drm/panthor: Don't declare a queue blocked if deferred operations are pending
[drm/drm-misc.git] / fs / xfs / xfs_mount.c
blob1fdd79c5bfa04efb6d4bc2baa5e5fca46d50306c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_inode.h"
16 #include "xfs_dir2.h"
17 #include "xfs_ialloc.h"
18 #include "xfs_alloc.h"
19 #include "xfs_rtalloc.h"
20 #include "xfs_bmap.h"
21 #include "xfs_trans.h"
22 #include "xfs_trans_priv.h"
23 #include "xfs_log.h"
24 #include "xfs_log_priv.h"
25 #include "xfs_error.h"
26 #include "xfs_quota.h"
27 #include "xfs_fsops.h"
28 #include "xfs_icache.h"
29 #include "xfs_sysfs.h"
30 #include "xfs_rmap_btree.h"
31 #include "xfs_refcount_btree.h"
32 #include "xfs_reflink.h"
33 #include "xfs_extent_busy.h"
34 #include "xfs_health.h"
35 #include "xfs_trace.h"
36 #include "xfs_ag.h"
37 #include "xfs_rtbitmap.h"
38 #include "scrub/stats.h"
40 static DEFINE_MUTEX(xfs_uuid_table_mutex);
41 static int xfs_uuid_table_size;
42 static uuid_t *xfs_uuid_table;
44 void
45 xfs_uuid_table_free(void)
47 if (xfs_uuid_table_size == 0)
48 return;
49 kfree(xfs_uuid_table);
50 xfs_uuid_table = NULL;
51 xfs_uuid_table_size = 0;
55 * See if the UUID is unique among mounted XFS filesystems.
56 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
58 STATIC int
59 xfs_uuid_mount(
60 struct xfs_mount *mp)
62 uuid_t *uuid = &mp->m_sb.sb_uuid;
63 int hole, i;
65 /* Publish UUID in struct super_block */
66 super_set_uuid(mp->m_super, uuid->b, sizeof(*uuid));
68 if (xfs_has_nouuid(mp))
69 return 0;
71 if (uuid_is_null(uuid)) {
72 xfs_warn(mp, "Filesystem has null UUID - can't mount");
73 return -EINVAL;
76 mutex_lock(&xfs_uuid_table_mutex);
77 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
78 if (uuid_is_null(&xfs_uuid_table[i])) {
79 hole = i;
80 continue;
82 if (uuid_equal(uuid, &xfs_uuid_table[i]))
83 goto out_duplicate;
86 if (hole < 0) {
87 xfs_uuid_table = krealloc(xfs_uuid_table,
88 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
89 GFP_KERNEL | __GFP_NOFAIL);
90 hole = xfs_uuid_table_size++;
92 xfs_uuid_table[hole] = *uuid;
93 mutex_unlock(&xfs_uuid_table_mutex);
95 return 0;
97 out_duplicate:
98 mutex_unlock(&xfs_uuid_table_mutex);
99 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
100 return -EINVAL;
103 STATIC void
104 xfs_uuid_unmount(
105 struct xfs_mount *mp)
107 uuid_t *uuid = &mp->m_sb.sb_uuid;
108 int i;
110 if (xfs_has_nouuid(mp))
111 return;
113 mutex_lock(&xfs_uuid_table_mutex);
114 for (i = 0; i < xfs_uuid_table_size; i++) {
115 if (uuid_is_null(&xfs_uuid_table[i]))
116 continue;
117 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
118 continue;
119 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
120 break;
122 ASSERT(i < xfs_uuid_table_size);
123 mutex_unlock(&xfs_uuid_table_mutex);
127 * Check size of device based on the (data/realtime) block count.
128 * Note: this check is used by the growfs code as well as mount.
131 xfs_sb_validate_fsb_count(
132 xfs_sb_t *sbp,
133 uint64_t nblocks)
135 uint64_t max_bytes;
137 ASSERT(sbp->sb_blocklog >= BBSHIFT);
139 if (check_shl_overflow(nblocks, sbp->sb_blocklog, &max_bytes))
140 return -EFBIG;
142 /* Limited by ULONG_MAX of page cache index */
143 if (max_bytes >> PAGE_SHIFT > ULONG_MAX)
144 return -EFBIG;
145 return 0;
149 * xfs_readsb
151 * Does the initial read of the superblock.
154 xfs_readsb(
155 struct xfs_mount *mp,
156 int flags)
158 unsigned int sector_size;
159 struct xfs_buf *bp;
160 struct xfs_sb *sbp = &mp->m_sb;
161 int error;
162 int loud = !(flags & XFS_MFSI_QUIET);
163 const struct xfs_buf_ops *buf_ops;
165 ASSERT(mp->m_sb_bp == NULL);
166 ASSERT(mp->m_ddev_targp != NULL);
169 * For the initial read, we must guess at the sector
170 * size based on the block device. It's enough to
171 * get the sb_sectsize out of the superblock and
172 * then reread with the proper length.
173 * We don't verify it yet, because it may not be complete.
175 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
176 buf_ops = NULL;
179 * Allocate a (locked) buffer to hold the superblock. This will be kept
180 * around at all times to optimize access to the superblock. Therefore,
181 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
182 * elevated.
184 reread:
185 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
186 BTOBB(sector_size), XBF_NO_IOACCT, &bp,
187 buf_ops);
188 if (error) {
189 if (loud)
190 xfs_warn(mp, "SB validate failed with error %d.", error);
191 /* bad CRC means corrupted metadata */
192 if (error == -EFSBADCRC)
193 error = -EFSCORRUPTED;
194 return error;
198 * Initialize the mount structure from the superblock.
