1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
4 * Copyright (C) 2010 Red Hat, Inc.
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_extent_busy.h"
15 #include "xfs_quota.h"
16 #include "xfs_trans.h"
17 #include "xfs_trans_priv.h"
19 #include "xfs_log_priv.h"
20 #include "xfs_trace.h"
21 #include "xfs_error.h"
22 #include "xfs_defer.h"
23 #include "xfs_inode.h"
24 #include "xfs_dquot_item.h"
25 #include "xfs_dquot.h"
26 #include "xfs_icache.h"
27 #include "xfs_rtbitmap.h"
29 struct kmem_cache
*xfs_trans_cache
;
31 #if defined(CONFIG_TRACEPOINTS)
33 xfs_trans_trace_reservations(
36 struct xfs_trans_res
*res
;
37 struct xfs_trans_res
*end_res
;
40 res
= (struct xfs_trans_res
*)M_RES(mp
);
41 end_res
= (struct xfs_trans_res
*)(M_RES(mp
) + 1);
42 for (i
= 0; res
< end_res
; i
++, res
++)
43 trace_xfs_trans_resv_calc(mp
, i
, res
);
46 # define xfs_trans_trace_reservations(mp)
50 * Initialize the precomputed transaction reservation values
51 * in the mount structure.
57 xfs_trans_resv_calc(mp
, M_RES(mp
));
58 xfs_trans_trace_reservations(mp
);
62 * Free the transaction structure. If there is more clean up
63 * to do when the structure is freed, add it here.
69 xfs_extent_busy_sort(&tp
->t_busy
);
70 xfs_extent_busy_clear(tp
->t_mountp
, &tp
->t_busy
, false);
72 trace_xfs_trans_free(tp
, _RET_IP_
);
73 xfs_trans_clear_context(tp
);
74 if (!(tp
->t_flags
& XFS_TRANS_NO_WRITECOUNT
))
75 sb_end_intwrite(tp
->t_mountp
->m_super
);
76 xfs_trans_free_dqinfo(tp
);
77 kmem_cache_free(xfs_trans_cache
, tp
);
81 * This is called to create a new transaction which will share the
82 * permanent log reservation of the given transaction. The remaining
83 * unused block and rt extent reservations are also inherited. This
84 * implies that the original transaction is no longer allowed to allocate
85 * blocks. Locks and log items, however, are no inherited. They must
86 * be added to the new transaction explicitly.
88 STATIC
struct xfs_trans
*
92 struct xfs_trans
*ntp
;
94 trace_xfs_trans_dup(tp
, _RET_IP_
);
96 ntp
= kmem_cache_zalloc(xfs_trans_cache
, GFP_KERNEL
| __GFP_NOFAIL
);
99 * Initialize the new transaction structure.
101 ntp
->t_magic
= XFS_TRANS_HEADER_MAGIC
;
102 ntp
->t_mountp
= tp
->t_mountp
;
103 INIT_LIST_HEAD(&ntp
->t_items
);
104 INIT_LIST_HEAD(&ntp
->t_busy
);
105 INIT_LIST_HEAD(&ntp
->t_dfops
);
106 ntp
->t_highest_agno
= NULLAGNUMBER
;
108 ASSERT(tp
->t_flags
& XFS_TRANS_PERM_LOG_RES
);
109 ASSERT(tp
->t_ticket
!= NULL
);
111 ntp
->t_flags
= XFS_TRANS_PERM_LOG_RES
|
112 (tp
->t_flags
& XFS_TRANS_RESERVE
) |
113 (tp
->t_flags
& XFS_TRANS_NO_WRITECOUNT
) |
114 (tp
->t_flags
& XFS_TRANS_RES_FDBLKS
);
115 /* We gave our writer reference to the new transaction */
116 tp
->t_flags
|= XFS_TRANS_NO_WRITECOUNT
;
117 ntp
->t_ticket
= xfs_log_ticket_get(tp
->t_ticket
);
119 ASSERT(tp
->t_blk_res
>= tp
->t_blk_res_used
);
120 ntp
->t_blk_res
= tp
->t_blk_res
- tp
->t_blk_res_used
;
121 tp
->t_blk_res
= tp
->t_blk_res_used
;
123 ntp
->t_rtx_res
= tp
->t_rtx_res
- tp
->t_rtx_res_used
;
124 tp
->t_rtx_res
= tp
->t_rtx_res_used
;
126 xfs_trans_switch_context(tp
, ntp
);
128 /* move deferred ops over to the new tp */
129 xfs_defer_move(ntp
, tp
);
131 xfs_trans_dup_dqinfo(tp
, ntp
);
136 * This is called to reserve free disk blocks and log space for the
137 * given transaction. This must be done before allocating any resources
138 * within the transaction.
140 * This will return ENOSPC if there are not enough blocks available.
141 * It will sleep waiting for available log space.
142 * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which
143 * is used by long running transactions. If any one of the reservations
144 * fails then they will all be backed out.
146 * This does not do quota reservations. That typically is done by the
151 struct xfs_trans
*tp
,
152 struct xfs_trans_res
*resp
,
156 struct xfs_mount
*mp
= tp
->t_mountp
;
158 bool rsvd
= (tp
->t_flags
& XFS_TRANS_RESERVE
) != 0;
161 * Attempt to reserve the needed disk blocks by decrementing
162 * the number needed from the number available. This will
163 * fail if the count would go below zero.
166 error
= xfs_dec_fdblocks(mp
, blocks
, rsvd
);
169 tp
->t_blk_res
+= blocks
;
173 * Reserve the log space needed for this transaction.
