1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
14 #include "xfs_mount.h"
15 #include "xfs_inode.h"
17 #include "xfs_ialloc.h"
18 #include "xfs_alloc.h"
19 #include "xfs_rtalloc.h"
21 #include "xfs_trans.h"
22 #include "xfs_trans_priv.h"
24 #include "xfs_log_priv.h"
25 #include "xfs_error.h"
26 #include "xfs_quota.h"
27 #include "xfs_fsops.h"
28 #include "xfs_icache.h"
29 #include "xfs_sysfs.h"
30 #include "xfs_rmap_btree.h"
31 #include "xfs_refcount_btree.h"
32 #include "xfs_reflink.h"
33 #include "xfs_extent_busy.h"
34 #include "xfs_health.h"
35 #include "xfs_trace.h"
37 #include "xfs_rtbitmap.h"
38 #include "scrub/stats.h"
40 static DEFINE_MUTEX(xfs_uuid_table_mutex
);
41 static int xfs_uuid_table_size
;
42 static uuid_t
*xfs_uuid_table
;
45 xfs_uuid_table_free(void)
47 if (xfs_uuid_table_size
== 0)
49 kfree(xfs_uuid_table
);
50 xfs_uuid_table
= NULL
;
51 xfs_uuid_table_size
= 0;
55 * See if the UUID is unique among mounted XFS filesystems.
56 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
62 uuid_t
*uuid
= &mp
->m_sb
.sb_uuid
;
65 /* Publish UUID in struct super_block */
66 super_set_uuid(mp
->m_super
, uuid
->b
, sizeof(*uuid
));
68 if (xfs_has_nouuid(mp
))
71 if (uuid_is_null(uuid
)) {
72 xfs_warn(mp
, "Filesystem has null UUID - can't mount");
76 mutex_lock(&xfs_uuid_table_mutex
);
77 for (i
= 0, hole
= -1; i
< xfs_uuid_table_size
; i
++) {
78 if (uuid_is_null(&xfs_uuid_table
[i
])) {
82 if (uuid_equal(uuid
, &xfs_uuid_table
[i
]))
87 xfs_uuid_table
= krealloc(xfs_uuid_table
,
88 (xfs_uuid_table_size
+ 1) * sizeof(*xfs_uuid_table
),
89 GFP_KERNEL
| __GFP_NOFAIL
);
90 hole
= xfs_uuid_table_size
++;
92 xfs_uuid_table
[hole
] = *uuid
;
93 mutex_unlock(&xfs_uuid_table_mutex
);
98 mutex_unlock(&xfs_uuid_table_mutex
);
99 xfs_warn(mp
, "Filesystem has duplicate UUID %pU - can't mount", uuid
);
105 struct xfs_mount
*mp
)
107 uuid_t
*uuid
= &mp
->m_sb
.sb_uuid
;
110 if (xfs_has_nouuid(mp
))
113 mutex_lock(&xfs_uuid_table_mutex
);
114 for (i
= 0; i
< xfs_uuid_table_size
; i
++) {
115 if (uuid_is_null(&xfs_uuid_table
[i
]))
117 if (!uuid_equal(uuid
, &xfs_uuid_table
[i
]))
119 memset(&xfs_uuid_table
[i
], 0, sizeof(uuid_t
));
122 ASSERT(i
< xfs_uuid_table_size
);
123 mutex_unlock(&xfs_uuid_table_mutex
);
127 * Check size of device based on the (data/realtime) block count.
128 * Note: this check is used by the growfs code as well as mount.
131 xfs_sb_validate_fsb_count(
137 ASSERT(sbp
->sb_blocklog
>= BBSHIFT
);
139 if (check_shl_overflow(nblocks
, sbp
->sb_blocklog
, &max_bytes
))
142 /* Limited by ULONG_MAX of page cache index */
143 if (max_bytes
>> PAGE_SHIFT
> ULONG_MAX
)
151 * Does the initial read of the superblock.
155 struct xfs_mount
*mp
,
158 unsigned int sector_size
;
160 struct xfs_sb
*sbp
= &mp
->m_sb
;
162 int loud
= !(flags
& XFS_MFSI_QUIET
);
163 const struct xfs_buf_ops
*buf_ops
;
165 ASSERT(mp
->m_sb_bp
== NULL
);
166 ASSERT(mp
->m_ddev_targp
!= NULL
);
169 * For the initial read, we must guess at the sector
170 * size based on the block device. It's enough to
171 * get the sb_sectsize out of the superblock and
172 * then reread with the proper length.
173 * We don't verify it yet, because it may not be complete.
175 sector_size
= xfs_getsize_buftarg(mp
->m_ddev_targp
);
179 * Allocate a (locked) buffer to hold the superblock. This will be kept
180 * around at all times to optimize access to the superblock. Therefore,
181 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
185 error
= xfs_buf_read_uncached(mp
->m_ddev_targp
, XFS_SB_DADDR
,
186 BTOBB(sector_size
), XBF_NO_IOACCT
, &bp
,
190 xfs_warn(mp
, "SB validate failed with error %d.", error
);
191 /* bad CRC means corrupted metadata */
192 if (error
== -EFSBADCRC
)
193 error
= -EFSCORRUPTED
;
198 * Initialize the mount structure from the superblock.
200 xfs_sb_from_disk(sbp
, bp
->b_addr
);
203 * If we haven't validated the superblock, do so now before we try
204 * to check the sector size and reread the superblock appropriately.
206 if (sbp
->sb_magicnum
!= XFS_SB_MAGIC
) {
208 xfs_warn(mp
, "Invalid superblock magic number");
214 * We must be able to do sector-sized and sector-aligned IO.