200 xfs_sb_from_disk(sbp, bp->b_addr);
203 * If we haven't validated the superblock, do so now before we try
204 * to check the sector size and reread the superblock appropriately.
206 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
207 if (loud)
208 xfs_warn(mp, "Invalid superblock magic number");
209 error = -EINVAL;
210 goto release_buf;
214 * We must be able to do sector-sized and sector-aligned IO.
216 if (sector_size > sbp->sb_sectsize) {
217 if (loud)
218 xfs_warn(mp, "device supports %u byte sectors (not %u)",
219 sector_size, sbp->sb_sectsize);
220 error = -ENOSYS;
221 goto release_buf;
224 if (buf_ops == NULL) {
226 * Re-read the superblock so the buffer is correctly sized,
227 * and properly verified.
229 xfs_buf_relse(bp);
230 sector_size = sbp->sb_sectsize;
231 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
232 goto reread;
235 mp->m_features |= xfs_sb_version_to_features(sbp);
236 xfs_reinit_percpu_counters(mp);
239 * If logged xattrs are enabled after log recovery finishes, then set
240 * the opstate so that log recovery will work properly.
242 if (xfs_sb_version_haslogxattrs(&mp->m_sb))
243 xfs_set_using_logged_xattrs(mp);
245 /* no need to be quiet anymore, so reset the buf ops */
246 bp->b_ops = &xfs_sb_buf_ops;
248 mp->m_sb_bp = bp;
249 xfs_buf_unlock(bp);
250 return 0;
252 release_buf:
253 xfs_buf_relse(bp);
254 return error;
258 * If the sunit/swidth change would move the precomputed root inode value, we
259 * must reject the ondisk change because repair will stumble over that.
260 * However, we allow the mount to proceed because we never rejected this
261 * combination before. Returns true to update the sb, false otherwise.
263 static inline int
264 xfs_check_new_dalign(
265 struct xfs_mount *mp,
266 int new_dalign,
267 bool *update_sb)
269 struct xfs_sb *sbp = &mp->m_sb;
270 xfs_ino_t calc_ino;
272 calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
273 trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
275 if (sbp->sb_rootino == calc_ino) {
276 *update_sb = true;
277 return 0;
280 xfs_warn(mp,
281 "Cannot change stripe alignment; would require moving root inode.");
284 * XXX: Next time we add a new incompat feature, this should start
285 * returning -EINVAL to fail the mount. Until then, spit out a warning
286 * that we're ignoring the administrator's instructions.
288 xfs_warn(mp, "Skipping superblock stripe alignment update.");
289 *update_sb = false;
290 return 0;
294 * If we were provided with new sunit/swidth values as mount options, make sure
295 * that they pass basic alignment and superblock feature checks, and convert
296 * them into the same units (FSB) that everything else expects. This step
297 * /must/ be done before computing the inode geometry.
299 STATIC int
300 xfs_validate_new_dalign(
301 struct xfs_mount *mp)
303 if (mp->m_dalign == 0)
304 return 0;
307 * If stripe unit and stripe width are not multiples
308 * of the fs blocksize turn off alignment.
310 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
311 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
312 xfs_warn(mp,
313 "alignment check failed: sunit/swidth vs. blocksize(%d)",
314 mp->m_sb.sb_blocksize);
315 return -EINVAL;
319 * Convert the stripe unit and width to FSBs.
321 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
322 if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
323 xfs_warn(mp,
324 "alignment check failed: sunit/swidth vs. agsize(%d)",
325 mp->m_sb.sb_agblocks);
326 return -EINVAL;
329 if (!mp->m_dalign) {
330 xfs_warn(mp,
331 "alignment check failed: sunit(%d) less than bsize(%d)",
332 mp->m_dalign, mp->m_sb.sb_blocksize);
333 return -EINVAL;
336 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
338 if (!xfs_has_dalign(mp)) {
339 xfs_warn(mp,
340 "cannot change alignment: superblock does not support data alignment");
341 return -EINVAL;
344 return 0;
347 /* Update alignment values based on mount options and sb values. */
348 STATIC int
349 xfs_update_alignment(
350 struct xfs_mount *mp)
352 struct xfs_sb *sbp = &mp->m_sb;
354 if (mp->m_dalign) {
355 bool update_sb;
356 int error;
358 if (sbp->sb_unit == mp->m_dalign &&
359 sbp->sb_width == mp->m_swidth)
360 return 0;
362 error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
363 if (error || !update_sb)
364 return error;
366 sbp->sb_unit = mp->m_dalign;
367 sbp->sb_width = mp->m_swidth;
368 mp->m_update_sb = true;
369 } else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) {
370 mp->m_dalign = sbp->sb_unit;
371 mp->m_swidth = sbp->sb_width;
374 return 0;
378 * precalculate the low space thresholds for dynamic speculative preallocation.
380 void
381 xfs_set_low_space_thresholds(
382 struct xfs_mount *mp)
384 uint64_t dblocks = mp->m_sb.sb_dblocks;
385 uint64_t rtexts = mp->m_sb.sb_rextents;
386 int i;
388 do_div(dblocks, 100);
389 do_div(rtexts, 100);
391 for (i = 0; i < XFS_LOWSP_MAX; i++) {
392 mp->m_low_space[i] = dblocks * (i + 1);
393 mp->m_low_rtexts[i] = rtexts * (i + 1);
398 * Check that the data (and log if separate) is an ok size.