175 if (resp
->tr_logres
> 0) {
176 bool permanent
= false;
178 ASSERT(tp
->t_log_res
== 0 ||
179 tp
->t_log_res
== resp
->tr_logres
);
180 ASSERT(tp
->t_log_count
== 0 ||
181 tp
->t_log_count
== resp
->tr_logcount
);
183 if (resp
->tr_logflags
& XFS_TRANS_PERM_LOG_RES
) {
184 tp
->t_flags
|= XFS_TRANS_PERM_LOG_RES
;
187 ASSERT(tp
->t_ticket
== NULL
);
188 ASSERT(!(tp
->t_flags
& XFS_TRANS_PERM_LOG_RES
));
191 if (tp
->t_ticket
!= NULL
) {
192 ASSERT(resp
->tr_logflags
& XFS_TRANS_PERM_LOG_RES
);
193 error
= xfs_log_regrant(mp
, tp
->t_ticket
);
195 error
= xfs_log_reserve(mp
, resp
->tr_logres
,
197 &tp
->t_ticket
, permanent
);
203 tp
->t_log_res
= resp
->tr_logres
;
204 tp
->t_log_count
= resp
->tr_logcount
;
208 * Attempt to reserve the needed realtime extents by decrementing
209 * the number needed from the number available. This will
210 * fail if the count would go below zero.
213 error
= xfs_dec_frextents(mp
, rtextents
);
218 tp
->t_rtx_res
+= rtextents
;
224 * Error cases jump to one of these labels to undo any
225 * reservations which have already been performed.
228 if (resp
->tr_logres
> 0) {
229 xfs_log_ticket_ungrant(mp
->m_log
, tp
->t_ticket
);
232 tp
->t_flags
&= ~XFS_TRANS_PERM_LOG_RES
;
237 xfs_add_fdblocks(mp
, blocks
);
245 struct xfs_mount
*mp
,
246 struct xfs_trans_res
*resp
,
250 struct xfs_trans
**tpp
)
252 struct xfs_trans
*tp
;
253 bool want_retry
= true;
257 * Allocate the handle before we do our freeze accounting and setting up
258 * GFP_NOFS allocation context so that we avoid lockdep false positives
259 * by doing GFP_KERNEL allocations inside sb_start_intwrite().
262 tp
= kmem_cache_zalloc(xfs_trans_cache
, GFP_KERNEL
| __GFP_NOFAIL
);
263 if (!(flags
& XFS_TRANS_NO_WRITECOUNT
))
264 sb_start_intwrite(mp
->m_super
);
265 xfs_trans_set_context(tp
);
268 * Zero-reservation ("empty") transactions can't modify anything, so
269 * they're allowed to run while we're frozen.
271 WARN_ON(resp
->tr_logres
> 0 &&
272 mp
->m_super
->s_writers
.frozen
== SB_FREEZE_COMPLETE
);
273 ASSERT(!(flags
& XFS_TRANS_RES_FDBLKS
) ||
274 xfs_has_lazysbcount(mp
));
276 tp
->t_magic
= XFS_TRANS_HEADER_MAGIC
;
279 INIT_LIST_HEAD(&tp
->t_items
);
280 INIT_LIST_HEAD(&tp
->t_busy
);
281 INIT_LIST_HEAD(&tp
->t_dfops
);
282 tp
->t_highest_agno
= NULLAGNUMBER
;
284 error
= xfs_trans_reserve(tp
, resp
, blocks
, rtextents
);
285 if (error
== -ENOSPC
&& want_retry
) {
286 xfs_trans_cancel(tp
);
289 * We weren't able to reserve enough space for the transaction.
290 * Flush the other speculative space allocations to free space.
291 * Do not perform a synchronous scan because callers can hold
294 error
= xfs_blockgc_flush_all(mp
);
301 xfs_trans_cancel(tp
);
305 trace_xfs_trans_alloc(tp
, _RET_IP_
);
312 * Create an empty transaction with no reservation. This is a defensive
313 * mechanism for routines that query metadata without actually modifying them --
314 * if the metadata being queried is somehow cross-linked (think a btree block
315 * pointer that points higher in the tree), we risk deadlock. However, blocks
316 * grabbed as part of a transaction can be re-grabbed. The verifiers will
317 * notice the corrupt block and the operation will fail back to userspace
318 * without deadlocking.
320 * Note the zero-length reservation; this transaction MUST be cancelled without
323 * Callers should obtain freeze protection to avoid a conflict with fs freezing
324 * where we can be grabbing buffers at the same time that freeze is trying to
325 * drain the buffer LRU list.
328 xfs_trans_alloc_empty(
329 struct xfs_mount
*mp
,
330 struct xfs_trans
**tpp
)
332 struct xfs_trans_res resv
= {0};
334 return xfs_trans_alloc(mp
, &resv
, 0, 0, XFS_TRANS_NO_WRITECOUNT
, tpp
);
338 * Record the indicated change to the given field for application
339 * to the file system's superblock when the transaction commits.
340 * For now, just store the change in the transaction structure.
342 * Mark the transaction structure to indicate that the superblock
343 * needs to be updated before committing.
345 * Because we may not be keeping track of allocated/free inodes and
346 * used filesystem blocks in the superblock, we do not mark the
347 * superblock dirty in this transaction if we modify these fields.
348 * We still need to update the transaction deltas so that they get
349 * applied to the incore superblock, but we don't want them to
350 * cause the superblock to get locked and logged if these are the
351 * only fields in the superblock that the transaction modifies.