216 if (sector_size
> sbp
->sb_sectsize
) {
218 xfs_warn(mp
, "device supports %u byte sectors (not %u)",
219 sector_size
, sbp
->sb_sectsize
);
224 if (buf_ops
== NULL
) {
226 * Re-read the superblock so the buffer is correctly sized,
227 * and properly verified.
230 sector_size
= sbp
->sb_sectsize
;
231 buf_ops
= loud
? &xfs_sb_buf_ops
: &xfs_sb_quiet_buf_ops
;
235 mp
->m_features
|= xfs_sb_version_to_features(sbp
);
236 xfs_reinit_percpu_counters(mp
);
239 * If logged xattrs are enabled after log recovery finishes, then set
240 * the opstate so that log recovery will work properly.
242 if (xfs_sb_version_haslogxattrs(&mp
->m_sb
))
243 xfs_set_using_logged_xattrs(mp
);
245 /* no need to be quiet anymore, so reset the buf ops */
246 bp
->b_ops
= &xfs_sb_buf_ops
;
258 * If the sunit/swidth change would move the precomputed root inode value, we
259 * must reject the ondisk change because repair will stumble over that.
260 * However, we allow the mount to proceed because we never rejected this
261 * combination before. Returns true to update the sb, false otherwise.
264 xfs_check_new_dalign(
265 struct xfs_mount
*mp
,
269 struct xfs_sb
*sbp
= &mp
->m_sb
;
272 calc_ino
= xfs_ialloc_calc_rootino(mp
, new_dalign
);
273 trace_xfs_check_new_dalign(mp
, new_dalign
, calc_ino
);
275 if (sbp
->sb_rootino
== calc_ino
) {
281 "Cannot change stripe alignment; would require moving root inode.");
284 * XXX: Next time we add a new incompat feature, this should start
285 * returning -EINVAL to fail the mount. Until then, spit out a warning
286 * that we're ignoring the administrator's instructions.
288 xfs_warn(mp
, "Skipping superblock stripe alignment update.");
294 * If we were provided with new sunit/swidth values as mount options, make sure
295 * that they pass basic alignment and superblock feature checks, and convert
296 * them into the same units (FSB) that everything else expects. This step
297 * /must/ be done before computing the inode geometry.
300 xfs_validate_new_dalign(
301 struct xfs_mount
*mp
)
303 if (mp
->m_dalign
== 0)
307 * If stripe unit and stripe width are not multiples
308 * of the fs blocksize turn off alignment.
310 if ((BBTOB(mp
->m_dalign
) & mp
->m_blockmask
) ||
311 (BBTOB(mp
->m_swidth
) & mp
->m_blockmask
)) {
313 "alignment check failed: sunit/swidth vs. blocksize(%d)",
314 mp
->m_sb
.sb_blocksize
);
319 * Convert the stripe unit and width to FSBs.
321 mp
->m_dalign
= XFS_BB_TO_FSBT(mp
, mp
->m_dalign
);
322 if (mp
->m_dalign
&& (mp
->m_sb
.sb_agblocks
% mp
->m_dalign
)) {
324 "alignment check failed: sunit/swidth vs. agsize(%d)",
325 mp
->m_sb
.sb_agblocks
);
331 "alignment check failed: sunit(%d) less than bsize(%d)",
332 mp
->m_dalign
, mp
->m_sb
.sb_blocksize
);
336 mp
->m_swidth
= XFS_BB_TO_FSBT(mp
, mp
->m_swidth
);
338 if (!xfs_has_dalign(mp
)) {
340 "cannot change alignment: superblock does not support data alignment");
347 /* Update alignment values based on mount options and sb values. */
349 xfs_update_alignment(
350 struct xfs_mount
*mp
)
352 struct xfs_sb
*sbp
= &mp
->m_sb
;
358 if (sbp
->sb_unit
== mp
->m_dalign
&&
359 sbp
->sb_width
== mp
->m_swidth
)
362 error
= xfs_check_new_dalign(mp
, mp
->m_dalign
, &update_sb
);
363 if (error
|| !update_sb
)
366 sbp
->sb_unit
= mp
->m_dalign
;
367 sbp
->sb_width
= mp
->m_swidth
;
368 mp
->m_update_sb
= true;
369 } else if (!xfs_has_noalign(mp
) && xfs_has_dalign(mp
)) {
370 mp
->m_dalign
= sbp
->sb_unit
;
371 mp
->m_swidth
= sbp
->sb_width
;
378 * precalculate the low space thresholds for dynamic speculative preallocation.
381 xfs_set_low_space_thresholds(
382 struct xfs_mount
*mp
)
384 uint64_t dblocks
= mp
->m_sb
.sb_dblocks
;
385 uint64_t rtexts
= mp
->m_sb
.sb_rextents
;
388 do_div(dblocks
, 100);
391 for (i
= 0; i
< XFS_LOWSP_MAX
; i
++) {
392 mp
->m_low_space
[i
] = dblocks
* (i
+ 1);
393 mp
->m_low_rtexts
[i
] = rtexts
* (i
+ 1);
398 * Check that the data (and log if separate) is an ok size.
