1 // SPDX-License-Identifier: GPL-2.0
5 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
10 #include <subcmd/parse-options.h>
11 #include "../util/cloexec.h"
27 #include <sys/resource.h>
29 #include <sys/prctl.h>
30 #include <sys/types.h>
31 #include <linux/kernel.h>
32 #include <linux/time64.h>
33 #include <linux/numa.h>
34 #include <linux/zalloc.h>
36 #include "../util/header.h"
37 #include "../util/mutex.h"
42 # define RUSAGE_THREAD 1
46 * Regular printout to the terminal, suppressed if -q is specified:
48 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
54 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
58 cpu_set_t
*bind_cpumask
;
64 unsigned int loops_done
;
70 struct mutex
*process_lock
;
73 /* Parameters set by options: */
76 /* Startup synchronization: */
77 bool serialize_startup
;
83 /* Working set sizes: */
84 const char *mb_global_str
;
85 const char *mb_proc_str
;
86 const char *mb_proc_locked_str
;
87 const char *mb_thread_str
;
91 double mb_proc_locked
;
94 /* Access patterns to the working set: */
98 bool data_zero_memset
;
104 /* Working set initialization: */
116 long bytes_process_locked
;
121 bool show_convergence
;
122 bool measure_convergence
;
128 /* Affinity options -C and -N: */
134 /* Global, read-writable area, accessible to all processes and threads: */
139 struct mutex startup_mutex
;
140 struct cond startup_cond
;
141 int nr_tasks_started
;
143 struct mutex start_work_mutex
;
144 struct cond start_work_cond
;
145 int nr_tasks_working
;
148 struct mutex stop_work_mutex
;
151 struct thread_data
*threads
;
153 /* Convergence latency measurement: */
162 static struct global_info
*g
= NULL
;
164 static int parse_cpus_opt(const struct option
*opt
, const char *arg
, int unset
);
165 static int parse_nodes_opt(const struct option
*opt
, const char *arg
, int unset
);
169 static const struct option options
[] = {
170 OPT_INTEGER('p', "nr_proc" , &p0
.nr_proc
, "number of processes"),
171 OPT_INTEGER('t', "nr_threads" , &p0
.nr_threads
, "number of threads per process"),
173 OPT_STRING('G', "mb_global" , &p0
.mb_global_str
, "MB", "global memory (MBs)"),
174 OPT_STRING('P', "mb_proc" , &p0
.mb_proc_str
, "MB", "process memory (MBs)"),
175 OPT_STRING('L', "mb_proc_locked", &p0
.mb_proc_locked_str
,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
176 OPT_STRING('T', "mb_thread" , &p0
.mb_thread_str
, "MB", "thread memory (MBs)"),
178 OPT_UINTEGER('l', "nr_loops" , &p0
.nr_loops
, "max number of loops to run (default: unlimited)"),
179 OPT_UINTEGER('s', "nr_secs" , &p0
.nr_secs
, "max number of seconds to run (default: 5 secs)"),
180 OPT_UINTEGER('u', "usleep" , &p0
.sleep_usecs
, "usecs to sleep per loop iteration"),
182 OPT_BOOLEAN('R', "data_reads" , &p0
.data_reads
, "access the data via reads (can be mixed with -W)"),
183 OPT_BOOLEAN('W', "data_writes" , &p0
.data_writes
, "access the data via writes (can be mixed with -R)"),
184 OPT_BOOLEAN('B', "data_backwards", &p0
.data_backwards
, "access the data backwards as well"),
185 OPT_BOOLEAN('Z', "data_zero_memset", &p0
.data_zero_memset
,"access the data via glibc bzero only"),
186 OPT_BOOLEAN('r', "data_rand_walk", &p0
.data_rand_walk
, "access the data with random (32bit LFSR) walk"),
189 OPT_BOOLEAN('z', "init_zero" , &p0
.init_zero
, "bzero the initial allocations"),
190 OPT_BOOLEAN('I', "init_random" , &p0
.init_random
, "randomize the contents of the initial allocations"),
191 OPT_BOOLEAN('0', "init_cpu0" , &p0
.init_cpu0
, "do the initial allocations on CPU#0"),
192 OPT_INTEGER('x', "perturb_secs", &p0
.perturb_secs
, "perturb thread 0/0 every X secs, to test convergence stability"),
194 OPT_INCR ('d', "show_details" , &p0
.show_details
, "Show details"),
195 OPT_INCR ('a', "all" , &p0
.run_all
, "Run all tests in the suite"),
196 OPT_INTEGER('H', "thp" , &p0
.thp
, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
197 OPT_BOOLEAN('c', "show_convergence", &p0
.show_convergence
, "show convergence details, "
198 "convergence is reached when each process (all its threads) is running on a single NUMA node."),
199 OPT_BOOLEAN('m', "measure_convergence", &p0
.measure_convergence
, "measure convergence latency"),
200 OPT_BOOLEAN('q', "quiet" , &quiet
,
201 "quiet mode (do not show any warnings or messages)"),
202 OPT_BOOLEAN('S', "serialize-startup", &p0
.serialize_startup
,"serialize thread startup"),
204 /* Special option string parsing callbacks: */
205 OPT_CALLBACK('C', "cpus", NULL
, "cpu[,cpu2,...cpuN]",
206 "bind the first N tasks to these specific cpus (the rest is unbound)",
208 OPT_CALLBACK('M', "memnodes", NULL
, "node[,node2,...nodeN]",
209 "bind the first N tasks to these specific memory nodes (the rest is unbound)",
214 static const char * const bench_numa_usage
[] = {
215 "perf bench numa <options>",
219 static const char * const numa_usage
[] = {
220 "perf bench numa mem [<options>]",
225 * To get number of numa nodes present.
227 static int nr_numa_nodes(void)
231 for (i
= 0; i
< g
->p
.nr_nodes
; i
++) {
232 if (numa_bitmask_isbitset(numa_nodes_ptr
, i
))
240 * To check if given numa node is present.
242 static int is_node_present(int node
)
244 return numa_bitmask_isbitset(numa_nodes_ptr
, node
);
248 * To check given numa node has cpus.