359 uint32_t flags
= (XFS_TRANS_DIRTY
|XFS_TRANS_SB_DIRTY
);
360 xfs_mount_t
*mp
= tp
->t_mountp
;
363 case XFS_TRANS_SB_ICOUNT
:
364 tp
->t_icount_delta
+= delta
;
365 if (xfs_has_lazysbcount(mp
))
366 flags
&= ~XFS_TRANS_SB_DIRTY
;
368 case XFS_TRANS_SB_IFREE
:
369 tp
->t_ifree_delta
+= delta
;
370 if (xfs_has_lazysbcount(mp
))
371 flags
&= ~XFS_TRANS_SB_DIRTY
;
373 case XFS_TRANS_SB_FDBLOCKS
:
375 * Track the number of blocks allocated in the transaction.
376 * Make sure it does not exceed the number reserved. If so,
377 * shutdown as this can lead to accounting inconsistency.
380 tp
->t_blk_res_used
+= (uint
)-delta
;
381 if (tp
->t_blk_res_used
> tp
->t_blk_res
)
382 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
383 } else if (delta
> 0 && (tp
->t_flags
& XFS_TRANS_RES_FDBLKS
)) {
384 int64_t blkres_delta
;
387 * Return freed blocks directly to the reservation
388 * instead of the global pool, being careful not to
389 * overflow the trans counter. This is used to preserve
390 * reservation across chains of transaction rolls that
391 * repeatedly free and allocate blocks.
393 blkres_delta
= min_t(int64_t, delta
,
394 UINT_MAX
- tp
->t_blk_res
);
395 tp
->t_blk_res
+= blkres_delta
;
396 delta
-= blkres_delta
;
398 tp
->t_fdblocks_delta
+= delta
;
399 if (xfs_has_lazysbcount(mp
))
400 flags
&= ~XFS_TRANS_SB_DIRTY
;
402 case XFS_TRANS_SB_RES_FDBLOCKS
:
404 * The allocation has already been applied to the
405 * in-core superblock's counter. This should only
406 * be applied to the on-disk superblock.
408 tp
->t_res_fdblocks_delta
+= delta
;
409 if (xfs_has_lazysbcount(mp
))
410 flags
&= ~XFS_TRANS_SB_DIRTY
;
412 case XFS_TRANS_SB_FREXTENTS
:
414 * Track the number of blocks allocated in the
415 * transaction. Make sure it does not exceed the
419 tp
->t_rtx_res_used
+= (uint
)-delta
;
420 ASSERT(tp
->t_rtx_res_used
<= tp
->t_rtx_res
);
422 tp
->t_frextents_delta
+= delta
;
424 case XFS_TRANS_SB_RES_FREXTENTS
:
426 * The allocation has already been applied to the
427 * in-core superblock's counter. This should only
428 * be applied to the on-disk superblock.
431 tp
->t_res_frextents_delta
+= delta
;
433 case XFS_TRANS_SB_DBLOCKS
:
434 tp
->t_dblocks_delta
+= delta
;
436 case XFS_TRANS_SB_AGCOUNT
:
438 tp
->t_agcount_delta
+= delta
;
440 case XFS_TRANS_SB_IMAXPCT
:
441 tp
->t_imaxpct_delta
+= delta
;
443 case XFS_TRANS_SB_REXTSIZE
:
444 tp
->t_rextsize_delta
+= delta
;
446 case XFS_TRANS_SB_RBMBLOCKS
:
447 tp
->t_rbmblocks_delta
+= delta
;
449 case XFS_TRANS_SB_RBLOCKS
:
450 tp
->t_rblocks_delta
+= delta
;
452 case XFS_TRANS_SB_REXTENTS
:
453 tp
->t_rextents_delta
+= delta
;
455 case XFS_TRANS_SB_REXTSLOG
:
456 tp
->t_rextslog_delta
+= delta
;
463 tp
->t_flags
|= flags
;
467 * xfs_trans_apply_sb_deltas() is called from the commit code
468 * to bring the superblock buffer into the current transaction
469 * and modify it as requested by earlier calls to xfs_trans_mod_sb().
471 * For now we just look at each field allowed to change and change
475 xfs_trans_apply_sb_deltas(
482 bp
= xfs_trans_getsb(tp
);
486 * Only update the superblock counters if we are logging them
488 if (!xfs_has_lazysbcount((tp
->t_mountp
))) {
489 if (tp
->t_icount_delta
)
490 be64_add_cpu(&sbp
->sb_icount
, tp
->t_icount_delta
);
491 if (tp
->t_ifree_delta
)
492 be64_add_cpu(&sbp
->sb_ifree
, tp
->t_ifree_delta
);
493 if (tp
->t_fdblocks_delta
)
494 be64_add_cpu(&sbp
->sb_fdblocks
, tp
->t_fdblocks_delta
);
495 if (tp
->t_res_fdblocks_delta
)
496 be64_add_cpu(&sbp
->sb_fdblocks
, tp
->t_res_fdblocks_delta
);
500 * Updating frextents requires careful handling because it does not
501 * behave like the lazysb counters because we cannot rely on log
502 * recovery in older kenels to recompute the value from the rtbitmap.
503 * This means that the ondisk frextents must be consistent with the
506 * Therefore, log the frextents change to the ondisk superblock and
507 * update the incore superblock so that future calls to xfs_log_sb
508 * write the correct value ondisk.
510 * Don't touch m_frextents because it includes incore reservations,
511 * and those are handled by the unreserve function.