402 struct xfs_mount
*mp
)
408 d
= (xfs_daddr_t
)XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
);
409 if (XFS_BB_TO_FSB(mp
, d
) != mp
->m_sb
.sb_dblocks
) {
410 xfs_warn(mp
, "filesystem size mismatch detected");
413 error
= xfs_buf_read_uncached(mp
->m_ddev_targp
,
414 d
- XFS_FSS_TO_BB(mp
, 1),
415 XFS_FSS_TO_BB(mp
, 1), 0, &bp
, NULL
);
417 xfs_warn(mp
, "last sector read failed");
422 if (mp
->m_logdev_targp
== mp
->m_ddev_targp
)
425 d
= (xfs_daddr_t
)XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_logblocks
);
426 if (XFS_BB_TO_FSB(mp
, d
) != mp
->m_sb
.sb_logblocks
) {
427 xfs_warn(mp
, "log size mismatch detected");
430 error
= xfs_buf_read_uncached(mp
->m_logdev_targp
,
431 d
- XFS_FSB_TO_BB(mp
, 1),
432 XFS_FSB_TO_BB(mp
, 1), 0, &bp
, NULL
);
434 xfs_warn(mp
, "log device read failed");
442 * Clear the quotaflags in memory and in the superblock.
445 xfs_mount_reset_sbqflags(
446 struct xfs_mount
*mp
)
450 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
451 if (mp
->m_sb
.sb_qflags
== 0)
453 spin_lock(&mp
->m_sb_lock
);
454 mp
->m_sb
.sb_qflags
= 0;
455 spin_unlock(&mp
->m_sb_lock
);
457 if (!xfs_fs_writable(mp
, SB_FREEZE_WRITE
))
460 return xfs_sync_sb(mp
, false);
464 xfs_default_resblks(xfs_mount_t
*mp
)
469 * We default to 5% or 8192 fsbs of space reserved, whichever is
470 * smaller. This is intended to cover concurrent allocation
471 * transactions when we initially hit enospc. These each require a 4
472 * block reservation. Hence by default we cover roughly 2000 concurrent
473 * allocation reservations.
475 resblks
= mp
->m_sb
.sb_dblocks
;
477 resblks
= min_t(uint64_t, resblks
, 8192);
481 /* Ensure the summary counts are correct. */
483 xfs_check_summary_counts(
484 struct xfs_mount
*mp
)
489 * The AG0 superblock verifier rejects in-progress filesystems,
490 * so we should never see the flag set this far into mounting.
492 if (mp
->m_sb
.sb_inprogress
) {
493 xfs_err(mp
, "sb_inprogress set after log recovery??");
495 return -EFSCORRUPTED
;
499 * Now the log is mounted, we know if it was an unclean shutdown or
500 * not. If it was, with the first phase of recovery has completed, we
501 * have consistent AG blocks on disk. We have not recovered EFIs yet,
502 * but they are recovered transactionally in the second recovery phase
505 * If the log was clean when we mounted, we can check the summary
506 * counters. If any of them are obviously incorrect, we can recompute
507 * them from the AGF headers in the next step.
509 if (xfs_is_clean(mp
) &&
510 (mp
->m_sb
.sb_fdblocks
> mp
->m_sb
.sb_dblocks
||
511 !xfs_verify_icount(mp
, mp
->m_sb
.sb_icount
) ||
512 mp
->m_sb
.sb_ifree
> mp
->m_sb
.sb_icount
))
513 xfs_fs_mark_sick(mp
, XFS_SICK_FS_COUNTERS
);
516 * We can safely re-initialise incore superblock counters from the
517 * per-ag data. These may not be correct if the filesystem was not
518 * cleanly unmounted, so we waited for recovery to finish before doing
521 * If the filesystem was cleanly unmounted or the previous check did
522 * not flag anything weird, then we can trust the values in the
523 * superblock to be correct and we don't need to do anything here.
524 * Otherwise, recalculate the summary counters.
526 if ((xfs_has_lazysbcount(mp
) && !xfs_is_clean(mp
)) ||
527 xfs_fs_has_sickness(mp
, XFS_SICK_FS_COUNTERS
)) {
528 error
= xfs_initialize_perag_data(mp
, mp
->m_sb
.sb_agcount
);
534 * Older kernels misused sb_frextents to reflect both incore
535 * reservations made by running transactions and the actual count of
536 * free rt extents in the ondisk metadata. Transactions committed
537 * during runtime can therefore contain a superblock update that
538 * undercounts the number of free rt extents tracked in the rt bitmap.
539 * A clean unmount record will have the correct frextents value since
540 * there can be no other transactions running at that point.
542 * If we're mounting the rt volume after recovering the log, recompute
543 * frextents from the rtbitmap file to fix the inconsistency.
545 if (xfs_has_realtime(mp
) && !xfs_is_clean(mp
)) {
546 error
= xfs_rtalloc_reinit_frextents(mp
);
556 struct xfs_mount
*mp
)
558 if (xfs_is_shutdown(mp
))
561 if (percpu_counter_sum(&mp
->m_ifree
) >
562 percpu_counter_sum(&mp
->m_icount
)) {
563 xfs_alert(mp
, "ifree/icount mismatch at unmount");
564 xfs_fs_mark_sick(mp
, XFS_SICK_FS_COUNTERS
);
569 * Flush and reclaim dirty inodes in preparation for unmount. Inodes and
570 * internal inode structures can be sitting in the CIL and AIL at this point,
571 * so we need to unpin them, write them back and/or reclaim them before unmount
572 * can proceed. In other words, callers are required to have inactivated all
575 * An inode cluster that has been freed can have its buffer still pinned in
576 * memory because the transaction is still sitting in a iclog. The stale inodes
577 * on that buffer will be pinned to the buffer until the transaction hits the
578 * disk and the callbacks run. Pushing the AIL will skip the stale inodes and
579 * may never see the pinned buffer, so nothing will push out the iclog and
582 * Hence we need to force the log to unpin everything first. However, log
583 * forces don't wait for the discards they issue to complete, so we have to
584 * explicitly wait for them to complete here as well.