250 static bool node_has_cpus(int node
)
252 struct bitmask
*cpumask
= numa_allocate_cpumask();
253 bool ret
= false; /* fall back to nocpus */
257 if (!numa_node_to_cpus(node
, cpumask
)) {
258 for (cpu
= 0; cpu
< (int)cpumask
->size
; cpu
++) {
259 if (numa_bitmask_isbitset(cpumask
, cpu
)) {
265 numa_free_cpumask(cpumask
);
270 static cpu_set_t
*bind_to_cpu(int target_cpu
)
272 int nrcpus
= numa_num_possible_cpus();
273 cpu_set_t
*orig_mask
, *mask
;
276 orig_mask
= CPU_ALLOC(nrcpus
);
278 size
= CPU_ALLOC_SIZE(nrcpus
);
279 CPU_ZERO_S(size
, orig_mask
);
281 if (sched_getaffinity(0, size
, orig_mask
))
284 mask
= CPU_ALLOC(nrcpus
);
288 CPU_ZERO_S(size
, mask
);
290 if (target_cpu
== -1) {
293 for (cpu
= 0; cpu
< g
->p
.nr_cpus
; cpu
++)
294 CPU_SET_S(cpu
, size
, mask
);
296 if (target_cpu
< 0 || target_cpu
>= g
->p
.nr_cpus
)
299 CPU_SET_S(target_cpu
, size
, mask
);
302 if (sched_setaffinity(0, size
, mask
))
312 /* BUG_ON due to failure in allocation of orig_mask/mask */
317 static cpu_set_t
*bind_to_node(int target_node
)
319 int nrcpus
= numa_num_possible_cpus();
321 cpu_set_t
*orig_mask
, *mask
;
324 orig_mask
= CPU_ALLOC(nrcpus
);
326 size
= CPU_ALLOC_SIZE(nrcpus
);
327 CPU_ZERO_S(size
, orig_mask
);
329 if (sched_getaffinity(0, size
, orig_mask
))
332 mask
= CPU_ALLOC(nrcpus
);
336 CPU_ZERO_S(size
, mask
);
338 if (target_node
== NUMA_NO_NODE
) {
339 for (cpu
= 0; cpu
< g
->p
.nr_cpus
; cpu
++)
340 CPU_SET_S(cpu
, size
, mask
);
342 struct bitmask
*cpumask
= numa_allocate_cpumask();
347 if (!numa_node_to_cpus(target_node
, cpumask
)) {
348 for (cpu
= 0; cpu
< (int)cpumask
->size
; cpu
++) {
349 if (numa_bitmask_isbitset(cpumask
, cpu
))
350 CPU_SET_S(cpu
, size
, mask
);
353 numa_free_cpumask(cpumask
);
356 if (sched_setaffinity(0, size
, mask
))
366 /* BUG_ON due to failure in allocation of orig_mask/mask */
371 static void bind_to_cpumask(cpu_set_t
*mask
)
374 size_t size
= CPU_ALLOC_SIZE(numa_num_possible_cpus());
376 ret
= sched_setaffinity(0, size
, mask
);
383 static void mempol_restore(void)
387 ret
= set_mempolicy(MPOL_DEFAULT
, NULL
, g
->p
.nr_nodes
-1);
392 static void bind_to_memnode(int node
)
394 struct bitmask
*node_mask
;
397 if (node
== NUMA_NO_NODE
)
400 node_mask
= numa_allocate_nodemask();
403 numa_bitmask_clearall(node_mask
);
404 numa_bitmask_setbit(node_mask
, node
);
406 ret
= set_mempolicy(MPOL_BIND
, node_mask
->maskp
, node_mask
->size
+ 1);
407 dprintf("binding to node %d, mask: %016lx => %d\n", node
, *node_mask
->maskp
, ret
);
409 numa_bitmask_free(node_mask
);
413 #define HPSIZE (2*1024*1024)
415 #define set_taskname(fmt...) \
419 snprintf(name, 20, fmt); \
420 prctl(PR_SET_NAME, name); \
423 static u8
*alloc_data(ssize_t bytes0
, int map_flags
,
424 int init_zero
, int init_cpu0
, int thp
, int init_random
)
426 cpu_set_t
*orig_mask
= NULL
;
434 /* Allocate and initialize all memory on CPU#0: */
436 int node
= numa_node_of_cpu(0);
438 orig_mask
= bind_to_node(node
);
439 bind_to_memnode(node
);
442 bytes
= bytes0
+ HPSIZE
;
444 buf
= (void *)mmap(0, bytes
, PROT_READ
|PROT_WRITE
, MAP_ANON
|map_flags
, -1, 0);
445 BUG_ON(buf
== (void *)-1);
447 if (map_flags
== MAP_PRIVATE
) {
449 ret
= madvise(buf
, bytes
, MADV_HUGEPAGE
);
450 if (ret
&& !g
->print_once
) {
452 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
456 ret
= madvise(buf
, bytes
, MADV_NOHUGEPAGE
);
457 if (ret
&& !g
->print_once
) {
459 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
467 /* Initialize random contents, different in each word: */
469 u64
*wbuf
= (void *)buf
;
473 for (i
= 0; i
< bytes
/8; i
++)
478 /* Align to 2MB boundary: */
479 buf
= (void *)(((unsigned long)buf
+ HPSIZE
-1) & ~(HPSIZE
-1));
481 /* Restore affinity: */
483 bind_to_cpumask(orig_mask
);
491 static void free_data(void *data
, ssize_t bytes
)
498 ret
= munmap(data
, bytes
);
503 * Create a shared memory buffer that can be shared between processes, zeroed:
505 static void * zalloc_shared_data(ssize_t bytes
)
507 return alloc_data(bytes
, MAP_SHARED
, 1, g
->p
.init_cpu0
, g
->p
.thp
, g
->p
.init_random
);
511 * Create a shared memory buffer that can be shared between processes:
513 static void * setup_shared_data(ssize_t bytes
)
515 return alloc_data(bytes
, MAP_SHARED
, 0, g
->p
.init_cpu0
, g
->p
.thp
, g
->p
.init_random
);
519 * Allocate process-local memory - this will either be shared between
520 * threads of this process, or only be accessed by this thread:
522 static void * setup_private_data(ssize_t bytes
)
524 return alloc_data(bytes
, MAP_PRIVATE
, 0, g
->p
.init_cpu0
, g
->p
.thp
, g
->p
.init_random
);
527 static int parse_cpu_list(const char *arg
)
529 p0
.cpu_list_str
= strdup(arg
);
531 dprintf("got CPU list: {%s}\n", p0
.cpu_list_str
);
536 static int parse_setup_cpu_list(void)
538 struct thread_data
*td
;
542 if (!g
->p
.cpu_list_str
)
545 dprintf("g->p.nr_tasks: %d\n", g
->p
.nr_tasks
);
547 str0
= str
= strdup(g
->p
.cpu_list_str
);
552 tprintf("# binding tasks to CPUs:\n");
556 int bind_cpu
, bind_cpu_0
, bind_cpu_1
;
557 char *tok
, *tok_end
, *tok_step
, *tok_len
, *tok_mul
;
562 tok
= strsep(&str
, ",");
566 tok_end
= strstr(tok
, "-");
568 dprintf("\ntoken: {%s}, end: {%s}\n", tok
, tok_end
);
570 /* Single CPU specified: */
571 bind_cpu_0
= bind_cpu_1
= atol(tok
);
573 /* CPU range specified (for example: "5-11"): */
574 bind_cpu_0
= atol(tok
);
575 bind_cpu_1
= atol(tok_end
+ 1);
579 tok_step
= strstr(tok
, "#");
581 step
= atol(tok_step
+ 1);
582 BUG_ON(step
<= 0 || step
>= g
->p
.nr_cpus
);
587 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
588 * where the _4 means the next 4 CPUs are allowed.
