1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2016 Avago Technologies. All rights reserved.
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/slab.h>
8 #include <linux/blk-mq.h>
9 #include <linux/parser.h>
10 #include <linux/random.h>
11 #include <uapi/scsi/fc/fc_fs.h>
12 #include <uapi/scsi/fc/fc_els.h>
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
17 #include "../host/fc.h"
20 /* *************************** Data Structures/Defines ****************** */
23 #define NVMET_LS_CTX_COUNT 256
25 struct nvmet_fc_tgtport
;
26 struct nvmet_fc_tgt_assoc
;
28 struct nvmet_fc_ls_iod
{ /* for an LS RQST RCV */
29 struct nvmefc_ls_rsp
*lsrsp
;
30 struct nvmefc_tgt_fcp_req
*fcpreq
; /* only if RS */
32 struct list_head ls_rcv_list
; /* tgtport->ls_rcv_list */
34 struct nvmet_fc_tgtport
*tgtport
;
35 struct nvmet_fc_tgt_assoc
*assoc
;
38 union nvmefc_ls_requests
*rqstbuf
;
39 union nvmefc_ls_responses
*rspbuf
;
43 struct scatterlist sg
[2];
45 struct work_struct work
;
46 } __aligned(sizeof(unsigned long long));
48 struct nvmet_fc_ls_req_op
{ /* for an LS RQST XMT */
49 struct nvmefc_ls_req ls_req
;
51 struct nvmet_fc_tgtport
*tgtport
;
55 struct list_head lsreq_list
; /* tgtport->ls_req_list */
60 /* desired maximum for a single sequence - if sg list allows it */
61 #define NVMET_FC_MAX_SEQ_LENGTH (256 * 1024)
63 enum nvmet_fcp_datadir
{
70 struct nvmet_fc_fcp_iod
{
71 struct nvmefc_tgt_fcp_req
*fcpreq
;
73 struct nvme_fc_cmd_iu cmdiubuf
;
74 struct nvme_fc_ersp_iu rspiubuf
;
76 struct scatterlist
*next_sg
;
77 struct scatterlist
*data_sg
;
80 enum nvmet_fcp_datadir io_dir
;
88 struct work_struct defer_work
;
90 struct nvmet_fc_tgtport
*tgtport
;
91 struct nvmet_fc_tgt_queue
*queue
;
93 struct list_head fcp_list
; /* tgtport->fcp_list */
96 struct nvmet_fc_tgtport
{
97 struct nvmet_fc_target_port fc_target_port
;
99 struct list_head tgt_list
; /* nvmet_fc_target_list */
100 struct device
*dev
; /* dev for dma mapping */
101 struct nvmet_fc_target_template
*ops
;
103 struct nvmet_fc_ls_iod
*iod
;
105 struct list_head ls_rcv_list
;
106 struct list_head ls_req_list
;
107 struct list_head ls_busylist
;
108 struct list_head assoc_list
;
109 struct list_head host_list
;
110 struct ida assoc_cnt
;
111 struct nvmet_fc_port_entry
*pe
;
115 struct work_struct put_work
;
118 struct nvmet_fc_port_entry
{
119 struct nvmet_fc_tgtport
*tgtport
;
120 struct nvmet_port
*port
;
123 struct list_head pe_list
;
126 struct nvmet_fc_defer_fcp_req
{
127 struct list_head req_list
;
128 struct nvmefc_tgt_fcp_req
*fcp_req
;
131 struct nvmet_fc_tgt_queue
{
142 struct nvmet_cq nvme_cq
;
143 struct nvmet_sq nvme_sq
;
144 struct nvmet_fc_tgt_assoc
*assoc
;
145 struct list_head fod_list
;
146 struct list_head pending_cmd_list
;
147 struct list_head avail_defer_list
;
148 struct workqueue_struct
*work_q
;
150 /* array of fcp_iods */
151 struct nvmet_fc_fcp_iod fod
[] /* __counted_by(sqsize) */;
152 } __aligned(sizeof(unsigned long long));
154 struct nvmet_fc_hostport
{
155 struct nvmet_fc_tgtport
*tgtport
;
157 struct list_head host_list
;
162 struct nvmet_fc_tgt_assoc
{
165 atomic_t terminating
;
166 struct nvmet_fc_tgtport
*tgtport
;
167 struct nvmet_fc_hostport
*hostport
;
168 struct nvmet_fc_ls_iod
*rcv_disconn
;
169 struct list_head a_list
;
170 struct nvmet_fc_tgt_queue
*queues