513 if (tp
->t_frextents_delta
|| tp
->t_res_frextents_delta
) {
514 struct xfs_mount
*mp
= tp
->t_mountp
;
517 rtxdelta
= tp
->t_frextents_delta
+ tp
->t_res_frextents_delta
;
519 spin_lock(&mp
->m_sb_lock
);
520 be64_add_cpu(&sbp
->sb_frextents
, rtxdelta
);
521 mp
->m_sb
.sb_frextents
+= rtxdelta
;
522 spin_unlock(&mp
->m_sb_lock
);
525 if (tp
->t_dblocks_delta
) {
526 be64_add_cpu(&sbp
->sb_dblocks
, tp
->t_dblocks_delta
);
529 if (tp
->t_agcount_delta
) {
530 be32_add_cpu(&sbp
->sb_agcount
, tp
->t_agcount_delta
);
533 if (tp
->t_imaxpct_delta
) {
534 sbp
->sb_imax_pct
+= tp
->t_imaxpct_delta
;
537 if (tp
->t_rextsize_delta
) {
538 be32_add_cpu(&sbp
->sb_rextsize
, tp
->t_rextsize_delta
);
541 if (tp
->t_rbmblocks_delta
) {
542 be32_add_cpu(&sbp
->sb_rbmblocks
, tp
->t_rbmblocks_delta
);
545 if (tp
->t_rblocks_delta
) {
546 be64_add_cpu(&sbp
->sb_rblocks
, tp
->t_rblocks_delta
);
549 if (tp
->t_rextents_delta
) {
550 be64_add_cpu(&sbp
->sb_rextents
, tp
->t_rextents_delta
);
553 if (tp
->t_rextslog_delta
) {
554 sbp
->sb_rextslog
+= tp
->t_rextslog_delta
;
558 xfs_trans_buf_set_type(tp
, bp
, XFS_BLFT_SB_BUF
);
561 * Log the whole thing, the fields are noncontiguous.
563 xfs_trans_log_buf(tp
, bp
, 0, sizeof(struct xfs_dsb
) - 1);
566 * Since all the modifiable fields are contiguous, we
567 * can get away with this.
569 xfs_trans_log_buf(tp
, bp
, offsetof(struct xfs_dsb
, sb_icount
),
570 offsetof(struct xfs_dsb
, sb_frextents
) +
571 sizeof(sbp
->sb_frextents
) - 1);
575 * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations and
576 * apply superblock counter changes to the in-core superblock. The
577 * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT
578 * applied to the in-core superblock. The idea is that that has already been
581 * If we are not logging superblock counters, then the inode allocated/free and
582 * used block counts are not updated in the on disk superblock. In this case,
583 * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we
584 * still need to update the incore superblock with the changes.
586 * Deltas for the inode count are +/-64, hence we use a large batch size of 128
587 * so we don't need to take the counter lock on every update.
589 #define XFS_ICOUNT_BATCH 128
592 xfs_trans_unreserve_and_mod_sb(
593 struct xfs_trans
*tp
)
595 struct xfs_mount
*mp
= tp
->t_mountp
;
596 int64_t blkdelta
= tp
->t_blk_res
;
597 int64_t rtxdelta
= tp
->t_rtx_res
;
599 int64_t ifreedelta
= 0;
602 * Calculate the deltas.
604 * t_fdblocks_delta and t_frextents_delta can be positive or negative:
606 * - positive values indicate blocks freed in the transaction.
607 * - negative values indicate blocks allocated in the transaction
609 * Negative values can only happen if the transaction has a block
610 * reservation that covers the allocated block. The end result is
611 * that the calculated delta values must always be positive and we
612 * can only put back previous allocated or reserved blocks here.
614 ASSERT(tp
->t_blk_res
|| tp
->t_fdblocks_delta
>= 0);
615 if (xfs_has_lazysbcount(mp
) || (tp
->t_flags
& XFS_TRANS_SB_DIRTY
)) {
616 blkdelta
+= tp
->t_fdblocks_delta
;
617 ASSERT(blkdelta
>= 0);
620 ASSERT(tp
->t_rtx_res
|| tp
->t_frextents_delta
>= 0);
621 if (tp
->t_flags
& XFS_TRANS_SB_DIRTY
) {
622 rtxdelta
+= tp
->t_frextents_delta
;
623 ASSERT(rtxdelta
>= 0);
626 if (xfs_has_lazysbcount(mp
) || (tp
->t_flags
& XFS_TRANS_SB_DIRTY
)) {
627 idelta
= tp
->t_icount_delta
;
628 ifreedelta
= tp
->t_ifree_delta
;
631 /* apply the per-cpu counters */
633 xfs_add_fdblocks(mp
, blkdelta
);
636 percpu_counter_add_batch(&mp
->m_icount
, idelta
,
640 percpu_counter_add(&mp
->m_ifree
, ifreedelta
);
643 xfs_add_frextents(mp
, rtxdelta
);
645 if (!(tp
->t_flags
& XFS_TRANS_SB_DIRTY
))
648 /* apply remaining deltas */
649 spin_lock(&mp
->m_sb_lock
);
650 mp
->m_sb
.sb_fdblocks
+= tp
->t_fdblocks_delta
+ tp
->t_res_fdblocks_delta
;
651 mp
->m_sb
.sb_icount
+= idelta
;
652 mp
->m_sb
.sb_ifree
+= ifreedelta
;
654 * Do not touch sb_frextents here because we are dealing with incore
655 * reservation. sb_frextents is not part of the lazy sb counters so it
656 * must be consistent with the ondisk rtbitmap and must never include
657 * incore reservations.