591 tok_len
= strstr(tok
, "_");
593 bind_len
= atol(tok_len
+ 1);
594 BUG_ON(bind_len
<= 0 || bind_len
> g
->p
.nr_cpus
);
597 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
599 tok_mul
= strstr(tok
, "x");
601 mul
= atol(tok_mul
+ 1);
605 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0
, bind_len
, bind_cpu_1
, step
, mul
);
607 if (bind_cpu_0
>= g
->p
.nr_cpus
|| bind_cpu_1
>= g
->p
.nr_cpus
) {
608 printf("\nTest not applicable, system has only %d CPUs.\n", g
->p
.nr_cpus
);
612 if (is_cpu_online(bind_cpu_0
) != 1 || is_cpu_online(bind_cpu_1
) != 1) {
613 printf("\nTest not applicable, bind_cpu_0 or bind_cpu_1 is offline\n");
617 BUG_ON(bind_cpu_0
< 0 || bind_cpu_1
< 0);
618 BUG_ON(bind_cpu_0
> bind_cpu_1
);
620 for (bind_cpu
= bind_cpu_0
; bind_cpu
<= bind_cpu_1
; bind_cpu
+= step
) {
621 size_t size
= CPU_ALLOC_SIZE(g
->p
.nr_cpus
);
624 for (i
= 0; i
< mul
; i
++) {
627 if (t
>= g
->p
.nr_tasks
) {
628 printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu
);
636 tprintf("%2d/%d", bind_cpu
, bind_len
);
638 tprintf("%2d", bind_cpu
);
641 td
->bind_cpumask
= CPU_ALLOC(g
->p
.nr_cpus
);
642 BUG_ON(!td
->bind_cpumask
);
643 CPU_ZERO_S(size
, td
->bind_cpumask
);
644 for (cpu
= bind_cpu
; cpu
< bind_cpu
+bind_len
; cpu
++) {
645 if (cpu
< 0 || cpu
>= g
->p
.nr_cpus
) {
646 CPU_FREE(td
->bind_cpumask
);
649 CPU_SET_S(cpu
, size
, td
->bind_cpumask
);
659 if (t
< g
->p
.nr_tasks
)
660 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t
, g
->p
.nr_tasks
- t
);
666 static int parse_cpus_opt(const struct option
*opt __maybe_unused
,
667 const char *arg
, int unset __maybe_unused
)
672 return parse_cpu_list(arg
);
675 static int parse_node_list(const char *arg
)
677 p0
.node_list_str
= strdup(arg
);
679 dprintf("got NODE list: {%s}\n", p0
.node_list_str
);
684 static int parse_setup_node_list(void)
686 struct thread_data
*td
;
690 if (!g
->p
.node_list_str
)
693 dprintf("g->p.nr_tasks: %d\n", g
->p
.nr_tasks
);
695 str0
= str
= strdup(g
->p
.node_list_str
);
700 tprintf("# binding tasks to NODEs:\n");
704 int bind_node
, bind_node_0
, bind_node_1
;
705 char *tok
, *tok_end
, *tok_step
, *tok_mul
;
709 tok
= strsep(&str
, ",");
713 tok_end
= strstr(tok
, "-");
715 dprintf("\ntoken: {%s}, end: {%s}\n", tok
, tok_end
);
717 /* Single NODE specified: */
718 bind_node_0
= bind_node_1
= atol(tok
);
720 /* NODE range specified (for example: "5-11"): */
721 bind_node_0
= atol(tok
);
722 bind_node_1
= atol(tok_end
+ 1);
726 tok_step
= strstr(tok
, "#");
728 step
= atol(tok_step
+ 1);
729 BUG_ON(step
<= 0 || step
>= g
->p
.nr_nodes
);
732 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
734 tok_mul
= strstr(tok
, "x");
736 mul
= atol(tok_mul
+ 1);
740 dprintf("NODEs: %d-%d #%d\n", bind_node_0
, bind_node_1
, step
);
742 if (bind_node_0
>= g
->p
.nr_nodes
|| bind_node_1
>= g
->p
.nr_nodes
) {
743 printf("\nTest not applicable, system has only %d nodes.\n", g
->p
.nr_nodes
);
747 BUG_ON(bind_node_0
< 0 || bind_node_1
< 0);
748 BUG_ON(bind_node_0
> bind_node_1
);
750 for (bind_node
= bind_node_0
; bind_node
<= bind_node_1
; bind_node
+= step
) {
753 for (i
= 0; i
< mul
; i
++) {
754 if (t
>= g
->p
.nr_tasks
|| !node_has_cpus(bind_node
)) {
755 printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node
);
761 tprintf(" %2d", bind_node
);
763 tprintf(",%2d", bind_node
);
765 td
->bind_node
= bind_node
;
774 if (t
< g
->p
.nr_tasks
)
775 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t
, g
->p
.nr_tasks
- t
);
781 static int parse_nodes_opt(const struct option
*opt __maybe_unused
,
782 const char *arg
, int unset __maybe_unused
)
787 return parse_node_list(arg
);
790 static inline uint32_t lfsr_32(uint32_t lfsr
)
792 const uint32_t taps
= BIT(1) | BIT(5) | BIT(6) | BIT(31);
793 return (lfsr
>>1) ^ ((0x0u
- (lfsr
& 0x1u
)) & taps
);
797 * Make sure there's real data dependency to RAM (when read
798 * accesses are enabled), so the compiler, the CPU and the
799 * kernel (KSM, zero page, etc.) cannot optimize away RAM
802 static inline u64
access_data(u64
*data
, u64 val
)
806 if (g
->p
.data_writes
)
812 * The worker process does two types of work, a forwards going
813 * loop and a backwards going loop.