[NVMET_NR_QUEUES
+ 1];
172 struct work_struct del_work
;
177 nvmet_fc_iodnum(struct nvmet_fc_ls_iod
*iodptr
)
179 return (iodptr
- iodptr
->tgtport
->iod
);
183 nvmet_fc_fodnum(struct nvmet_fc_fcp_iod
*fodptr
)
185 return (fodptr
- fodptr
->queue
->fod
);
190 * Association and Connection IDs:
192 * Association ID will have random number in upper 6 bytes and zero
195 * Connection IDs will be Association ID with QID or'd in lower 2 bytes
197 * note: Association ID = Connection ID for queue 0
199 #define BYTES_FOR_QID sizeof(u16)
200 #define BYTES_FOR_QID_SHIFT (BYTES_FOR_QID * 8)
201 #define NVMET_FC_QUEUEID_MASK ((u64)((1 << BYTES_FOR_QID_SHIFT) - 1))
204 nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc
*assoc
, u16 qid
)
206 return (assoc
->association_id
| qid
);
210 nvmet_fc_getassociationid(u64 connectionid
)
212 return connectionid
& ~NVMET_FC_QUEUEID_MASK
;
216 nvmet_fc_getqueueid(u64 connectionid
)
218 return (u16
)(connectionid
& NVMET_FC_QUEUEID_MASK
);
221 static inline struct nvmet_fc_tgtport
*
222 targetport_to_tgtport(struct nvmet_fc_target_port
*targetport
)
224 return container_of(targetport
, struct nvmet_fc_tgtport
,
228 static inline struct nvmet_fc_fcp_iod
*
229 nvmet_req_to_fod(struct nvmet_req
*nvme_req
)
231 return container_of(nvme_req
, struct nvmet_fc_fcp_iod
, req
);
235 /* *************************** Globals **************************** */
238 static DEFINE_SPINLOCK(nvmet_fc_tgtlock
);
240 static LIST_HEAD(nvmet_fc_target_list
);
241 static DEFINE_IDA(nvmet_fc_tgtport_cnt
);
242 static LIST_HEAD(nvmet_fc_portentry_list
);
245 static void nvmet_fc_handle_ls_rqst_work(struct work_struct
*work
);
246 static void nvmet_fc_fcp_rqst_op_defer_work(struct work_struct
*work
);
247 static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc
*assoc
);
248 static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc
*assoc
);
249 static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue
*queue
);
250 static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue
*queue
);
251 static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport
*tgtport
);
252 static void nvmet_fc_put_tgtport_work(struct work_struct
*work
)
254 struct nvmet_fc_tgtport
*tgtport
=
255 container_of(work
, struct nvmet_fc_tgtport
, put_work
);
257 nvmet_fc_tgtport_put(tgtport
);
259 static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport
*tgtport
);
260 static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport
*tgtport
,
261 struct nvmet_fc_fcp_iod
*fod
);
262 static void nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc
*assoc
);
263 static void nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport
*tgtport
,
264 struct nvmet_fc_ls_iod
*iod
);
267 /* *********************** FC-NVME DMA Handling **************************** */
270 * The fcloop device passes in a NULL device pointer. Real LLD's will
271 * pass in a valid device pointer. If NULL is passed to the dma mapping
272 * routines, depending on the platform, it may or may not succeed, and
276 * Wrapper all the dma routines and check the dev pointer.
278 * If simple mappings (return just a dma address, we'll noop them,
279 * returning a dma address of 0.
281 * On more complex mappings (dma_map_sg), a pseudo routine fills
282 * in the scatter list, setting all dma addresses to 0.