659 mp
->m_sb
.sb_dblocks
+= tp
->t_dblocks_delta
;
660 mp
->m_sb
.sb_agcount
+= tp
->t_agcount_delta
;
661 mp
->m_sb
.sb_imax_pct
+= tp
->t_imaxpct_delta
;
662 mp
->m_sb
.sb_rextsize
+= tp
->t_rextsize_delta
;
663 if (tp
->t_rextsize_delta
) {
664 mp
->m_rtxblklog
= log2_if_power2(mp
->m_sb
.sb_rextsize
);
665 mp
->m_rtxblkmask
= mask64_if_power2(mp
->m_sb
.sb_rextsize
);
667 mp
->m_sb
.sb_rbmblocks
+= tp
->t_rbmblocks_delta
;
668 mp
->m_sb
.sb_rblocks
+= tp
->t_rblocks_delta
;
669 mp
->m_sb
.sb_rextents
+= tp
->t_rextents_delta
;
670 mp
->m_sb
.sb_rextslog
+= tp
->t_rextslog_delta
;
671 spin_unlock(&mp
->m_sb_lock
);
674 * Debug checks outside of the spinlock so they don't lock up the
675 * machine if they fail.
677 ASSERT(mp
->m_sb
.sb_imax_pct
>= 0);
678 ASSERT(mp
->m_sb
.sb_rextslog
>= 0);
681 /* Add the given log item to the transaction's list of log items. */
684 struct xfs_trans
*tp
,
685 struct xfs_log_item
*lip
)
687 ASSERT(lip
->li_log
== tp
->t_mountp
->m_log
);
688 ASSERT(lip
->li_ailp
== tp
->t_mountp
->m_ail
);
689 ASSERT(list_empty(&lip
->li_trans
));
690 ASSERT(!test_bit(XFS_LI_DIRTY
, &lip
->li_flags
));
692 list_add_tail(&lip
->li_trans
, &tp
->t_items
);
693 trace_xfs_trans_add_item(tp
, _RET_IP_
);
697 * Unlink the log item from the transaction. the log item is no longer
698 * considered dirty in this transaction, as the linked transaction has
699 * finished, either by abort or commit completion.
703 struct xfs_log_item
*lip
)
705 clear_bit(XFS_LI_DIRTY
, &lip
->li_flags
);
706 list_del_init(&lip
->li_trans
);
709 /* Detach and unlock all of the items in a transaction */
711 xfs_trans_free_items(
712 struct xfs_trans
*tp
,
715 struct xfs_log_item
*lip
, *next
;
717 trace_xfs_trans_free_items(tp
, _RET_IP_
);
719 list_for_each_entry_safe(lip
, next
, &tp
->t_items
, li_trans
) {
720 xfs_trans_del_item(lip
);
722 set_bit(XFS_LI_ABORTED
, &lip
->li_flags
);
723 if (lip
->li_ops
->iop_release
)
724 lip
->li_ops
->iop_release(lip
);
729 * Sort transaction items prior to running precommit operations. This will
730 * attempt to order the items such that they will always be locked in the same
731 * order. Items that have no sort function are moved to the end of the list
732 * and so are locked last.
734 * This may need refinement as different types of objects add sort functions.
736 * Function is more complex than it needs to be because we are comparing 64 bit
737 * values and the function only returns 32 bit values.
740 xfs_trans_precommit_sort(
742 const struct list_head
*a
,
743 const struct list_head
*b
)
745 struct xfs_log_item
*lia
= container_of(a
,
746 struct xfs_log_item
, li_trans
);
747 struct xfs_log_item
*lib
= container_of(b
,
748 struct xfs_log_item
, li_trans
);
752 * If both items are non-sortable, leave them alone. If only one is
753 * sortable, move the non-sortable item towards the end of the list.
755 if (!lia
->li_ops
->iop_sort
&& !lib
->li_ops
->iop_sort
)
757 if (!lia
->li_ops
->iop_sort
)
759 if (!lib
->li_ops
->iop_sort
)
762 diff
= lia
->li_ops
->iop_sort(lia
) - lib
->li_ops
->iop_sort(lib
);
771 * Run transaction precommit functions.
773 * If there is an error in any of the callouts, then stop immediately and
774 * trigger a shutdown to abort the transaction. There is no recovery possible
775 * from errors at this point as the transaction is dirty....
778 xfs_trans_run_precommits(
779 struct xfs_trans
*tp
)
781 struct xfs_mount
*mp
= tp
->t_mountp
;
782 struct xfs_log_item
*lip
, *n
;
786 * Sort the item list to avoid ABBA deadlocks with other transactions
787 * running precommit operations that lock multiple shared items such as
788 * inode cluster buffers.
790 list_sort(NULL
, &tp
->t_items
, xfs_trans_precommit_sort
);
793 * Precommit operations can remove the log item from the transaction
794 * if the log item exists purely to delay modifications until they
795 * can be ordered against other operations. Hence we have to use
796 * list_for_each_entry_safe() here.
798 list_for_each_entry_safe(lip
, n
, &tp
->t_items
, li_trans
) {
799 if (!test_bit(XFS_LI_DIRTY
, &lip
->li_flags
))
801 if (lip
->li_ops
->iop_precommit
) {
802 error
= lip
->li_ops
->iop_precommit(tp
, lip
);
808 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
813 * Commit the given transaction to the log.
815 * XFS disk error handling mechanism is not based on a typical
816 * transaction abort mechanism. Logically after the filesystem
817 * gets marked 'SHUTDOWN', we can't let any new transactions
818 * be durable - ie. committed to disk - because some metadata might
819 * be inconsistent. In such cases, this returns an error, and the
820 * caller may assume that all locked objects joined to the transaction
821 * have already been unlocked as if the commit had succeeded.
822 * Do not reference the transaction structure after this call.