586 * Then we can tell the world we are unmounting so that error handling knows
587 * that the filesystem is going away and we should error out anything that we
588 * have been retrying in the background. This will prevent never-ending
589 * retries in AIL pushing from hanging the unmount.
591 * Finally, we can push the AIL to clean all the remaining dirty objects, then
592 * reclaim the remaining inodes that are still in memory at this point in time.
595 xfs_unmount_flush_inodes(
596 struct xfs_mount
*mp
)
598 xfs_log_force(mp
, XFS_LOG_SYNC
);
599 xfs_extent_busy_wait_all(mp
);
600 flush_workqueue(xfs_discard_wq
);
602 xfs_set_unmounting(mp
);
604 xfs_ail_push_all_sync(mp
->m_ail
);
605 xfs_inodegc_stop(mp
);
606 cancel_delayed_work_sync(&mp
->m_reclaim_work
);
607 xfs_reclaim_inodes(mp
);
608 xfs_health_unmount(mp
);
612 xfs_mount_setup_inode_geom(
613 struct xfs_mount
*mp
)
615 struct xfs_ino_geometry
*igeo
= M_IGEO(mp
);
617 igeo
->attr_fork_offset
= xfs_bmap_compute_attr_offset(mp
);
618 ASSERT(igeo
->attr_fork_offset
< XFS_LITINO(mp
));
620 xfs_ialloc_setup_geometry(mp
);
623 /* Compute maximum possible height for per-AG btree types for this fs. */
625 xfs_agbtree_compute_maxlevels(
626 struct xfs_mount
*mp
)
630 levels
= max(mp
->m_alloc_maxlevels
, M_IGEO(mp
)->inobt_maxlevels
);
631 levels
= max(levels
, mp
->m_rmap_maxlevels
);
632 mp
->m_agbtree_maxlevels
= max(levels
, mp
->m_refc_maxlevels
);
636 * This function does the following on an initial mount of a file system:
637 * - reads the superblock from disk and init the mount struct
638 * - if we're a 32-bit kernel, do a size check on the superblock
639 * so we don't mount terabyte filesystems
640 * - init mount struct realtime fields
641 * - allocate inode hash table for fs
642 * - init directory manager
643 * - perform recovery and init the log manager
647 struct xfs_mount
*mp
)
649 struct xfs_sb
*sbp
= &(mp
->m_sb
);
650 struct xfs_inode
*rip
;
651 struct xfs_ino_geometry
*igeo
= M_IGEO(mp
);
656 xfs_sb_mount_common(mp
, sbp
);
659 * Check for a mismatched features2 values. Older kernels read & wrote
660 * into the wrong sb offset for sb_features2 on some platforms due to
661 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
662 * which made older superblock reading/writing routines swap it as a
665 * For backwards compatibility, we make both slots equal.
667 * If we detect a mismatched field, we OR the set bits into the existing
668 * features2 field in case it has already been modified; we don't want
669 * to lose any features. We then update the bad location with the ORed
670 * value so that older kernels will see any features2 flags. The
671 * superblock writeback code ensures the new sb_features2 is copied to
672 * sb_bad_features2 before it is logged or written to disk.
674 if (xfs_sb_has_mismatched_features2(sbp
)) {
675 xfs_warn(mp
, "correcting sb_features alignment problem");
676 sbp
->sb_features2
|= sbp
->sb_bad_features2
;
677 mp
->m_update_sb
= true;
681 /* always use v2 inodes by default now */
682 if (!(mp
->m_sb
.sb_versionnum
& XFS_SB_VERSION_NLINKBIT
)) {
683 mp
->m_sb
.sb_versionnum
|= XFS_SB_VERSION_NLINKBIT
;
684 mp
->m_features
|= XFS_FEAT_NLINK
;
685 mp
->m_update_sb
= true;
689 * If we were given new sunit/swidth options, do some basic validation
690 * checks and convert the incore dalign and swidth values to the
691 * same units (FSB) that everything else uses. This /must/ happen
692 * before computing the inode geometry.
694 error
= xfs_validate_new_dalign(mp
);
698 xfs_alloc_compute_maxlevels(mp
);
699 xfs_bmap_compute_maxlevels(mp
, XFS_DATA_FORK
);
700 xfs_bmap_compute_maxlevels(mp
, XFS_ATTR_FORK
);
701 xfs_mount_setup_inode_geom(mp
);
702 xfs_rmapbt_compute_maxlevels(mp
);
703 xfs_refcountbt_compute_maxlevels(mp
);
705 xfs_agbtree_compute_maxlevels(mp
);
708 * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks
709 * is NOT aligned turn off m_dalign since allocator alignment is within
710 * an ag, therefore ag has to be aligned at stripe boundary. Note that
711 * we must compute the free space and rmap btree geometry before doing
714 error
= xfs_update_alignment(mp
);
718 /* enable fail_at_unmount as default */
719 mp
->m_fail_unmount
= true;
721 super_set_sysfs_name_id(mp
->m_super
);
723 error
= xfs_sysfs_init(&mp
->m_kobj
, &xfs_mp_ktype
,
724 NULL
, mp
->m_super
->s_id
);
728 error
= xfs_sysfs_init(&mp
->m_stats
.xs_kobj
, &xfs_stats_ktype
,
729 &mp
->m_kobj
, "stats");
731 goto out_remove_sysfs
;
733 xchk_stats_register(mp
->m_scrub_stats
, mp
->m_debugfs
);
735 error
= xfs_error_sysfs_init(mp
);
737 goto out_remove_scrub_stats
;
739 error
= xfs_errortag_init(mp
);
741 goto out_remove_error_sysfs
;
743 error
= xfs_uuid_mount(mp
);
745 goto out_remove_errortag
;
748 * Update the preferred write size based on the information from the
749 * on-disk superblock.