285 static inline dma_addr_t
286 fc_dma_map_single(struct device
*dev
, void *ptr
, size_t size
,
287 enum dma_data_direction dir
)
289 return dev
? dma_map_single(dev
, ptr
, size
, dir
) : (dma_addr_t
)0L;
293 fc_dma_mapping_error(struct device
*dev
, dma_addr_t dma_addr
)
295 return dev
? dma_mapping_error(dev
, dma_addr
) : 0;
299 fc_dma_unmap_single(struct device
*dev
, dma_addr_t addr
, size_t size
,
300 enum dma_data_direction dir
)
303 dma_unmap_single(dev
, addr
, size
, dir
);
307 fc_dma_sync_single_for_cpu(struct device
*dev
, dma_addr_t addr
, size_t size
,
308 enum dma_data_direction dir
)
311 dma_sync_single_for_cpu(dev
, addr
, size
, dir
);
315 fc_dma_sync_single_for_device(struct device
*dev
, dma_addr_t addr
, size_t size
,
316 enum dma_data_direction dir
)
319 dma_sync_single_for_device(dev
, addr
, size
, dir
);
322 /* pseudo dma_map_sg call */
324 fc_map_sg(struct scatterlist
*sg
, int nents
)
326 struct scatterlist
*s
;
329 WARN_ON(nents
== 0 || sg
[0].length
== 0);
331 for_each_sg(sg
, s
, nents
, i
) {
333 #ifdef CONFIG_NEED_SG_DMA_LENGTH
334 s
->dma_length
= s
->length
;
341 fc_dma_map_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
342 enum dma_data_direction dir
)
344 return dev
? dma_map_sg(dev
, sg
, nents
, dir
) : fc_map_sg(sg
, nents
);
348 fc_dma_unmap_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
349 enum dma_data_direction dir
)
352 dma_unmap_sg(dev
, sg
, nents
, dir
);
356 /* ********************** FC-NVME LS XMT Handling ************************* */
360 __nvmet_fc_finish_ls_req(struct nvmet_fc_ls_req_op
*lsop
)
362 struct nvmet_fc_tgtport
*tgtport
= lsop
->tgtport
;
363 struct nvmefc_ls_req
*lsreq
= &lsop
->ls_req
;
366 spin_lock_irqsave(&tgtport
->lock
, flags
);
368 if (!lsop
->req_queued
) {
369 spin_unlock_irqrestore(&tgtport
->lock
, flags
);
373 list_del(&lsop
->lsreq_list
);
375 lsop
->req_queued
= false;
377 spin_unlock_irqrestore(&tgtport
->lock
, flags
);
379 fc_dma_unmap_single(tgtport
->dev
, lsreq
->rqstdma
,
380 (lsreq
->rqstlen
+ lsreq
->rsplen
),
384 queue_work(nvmet_wq
, &tgtport
->put_work
);
388 __nvmet_fc_send_ls_req(struct nvmet_fc_tgtport
*tgtport
,
389 struct nvmet_fc_ls_req_op
*lsop
,
390 void (*done
)(struct nvmefc_ls_req
*req
, int status
))
392 struct nvmefc_ls_req
*lsreq
= &lsop
->ls_req
;
396 if (!tgtport
->ops
->ls_req
)
399 if (!nvmet_fc_tgtport_get(tgtport
))
403 lsop
->req_queued
= false;
404 INIT_LIST_HEAD(&lsop
->lsreq_list
);
406 lsreq
->rqstdma
= fc_dma_map_single(tgtport
->dev
, lsreq
->rqstaddr
,
407 lsreq
->rqstlen
+ lsreq
->rsplen
,
409 if (fc_dma_mapping_error(tgtport
->dev
, lsreq
->rqstdma
)) {
413 lsreq
->rspdma
= lsreq
->rqstdma
+ lsreq
->rqstlen
;
415 spin_lock_irqsave(&tgtport
->lock
, flags
);
417 list_add_tail(&lsop
->lsreq_list
, &tgtport
->ls_req_list
);
419 lsop
->req_queued
= true;
421 spin_unlock_irqrestore(&tgtport
->lock
, flags
);
423 ret
= tgtport
->ops
->ls_req(&tgtport
->fc_target_port
, lsop
->hosthandle
,
431 lsop
->ls_error
= ret
;
432 spin_lock_irqsave(&tgtport
->lock
, flags
);
433 lsop
->req_queued
= false;
434 list_del(&lsop
->lsreq_list
);
435 spin_unlock_irqrestore(&tgtport
->lock
, flags
);
436 fc_dma_unmap_single(tgtport
->dev
, lsreq
->rqstdma
,
437 (lsreq
->rqstlen
+ lsreq
->rsplen
),
440 nvmet_fc_tgtport_put(tgtport