826 struct xfs_trans
*tp
,
829 struct xfs_mount
*mp
= tp
->t_mountp
;
830 struct xlog
*log
= mp
->m_log
;
831 xfs_csn_t commit_seq
= 0;
833 int sync
= tp
->t_flags
& XFS_TRANS_SYNC
;
835 trace_xfs_trans_commit(tp
, _RET_IP_
);
837 error
= xfs_trans_run_precommits(tp
);
839 if (tp
->t_flags
& XFS_TRANS_PERM_LOG_RES
)
840 xfs_defer_cancel(tp
);
845 * Finish deferred items on final commit. Only permanent transactions
846 * should ever have deferred ops.
848 WARN_ON_ONCE(!list_empty(&tp
->t_dfops
) &&
849 !(tp
->t_flags
& XFS_TRANS_PERM_LOG_RES
));
850 if (!regrant
&& (tp
->t_flags
& XFS_TRANS_PERM_LOG_RES
)) {
851 error
= xfs_defer_finish_noroll(&tp
);
855 /* Run precommits from final tx in defer chain. */
856 error
= xfs_trans_run_precommits(tp
);
862 * If there is nothing to be logged by the transaction,
863 * then unlock all of the items associated with the
864 * transaction and free the transaction structure.
865 * Also make sure to return any reserved blocks to
868 if (!(tp
->t_flags
& XFS_TRANS_DIRTY
))
872 * We must check against log shutdown here because we cannot abort log
873 * items and leave them dirty, inconsistent and unpinned in memory while
874 * the log is active. This leaves them open to being written back to
875 * disk, and that will lead to on-disk corruption.
877 if (xlog_is_shutdown(log
)) {
882 ASSERT(tp
->t_ticket
!= NULL
);
885 * If we need to update the superblock, then do it now.
887 if (tp
->t_flags
& XFS_TRANS_SB_DIRTY
)
888 xfs_trans_apply_sb_deltas(tp
);
889 xfs_trans_apply_dquot_deltas(tp
);
891 xlog_cil_commit(log
, tp
, &commit_seq
, regrant
);
896 * If the transaction needs to be synchronous, then force the
897 * log out now and wait for it.
900 error
= xfs_log_force_seq(mp
, commit_seq
, XFS_LOG_SYNC
, NULL
);
901 XFS_STATS_INC(mp
, xs_trans_sync
);
903 XFS_STATS_INC(mp
, xs_trans_async
);
909 xfs_trans_unreserve_and_mod_sb(tp
);
912 * It is indeed possible for the transaction to be not dirty but
913 * the dqinfo portion to be. All that means is that we have some
914 * (non-persistent) quota reservations that need to be unreserved.
916 xfs_trans_unreserve_and_mod_dquots(tp
);
918 if (regrant
&& !xlog_is_shutdown(log
))
919 xfs_log_ticket_regrant(log
, tp
->t_ticket
);
921 xfs_log_ticket_ungrant(log
, tp
->t_ticket
);
924 xfs_trans_free_items(tp
, !!error
);
927 XFS_STATS_INC(mp
, xs_trans_empty
);
933 struct xfs_trans
*tp
)
935 return __xfs_trans_commit(tp
, false);
939 * Unlock all of the transaction's items and free the transaction. If the
940 * transaction is dirty, we must shut down the filesystem because there is no
941 * way to restore them to their previous state.
943 * If the transaction has made a log reservation, make sure to release it as
946 * This is a high level function (equivalent to xfs_trans_commit()) and so can
947 * be called after the transaction has effectively been aborted due to the mount
948 * being shut down. However, if the mount has not been shut down and the
949 * transaction is dirty we will shut the mount down and, in doing so, that
950 * guarantees that the log is shut down, too. Hence we don't need to be as
951 * careful with shutdown state and dirty items here as we need to be in
952 * xfs_trans_commit().
956 struct xfs_trans
*tp
)
958 struct xfs_mount
*mp
= tp
->t_mountp
;
959 struct xlog
*log
= mp
->m_log
;
960 bool dirty
= (tp
->t_flags
& XFS_TRANS_DIRTY
);
962 trace_xfs_trans_cancel(tp
, _RET_IP_
);
965 * It's never valid to cancel a transaction with deferred ops attached,
966 * because the transaction is effectively dirty. Complain about this
967 * loudly before freeing the in-memory defer items and shutting down the
970 if (!list_empty(&tp
->t_dfops
)) {
971 ASSERT(tp
->t_flags
& XFS_TRANS_PERM_LOG_RES
);
973 xfs_defer_cancel(tp
);
977 * See if the caller is relying on us to shut down the filesystem. We
978 * only want an error report if there isn't already a shutdown in
979 * progress, so we only need to check against the mount shutdown state
982 if (dirty
&& !xfs_is_shutdown(mp
)) {
983 XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW
, mp
);
984 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
987 /* Log items need to be consistent until the log is shut down. */
988 if (!dirty
&& !xlog_is_shutdown(log
)) {
989 struct xfs_log_item
*lip
;
991 list_for_each_entry(lip
, &tp
->t_items
, li_trans
)
992 ASSERT(!xlog_item_is_intent_done(lip
));
995 xfs_trans_unreserve_and_mod_sb(tp
);
996 xfs_trans_unreserve_and_mod_dquots(tp
);
999 xfs_log_ticket_ungrant(log
, tp
->t_ticket
);
1000 tp
->t_ticket
= NULL
;
1003 xfs_trans_free_items(tp
, dirty
);
1008 * Roll from one trans in the sequence of PERMANENT transactions to
1009 * the next: permanent transactions are only flushed out when
1010 * committed with xfs_trans_commit(), but we still want as soon
1011 * as possible to let chunks of it go to the log. So we commit the
1012 * chunk we've been working on and get a new transaction to continue.