815 * We do this so that on multiprocessor systems we do not create
816 * a 'train' of processing, with highly synchronized processes,
817 * skewing the whole benchmark.
819 static u64
do_work(u8
*__data
, long bytes
, int nr
, int nr_max
, int loop
, u64 val
)
821 long words
= bytes
/sizeof(u64
);
822 u64
*data
= (void *)__data
;
823 long chunk_0
, chunk_1
;
828 BUG_ON(!data
&& words
);
829 BUG_ON(data
&& !words
);
834 /* Very simple memset() work variant: */
835 if (g
->p
.data_zero_memset
&& !g
->p
.data_rand_walk
) {
840 /* Spread out by PID/TID nr and by loop nr: */
841 chunk_0
= words
/nr_max
;
842 chunk_1
= words
/g
->p
.nr_loops
;
843 off
= nr
*chunk_0
+ loop
*chunk_1
;
848 if (g
->p
.data_rand_walk
) {
849 u32 lfsr
= nr
+ loop
+ val
;
852 for (i
= 0; i
< words
/1024; i
++) {
855 lfsr
= lfsr_32(lfsr
);
857 start
= lfsr
% words
;
858 end
= min(start
+ 1024, words
-1);
860 if (g
->p
.data_zero_memset
) {
861 bzero(data
+ start
, (end
-start
) * sizeof(u64
));
863 for (j
= start
; j
< end
; j
++)
864 val
= access_data(data
+ j
, val
);
867 } else if (!g
->p
.data_backwards
|| (nr
+ loop
) & 1) {
868 /* Process data forwards: */
875 if (unlikely(d
>= d1
))
877 if (unlikely(d
== d0
))
880 val
= access_data(d
, val
);
885 /* Process data backwards: */
892 if (unlikely(d
< data
))
894 if (unlikely(d
== d0
))
897 val
= access_data(d
, val
);
906 static void update_curr_cpu(int task_nr
, unsigned long bytes_worked
)
910 cpu
= sched_getcpu();
912 g
->threads
[task_nr
].curr_cpu
= cpu
;
913 prctl(0, bytes_worked
);
917 * Count the number of nodes a process's threads
920 * A count of 1 means that the process is compressed
921 * to a single node. A count of g->p.nr_nodes means it's
922 * spread out on the whole system.
924 static int count_process_nodes(int process_nr
)
930 node_present
= (char *)malloc(g
->p
.nr_nodes
* sizeof(char));
931 BUG_ON(!node_present
);
932 for (nodes
= 0; nodes
< g
->p
.nr_nodes
; nodes
++)
933 node_present
[nodes
] = 0;
935 for (t
= 0; t
< g
->p
.nr_threads
; t
++) {
936 struct thread_data
*td
;
940 task_nr
= process_nr
*g
->p
.nr_threads
+ t
;
941 td
= g
->threads
+ task_nr
;
943 node
= numa_node_of_cpu(td
->curr_cpu
);
944 if (node
< 0) /* curr_cpu was likely still -1 */ {
949 node_present
[node
] = 1;
954 for (n
= 0; n
< g
->p
.nr_nodes
; n
++)
955 nodes
+= node_present
[n
];
962 * Count the number of distinct process-threads a node contains.
964 * A count of 1 means that the node contains only a single
965 * process. If all nodes on the system contain at most one
966 * process then we are well-converged.
968 static int count_node_processes(int node
)
973 for (p
= 0; p
< g
->p
.nr_proc
; p
++) {
974 for (t
= 0; t
< g
->p
.nr_threads
; t
++) {
975 struct thread_data
*td
;
979 task_nr
= p
*g
->p
.nr_threads
+ t
;
980 td
= g
->threads
+ task_nr
;
982 n
= numa_node_of_cpu(td
->curr_cpu
);
993 static void calc_convergence_compression(int *strong
)
995 unsigned int nodes_min
, nodes_max
;
1001 for (p
= 0; p
< g
->p
.nr_proc
; p
++) {
1002 unsigned int nodes
= count_process_nodes(p
);
1009 nodes_min
= min(nodes
, nodes_min
);
1010 nodes_max
= max(nodes
, nodes_max
);
1013 /* Strong convergence: all threads compress on a single node: */
1014 if (nodes_min
== 1 && nodes_max
== 1) {
1018 tprintf(" {%d-%d}", nodes_min
, nodes_max
);
1022 static void calc_convergence(double runtime_ns_max
, double *convergence
)
1024 unsigned int loops_done_min
, loops_done_max
;
1037 if (!g
->p
.show_convergence
&& !g
->p
.measure_convergence
)
1040 nodes
= (int *)malloc(g
->p
.nr_nodes
* sizeof(int));
1042 for (node
= 0; node
< g
->p
.nr_nodes
; node
++)
1045 loops_done_min
= -1;
1048 for (t
= 0; t
< g
->p
.nr_tasks
; t
++) {
1049 struct thread_data
*td
= g
->threads
+ t
;
1050 unsigned int loops_done
;
1054 /* Not all threads have written it yet: */
1058 node
= numa_node_of_cpu(cpu
);
1062 loops_done
= td
->loops_done
;
1063 loops_done_min
= min(loops_done
, loops_done_min
);
1064 loops_done_max
= max(loops_done
, loops_done_max
);
1068 nr_min
= g
->p
.nr_tasks
;
1071 for (node
= 0; node
< g
->p
.nr_nodes
; node
++) {
1072 if (!is_node_present(node
))
1075 nr_min
= min(nr
, nr_min
);
1076 nr_max
= max(nr
, nr_max
);
1079 BUG_ON(nr_min
> nr_max
);
1081 BUG_ON(sum
> g
->p
.nr_tasks
);
1083 if (0 && (sum
< g
->p
.nr_tasks
)) {
1089 * Count the number of distinct process groups present
1090 * on nodes - when we are converged this will decrease
1095 for (node
= 0; node
< g
->p
.nr_nodes
; node
++) {
1098 if (!is_node_present(node
))
1100 processes
= count_node_processes(node
);
1102 tprintf(" %2d/%-2d", nr
, processes
);
1104 process_groups
+= processes
;
1107 distance
= nr_max
- nr_min
;
1109 tprintf(" [%2d/%-2d]", distance
, process_groups
);
1111 tprintf(" l:%3d-%-3d (%3d)",
1112 loops_done_min
, loops_done_max
, loops_done_max
-loops_done_min
);
1114 if (loops_done_min
&& loops_done_max
) {
1115 double skew
= 1.0 - (double)loops_done_min
/loops_done_max
;
1117 tprintf(" [%4.1f%%]", skew
* 100.0);
1120 calc_convergence_compression(&strong
);
1122 if (strong
&& process_groups
== g
->p
.nr_proc
) {
1123 if (!*convergence
) {
1124 *convergence
= runtime_ns_max
;
1125 tprintf(" (%6.1fs converged)\n", *convergence
/ NSEC_PER_SEC
);
1126 if (g