);
446 nvmet_fc_send_ls_req_async(struct nvmet_fc_tgtport
*tgtport
,
447 struct nvmet_fc_ls_req_op
*lsop
,
448 void (*done
)(struct nvmefc_ls_req
*req
, int status
))
450 /* don't wait for completion */
452 return __nvmet_fc_send_ls_req(tgtport
, lsop
, done
);
456 nvmet_fc_disconnect_assoc_done(struct nvmefc_ls_req
*lsreq
, int status
)
458 struct nvmet_fc_ls_req_op
*lsop
=
459 container_of(lsreq
, struct nvmet_fc_ls_req_op
, ls_req
);
461 __nvmet_fc_finish_ls_req(lsop
);
463 /* fc-nvme target doesn't care about success or failure of cmd */
469 * This routine sends a FC-NVME LS to disconnect (aka terminate)
470 * the FC-NVME Association. Terminating the association also
471 * terminates the FC-NVME connections (per queue, both admin and io
472 * queues) that are part of the association. E.g. things are torn
473 * down, and the related FC-NVME Association ID and Connection IDs
476 * The behavior of the fc-nvme target is such that it's
477 * understanding of the association and connections will implicitly
478 * be torn down. The action is implicit as it may be due to a loss of
479 * connectivity with the fc-nvme host, so the target may never get a
480 * response even if it tried. As such, the action of this routine
481 * is to asynchronously send the LS, ignore any results of the LS, and
482 * continue on with terminating the association. If the fc-nvme host
483 * is present and receives the LS, it too can tear down.
486 nvmet_fc_xmt_disconnect_assoc(struct nvmet_fc_tgt_assoc
*assoc
)
488 struct nvmet_fc_tgtport
*tgtport
= assoc
->tgtport
;
489 struct fcnvme_ls_disconnect_assoc_rqst
*discon_rqst
;
490 struct fcnvme_ls_disconnect_assoc_acc
*discon_acc
;
491 struct nvmet_fc_ls_req_op
*lsop
;
492 struct nvmefc_ls_req
*lsreq
;
496 * If ls_req is NULL or no hosthandle, it's an older lldd and no
497 * message is normal. Otherwise, send unless the hostport has
498 * already been invalidated by the lldd.
500 if (!tgtport
->ops
->ls_req
|| assoc
->hostport
->invalid
)
503 lsop
= kzalloc((sizeof(*lsop
) +
504 sizeof(*discon_rqst
) + sizeof(*discon_acc
) +
505 tgtport
->ops
->lsrqst_priv_sz
), GFP_KERNEL
);
507 dev_info(tgtport
->dev
,
508 "{%d:%d} send Disconnect Association failed: ENOMEM\n",
509 tgtport
->fc_target_port
.port_num
, assoc
->a_id
);
513 discon_rqst
= (struct fcnvme_ls_disconnect_assoc_rqst
*)&lsop
[1];
514 discon_acc
= (struct fcnvme_ls_disconnect_assoc_acc
*)&discon_rqst
[1];
515 lsreq
= &lsop
->ls_req
;
516 if (tgtport
->ops
->lsrqst_priv_sz
)
517 lsreq
->private = (void *)&discon_acc
[1];
519 lsreq
->private = NULL
;
521 lsop
->tgtport
= tgtport
;
522 lsop
->hosthandle
= assoc
->hostport
->hosthandle
;
524 nvmefc_fmt_lsreq_discon_assoc(lsreq
, discon_rqst
, discon_acc
,
525 assoc
->association_id
);
527 ret
= nvmet_fc_send_ls_req_async(tgtport
, lsop
,
528 nvmet_fc_disconnect_assoc_done
);
530 dev_info(tgtport
->dev
,
531 "{%d:%d} XMT Disconnect Association failed: %d\n",
532 tgtport
->fc_target_port
.port_num
, assoc
->a_id
, ret
);
538 /* *********************** FC-NVME Port Management ************************ */
542 nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport
*tgtport
)
544 struct nvmet_fc_ls_iod
*iod
;
547 iod
= kcalloc(NVMET_LS_CTX_COUNT
, sizeof(struct nvmet_fc_ls_iod
),
554 for (i
= 0; i
< NVMET_LS_CTX_COUNT