751 mp
->m_allocsize_log
=
752 max_t(uint32_t, sbp
->sb_blocklog
, mp
->m_allocsize_log
);
753 mp
->m_allocsize_blocks
= 1U << (mp
->m_allocsize_log
- sbp
->sb_blocklog
);
755 /* set the low space thresholds for dynamic preallocation */
756 xfs_set_low_space_thresholds(mp
);
759 * If enabled, sparse inode chunk alignment is expected to match the
760 * cluster size. Full inode chunk alignment must match the chunk size,
761 * but that is checked on sb read verification...
763 if (xfs_has_sparseinodes(mp
) &&
764 mp
->m_sb
.sb_spino_align
!=
765 XFS_B_TO_FSBT(mp
, igeo
->inode_cluster_size_raw
)) {
767 "Sparse inode block alignment (%u) must match cluster size (%llu).",
768 mp
->m_sb
.sb_spino_align
,
769 XFS_B_TO_FSBT(mp
, igeo
->inode_cluster_size_raw
));
771 goto out_remove_uuid
;
775 * Check that the data (and log if separate) is an ok size.
777 error
= xfs_check_sizes(mp
);
779 goto out_remove_uuid
;
782 * Initialize realtime fields in the mount structure
784 error
= xfs_rtmount_init(mp
);
786 xfs_warn(mp
, "RT mount failed");
787 goto out_remove_uuid
;
791 * Copies the low order bits of the timestamp and the randomly
792 * set "sequence" number out of a UUID.
795 (get_unaligned_be16(&sbp
->sb_uuid
.b
[8]) << 16) |
796 get_unaligned_be16(&sbp
->sb_uuid
.b
[4]);
797 mp
->m_fixedfsid
[1] = get_unaligned_be32(&sbp
->sb_uuid
.b
[0]);
799 error
= xfs_da_mount(mp
);
801 xfs_warn(mp
, "Failed dir/attr init: %d", error
);
802 goto out_remove_uuid
;
806 * Initialize the precomputed transaction reservations values.
811 * Allocate and initialize the per-ag data.
813 error
= xfs_initialize_perag(mp
, sbp
->sb_agcount
, mp
->m_sb
.sb_dblocks
,
816 xfs_warn(mp
, "Failed per-ag init: %d", error
);
820 if (XFS_IS_CORRUPT(mp
, !sbp
->sb_logblocks
)) {
821 xfs_warn(mp
, "no log defined");
822 error
= -EFSCORRUPTED
;
826 error
= xfs_inodegc_register_shrinker(mp
);
831 * Log's mount-time initialization. The first part of recovery can place
832 * some items on the AIL, to be handled when recovery is finished or
835 error
= xfs_log_mount(mp
, mp
->m_logdev_targp
,
836 XFS_FSB_TO_DADDR(mp
, sbp
->sb_logstart
),
837 XFS_FSB_TO_BB(mp
, sbp
->sb_logblocks
));
839 xfs_warn(mp
, "log mount failed");
840 goto out_inodegc_shrinker
;
844 * If logged xattrs are still enabled after log recovery finishes, then
845 * they'll be available until unmount. Otherwise, turn them off.
847 if (xfs_sb_version_haslogxattrs(&mp
->m_sb
))
848 xfs_set_using_logged_xattrs(mp
);
850 xfs_clear_using_logged_xattrs(mp
);
852 /* Enable background inode inactivation workers. */
853 xfs_inodegc_start(mp
);
854 xfs_blockgc_start(mp
);
857 * Now that we've recovered any pending superblock feature bit
858 * additions, we can finish setting up the attr2 behaviour for the
859 * mount. The noattr2 option overrides the superblock flag, so only
860 * check the superblock feature flag if the mount option is not set.
862 if (xfs_has_noattr2(mp
)) {
863 mp
->m_features
&= ~XFS_FEAT_ATTR2
;
864 } else if (!xfs_has_attr2(mp
) &&
865 (mp
->m_sb
.sb_features2
& XFS_SB_VERSION2_ATTR2BIT
)) {
866 mp
->m_features
|= XFS_FEAT_ATTR2
;
870 * Get and sanity-check the root inode.
871 * Save the pointer to it in the mount structure.
873 error
= xfs_iget(mp
, NULL
, sbp
->sb_rootino
, XFS_IGET_UNTRUSTED
,
874 XFS_ILOCK_EXCL
, &rip
);
877 "Failed to read root inode 0x%llx, error %d",
878 sbp
->sb_rootino
, -error
);
879 goto out_log_dealloc
;
884 if (XFS_IS_CORRUPT(mp
, !S_ISDIR(VFS_I(rip
)->i_mode
))) {
885 xfs_warn(mp
, "corrupted root inode %llu: not a directory",
886 (unsigned long long)rip
->i_ino
);
887 xfs_iunlock(rip
, XFS_ILOCK_EXCL
);
888 error
= -EFSCORRUPTED
;
891 mp
->m_rootip
= rip
; /* save it */
893 xfs_iunlock(rip
, XFS_ILOCK_EXCL
);
896 * Initialize realtime inode pointers in the mount structure
898 error
= xfs_rtmount_inodes(mp
);
901 * Free up the root inode.
903 xfs_warn(mp
, "failed to read RT inodes");
907 /* Make sure the summary counts are ok. */
908 error
= xfs_check_summary_counts(mp
);
913 * If this is a read-only mount defer the superblock updates until
914 * the next remount into writeable mode. Otherwise we would never
915 * perform the update e.g. for the root filesystem.