->p
.measure_convergence
) {
1127 g
->all_converged
= true;
1128 g
->stop_work
= true;
1133 tprintf(" (%6.1fs de-converged)", runtime_ns_max
/ NSEC_PER_SEC
);
1142 static void show_summary(double runtime_ns_max
, int l
, double *convergence
)
1144 tprintf("\r # %5.1f%% [%.1f mins]",
1145 (double)(l
+1)/g
->p
.nr_loops
*100.0, runtime_ns_max
/ NSEC_PER_SEC
/ 60.0);
1147 calc_convergence(runtime_ns_max
, convergence
);
1149 if (g
->p
.show_details
>= 0)
1153 static void *worker_thread(void *__tdata
)
1155 struct thread_data
*td
= __tdata
;
1156 struct timeval start0
, start
, stop
, diff
;
1157 int process_nr
= td
->process_nr
;
1158 int thread_nr
= td
->thread_nr
;
1159 unsigned long last_perturbance
;
1160 int task_nr
= td
->task_nr
;
1161 int details
= g
->p
.show_details
;
1162 int first_task
, last_task
;
1163 double convergence
= 0;
1165 double runtime_ns_max
;
1169 u64 bytes_done
, secs
;
1172 struct rusage rusage
;
1174 bind_to_cpumask(td
->bind_cpumask
);
1175 bind_to_memnode(td
->bind_node
);
1177 set_taskname("thread %d/%d", process_nr
, thread_nr
);
1179 global_data
= g
->data
;
1180 process_data
= td
->process_data
;
1181 thread_data
= setup_private_data(g
->p
.bytes_thread
);
1186 if (process_nr
== g
->p
.nr_proc
-1 && thread_nr
== g
->p
.nr_threads
-1)
1190 if (process_nr
== 0 && thread_nr
== 0)
1194 printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1195 process_nr
, thread_nr
, global_data
, process_data
, thread_data
);
1198 if (g
->p
.serialize_startup
) {
1199 mutex_lock(&g
->startup_mutex
);
1200 g
->nr_tasks_started
++;
1201 /* The last thread wakes the main process. */
1202 if (g
->nr_tasks_started
== g
->p
.nr_tasks
)
1203 cond_signal(&g
->startup_cond
);
1205 mutex_unlock(&g
->startup_mutex
);
1207 /* Here we will wait for the main process to start us all at once: */
1208 mutex_lock(&g
->start_work_mutex
);
1209 g
->start_work
= false;
1210 g
->nr_tasks_working
++;
1211 while (!g
->start_work
)
1212 cond_wait(&g
->start_work_cond
, &g
->start_work_mutex
);
1214 mutex_unlock(&g
->start_work_mutex
);
1217 gettimeofday(&start0
, NULL
);
1219 start
= stop
= start0
;
1220 last_perturbance
= start
.tv_sec
;
1222 for (l
= 0; l
< g
->p
.nr_loops
; l
++) {
1228 val
+= do_work(global_data
, g
->p
.bytes_global
, process_nr
, g
->p
.nr_proc
, l
, val
);
1229 val
+= do_work(process_data
, g
->p
.bytes_process
, thread_nr
, g
->p
.nr_threads
, l
, val
);
1230 val
+= do_work(thread_data
, g
->p
.bytes_thread
, 0, 1, l
, val
);
1232 if (g
->p
.sleep_usecs
) {
1233 mutex_lock(td
->process_lock
);
1234 usleep(g
->p
.sleep_usecs
);
1235 mutex_unlock(td
->process_lock
);
1238 * Amount of work to be done under a process-global lock:
1240 if (g
->p
.bytes_process_locked
) {
1241 mutex_lock(td
->process_lock
);
1242 val
+= do_work(process_data
, g
->p
.bytes_process_locked
, thread_nr
, g
->p
.nr_threads
, l
, val
);
1243 mutex_unlock(td
->process_lock
);
1246 work_done
= g
->p
.bytes_global
+ g
->p
.bytes_process
+
1247 g
->p
.bytes_process_locked
+ g
->p
.bytes_thread
;
1249 update_curr_cpu(task_nr
, work_done
);
1250 bytes_done
+= work_done
;
1252 if (details
< 0 && !g
->p
.perturb_secs
&& !g
->p
.measure_convergence
&& !g
->p
.nr_secs
)
1257 gettimeofday(&stop
, NULL
);
1259 /* Check whether our max runtime timed out: */
1261 timersub(&stop
, &start0
, &diff
);
1262 if ((u32
)diff
.tv_sec
>= g
->p
.nr_secs
) {
1263 g
->stop_work
= true;
1268 /* Update the summary at most once per second: */
1269 if (start
.tv_sec
== stop
.tv_sec
)
1273 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1274 * by migrating to CPU#0:
1276 if (first_task
&& g
->p
.perturb_secs
&& (int)(stop
.tv_sec
- last_perturbance
) >= g
->p
.perturb_secs
) {
1277 cpu_set_t
*orig_mask
;
1281 last_perturbance
= stop
.tv_sec
;
1284 * Depending on where we are running, move into
1285 * the other half of the system, to create some
1288 this_cpu
= g
->threads
[task_nr
].curr_cpu
;
1289 if (this_cpu
< g
->p
.nr_cpus
/2)
1290 target_cpu
= g
->p
.nr_cpus
-1;
1294 orig_mask
= bind_to_cpu(target_cpu
);
1296 /* Here we are running on the target CPU already */
1298 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu
);
1300 bind_to_cpumask(orig_mask
);
1301 CPU_FREE(orig_mask
);
1305 timersub(&stop
, &start
, &diff
);
1306 runtime_ns_max
= diff
.tv_sec
* NSEC_PER_SEC
;
1307 runtime_ns_max
+= diff
.tv_usec
* NSEC_PER_USEC
;
1310 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64
"]\n",
1311 process_nr
, thread_nr
, runtime_ns_max
/ bytes_done
, val
);
1318 timersub(&stop
, &start0
, &diff
);
1319 runtime_ns_max
= diff
.tv_sec
* NSEC_PER_SEC
;
1320 runtime_ns_max
+= diff
.tv_usec
* NSEC_PER_USEC
;
1322 show_summary(runtime_ns_max
, l
, &convergence
);
1325 gettimeofday(&stop
, NULL
);
1326 timersub(&stop
, &start0
, &diff
);
1327 td
->runtime_ns
= diff
.tv_sec
* NSEC_PER_SEC
;
1328 td
->runtime_ns
+= diff
.tv_usec
* NSEC_PER_USEC
;
1329 secs
= td
->runtime_ns
/ NSEC_PER_SEC
;
1330 td
->speed_gbs
= secs
? bytes_done
/ secs
/ 1e9
: 0;
1332 getrusage(RUSAGE_THREAD
, &rusage
);
1333 td
->system_time_ns
= rusage
.ru_stime
.tv_sec
* NSEC_PER_SEC
;
1334 td
->system_time_ns
+= rusage
.ru_stime
.tv_usec
* NSEC_PER_USEC
;
1335 td
->user_time_ns
= rusage
.ru_utime