; iod
++, i
++) {
555 INIT_WORK(&iod
->work
, nvmet_fc_handle_ls_rqst_work
);
556 iod
->tgtport
= tgtport
;
557 list_add_tail(&iod
->ls_rcv_list
, &tgtport
->ls_rcv_list
);
559 iod
->rqstbuf
= kzalloc(sizeof(union nvmefc_ls_requests
) +
560 sizeof(union nvmefc_ls_responses
),
565 iod
->rspbuf
= (union nvmefc_ls_responses
*)&iod
->rqstbuf
[1];
567 iod
->rspdma
= fc_dma_map_single(tgtport
->dev
, iod
->rspbuf
,
568 sizeof(*iod
->rspbuf
),
570 if (fc_dma_mapping_error(tgtport
->dev
, iod
->rspdma
))
578 list_del(&iod
->ls_rcv_list
);
579 for (iod
--, i
--; i
>= 0; iod
--, i
--) {
580 fc_dma_unmap_single(tgtport
->dev
, iod
->rspdma
,
581 sizeof(*iod
->rspbuf
), DMA_TO_DEVICE
);
583 list_del(&iod
->ls_rcv_list
);
592 nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport
*tgtport
)
594 struct nvmet_fc_ls_iod
*iod
= tgtport
->iod
;
597 for (i
= 0; i
< NVMET_LS_CTX_COUNT
; iod
++, i
++) {
598 fc_dma_unmap_single(tgtport
->dev
,
599 iod
->rspdma
, sizeof(*iod
->rspbuf
),
602 list_del(&iod
->ls_rcv_list
);
607 static struct nvmet_fc_ls_iod
*
608 nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport
*tgtport
)
610 struct nvmet_fc_ls_iod
*iod
;
613 spin_lock_irqsave(&tgtport
->lock
, flags
);
614 iod
= list_first_entry_or_null(&tgtport
->ls_rcv_list
,
615 struct nvmet_fc_ls_iod
, ls_rcv_list
);
617 list_move_tail(&iod
->ls_rcv_list
, &tgtport
->ls_busylist
);
618 spin_unlock_irqrestore(&tgtport
->lock
, flags
);
624 nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport
*tgtport
,
625 struct nvmet_fc_ls_iod
*iod
)
629 spin_lock_irqsave(&tgtport
->lock
, flags
);
630 list_move(&iod
->ls_rcv_list
, &tgtport
->ls_rcv_list
);
631 spin_unlock_irqrestore(&tgtport
->lock
, flags
);
635 nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport
*tgtport
,
636 struct nvmet_fc_tgt_queue
*queue
)
638 struct nvmet_fc_fcp_iod
*fod
= queue
->fod
;
641 for (i
= 0; i
< queue
->sqsize
; fod
++, i
++) {
642 INIT_WORK(&fod
->defer_work
, nvmet_fc_fcp_rqst_op_defer_work
);
643 fod
->tgtport
= tgtport
;
647 fod
->aborted
= false;
649 list_add_tail(&fod
->fcp_list
, &queue
->fod_list
);
650 spin_lock_init(&fod
->flock
);
652 fod
->rspdma
= fc_dma_map_single(tgtport
->dev
, &fod
->rspiubuf
,
653 sizeof(fod
->rspiubuf
), DMA_TO_DEVICE
);
654 if (fc_dma_mapping_error(tgtport
->dev
, fod
->rspdma
)) {
655 list_del(&fod
->fcp_list
);
656 for (fod
--, i
--; i
>= 0; fod
--, i
--) {
657 fc_dma_unmap_single(tgtport
->dev
, fod
->rspdma
,
658 sizeof(fod
->rspiubuf
),
661 list_del(&fod
->fcp_list
);
670 nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport
*tgtport
,
671 struct nvmet_fc_tgt_queue
*queue
)
673 struct nvmet_fc_fcp_iod
*fod
= queue
->fod
;
676 for (i
= 0; i
< queue
->sqsize
; fod
++, i
++) {
678 fc_dma_unmap_single(tgtport
->dev
, fod
->rspdma
,
679 sizeof(fod
->rspiubuf
), DMA_TO_DEVICE
);
683 static struct nvmet_fc_fcp_iod
*
684 nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue
*queue
)
686 struct nvmet_fc_fcp_iod
*fod
;
688 lockdep_assert_held(&queue
->qlock
);
690 fod
= list_first_entry_or_null(&queue
->fod_list
,
691 struct nvmet_fc_fcp_iod
, fcp_list
);
693 list_del(&fod
->fcp_list
);
696 * no queue reference is taken, as it was taken by the
697 * queue lookup just prior to the allocation. The iod
698 * will "inherit" that reference.