400 STATIC int
401 xfs_check_sizes(
402 struct xfs_mount *mp)
404 struct xfs_buf *bp;
405 xfs_daddr_t d;
406 int error;
408 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
409 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
410 xfs_warn(mp, "filesystem size mismatch detected");
411 return -EFBIG;
413 error = xfs_buf_read_uncached(mp->m_ddev_targp,
414 d - XFS_FSS_TO_BB(mp, 1),
415 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
416 if (error) {
417 xfs_warn(mp, "last sector read failed");
418 return error;
420 xfs_buf_relse(bp);
422 if (mp->m_logdev_targp == mp->m_ddev_targp)
423 return 0;
425 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
426 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
427 xfs_warn(mp, "log size mismatch detected");
428 return -EFBIG;
430 error = xfs_buf_read_uncached(mp->m_logdev_targp,
431 d - XFS_FSB_TO_BB(mp, 1),
432 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
433 if (error) {
434 xfs_warn(mp, "log device read failed");
435 return error;
437 xfs_buf_relse(bp);
438 return 0;
442 * Clear the quotaflags in memory and in the superblock.
445 xfs_mount_reset_sbqflags(
446 struct xfs_mount *mp)
448 mp->m_qflags = 0;
450 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
451 if (mp->m_sb.sb_qflags == 0)
452 return 0;
453 spin_lock(&mp->m_sb_lock);
454 mp->m_sb.sb_qflags = 0;
455 spin_unlock(&mp->m_sb_lock);
457 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
458 return 0;
460 return xfs_sync_sb(mp, false);
463 uint64_t
464 xfs_default_resblks(xfs_mount_t *mp)
466 uint64_t resblks;
469 * We default to 5% or 8192 fsbs of space reserved, whichever is
470 * smaller. This is intended to cover concurrent allocation
471 * transactions when we initially hit enospc. These each require a 4
472 * block reservation. Hence by default we cover roughly 2000 concurrent
473 * allocation reservations.
475 resblks = mp->m_sb.sb_dblocks;
476 do_div(resblks, 20);
477 resblks = min_t(uint64_t, resblks, 8192);
478 return resblks;
481 /* Ensure the summary counts are correct. */
482 STATIC int
483 xfs_check_summary_counts(
484 struct xfs_mount *mp)
486 int error = 0;
489 * The AG0 superblock verifier rejects in-progress filesystems,
490 * so we should never see the flag set this far into mounting.
492 if (mp->m_sb.sb_inprogress) {
493 xfs_err(mp, "sb_inprogress set after log recovery??");
494 WARN_ON(1);
495 return -EFSCORRUPTED;
499 * Now the log is mounted, we know if it was an unclean shutdown or
500 * not. If it was, with the first phase of recovery has completed, we
501 * have consistent AG blocks on disk. We have not recovered EFIs yet,
502 * but they are recovered transactionally in the second recovery phase
503 * later.
505 * If the log was clean when we mounted, we can check the summary
506 * counters. If any of them are obviously incorrect, we can recompute
507 * them from the AGF headers in the next step.
509 if (xfs_is_clean(mp) &&
510 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
511 !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
512 mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
513 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
516 * We can safely re-initialise incore superblock counters from the
517 * per-ag data. These may not be correct if the filesystem was not
518 * cleanly unmounted, so we waited for recovery to finish before doing
519 * this.
521 * If the filesystem was cleanly unmounted or the previous check did
522 * not flag anything weird, then we can trust the values in the
523 * superblock to be correct and we don't need to do anything here.
524 * Otherwise, recalculate the summary counters.
526 if ((xfs_has_lazysbcount(mp) && !xfs_is_clean(mp)) ||
527 xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) {
528 error = xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
529 if (error)
530 return error;
534 * Older kernels misused sb_frextents to reflect both incore
535 * reservations made by running transactions and the actual count of
536 * free rt extents in the ondisk metadata. Transactions committed
537 * during runtime can therefore contain a superblock update that
538 * undercounts the number of free rt extents tracked in the rt bitmap.
539 * A clean unmount record will have the correct frextents value since
540 * there can be no other transactions running at that point.
542 * If we're mounting the rt volume after recovering the log, recompute
543 * frextents from the rtbitmap file to fix the inconsistency.
545 if (xfs_has_realtime(mp) && !xfs_is_clean(mp)) {
546 error = xfs_rtalloc_reinit_frextents(mp);
547 if (error)
548 return error;
551 return 0;
554 static void
555 xfs_unmount_check(
556 struct xfs_mount *mp)
558 if (xfs_is_shutdown(mp))
559 return;
561 if (percpu_counter_sum(&mp->m_ifree) >
562 percpu_counter_sum(&mp->m_icount)) {
563 xfs_alert(mp, "ifree/icount mismatch at unmount");
564 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
569 * Flush and reclaim dirty inodes in preparation for unmount. Inodes and
570 * internal inode structures can be sitting in the CIL and AIL at this point,
571 * so we need to unpin them, write them back and/or reclaim them before unmount
572 * can proceed. In other words, callers are required to have inactivated all
573 * inodes.
575 * An inode cluster that has been freed can have its buffer still pinned in
576 * memory because the transaction is still sitting in a iclog. The stale inodes
577 * on that buffer will be pinned to the buffer until the transaction hits the
578 * disk and the callbacks run. Pushing the AIL will skip the stale inodes and
579 * may never see the pinned buffer, so nothing will push out the iclog and
580 * unpin the buffer.
582 * Hence we need to force the log to unpin everything first. However, log
583 * forces don't wait for the discards they issue to complete, so we have to
584 * explicitly wait for them to complete here as well.