917 if (mp
->m_update_sb
&& !xfs_is_readonly(mp
)) {
918 error
= xfs_sync_sb(mp
, false);
920 xfs_warn(mp
, "failed to write sb changes");
926 * Initialise the XFS quota management subsystem for this mount
928 if (XFS_IS_QUOTA_ON(mp
)) {
929 error
= xfs_qm_newmount(mp
, "amount
, "aflags
);
934 * If a file system had quotas running earlier, but decided to
935 * mount without -o uquota/pquota/gquota options, revoke the
936 * quotachecked license.
938 if (mp
->m_sb
.sb_qflags
& XFS_ALL_QUOTA_ACCT
) {
939 xfs_notice(mp
, "resetting quota flags");
940 error
= xfs_mount_reset_sbqflags(mp
);
947 * Finish recovering the file system. This part needed to be delayed
948 * until after the root and real-time bitmap inodes were consistently
949 * read in. Temporarily create per-AG space reservations for metadata
950 * btree shape changes because space freeing transactions (for inode
951 * inactivation) require the per-AG reservation in lieu of reserving
954 error
= xfs_fs_reserve_ag_blocks(mp
);
955 if (error
&& error
== -ENOSPC
)
957 "ENOSPC reserving per-AG metadata pool, log recovery may fail.");
958 error
= xfs_log_mount_finish(mp
);
959 xfs_fs_unreserve_ag_blocks(mp
);
961 xfs_warn(mp
, "log mount finish failed");
966 * Now the log is fully replayed, we can transition to full read-only
967 * mode for read-only mounts. This will sync all the metadata and clean
968 * the log so that the recovery we just performed does not have to be
969 * replayed again on the next mount.
971 * We use the same quiesce mechanism as the rw->ro remount, as they are
972 * semantically identical operations.
974 if (xfs_is_readonly(mp
) && !xfs_has_norecovery(mp
))
978 * Complete the quota initialisation, post-log-replay component.
981 ASSERT(mp
->m_qflags
== 0);
982 mp
->m_qflags
= quotaflags
;
984 xfs_qm_mount_quotas(mp
);
988 * Now we are mounted, reserve a small amount of unused space for
989 * privileged transactions. This is needed so that transaction
990 * space required for critical operations can dip into this pool
991 * when at ENOSPC. This is needed for operations like create with
992 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
993 * are not allowed to use this reserved space.
995 * This may drive us straight to ENOSPC on mount, but that implies
996 * we were already there on the last unmount. Warn if this occurs.
998 if (!xfs_is_readonly(mp
)) {
999 error
= xfs_reserve_blocks(mp
, xfs_default_resblks(mp
));
1002 "Unable to allocate reserve blocks. Continuing without reserve pool.");
1004 /* Reserve AG blocks for future btree expansion. */
1005 error
= xfs_fs_reserve_ag_blocks(mp
);
1006 if (error
&& error
!= -ENOSPC
)
1013 xfs_fs_unreserve_ag_blocks(mp
);
1014 xfs_qm_unmount_quotas(mp
);
1016 xfs_rtunmount_inodes(mp
);
1019 /* Clean out dquots that might be in memory after quotacheck. */
1023 * Inactivate all inodes that might still be in memory after a log
1024 * intent recovery failure so that reclaim can free them. Metadata
1025 * inodes and the root directory shouldn't need inactivation, but the
1026 * mount failed for some reason, so pull down all the state and flee.
1028 xfs_inodegc_flush(mp
);
1031 * Flush all inode reclamation work and flush the log.
1032 * We have to do this /after/ rtunmount and qm_unmount because those
1033 * two will have scheduled delayed reclaim for the rt/quota inodes.
1035 * This is slightly different from the unmountfs call sequence
1036 * because we could be tearing down a partially set up mount. In
1037 * particular, if log_mount_finish fails we bail out without calling
1038 * qm_unmount_quotas and therefore rely on qm_unmount to release the
1041 xfs_unmount_flush_inodes(mp
);
1043 xfs_log_mount_cancel(mp
);
1044 out_inodegc_shrinker
:
1045 shrinker_free(mp
->m_inodegc_shrinker
);
1047 if (mp
->m_logdev_targp
&& mp
->m_logdev_targp
!= mp
->m_ddev_targp
)
1048 xfs_buftarg_drain(mp
->m_logdev_targp
);
1049 xfs_buftarg_drain(mp
->m_ddev_targp
);
1055 xfs_uuid_unmount(mp
);
1056 out_remove_errortag
:
1057 xfs_errortag_del(mp
);
1058 out_remove_error_sysfs
:
1059 xfs_error_sysfs_del(mp
);
1060 out_remove_scrub_stats
:
1061 xchk_stats_unregister(mp
->m_scrub_stats
);
1062 xfs_sysfs_del(&mp
->m_stats
.xs_kobj
);
1064 xfs_sysfs_del(&mp
->m_kobj
);
1070 * This flushes out the inodes,dquots and the superblock, unmounts the
1071 * log and makes sure that incore structures are freed.
1075 struct xfs_mount
*mp
)
1080 * Perform all on-disk metadata updates required to inactivate inodes
1081 * that the VFS evicted earlier in the unmount process. Freeing inodes
1082 * and discarding CoW fork preallocations can cause shape changes to
1083 * the free inode and refcount btrees, respectively, so we must finish
1084 * this before we discard the metadata space reservations. Metadata
1085 * inodes and the root directory do not require inactivation.