1016 struct xfs_trans
**tpp
)
1018 struct xfs_trans
*trans
= *tpp
;
1019 struct xfs_trans_res tres
;
1022 trace_xfs_trans_roll(trans
, _RET_IP_
);
1025 * Copy the critical parameters from one trans to the next.
1027 tres
.tr_logres
= trans
->t_log_res
;
1028 tres
.tr_logcount
= trans
->t_log_count
;
1030 *tpp
= xfs_trans_dup(trans
);
1033 * Commit the current transaction.
1034 * If this commit failed, then it'd just unlock those items that
1035 * are not marked ihold. That also means that a filesystem shutdown
1036 * is in progress. The caller takes the responsibility to cancel
1037 * the duplicate transaction that gets returned.
1039 error
= __xfs_trans_commit(trans
, true);
1044 * Reserve space in the log for the next transaction.
1045 * This also pushes items in the "AIL", the list of logged items,
1046 * out to disk if they are taking up space at the tail of the log
1047 * that we want to use. This requires that either nothing be locked
1048 * across this call, or that anything that is locked be logged in
1049 * the prior and the next transactions.
1051 tres
.tr_logflags
= XFS_TRANS_PERM_LOG_RES
;
1052 return xfs_trans_reserve(*tpp
, &tres
, 0, 0);
1056 * Allocate an transaction, lock and join the inode to it, and reserve quota.
1058 * The caller must ensure that the on-disk dquots attached to this inode have
1059 * already been allocated and initialized. The caller is responsible for
1060 * releasing ILOCK_EXCL if a new transaction is returned.
1063 xfs_trans_alloc_inode(
1064 struct xfs_inode
*ip
,
1065 struct xfs_trans_res
*resv
,
1066 unsigned int dblocks
,
1067 unsigned int rblocks
,
1069 struct xfs_trans
**tpp
)
1071 struct xfs_trans
*tp
;
1072 struct xfs_mount
*mp
= ip
->i_mount
;
1073 bool retried
= false;
1077 error
= xfs_trans_alloc(mp
, resv
, dblocks
,
1078 xfs_extlen_to_rtxlen(mp
, rblocks
),
1079 force
? XFS_TRANS_RESERVE
: 0, &tp
);
1083 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
1084 xfs_trans_ijoin(tp
, ip
, 0);
1086 error
= xfs_qm_dqattach_locked(ip
, false);
1088 /* Caller should have allocated the dquots! */
1089 ASSERT(error
!= -ENOENT
);
1093 error
= xfs_trans_reserve_quota_nblks(tp
, ip
, dblocks
, rblocks
, force
);
1094 if ((error
== -EDQUOT
|| error
== -ENOSPC
) && !retried
) {
1095 xfs_trans_cancel(tp
);
1096 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1097 xfs_blockgc_free_quota(ip
, 0);
1108 xfs_trans_cancel(tp
);
1109 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1114 * Try to reserve more blocks for a transaction.
1116 * This is for callers that need to attach resources to a transaction, scan
1117 * those resources to determine the space reservation requirements, and then
1118 * modify the attached resources. In other words, online repair. This can
1119 * fail due to ENOSPC, so the caller must be able to cancel the transaction
1120 * without shutting down the fs.
1123 xfs_trans_reserve_more(
1124 struct xfs_trans
*tp
,
1125 unsigned int blocks
,
1126 unsigned int rtextents
)
1128 struct xfs_trans_res resv
= { };
1130 return xfs_trans_reserve(tp
, &resv
, blocks
, rtextents
);
1134 * Try to reserve more blocks and file quota for a transaction. Same
1135 * conditions of usage as xfs_trans_reserve_more.
1138 xfs_trans_reserve_more_inode(
1139 struct xfs_trans
*tp
,
1140 struct xfs_inode
*ip
,
1141 unsigned int dblocks
,
1142 unsigned int rblocks
,
1145 struct xfs_trans_res resv
= { };
1146 struct xfs_mount
*mp
= ip
->i_mount
;
1147 unsigned int rtx
= xfs_extlen_to_rtxlen(mp
, rblocks
);
1150 xfs_assert_ilocked(ip
, XFS_ILOCK_EXCL
);
1152 error
= xfs_trans_reserve(tp
, &resv
, dblocks
, rtx
);
1156 if (!XFS_IS_QUOTA_ON(mp
) || xfs_is_quota_inode(&mp
->m_sb
, ip
->i_ino
))
1159 if (tp
->t_flags
& XFS_TRANS_RESERVE
)
1162 error
= xfs_trans_reserve_quota_nblks(tp
, ip
, dblocks
, rblocks
,
1167 /* Quota failed, give back the new reservation. */
1168 xfs_add_fdblocks(mp
, dblocks
);
1169 tp
->t_blk_res
-= dblocks
;
1170 xfs_add_frextents(mp
, rtx
);
1171 tp
->t_rtx_res
-= rtx
;
1176 * Allocate an transaction in preparation for inode creation by reserving quota
1177 * against the given dquots. Callers are not required to hold any inode locks.