586 * Then we can tell the world we are unmounting so that error handling knows
587 * that the filesystem is going away and we should error out anything that we
588 * have been retrying in the background. This will prevent never-ending
589 * retries in AIL pushing from hanging the unmount.
591 * Finally, we can push the AIL to clean all the remaining dirty objects, then
592 * reclaim the remaining inodes that are still in memory at this point in time.
594 static void
595 xfs_unmount_flush_inodes(
596 struct xfs_mount *mp)
598 xfs_log_force(mp, XFS_LOG_SYNC);
599 xfs_extent_busy_wait_all(mp);
600 flush_workqueue(xfs_discard_wq);
602 xfs_set_unmounting(mp);
604 xfs_ail_push_all_sync(mp->m_ail);
605 xfs_inodegc_stop(mp);
606 cancel_delayed_work_sync(&mp->m_reclaim_work);
607 xfs_reclaim_inodes(mp);
608 xfs_health_unmount(mp);
611 static void
612 xfs_mount_setup_inode_geom(
613 struct xfs_mount *mp)
615 struct xfs_ino_geometry *igeo = M_IGEO(mp);
617 igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp);
618 ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp));
620 xfs_ialloc_setup_geometry(mp);
623 /* Compute maximum possible height for per-AG btree types for this fs. */
624 static inline void
625 xfs_agbtree_compute_maxlevels(
626 struct xfs_mount *mp)
628 unsigned int levels;
630 levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels);
631 levels = max(levels, mp->m_rmap_maxlevels);
632 mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels);
636 * This function does the following on an initial mount of a file system:
637 * - reads the superblock from disk and init the mount struct
638 * - if we're a 32-bit kernel, do a size check on the superblock
639 * so we don't mount terabyte filesystems
640 * - init mount struct realtime fields
641 * - allocate inode hash table for fs
642 * - init directory manager
643 * - perform recovery and init the log manager
646 xfs_mountfs(
647 struct xfs_mount *mp)
649 struct xfs_sb *sbp = &(mp->m_sb);
650 struct xfs_inode *rip;
651 struct xfs_ino_geometry *igeo = M_IGEO(mp);
652 uint quotamount = 0;
653 uint quotaflags = 0;
654 int error = 0;
656 xfs_sb_mount_common(mp, sbp);
659 * Check for a mismatched features2 values. Older kernels read & wrote
660 * into the wrong sb offset for sb_features2 on some platforms due to
661 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
662 * which made older superblock reading/writing routines swap it as a
663 * 64-bit value.
665 * For backwards compatibility, we make both slots equal.
667 * If we detect a mismatched field, we OR the set bits into the existing
668 * features2 field in case it has already been modified; we don't want
669 * to lose any features. We then update the bad location with the ORed
670 * value so that older kernels will see any features2 flags. The
671 * superblock writeback code ensures the new sb_features2 is copied to
672 * sb_bad_features2 before it is logged or written to disk.
674 if (xfs_sb_has_mismatched_features2(sbp)) {
675 xfs_warn(mp, "correcting sb_features alignment problem");
676 sbp->sb_features2 |= sbp->sb_bad_features2;
677 mp->m_update_sb = true;
681 /* always use v2 inodes by default now */
682 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
683 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
684 mp->m_features |= XFS_FEAT_NLINK;
685 mp->m_update_sb = true;
689 * If we were given new sunit/swidth options, do some basic validation
690 * checks and convert the incore dalign and swidth values to the
691 * same units (FSB) that everything else uses. This /must/ happen
692 * before computing the inode geometry.
694 error = xfs_validate_new_dalign(mp);
695 if (error)
696 goto out;
698 xfs_alloc_compute_maxlevels(mp);
699 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
700 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
701 xfs_mount_setup_inode_geom(mp);
702 xfs_rmapbt_compute_maxlevels(mp);
703 xfs_refcountbt_compute_maxlevels(mp);
705 xfs_agbtree_compute_maxlevels(mp);
708 * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks
709 * is NOT aligned turn off m_dalign since allocator alignment is within
710 * an ag, therefore ag has to be aligned at stripe boundary. Note that
711 * we must compute the free space and rmap btree geometry before doing
712 * this.
714 error = xfs_update_alignment(mp);
715 if (error)
716 goto out;
718 /* enable fail_at_unmount as default */
719 mp->m_fail_unmount = true;
721 super_set_sysfs_name_id(mp->m_super);
723 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype,
724 NULL, mp->m_super->s_id);
725 if (error)
726 goto out;
728 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
729 &mp->m_kobj, "stats");
730 if (error)
731 goto out_remove_sysfs;
733 xchk_stats_register(mp->m_scrub_stats, mp->m_debugfs);
735 error = xfs_error_sysfs_init(mp);
736 if (error)
737 goto out_remove_scrub_stats;
739 error = xfs_errortag_init(mp);
740 if (error)
741 goto out_remove_error_sysfs;
743 error = xfs_uuid_mount(mp);
744 if (error)
745 goto out_remove_errortag;
748 * Update the preferred write size based on the information from the
749 * on-disk superblock.
751 mp->m_allocsize_log =
752 max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
753 mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
755 /* set the low space thresholds for dynamic preallocation */
756 xfs_set_low_space_thresholds(mp);
759 * If enabled, sparse inode chunk alignment is expected to match the
760 * cluster size. Full inode chunk alignment must match the chunk size,
761 * but that is checked on sb read verification...