706 nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport
*tgtport
,
707 struct nvmet_fc_tgt_queue
*queue
,
708 struct nvmefc_tgt_fcp_req
*fcpreq
)
710 struct nvmet_fc_fcp_iod
*fod
= fcpreq
->nvmet_fc_private
;
713 * put all admin cmds on hw queue id 0. All io commands go to
714 * the respective hw queue based on a modulo basis
716 fcpreq
->hwqid
= queue
->qid
?
717 ((queue
->qid
- 1) % tgtport
->ops
->max_hw_queues
) : 0;
719 nvmet_fc_handle_fcp_rqst(tgtport
, fod
);
723 nvmet_fc_fcp_rqst_op_defer_work(struct work_struct
*work
)
725 struct nvmet_fc_fcp_iod
*fod
=
726 container_of(work
, struct nvmet_fc_fcp_iod
, defer_work
);
728 /* Submit deferred IO for processing */
729 nvmet_fc_queue_fcp_req(fod
->tgtport
, fod
->queue
, fod
->fcpreq
);
734 nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue
*queue
,
735 struct nvmet_fc_fcp_iod
*fod
)
737 struct nvmefc_tgt_fcp_req
*fcpreq
= fod
->fcpreq
;
738 struct nvmet_fc_tgtport
*tgtport
= fod
->tgtport
;
739 struct nvmet_fc_defer_fcp_req
*deferfcp
;
742 fc_dma_sync_single_for_cpu(tgtport
->dev
, fod
->rspdma
,
743 sizeof(fod
->rspiubuf
), DMA_TO_DEVICE
);
745 fcpreq
->nvmet_fc_private
= NULL
;
749 fod
->aborted
= false;
750 fod
->writedataactive
= false;
753 tgtport
->ops
->fcp_req_release(&tgtport
->fc_target_port
, fcpreq
);
755 /* release the queue lookup reference on the completed IO */
756 nvmet_fc_tgt_q_put(queue
);
758 spin_lock_irqsave(&queue
->qlock
, flags
);
759 deferfcp
= list_first_entry_or_null(&queue
->pending_cmd_list
,
760 struct nvmet_fc_defer_fcp_req
, req_list
);
762 list_add_tail(&fod
->fcp_list
, &fod
->queue
->fod_list
);
763 spin_unlock_irqrestore(&queue
->qlock
, flags
);
767 /* Re-use the fod for the next pending cmd that was deferred */
768 list_del(&deferfcp
->req_list
);
770 fcpreq
= deferfcp
->fcp_req
;
772 /* deferfcp can be reused for another IO at a later date */
773 list_add_tail(&deferfcp
->req_list
, &queue
->avail_defer_list
);
775 spin_unlock_irqrestore(&queue
->qlock
, flags
);
777 /* Save NVME CMD IO in fod */
778 memcpy(&fod
->cmdiubuf
, fcpreq
->rspaddr
, fcpreq
->rsplen
);
780 /* Setup new fcpreq to be processed */
781 fcpreq
->rspaddr
= NULL
;
783 fcpreq
->nvmet_fc_private
= fod
;
784 fod
->fcpreq
= fcpreq
;
787 /* inform LLDD IO is now being processed */
788 tgtport
->ops
->defer_rcv(&tgtport
->fc_target_port
, fcpreq
);
791 * Leave the queue lookup get reference taken when
792 * fod was originally allocated.