1180 xfs_trans_alloc_icreate(
1181 struct xfs_mount
*mp
,
1182 struct xfs_trans_res
*resv
,
1183 struct xfs_dquot
*udqp
,
1184 struct xfs_dquot
*gdqp
,
1185 struct xfs_dquot
*pdqp
,
1186 unsigned int dblocks
,
1187 struct xfs_trans
**tpp
)
1189 struct xfs_trans
*tp
;
1190 bool retried
= false;
1194 error
= xfs_trans_alloc(mp
, resv
, dblocks
, 0, 0, &tp
);
1198 error
= xfs_trans_reserve_quota_icreate(tp
, udqp
, gdqp
, pdqp
, dblocks
);
1199 if ((error
== -EDQUOT
|| error
== -ENOSPC
) && !retried
) {
1200 xfs_trans_cancel(tp
);
1201 xfs_blockgc_free_dquots(mp
, udqp
, gdqp
, pdqp
, 0);
1206 xfs_trans_cancel(tp
);
1215 * Allocate an transaction, lock and join the inode to it, and reserve quota
1216 * in preparation for inode attribute changes that include uid, gid, or prid
1219 * The caller must ensure that the on-disk dquots attached to this inode have
1220 * already been allocated and initialized. The ILOCK will be dropped when the
1221 * transaction is committed or cancelled.
1224 xfs_trans_alloc_ichange(
1225 struct xfs_inode
*ip
,
1226 struct xfs_dquot
*new_udqp
,
1227 struct xfs_dquot
*new_gdqp
,
1228 struct xfs_dquot
*new_pdqp
,
1230 struct xfs_trans
**tpp
)
1232 struct xfs_trans
*tp
;
1233 struct xfs_mount
*mp
= ip
->i_mount
;
1234 struct xfs_dquot
*udqp
;
1235 struct xfs_dquot
*gdqp
;
1236 struct xfs_dquot
*pdqp
;
1237 bool retried
= false;
1241 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_ichange
, 0, 0, 0, &tp
);
1245 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
1246 xfs_trans_ijoin(tp
, ip
, XFS_ILOCK_EXCL
);
1248 error
= xfs_qm_dqattach_locked(ip
, false);
1250 /* Caller should have allocated the dquots! */
1251 ASSERT(error
!= -ENOENT
);
1256 * For each quota type, skip quota reservations if the inode's dquots
1257 * now match the ones that came from the caller, or the caller didn't
1258 * pass one in. The inode's dquots can change if we drop the ILOCK to
1259 * perform a blockgc scan, so we must preserve the caller's arguments.
1261 udqp
= (new_udqp
!= ip
->i_udquot
) ? new_udqp
: NULL
;
1262 gdqp
= (new_gdqp
!= ip
->i_gdquot
) ? new_gdqp
: NULL
;
1263 pdqp
= (new_pdqp
!= ip
->i_pdquot
) ? new_pdqp
: NULL
;
1264 if (udqp
|| gdqp
|| pdqp
) {
1265 unsigned int qflags
= XFS_QMOPT_RES_REGBLKS
;
1268 qflags
|= XFS_QMOPT_FORCE_RES
;
1271 * Reserve enough quota to handle blocks on disk and reserved
1272 * for a delayed allocation. We'll actually transfer the
1273 * delalloc reservation between dquots at chown time, even
1274 * though that part is only semi-transactional.
1276 error
= xfs_trans_reserve_quota_bydquots(tp
, mp
, udqp
, gdqp
,
1277 pdqp
, ip
->i_nblocks
+ ip
->i_delayed_blks
,
1279 if ((error
== -EDQUOT
|| error
== -ENOSPC
) && !retried
) {
1280 xfs_trans_cancel(tp
);
1281 xfs_blockgc_free_dquots(mp
, udqp
, gdqp
, pdqp
, 0);
1293 xfs_trans_cancel(tp
);
1298 * Allocate an transaction, lock and join the directory and child inodes to it,
1299 * and reserve quota for a directory update. If there isn't sufficient space,
1300 * @dblocks will be set to zero for a reservationless directory update and
1301 * @nospace_error will be set to a negative errno describing the space
1302 * constraint we hit.
1304 * The caller must ensure that the on-disk dquots attached to this inode have
1305 * already been allocated and initialized. The ILOCKs will be dropped when the
1306 * transaction is committed or cancelled.
1308 * Caller is responsible for unlocking the inodes manually upon return
1311 xfs_trans_alloc_dir(
1312 struct xfs_inode
*dp
,
1313 struct xfs_trans_res
*resv
,
1314 struct xfs_inode
*ip
,
1315 unsigned int *dblocks
,
1316 struct xfs_trans
**tpp
,
1319 struct xfs_trans
*tp
;
1320 struct xfs_mount
*mp
= ip
->i_mount
;
1321 unsigned int resblks
;
1322 bool retried
= false;
1328 error
= xfs_trans_alloc(mp
, resv
, resblks
, 0, 0, &tp
);
1329 if (error
== -ENOSPC
) {
1330 *nospace_error
= error
;
1332 error
= xfs_trans_alloc(mp
, resv
, resblks
, 0, 0, &tp
);
1337 xfs_lock_two_inodes(dp
, XFS_ILOCK_EXCL
, ip
, XFS_ILOCK_EXCL
);
1339 xfs_trans_ijoin(tp
, dp
, 0);
1340 xfs_trans_ijoin(tp
, ip
, 0);
1342 error
= xfs_qm_dqattach_locked(dp
, false);
1344 /* Caller should have allocated the dquots! */
1345 ASSERT(error
!= -ENOENT
);
1349 error
= xfs_qm_dqattach_locked(ip
, false);
1351 /* Caller should have allocated the dquots! */
1352 ASSERT(error
!= -ENOENT
);
1359 error
= xfs_trans_reserve_quota_nblks(tp
, dp
, resblks
, 0, false);
1360 if (error
== -EDQUOT
|| error
== -ENOSPC
) {
1362 xfs_trans_cancel(tp
);
1363 xfs_iunlock(dp
, XFS_ILOCK_EXCL
);
1365 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1366 xfs_blockgc_free_quota(dp
, 0);
1371 *nospace_error
= error
;
1384 xfs_trans_cancel(tp
);