763 if (xfs_has_sparseinodes(mp) &&
764 mp->m_sb.sb_spino_align !=
765 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
766 xfs_warn(mp,
767 "Sparse inode block alignment (%u) must match cluster size (%llu).",
768 mp->m_sb.sb_spino_align,
769 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
770 error = -EINVAL;
771 goto out_remove_uuid;
775 * Check that the data (and log if separate) is an ok size.
777 error = xfs_check_sizes(mp);
778 if (error)
779 goto out_remove_uuid;
782 * Initialize realtime fields in the mount structure
784 error = xfs_rtmount_init(mp);
785 if (error) {
786 xfs_warn(mp, "RT mount failed");
787 goto out_remove_uuid;
791 * Copies the low order bits of the timestamp and the randomly
792 * set "sequence" number out of a UUID.
794 mp->m_fixedfsid[0] =
795 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
796 get_unaligned_be16(&sbp->sb_uuid.b[4]);
797 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
799 error = xfs_da_mount(mp);
800 if (error) {
801 xfs_warn(mp, "Failed dir/attr init: %d", error);
802 goto out_remove_uuid;
806 * Initialize the precomputed transaction reservations values.
808 xfs_trans_init(mp);
811 * Allocate and initialize the per-ag data.
813 error = xfs_initialize_perag(mp, sbp->sb_agcount, mp->m_sb.sb_dblocks,
814 &mp->m_maxagi);
815 if (error) {
816 xfs_warn(mp, "Failed per-ag init: %d", error);
817 goto out_free_dir;
820 if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
821 xfs_warn(mp, "no log defined");
822 error = -EFSCORRUPTED;
823 goto out_free_perag;
826 error = xfs_inodegc_register_shrinker(mp);
827 if (error)
828 goto out_fail_wait;
831 * Log's mount-time initialization. The first part of recovery can place
832 * some items on the AIL, to be handled when recovery is finished or
833 * cancelled.
835 error = xfs_log_mount(mp, mp->m_logdev_targp,
836 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
837 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
838 if (error) {
839 xfs_warn(mp, "log mount failed");
840 goto out_inodegc_shrinker;
844 * If logged xattrs are still enabled after log recovery finishes, then
845 * they'll be available until unmount. Otherwise, turn them off.
847 if (xfs_sb_version_haslogxattrs(&mp->m_sb))
848 xfs_set_using_logged_xattrs(mp);
849 else
850 xfs_clear_using_logged_xattrs(mp);
852 /* Enable background inode inactivation workers. */
853 xfs_inodegc_start(mp);
854 xfs_blockgc_start(mp);
857 * Now that we've recovered any pending superblock feature bit
858 * additions, we can finish setting up the attr2 behaviour for the
859 * mount. The noattr2 option overrides the superblock flag, so only
860 * check the superblock feature flag if the mount option is not set.
862 if (xfs_has_noattr2(mp)) {
863 mp->m_features &= ~XFS_FEAT_ATTR2;
864 } else if (!xfs_has_attr2(mp) &&
865 (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) {
866 mp->m_features |= XFS_FEAT_ATTR2;
870 * Get and sanity-check the root inode.
871 * Save the pointer to it in the mount structure.
873 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
874 XFS_ILOCK_EXCL, &rip);
875 if (error) {
876 xfs_warn(mp,
877 "Failed to read root inode 0x%llx, error %d",
878 sbp->sb_rootino, -error);
879 goto out_log_dealloc;
882 ASSERT(rip != NULL);
884 if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
885 xfs_warn(mp, "corrupted root inode %llu: not a directory",
886 (unsigned long long)rip->i_ino);
887 xfs_iunlock(rip, XFS_ILOCK_EXCL);
888 error = -EFSCORRUPTED;
889 goto out_rele_rip;
891 mp->m_rootip = rip; /* save it */
893 xfs_iunlock(rip, XFS_ILOCK_EXCL);
896 * Initialize realtime inode pointers in the mount structure
898 error = xfs_rtmount_inodes(mp);
899 if (error) {
901 * Free up the root inode.
903 xfs_warn(mp, "failed to read RT inodes");
904 goto out_rele_rip;
907 /* Make sure the summary counts are ok. */
908 error = xfs_check_summary_counts(mp);
909 if (error)
910 goto out_rtunmount;
913 * If this is a read-only mount defer the superblock updates until
914 * the next remount into writeable mode. Otherwise we would never
915 * perform the update e.g. for the root filesystem.
917 if (mp->m_update_sb && !xfs_is_readonly(mp)) {
918 error = xfs_sync_sb(mp, false);
919 if (error) {
920 xfs_warn(mp, "failed to write sb changes");
921 goto out_rtunmount;
926 * Initialise the XFS quota management subsystem for this mount
928 if (XFS_IS_QUOTA_ON(mp)) {
929 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
930 if (error)
931 goto out_rtunmount;
932 } else {
934 * If a file system had quotas running earlier, but decided to
935 * mount without -o uquota/pquota/gquota options, revoke the
936 * quotachecked license.
938 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
939 xfs_notice(mp, "resetting quota flags");
940 error = xfs_mount_reset_sbqflags(mp);
941 if (error)
942 goto out_rtunmount;
947 * Finish recovering the file system. This part needed to be delayed
948 * until after the root and real-time bitmap inodes were consistently
949 * read in. Temporarily create per-AG space reservations for metadata
950 * btree shape changes because space freeing transactions (for inode
951 * inactivation) require the per-AG reservation in lieu of reserving
952 * blocks.