.tv_sec
* NSEC_PER_SEC
;
1336 td
->user_time_ns
+= rusage
.ru_utime
.tv_usec
* NSEC_PER_USEC
;
1338 free_data(thread_data
, g
->p
.bytes_thread
);
1340 mutex_lock(&g
->stop_work_mutex
);
1341 g
->bytes_done
+= bytes_done
;
1342 mutex_unlock(&g
->stop_work_mutex
);
1348 * A worker process starts a couple of threads:
1350 static void worker_process(int process_nr
)
1352 struct mutex process_lock
;
1353 struct thread_data
*td
;
1354 pthread_t
*pthreads
;
1360 mutex_init(&process_lock
);
1361 set_taskname("process %d", process_nr
);
1364 * Pick up the memory policy and the CPU binding of our first thread,
1365 * so that we initialize memory accordingly:
1367 task_nr
= process_nr
*g
->p
.nr_threads
;
1368 td
= g
->threads
+ task_nr
;
1370 bind_to_memnode(td
->bind_node
);
1371 bind_to_cpumask(td
->bind_cpumask
);
1373 pthreads
= zalloc(g
->p
.nr_threads
* sizeof(pthread_t
));
1374 process_data
= setup_private_data(g
->p
.bytes_process
);
1376 if (g
->p
.show_details
>= 3) {
1377 printf(" # process %2d global mem: %p, process mem: %p\n",
1378 process_nr
, g
->data
, process_data
);
1381 for (t
= 0; t
< g
->p
.nr_threads
; t
++) {
1382 task_nr
= process_nr
*g
->p
.nr_threads
+ t
;
1383 td
= g
->threads
+ task_nr
;
1385 td
->process_data
= process_data
;
1386 td
->process_nr
= process_nr
;
1388 td
->task_nr
= task_nr
;
1391 td
->process_lock
= &process_lock
;
1393 ret
= pthread_create(pthreads
+ t
, NULL
, worker_thread
, td
);
1397 for (t
= 0; t
< g
->p
.nr_threads
; t
++) {
1398 ret
= pthread_join(pthreads
[t
], NULL
);
1402 free_data(process_data
, g
->p
.bytes_process
);
1406 static void print_summary(void)
1408 if (g
->p
.show_details
< 0)
1412 printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1413 g
->p
.nr_tasks
, g
->p
.nr_tasks
== 1 ? "task" : "tasks", nr_numa_nodes(), g
->p
.nr_cpus
);
1414 printf(" # %5dx %5ldMB global shared mem operations\n",
1415 g
->p
.nr_loops
, g
->p
.bytes_global
/1024/1024);
1416 printf(" # %5dx %5ldMB process shared mem operations\n",
1417 g
->p
.nr_loops
, g
->p
.bytes_process
/1024/1024);
1418 printf(" # %5dx %5ldMB thread local mem operations\n",
1419 g
->p
.nr_loops
, g
->p
.bytes_thread
/1024/1024);
1423 printf("\n ###\n"); fflush(stdout
);
1426 static void init_thread_data(void)
1428 ssize_t size
= sizeof(*g
->threads
)*g
->p
.nr_tasks
;
1431 g
->threads
= zalloc_shared_data(size
);
1433 for (t
= 0; t
< g
->p
.nr_tasks
; t
++) {
1434 struct thread_data
*td
= g
->threads
+ t
;
1435 size_t cpuset_size
= CPU_ALLOC_SIZE(g
->p
.nr_cpus
);
1438 /* Allow all nodes by default: */
1439 td
->bind_node
= NUMA_NO_NODE
;
1441 /* Allow all CPUs by default: */
1442 td
->bind_cpumask
= CPU_ALLOC(g
->p
.nr_cpus
);
1443 BUG_ON(!td
->bind_cpumask
);
1444 CPU_ZERO_S(cpuset_size
, td
->bind_cpumask
);
1445 for (cpu
= 0; cpu
< g
->p
.nr_cpus
; cpu
++)
1446 CPU_SET_S(cpu
, cpuset_size
, td
->bind_cpumask
);
1450 static void deinit_thread_data(void)
1452 ssize_t size
= sizeof(*g
->threads
)*g
->p
.nr_tasks
;
1455 /* Free the bind_cpumask allocated for thread_data */
1456 for (t
= 0; t
< g
->p
.nr_tasks
; t
++) {
1457 struct thread_data
*td
= g
->threads
+ t
;
1458 CPU_FREE(td
->bind_cpumask
);
1461 free_data(g
->threads
, size
);
1464 static int init(void)
1466 g
= (void *)alloc_data(sizeof(*g
), MAP_SHARED
, 1, 0, 0 /* THP */, 0);
1468 /* Copy over options: */
1471 g
->p
.nr_cpus
= numa_num_configured_cpus();
1473 g
->p
.nr_nodes
= numa_max_node() + 1;
1475 /* char array in count_process_nodes(): */
1476 BUG_ON(g
->p
.nr_nodes
< 0);
1478 if (quiet
&& !g
->p
.show_details
)
1479 g
->p
.show_details
= -1;
1481 /* Some memory should be specified: */
1482 if (!g
->p
.mb_global_str
&& !g
->p
.mb_proc_str
&& !g
->p
.mb_thread_str
)
1485 if (g
->p
.mb_global_str
) {
1486 g
->p
.mb_global
= atof(g
->p
.mb_global_str
);
1487 BUG_ON(g
->p
.mb_global
< 0);
1490 if (g
->p
.mb_proc_str
) {
1491 g
->p
.mb_proc
= atof(g
->p
.mb_proc_str
);
1492 BUG_ON(g
->p
.mb_proc
< 0);
1495 if (g
->p
.mb_proc_locked_str
) {
1496 g
->p
.mb_proc_locked
= atof(g
->p
.mb_proc_locked_str
);
1497 BUG_ON(g
->p
.mb_proc_locked
< 0);
1498 BUG_ON(g
->p
.mb_proc_locked
> g
->p
.mb_proc
);
1501 if (g
->p
.mb_thread_str
) {
1502 g
->p
.mb_thread
= atof(g
->p
.mb_thread_str
);
1503 BUG_ON(g
->p
.mb_thread
< 0);
1506 BUG_ON(g
->p
.nr_threads
<= 0);
1507 BUG_ON(g
->p
.nr_proc
<= 0);
1509 g
->p
.nr_tasks
= g
->p
.nr_proc
*g
->p
.nr_threads
;
1511 g
->p
.bytes_global
= g
->p
.mb_global
*1024L*1024L;
1512 g
->p
.bytes_process
= g
->p
.mb_proc
*1024L*1024L;
1513 g
->p
.bytes_process_locked
= g
->p
.mb_proc_locked
*1024L*1024L;
1514 g
->p
.bytes_thread
= g
->p
.mb_thread
*1024L*1024L;
1516 g
->data
= setup_shared_data(g
->p
.bytes_global
);
1518 /* Startup serialization: */
1519 mutex_init_pshared(&g
->start_work_mutex
);
1520 cond_init_pshared(&g
->start_work_cond
);
1521 mutex_init_pshared(&g
->startup_mutex
);
1522 cond_init_pshared(&g
->startup_cond
);
1523 mutex_init_pshared(&g
->stop_work_mutex
);
1528 if (parse_setup_cpu_list() || parse_setup_node_list())
1537 static void deinit(void)
1539 free_data(g
->data
, g
->p
.bytes_global
);
1542 deinit_thread_data();
1544 free_data(g
, sizeof(*g
));
1549 * Print a short or long result, depending on the verbosity setting:
1551 static void print_res(const char *name
, double val
,
1552 const char *txt_unit
, const char *txt_short
, const char *txt_long
)
1558 printf(" %-30s %15.3f, %-15s %s\n", name
, val
, txt_unit
, txt_short
);
1560 printf(" %14.3f %s\n", val
, txt_long
);
1563 static int __bench_numa(const char *name
)
1565 struct timeval start
, stop
, diff
;
1566 u64 runtime_ns_min
, runtime_ns_sum
;
1567 pid_t
*pids
, pid
, wpid
;
1568 double delta_runtime
;
1570 double runtime_sec_max
;
1571 double runtime_sec_min
;
1579 pids
= zalloc(g
->p
.nr_proc
* sizeof(*pids
));
1582 if (g
->p
.serialize_startup
) {
1584 tprintf(" # Startup synchronization: ..."); fflush(stdout
);
1587 gettimeofday(&start
, NULL
);
1589 for (i
= 0; i
< g
->p
.nr_proc
; i
++) {
1591 dprintf(" # process %2d: PID %d\n", i
, pid
);
1595 /* Child process: */
1604 if (g
->p
.serialize_startup
) {
1605 bool threads_ready
= false;
1609 * Wait for all the threads to start up. The last thread will
1610 * signal this process.
1612 mutex_lock(&g
->startup_mutex
);
1613 while (g
->nr_tasks_started
!= g
->p
.nr_tasks
)
1614 cond_wait(&g
->startup_cond
, &g
->startup_mutex
);
1616 mutex_unlock(&g
->startup_mutex
);
1618 /* Wait for all threads to be at the start_work_cond. */
1619 while (!threads_ready
) {
1620 mutex_lock(&g
->start_work_mutex
);
1621 threads_ready
= (g
->nr_tasks_working
== g
->p
.nr_tasks
);
1622 mutex_unlock(&g
->start_work_mutex
);
1627 gettimeofday(&stop
, NULL
);
1629 timersub(&stop
, &start
, &diff
);
1631 startup_sec
= diff
.tv_sec
* NSEC_PER_SEC
;
1632 startup_sec
+= diff
.tv_usec
* NSEC_PER_USEC
;
1633 startup_sec
/= NSEC_PER_SEC
;
1635 tprintf(" threads initialized in %.6f seconds.\n", startup_sec
);
1639 /* Start all threads running. */
1640 mutex_lock(&g
->start_work_mutex
);
1641 g
->start_work
= true;
1642 mutex_unlock(&g
->start_work_mutex
);
1643 cond_broadcast(&g
->start_work_cond
);
1645 gettimeofday(&start
, NULL
);
1648 /* Parent process: */
1651 for (i
= 0; i
< g
->p
.nr_proc
; i
++) {
1652 wpid
= waitpid(pids
[i
], &wait_stat
, 0);
1654 BUG_ON(!WIFEXITED(wait_stat
));
1659 runtime_ns_min
= -1LL;
1661 for (t
= 0; t
< g
->p
.nr_tasks
; t
++) {
1662 u64 thread_runtime_ns
= g
->threads
[t
].runtime_ns
;
1664 runtime_ns_sum
+= thread_runtime_ns
;
1665 runtime_ns_min
= min(thread_runtime_ns
, runtime_ns_min
);
1668 gettimeofday(&stop
, NULL
);
1669 timersub(&stop
, &start
, &diff
);
1671 BUG_ON(bench_format
!= BENCH_FORMAT_DEFAULT
);
1673 tprintf("\n ###\n");
1676 runtime_sec_max
= diff
.tv_sec
* NSEC_PER_SEC
;
1677 runtime_sec_max
+= diff
.tv_usec
* NSEC_PER_USEC
;
1678 runtime_sec_max
/= NSEC_PER_SEC
;
1680 runtime_sec_min
= runtime_ns_min
/ NSEC_PER_SEC
;
1682 bytes
= g
->bytes_done
;
1683 runtime_avg
= (double)runtime_ns_sum
/ g
->p
.nr_tasks
/ NSEC_PER_SEC
;
1685 if (g
->p
.measure_convergence
) {
1686 print_res(name
, runtime_sec_max
,
1687 "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1690 print_res(name
, runtime_sec_max
,
1691 "secs,", "runtime-max/thread", "secs slowest (max) thread-runtime");
1693 print_res(name
, runtime_sec_min
,
1694 "secs,", "runtime-min/thread", "secs fastest (min) thread-runtime");
1696 print_res(name
, runtime_avg
,
1697 "secs,", "runtime-avg/thread", "secs average thread-runtime");
1699 delta_runtime
= (runtime_sec_max
- runtime_sec_min
)/2.0;
1700 print_res(name
, delta_runtime
/ runtime_sec_max
* 100.0,
1701 "%,", "spread-runtime/thread", "% difference between max/avg runtime");
1703 print_res(name
, bytes
/ g
->p
.nr_tasks
/ 1e9
,
1704 "GB,", "data/thread", "GB data processed, per thread");
1706 print_res(name
, bytes
/ 1e9
,
1707 "GB,", "data-total", "GB data processed, total");
1709 print_res(name
, runtime_sec_max
* NSEC_PER_SEC
/ (bytes
/ g
->p
.nr_tasks
),
1710 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1712 print_res(name
, bytes
/ g
->p
.nr_tasks
/ 1e9
/ runtime_sec_max
,
1713 "GB/sec,", "thread-speed", "GB/sec/thread speed");
1715 print_res(name
, bytes
/ runtime_sec_max
/ 1e9
,
1716 "GB/sec,", "total-speed", "GB/sec total speed");
1718 if (g
->p
.show_details
>= 2) {
1719 char tname
[14 + 2 * 11 + 1];
1720 struct thread_data
*td
;
1721 for (p
= 0; p
< g
->p
.nr_proc
; p
++) {
1722 for (t
= 0; t
< g
->p
.nr_threads
; t
++) {
1723 memset(tname
, 0, sizeof(tname
));
1724 td
= g
->threads
+ p
*g
->p
.nr_threads
+ t
;
1725 snprintf(tname
, sizeof(tname
), "process%d:thread%d", p
, t
);
1726 print_res(tname
, td
->speed_gbs
,
1727 "GB/sec", "thread-speed", "GB/sec/thread speed");
1728 print_res(tname
, td
->system_time_ns
/ NSEC_PER_SEC
,
1729 "secs", "thread-system-time", "system CPU time/thread");
1730 print_res(tname
, td
->user_time_ns
/ NSEC_PER_SEC
,
1731 "secs", "thread-user-time", "user CPU time/thread");
1745 static int command_size(const char **argv
)
1754 BUG_ON(size
>= MAX_ARGS
);
1759 static void init_params(struct params
*p
, const char *name
, int argc
, const char **argv
)
1763 printf("\n # Running %s \"perf bench numa", name
);
1765 for (i
= 0; i
< argc
; i
++)
1766 printf(" %s", argv
[i
]);
1770 memset(p
, 0, sizeof(*p
));
1772 /* Initialize nonzero defaults: */
1774 p
->serialize_startup
= 1;
1775 p
->data_reads
= true;
1776 p
->data_writes
= true;
1777 p
->data_backwards