1087 xfs_inodegc_flush(mp
);
1089 xfs_blockgc_stop(mp
);
1090 xfs_fs_unreserve_ag_blocks(mp
);
1091 xfs_qm_unmount_quotas(mp
);
1092 xfs_rtunmount_inodes(mp
);
1093 xfs_irele(mp
->m_rootip
);
1095 xfs_unmount_flush_inodes(mp
);
1100 * Unreserve any blocks we have so that when we unmount we don't account
1101 * the reserved free space as used. This is really only necessary for
1102 * lazy superblock counting because it trusts the incore superblock
1103 * counters to be absolutely correct on clean unmount.
1105 * We don't bother correcting this elsewhere for lazy superblock
1106 * counting because on mount of an unclean filesystem we reconstruct the
1107 * correct counter value and this is irrelevant.
1109 * For non-lazy counter filesystems, this doesn't matter at all because
1110 * we only every apply deltas to the superblock and hence the incore
1111 * value does not matter....
1113 error
= xfs_reserve_blocks(mp
, 0);
1115 xfs_warn(mp
, "Unable to free reserved block pool. "
1116 "Freespace may not be correct on next mount.");
1117 xfs_unmount_check(mp
);
1120 * Indicate that it's ok to clear log incompat bits before cleaning
1121 * the log and writing the unmount record.
1123 xfs_set_done_with_log_incompat(mp
);
1124 xfs_log_unmount(mp
);
1126 xfs_uuid_unmount(mp
);
1129 xfs_errortag_clearall(mp
);
1131 shrinker_free(mp
->m_inodegc_shrinker
);
1134 xfs_errortag_del(mp
);
1135 xfs_error_sysfs_del(mp
);
1136 xchk_stats_unregister(mp
->m_scrub_stats
);
1137 xfs_sysfs_del(&mp
->m_stats
.xs_kobj
);
1138 xfs_sysfs_del(&mp
->m_kobj
);
1142 * Determine whether modifications can proceed. The caller specifies the minimum
1143 * freeze level for which modifications should not be allowed. This allows
1144 * certain operations to proceed while the freeze sequence is in progress, if
1149 struct xfs_mount
*mp
,
1152 ASSERT(level
> SB_UNFROZEN
);
1153 if ((mp
->m_super
->s_writers
.frozen
>= level
) ||
1154 xfs_is_shutdown(mp
) || xfs_is_readonly(mp
))
1161 xfs_add_freecounter(
1162 struct xfs_mount
*mp
,
1163 struct percpu_counter
*counter
,
1166 bool has_resv_pool
= (counter
== &mp
->m_fdblocks
);
1170 * If the reserve pool is depleted, put blocks back into it first.
1171 * Most of the time the pool is full.
1173 if (!has_resv_pool
|| mp
->m_resblks
== mp
->m_resblks_avail
) {
1174 percpu_counter_add(counter
, delta
);
1178 spin_lock(&mp
->m_sb_lock
);
1179 res_used
= mp
->m_resblks
- mp
->m_resblks_avail
;
1180 if (res_used
> delta
) {
1181 mp
->m_resblks_avail
+= delta
;
1184 mp
->m_resblks_avail
= mp
->m_resblks
;
1185 percpu_counter_add(counter
, delta
);
1187 spin_unlock(&mp
->m_sb_lock
);
1191 xfs_dec_freecounter(
1192 struct xfs_mount
*mp
,
1193 struct percpu_counter
*counter
,
1198 uint64_t set_aside
= 0;
1202 ASSERT(counter
== &mp
->m_fdblocks
|| counter
== &mp
->m_frextents
);
1203 has_resv_pool
= (counter
== &mp
->m_fdblocks
);
1205 ASSERT(has_resv_pool
);
1208 * Taking blocks away, need to be more accurate the closer we
1211 * If the counter has a value of less than 2 * max batch size,
1212 * then make everything serialise as we are real close to
1215 if (__percpu_counter_compare(counter
, 2 * XFS_FDBLOCKS_BATCH
,
1216 XFS_FDBLOCKS_BATCH
) < 0)
1219 batch
= XFS_FDBLOCKS_BATCH
;
1222 * Set aside allocbt blocks because these blocks are tracked as free
1223 * space but not available for allocation. Technically this means that a
1224 * single reservation cannot consume all remaining free space, but the
1225 * ratio of allocbt blocks to usable free blocks should be rather small.
1226 * The tradeoff without this is that filesystems that maintain high
1227 * perag block reservations can over reserve physical block availability
1228 * and fail physical allocation, which leads to much more serious
1229 * problems (i.e. transaction abort, pagecache discards, etc.) than
1230 * slightly premature -ENOSPC.
1233 set_aside
= xfs_fdblocks_unavailable(mp
);
1234 percpu_counter_add_batch(counter
, -((int64_t)delta
), batch
);
1235 if (__percpu_counter_compare(counter
, set_aside
,
1236 XFS_FDBLOCKS_BATCH
) >= 0) {
1242 * lock up the sb for dipping into reserves before releasing the space
1243 * that took us to ENOSPC.
1245 spin_lock(&mp
->m_sb_lock
);
1246 percpu_counter_add(counter
, delta
);
1247 if (!has_resv_pool
|| !rsvd
)
1248 goto fdblocks_enospc
;
1250 lcounter
= (long long)mp
->m_resblks_avail
- delta
;
1251 if (lcounter
>= 0) {
1252 mp
->m_resblks_avail
= lcounter
;
1253 spin_unlock(&mp
->m_sb_lock
);
1257 "Reserve blocks depleted! Consider increasing reserve pool size.");
1260 spin_unlock(&mp
->m_sb_lock
);
1265 * Used to free the superblock along various error paths.