954 error = xfs_fs_reserve_ag_blocks(mp);
955 if (error && error == -ENOSPC)
956 xfs_warn(mp,
957 "ENOSPC reserving per-AG metadata pool, log recovery may fail.");
958 error = xfs_log_mount_finish(mp);
959 xfs_fs_unreserve_ag_blocks(mp);
960 if (error) {
961 xfs_warn(mp, "log mount finish failed");
962 goto out_rtunmount;
966 * Now the log is fully replayed, we can transition to full read-only
967 * mode for read-only mounts. This will sync all the metadata and clean
968 * the log so that the recovery we just performed does not have to be
969 * replayed again on the next mount.
971 * We use the same quiesce mechanism as the rw->ro remount, as they are
972 * semantically identical operations.
974 if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp))
975 xfs_log_clean(mp);
978 * Complete the quota initialisation, post-log-replay component.
980 if (quotamount) {
981 ASSERT(mp->m_qflags == 0);
982 mp->m_qflags = quotaflags;
984 xfs_qm_mount_quotas(mp);
988 * Now we are mounted, reserve a small amount of unused space for
989 * privileged transactions. This is needed so that transaction
990 * space required for critical operations can dip into this pool
991 * when at ENOSPC. This is needed for operations like create with
992 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
993 * are not allowed to use this reserved space.
995 * This may drive us straight to ENOSPC on mount, but that implies
996 * we were already there on the last unmount. Warn if this occurs.
998 if (!xfs_is_readonly(mp)) {
999 error = xfs_reserve_blocks(mp, xfs_default_resblks(mp));
1000 if (error)
1001 xfs_warn(mp,
1002 "Unable to allocate reserve blocks. Continuing without reserve pool.");
1004 /* Reserve AG blocks for future btree expansion. */
1005 error = xfs_fs_reserve_ag_blocks(mp);
1006 if (error && error != -ENOSPC)
1007 goto out_agresv;
1010 return 0;
1012 out_agresv:
1013 xfs_fs_unreserve_ag_blocks(mp);
1014 xfs_qm_unmount_quotas(mp);
1015 out_rtunmount:
1016 xfs_rtunmount_inodes(mp);
1017 out_rele_rip:
1018 xfs_irele(rip);
1019 /* Clean out dquots that might be in memory after quotacheck. */
1020 xfs_qm_unmount(mp);
1023 * Inactivate all inodes that might still be in memory after a log
1024 * intent recovery failure so that reclaim can free them. Metadata
1025 * inodes and the root directory shouldn't need inactivation, but the
1026 * mount failed for some reason, so pull down all the state and flee.
1028 xfs_inodegc_flush(mp);
1031 * Flush all inode reclamation work and flush the log.
1032 * We have to do this /after/ rtunmount and qm_unmount because those
1033 * two will have scheduled delayed reclaim for the rt/quota inodes.
1035 * This is slightly different from the unmountfs call sequence
1036 * because we could be tearing down a partially set up mount. In
1037 * particular, if log_mount_finish fails we bail out without calling
1038 * qm_unmount_quotas and therefore rely on qm_unmount to release the
1039 * quota inodes.
1041 xfs_unmount_flush_inodes(mp);
1042 out_log_dealloc:
1043 xfs_log_mount_cancel(mp);
1044 out_inodegc_shrinker:
1045 shrinker_free(mp->m_inodegc_shrinker);
1046 out_fail_wait:
1047 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1048 xfs_buftarg_drain(mp->m_logdev_targp);
1049 xfs_buftarg_drain(mp->m_ddev_targp);
1050 out_free_perag:
1051 xfs_free_perag(mp);
1052 out_free_dir:
1053 xfs_da_unmount(mp);
1054 out_remove_uuid:
1055 xfs_uuid_unmount(mp);
1056 out_remove_errortag:
1057 xfs_errortag_del(mp);
1058 out_remove_error_sysfs:
1059 xfs_error_sysfs_del(mp);
1060 out_remove_scrub_stats:
1061 xchk_stats_unregister(mp->m_scrub_stats);
1062 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1063 out_remove_sysfs:
1064 xfs_sysfs_del(&mp->m_kobj);
1065 out:
1066 return error;
1070 * This flushes out the inodes,dquots and the superblock, unmounts the
1071 * log and makes sure that incore structures are freed.
1073 void
1074 xfs_unmountfs(
1075 struct xfs_mount *mp)
1077 int error;
1080 * Perform all on-disk metadata updates required to inactivate inodes
1081 * that the VFS evicted earlier in the unmount process. Freeing inodes
1082 * and discarding CoW fork preallocations can cause shape changes to
1083 * the free inode and refcount btrees, respectively, so we must finish
1084 * this before we discard the metadata space reservations. Metadata
1085 * inodes and the root directory do not require inactivation.
1087 xfs_inodegc_flush(mp);
1089 xfs_blockgc_stop(mp);
1090 xfs_fs_unreserve_ag_blocks(mp);
1091 xfs_qm_unmount_quotas(mp);
1092 xfs_rtunmount_inodes(mp);
1093 xfs_irele(mp->m_rootip);
1095 xfs_unmount_flush_inodes(mp);
1097 xfs_qm_unmount(mp);
1100 * Unreserve any blocks we have so that when we unmount we don't account
1101 * the reserved free space as used. This is really only necessary for
1102 * lazy superblock counting because it trusts the incore superblock
1103 * counters to be absolutely correct on clean unmount.
1105 * We don't bother correcting this elsewhere for lazy superblock
1106 * counting because on mount of an unclean filesystem we reconstruct the
1107 * correct counter value and this is irrelevant.