= true;
1778 p
->data_rand_walk
= true;
1780 p
->init_random
= true;
1781 p
->mb_global_str
= "1";
1785 p
->run_all
= argc
== 1;
1788 static int run_bench_numa(const char *name
, const char **argv
)
1790 int argc
= command_size(argv
);
1792 init_params(&p0
, name
, argc
, argv
);
1793 argc
= parse_options(argc
, argv
, options
, bench_numa_usage
, 0);
1797 if (__bench_numa(name
))
1806 #define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk"
1807 #define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1"
1809 #define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1"
1810 #define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1"
1812 #define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1"
1813 #define OPT_BW_NOTHP OPT_BW, "--thp", "-1"
1816 * The built-in test-suite executed by "perf bench numa -a".
1818 * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1820 static const char *tests
[][MAX_ARGS
] = {
1821 /* Basic single-stream NUMA bandwidth measurements: */
1822 { "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1823 "-C" , "0", "-M", "0", OPT_BW_RAM
},
1824 { "RAM-bw-local-NOTHP,",
1825 "mem", "-p", "1", "-t", "1", "-P", "1024",
1826 "-C" , "0", "-M", "0", OPT_BW_RAM_NOTHP
},
1827 { "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1828 "-C" , "0", "-M", "1", OPT_BW_RAM
},
1830 /* 2-stream NUMA bandwidth measurements: */
1831 { "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1832 "-C", "0,2", "-M", "0x2", OPT_BW_RAM
},
1833 { "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1834 "-C", "0,2", "-M", "1x2", OPT_BW_RAM
},
1836 /* Cross-stream NUMA bandwidth measurement: */
1837 { "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1838 "-C", "0,8", "-M", "1,0", OPT_BW_RAM
},
1840 /* Convergence latency measurements: */
1841 { " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV
},
1842 { " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV
},
1843 { " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV
},
1844 { " 2x3-convergence,", "mem", "-p", "2", "-t", "3", "-P", "1020", OPT_CONV
},
1845 { " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV
},
1846 { " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV
},
1847 { " 4x4-convergence-NOTHP,",
1848 "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP
},
1849 { " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV
},
1850 { " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV
},
1851 { " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV
},
1852 { " 8x4-convergence-NOTHP,",
1853 "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP
},
1854 { " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV
},
1855 { " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV
},
1856 { " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV
},
1857 { "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV
},
1858 { "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV
},
1860 /* Various NUMA process/thread layout bandwidth measurements: */
1861 { " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW
},
1862 { " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW
},
1863 { " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW
},
1864 { " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW
},
1865 { " 8x1-bw-process-NOTHP,",
1866 "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP
},
1867 { "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW
},
1869 { " 1x4-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW
},
1870 { " 1x8-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW
},
1871 { "1x16-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW
},
1872 { "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW
},
1874 { " 2x3-bw-process,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW
},
1875 { " 4x4-bw-process,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW
},
1876 { " 4x6-bw-process,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW
},
1877 { " 4x8-bw-process,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW
},
1878 { " 4x8-bw-process-NOTHP,",
1879 "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP
},
1880 { " 3x3-bw-process,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW
},
1881 { " 5x5-bw-process,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW
},
1883 { "2x16-bw-process,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW
},
1884 { "1x32-bw-process,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW
},
1886 { "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW
},
1887 { "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP
},
1888 { "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW
},
1889 { "numa01-bw-thread-NOTHP,",
1890 "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP
},
1893 static int bench_all(void)
1895 int nr
= ARRAY_SIZE(tests
);
1899 ret
= system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1902 for (i
= 0; i
< nr
; i
++) {
1903 run_bench_numa(tests
[i
][0], tests
[i
] + 1);
1911 int bench_numa(int argc
, const char **argv
)
1913 init_params(&p0
, "main,", argc
, argv
);
1914 argc
= parse_options(argc
, argv
, options
, bench_numa_usage
, 0);
1921 if (__bench_numa(NULL
))
1927 usage_with_options(numa_usage
, options
);