1269 struct xfs_mount
*mp
)
1271 struct xfs_buf
*bp
= mp
->m_sb_bp
;
1279 * If the underlying (data/log/rt) device is readonly, there are some
1280 * operations that cannot proceed.
1283 xfs_dev_is_read_only(
1284 struct xfs_mount
*mp
,
1287 if (xfs_readonly_buftarg(mp
->m_ddev_targp
) ||
1288 xfs_readonly_buftarg(mp
->m_logdev_targp
) ||
1289 (mp
->m_rtdev_targp
&& xfs_readonly_buftarg(mp
->m_rtdev_targp
))) {
1290 xfs_notice(mp
, "%s required on read-only device.", message
);
1291 xfs_notice(mp
, "write access unavailable, cannot proceed.");
1297 /* Force the summary counters to be recalculated at next mount. */
1299 xfs_force_summary_recalc(
1300 struct xfs_mount
*mp
)
1302 if (!xfs_has_lazysbcount(mp
))
1305 xfs_fs_mark_sick(mp
, XFS_SICK_FS_COUNTERS
);
1309 * Enable a log incompat feature flag in the primary superblock. The caller
1310 * cannot have any other transactions in progress.
1313 xfs_add_incompat_log_feature(
1314 struct xfs_mount
*mp
,
1317 struct xfs_dsb
*dsb
;
1320 ASSERT(hweight32(feature
) == 1);
1321 ASSERT(!(feature
& XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN
));
1324 * Force the log to disk and kick the background AIL thread to reduce
1325 * the chances that the bwrite will stall waiting for the AIL to unpin
1326 * the primary superblock buffer. This isn't a data integrity
1327 * operation, so we don't need a synchronous push.
1329 error
= xfs_log_force(mp
, XFS_LOG_SYNC
);
1332 xfs_ail_push_all(mp
->m_ail
);
1335 * Lock the primary superblock buffer to serialize all callers that
1336 * are trying to set feature bits.
1338 xfs_buf_lock(mp
->m_sb_bp
);
1339 xfs_buf_hold(mp
->m_sb_bp
);
1341 if (xfs_is_shutdown(mp
)) {
1346 if (xfs_sb_has_incompat_log_feature(&mp
->m_sb
, feature
))
1350 * Write the primary superblock to disk immediately, because we need
1351 * the log_incompat bit to be set in the primary super now to protect
1352 * the log items that we're going to commit later.
1354 dsb
= mp
->m_sb_bp
->b_addr
;
1355 xfs_sb_to_disk(dsb
, &mp
->m_sb
);
1356 dsb
->sb_features_log_incompat
|= cpu_to_be32(feature
);
1357 error
= xfs_bwrite(mp
->m_sb_bp
);
1362 * Add the feature bits to the incore superblock before we unlock the
1365 xfs_sb_add_incompat_log_features(&mp
->m_sb
, feature
);
1366 xfs_buf_relse(mp
->m_sb_bp
);
1368 /* Log the superblock to disk. */
1369 return xfs_sync_sb(mp
, false);
1371 xfs_force_shutdown(mp
, SHUTDOWN_META_IO_ERROR
);
1373 xfs_buf_relse(mp
->m_sb_bp
);
1378 * Clear all the log incompat flags from the superblock.
1380 * The caller cannot be in a transaction, must ensure that the log does not
1381 * contain any log items protected by any log incompat bit, and must ensure
1382 * that there are no other threads that depend on the state of the log incompat
1383 * feature flags in the primary super.
1385 * Returns true if the superblock is dirty.
1388 xfs_clear_incompat_log_features(
1389 struct xfs_mount
*mp
)
1393 if (!xfs_has_crc(mp
) ||
1394 !xfs_sb_has_incompat_log_feature(&mp
->m_sb
,
1395 XFS_SB_FEAT_INCOMPAT_LOG_ALL
) ||
1396 xfs_is_shutdown(mp
) ||
1397 !xfs_is_done_with_log_incompat(mp
))
1401 * Update the incore superblock. We synchronize on the primary super
1402 * buffer lock to be consistent with the add function, though at least
1403 * in theory this shouldn't be necessary.
1405 xfs_buf_lock(mp
->m_sb_bp
);
1406 xfs_buf_hold(mp
->m_sb_bp
);
1408 if (xfs_sb_has_incompat_log_feature(&mp
->m_sb
,
1409 XFS_SB_FEAT_INCOMPAT_LOG_ALL
)) {
1410 xfs_sb_remove_incompat_log_features(&mp
->m_sb
);
1414 xfs_buf_relse(mp
->m_sb_bp
);
1419 * Update the in-core delayed block counter.
1421 * We prefer to update the counter without having to take a spinlock for every
1422 * counter update (i.e. batching). Each change to delayed allocation
1423 * reservations can change can easily exceed the default percpu counter
1424 * batching, so we use a larger batch factor here.
1426 * Note that we don't currently have any callers requiring fast summation
1427 * (e.g. percpu_counter_read) so we can use a big batch value here.
1429 #define XFS_DELALLOC_BATCH (4096)
1432 struct xfs_inode
*ip
,
1436 struct xfs_mount
*mp
= ip
->i_mount
;
1438 if (XFS_IS_REALTIME_INODE(ip
)) {
1439 percpu_counter_add_batch(&mp
->m_delalloc_rtextents
,
1440 xfs_rtb_to_rtx(mp
, data_delta
),
1441 XFS_DELALLOC_BATCH
);
1446 percpu_counter_add_batch(&mp
->m_delalloc_blks
, data_delta
+ ind_delta
,
1447 XFS_DELALLOC_BATCH
);