rr->lock);
1583 xchk_iscan_abort(&rr->iscan);
1584 out_unlock:
1585 return NOTIFY_DONE;
1588 /* Set up the filesystem scan components. */
1589 STATIC int
1590 xrep_rmap_setup_scan(
1591 struct xrep_rmap *rr)
1593 struct xfs_scrub *sc = rr->sc;
1594 int error;
1596 mutex_init(&rr->lock);
1598 /* Set up in-memory rmap btree */
1599 error = xfs_rmapbt_mem_init(sc->mp, &rr->rmap_btree, sc->xmbtp,
1600 sc->sa.pag->pag_agno);
1601 if (error)
1602 goto out_mutex;
1604 /* Retry iget every tenth of a second for up to 30 seconds. */
1605 xchk_iscan_start(sc, 30000, 100, &rr->iscan);
1608 * Hook into live rmap operations so that we can update our in-memory
1609 * btree to reflect live changes on the filesystem. Since we drop the
1610 * AGF buffer to scan all the inodes, we need this piece to avoid
1611 * installing a stale btree.
1613 ASSERT(sc->flags & XCHK_FSGATES_RMAP);
1614 xfs_rmap_hook_setup(&rr->rhook, xrep_rmapbt_live_update);
1615 error = xfs_rmap_hook_add(sc->sa.pag, &rr->rhook);
1616 if (error)
1617 goto out_iscan;
1618 return 0;
1620 out_iscan:
1621 xchk_iscan_teardown(&rr->iscan);
1622 xfbtree_destroy(&rr->rmap_btree);
1623 out_mutex:
1624 mutex_destroy(&rr->lock);
1625 return error;
1628 /* Tear down scan components. */
1629 STATIC void
1630 xrep_rmap_teardown(
1631 struct xrep_rmap *rr)
1633 struct xfs_scrub *sc = rr->sc;
1635 xchk_iscan_abort(&rr->iscan);
1636 xfs_rmap_hook_del(sc->sa.pag, &rr->rhook);
1637 xchk_iscan_teardown(&rr->iscan);
1638 xfbtree_destroy(&rr->rmap_btree);
1639 mutex_destroy(&rr->lock);
1642 /* Repair the rmap btree for some AG. */
1644 xrep_rmapbt(
1645 struct xfs_scrub *sc)
1647 struct xrep_rmap *rr = sc->buf;
1648 int error;
1650 error = xrep_rmap_setup_scan(rr);
1651 if (error)
1652 return error;
1655 * Collect rmaps for everything in this AG that isn't space metadata.
1656 * These rmaps won't change even as we try to allocate blocks.
1658 error = xrep_rmap_find_rmaps(rr);
1659 if (error)
1660 goto out_records;
1662 /* Rebuild the rmap information. */
1663 error = xrep_rmap_build_new_tree(rr);
1664 if (error)
1665 goto out_records;
1667 /* Kill the old tree. */
1668 error = xrep_rmap_remove_old_tree(rr);
1669 if (error)
1670 goto out_records;
1672 out_records:
1673 xrep_rmap_teardown(rr);
1674 return error;