1109 * For non-lazy counter filesystems, this doesn't matter at all because
1110 * we only every apply deltas to the superblock and hence the incore
1111 * value does not matter....
1113 error = xfs_reserve_blocks(mp, 0);
1114 if (error)
1115 xfs_warn(mp, "Unable to free reserved block pool. "
1116 "Freespace may not be correct on next mount.");
1117 xfs_unmount_check(mp);
1120 * Indicate that it's ok to clear log incompat bits before cleaning
1121 * the log and writing the unmount record.
1123 xfs_set_done_with_log_incompat(mp);
1124 xfs_log_unmount(mp);
1125 xfs_da_unmount(mp);
1126 xfs_uuid_unmount(mp);
1128 #if defined(DEBUG)
1129 xfs_errortag_clearall(mp);
1130 #endif
1131 shrinker_free(mp->m_inodegc_shrinker);
1132 xfs_free_perag(mp);
1134 xfs_errortag_del(mp);
1135 xfs_error_sysfs_del(mp);
1136 xchk_stats_unregister(mp->m_scrub_stats);
1137 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1138 xfs_sysfs_del(&mp->m_kobj);
1142 * Determine whether modifications can proceed. The caller specifies the minimum
1143 * freeze level for which modifications should not be allowed. This allows
1144 * certain operations to proceed while the freeze sequence is in progress, if
1145 * necessary.
1147 bool
1148 xfs_fs_writable(
1149 struct xfs_mount *mp,
1150 int level)
1152 ASSERT(level > SB_UNFROZEN);
1153 if ((mp->m_super->s_writers.frozen >= level) ||
1154 xfs_is_shutdown(mp) || xfs_is_readonly(mp))
1155 return false;
1157 return true;
1160 void
1161 xfs_add_freecounter(
1162 struct xfs_mount *mp,
1163 struct percpu_counter *counter,
1164 uint64_t delta)
1166 bool has_resv_pool = (counter == &mp->m_fdblocks);
1167 uint64_t res_used;
1170 * If the reserve pool is depleted, put blocks back into it first.
1171 * Most of the time the pool is full.
1173 if (!has_resv_pool || mp->m_resblks == mp->m_resblks_avail) {
1174 percpu_counter_add(counter, delta);
1175 return;
1178 spin_lock(&mp->m_sb_lock);
1179 res_used = mp->m_resblks - mp->m_resblks_avail;
1180 if (res_used > delta) {
1181 mp->m_resblks_avail += delta;
1182 } else {
1183 delta -= res_used;
1184 mp->m_resblks_avail = mp->m_resblks;
1185 percpu_counter_add(counter, delta);
1187 spin_unlock(&mp->m_sb_lock);
1191 xfs_dec_freecounter(
1192 struct xfs_mount *mp,
1193 struct percpu_counter *counter,
1194 uint64_t delta,
1195 bool rsvd)
1197 int64_t lcounter;
1198 uint64_t set_aside = 0;
1199 s32 batch;
1200 bool has_resv_pool;
1202 ASSERT(counter == &mp->m_fdblocks || counter == &mp->m_frextents);
1203 has_resv_pool = (counter == &mp->m_fdblocks);
1204 if (rsvd)
1205 ASSERT(has_resv_pool);
1208 * Taking blocks away, need to be more accurate the closer we
1209 * are to zero.
1211 * If the counter has a value of less than 2 * max batch size,
1212 * then make everything serialise as we are real close to
1213 * ENOSPC.
1215 if (__percpu_counter_compare(counter, 2 * XFS_FDBLOCKS_BATCH,
1216 XFS_FDBLOCKS_BATCH) < 0)
1217 batch = 1;
1218 else
1219 batch = XFS_FDBLOCKS_BATCH;
1222 * Set aside allocbt blocks because these blocks are tracked as free
1223 * space but not available for allocation. Technically this means that a
1224 * single reservation cannot consume all remaining free space, but the
1225 * ratio of allocbt blocks to usable free blocks should be rather small.
1226 * The tradeoff without this is that filesystems that maintain high
1227 * perag block reservations can over reserve physical block availability
1228 * and fail physical allocation, which leads to much more serious
1229 * problems (i.e. transaction abort, pagecache discards, etc.) than
1230 * slightly premature -ENOSPC.
1232 if (has_resv_pool)
1233 set_aside = xfs_fdblocks_unavailable(mp);
1234 percpu_counter_add_batch(counter, -((int64_t)delta), batch);
1235 if (__percpu_counter_compare(counter, set_aside,
1236 XFS_FDBLOCKS_BATCH) >= 0) {
1237 /* we had space! */
1238 return 0;
1242 * lock up the sb for dipping into reserves before releasing the space
1243 * that took us to ENOSPC.
1245 spin_lock(&mp->m_sb_lock);
1246 percpu_counter_add(counter, delta);
1247 if (!has_resv_pool || !rsvd)
1248 goto fdblocks_enospc;
1250 lcounter = (long long)mp->m_resblks_avail - delta;
1251 if (lcounter >= 0) {
1252 mp->m_resblks_avail = lcounter;
1253 spin_unlock(&mp->m_sb_lock);
1254 return 0;
1256 xfs_warn_once(mp,
1257 "Reserve blocks depleted! Consider increasing reserve pool size.");
1259 fdblocks_enospc:
1260 spin_unlock(&mp->m_sb_lock);
1261 return -ENOSPC;
1265 * Used to free the superblock along various error paths.
1267 void
1268 xfs_freesb(
1269 struct xfs_mount *mp)
1271 struct xfs_buf *bp = mp->m_sb_bp;
1273 xfs_buf_lock(bp);
1274 mp->m_sb_bp = NULL;
1275 xfs_buf_relse(bp);
1279 * If the underlying (data/log/rt) device is readonly, there are some
1280 * operations that cannot proceed.
1283 xfs_dev_is_read_only(
1284 struct xfs_mount *mp,
1285 char *message)
1287 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1288 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1289 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1290 xfs_notice(mp, "%s required on read-only device.", message);
1291 xfs_notice(mp, "write access unavailable, cannot proceed.");
1292 return -EROFS;
1294 return 0;
1297 /* Force the summary counters to be recalculated at next mount. */
1298 void
1299 xfs_force_summary_recalc(
1300 struct xfs_mount *mp)
1302 if (!xfs_has_lazysbcount(mp))
1303 return;
1305 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1309 * Enable a log incompat feature flag in the primary superblock. The caller
1310 * cannot have any other transactions in progress.
1313 xfs_add_incompat_log_feature(
1314 struct xfs_mount *mp,
1315 uint32_t feature)
1317 struct xfs_dsb *dsb;
1318 int error;
1320 ASSERT(hweight32(feature) == 1);
1321 ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
1324 * Force the log to disk and kick the background AIL thread to reduce
1325 * the chances that the bwrite will stall waiting for the AIL to unpin
1326 * the primary superblock buffer. This isn't a data integrity
1327 * operation, so we don't need a synchronous push.
1329 error = xfs_log_force(mp, XFS_LOG_SYNC);
1330 if (error)
1331 return error;
1332 xfs_ail_push_all(mp->m_ail);
1335 * Lock the primary superblock buffer to serialize all callers that
1336 * are trying to set feature bits.
1338 xfs_buf_lock(mp->m_sb_bp);
1339 xfs_buf_hold(mp->m_sb_bp);
1341 if (xfs_is_shutdown(mp)) {
1342 error = -EIO;
1343 goto rele;
1346 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature))
1347 goto rele;
1350 * Write the primary superblock to disk immediately, because we need
1351 * the log_incompat bit to be set in the primary super now to protect
1352 * the log items that we're going to commit later.
1354 dsb = mp->m_sb_bp->b_addr;
1355 xfs_sb_to_disk(dsb, &mp->m_sb);
1356 dsb->sb_features_log_incompat |= cpu_to_be32(feature);
1357 error = xfs_bwrite(mp->m_sb_bp);
1358 if (error)
1359 goto shutdown;
1362 * Add the feature bits to the incore superblock before we unlock the
1363 * buffer.
1365 xfs_sb_add_incompat_log_features(&mp->m_sb, feature);
1366 xfs_buf_relse(mp->m_sb_bp);
1368 /* Log the superblock to disk. */
1369 return xfs_sync_sb(mp, false);
1370 shutdown:
1371 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1372 rele:
1373 xfs_buf_relse(mp->m_sb_bp);
1374 return error;
1378 * Clear all the log incompat flags from the superblock.
1380 * The caller cannot be in a transaction, must ensure that the log does not
1381 * contain any log items protected by any log incompat bit, and must ensure
1382 * that there are no other threads that depend on the state of the log incompat
1383 * feature flags in the primary super.
1385 * Returns true if the superblock is dirty.
1387 bool
1388 xfs_clear_incompat_log_features(
1389 struct xfs_mount *mp)
1391 bool ret = false;
1393 if (!xfs_has_crc(mp) ||
1394 !xfs_sb_has_incompat_log_feature(&mp->m_sb,
1395 XFS_SB_FEAT_INCOMPAT_LOG_ALL) ||
1396 xfs_is_shutdown(mp) ||
1397 !xfs_is_done_with_log_incompat(mp))
1398 return false;
1401 * Update the incore superblock. We synchronize on the primary super
1402 * buffer lock to be consistent with the add function, though at least
1403 * in theory this shouldn't be necessary.
1405 xfs_buf_lock(mp->m_sb_bp);
1406 xfs_buf_hold(mp->m_sb_bp);
1408 if (xfs_sb_has_incompat_log_feature(&mp->m_sb,
1409 XFS_SB_FEAT_INCOMPAT_LOG_ALL)) {
1410 xfs_sb_remove_incompat_log_features(&mp->m_sb);
1411 ret = true;
1414 xfs_buf_relse(mp->m_sb_bp);
1415 return ret;
1419 * Update the in-core delayed block counter.
1421 * We prefer to update the counter without having to take a spinlock for every
1422 * counter update (i.e. batching). Each change to delayed allocation
1423 * reservations can change can easily exceed the default percpu counter
1424 * batching, so we use a larger batch factor here.
1426 * Note that we don't currently have any callers requiring fast summation
1427 * (e.g. percpu_counter_read) so we can use a big batch value here.
1429 #define XFS_DELALLOC_BATCH (4096)
1430 void
1431 xfs_mod_delalloc(
1432 struct xfs_inode *ip,
1433 int64_t data_delta,
1434 int64_t ind_delta)
1436 struct xfs_mount *mp = ip->i_mount;
1438 if (XFS_IS_REALTIME_INODE(ip)) {
1439 percpu_counter_add_batch(&mp->m_delalloc_rtextents,
1440 xfs_rtb_to_rtx(mp, data_delta),
1441 XFS_DELALLOC_BATCH);
1442 if (!ind_delta)
1443 return;
1444 data_delta = 0;
1446 percpu_counter_add_batch(&mp->m_delalloc_blks, data_delta + ind_delta,
1447 XFS_DELALLOC_BATCH);