795 queue_work(queue
->work_q
, &fod
->defer_work
);
798 static struct nvmet_fc_tgt_queue
*
799 nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc
*assoc
,
802 struct nvmet_fc_tgt_queue
*queue
;
805 if (qid
> NVMET_NR_QUEUES
)
808 queue
= kzalloc(struct_size(queue
, fod
, sqsize
), GFP_KERNEL
);
812 queue
->work_q
= alloc_workqueue("ntfc%d.%d.%d", 0, 0,
813 assoc
->tgtport
->fc_target_port
.port_num
,
819 queue
->sqsize
= sqsize
;
820 queue
->assoc
= assoc
;
821 INIT_LIST_HEAD(&queue
->fod_list
);
822 INIT_LIST_HEAD(&queue
->avail_defer_list
);
823 INIT_LIST_HEAD(&queue
->pending_cmd_list
);
824 atomic_set(&queue
->connected
, 0);
825 atomic_set(&queue
->sqtail
, 0);
826 atomic_set(&queue
->rsn
, 1);
827 atomic_set(&queue
->zrspcnt
, 0);
828 spin_lock_init(&queue
->qlock
);
829 kref_init(&queue
->ref
);
831 nvmet_fc_prep_fcp_iodlist(assoc
->tgtport
, queue
);
833 ret
= nvmet_sq_init(&queue
->nvme_sq
);
835 goto out_fail_iodlist
;
837 WARN_ON(assoc
->queues
[qid
]);
838 assoc
->queues
[qid
] = queue
;
843 nvmet_fc_destroy_fcp_iodlist(assoc
->tgtport
, queue
);
844 destroy_workqueue(queue
->work_q
);
852 nvmet_fc_tgt_queue_free(struct kref
*ref
)
854 struct nvmet_fc_tgt_queue
*queue
=
855 container_of(ref
, struct nvmet_fc_tgt_queue
, ref
);
857 nvmet_fc_destroy_fcp_iodlist(queue
->assoc
->tgtport
, queue
);
859 destroy_workqueue(queue
->work_q
);
865 nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue
*queue
)
867 kref_put(&queue
->ref
, nvmet_fc_tgt_queue_free
);
871 nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue
*queue
)
873 return kref_get_unless_zero(&queue
->ref
);
878 nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue
*queue
)
880 struct nvmet_fc_tgtport
*tgtport
= queue
->assoc
->tgtport
;
881 struct nvmet_fc_fcp_iod
*fod
= queue
->fod
;
882 struct nvmet_fc_defer_fcp_req
*deferfcp
, *tempptr
;
887 disconnect
= atomic_xchg(&queue
->connected
, 0);
889 /* if not connected, nothing to do */
893 spin_lock_irqsave(&queue
->qlock
, flags
);
894 /* abort outstanding io's */
895 for (i
= 0; i
< queue
->sqsize
; fod
++, i
++) {
897 spin_lock(&fod
->flock
);
900 * only call lldd abort routine if waiting for
901 * writedata. other outstanding ops should finish
904 if (fod
->writedataactive
) {
906 spin_unlock(&fod
->flock
);
907 tgtport
->ops
->fcp_abort(
908 &tgtport
->fc_target_port
, fod
->fcpreq
);
910 spin_unlock(&fod
->flock
);
914 /* Cleanup defer'ed IOs in queue */
915 list_for_each_entry_safe(deferfcp
, tempptr
, &queue
->avail_defer_list
,
917 list_del(&deferfcp
->req_list
);
922 deferfcp
= list_first_entry_or_null(&queue
->pending_cmd_list
,
923 struct nvmet_fc_defer_fcp_req
, req_list
);
927 list_del(&deferfcp
->req_list
);
928 spin_unlock_irqrestore(&queue
->qlock
, flags
);
930 tgtport
->ops
->defer_rcv(&tgtport
->fc_target_port
,
933 tgtport
->ops
->fcp_abort(&tgtport
->fc_target_port
,
936 tgtport
->ops
->fcp_req_release(&tgtport
->fc_target_port
,
939 /* release the queue lookup reference */
940 nvmet_fc_tgt_q_put(queue
);
944 spin_lock_irqsave(&queue
->qlock
, flags
);
946 spin_unlock_irqrestore(&queue
->qlock
, flags
);
948 flush_workqueue(queue
->work_q
);
950 nvmet_sq_destroy(&queue
->nvme_sq
);
952 nvmet_fc_tgt_q_put(queue
);
955 static struct nvmet_fc_tgt_queue
*
956 nvmet_fc_find_target_queue(struct nvmet_fc_tgtport
*tgtport
,
959 struct nvmet_fc_tgt_assoc
*assoc
;
960 struct nvmet_fc_tgt_queue
*queue
;
961 u64 association_id
= nvmet_fc_getassociationid(connection_id
);
962 u16 qid
= nvmet_fc_getqueueid(connection_id
);
964 if (qid
> NVMET_NR_QUEUES
)
968 list_for_each_entry_rcu(assoc
, &tgtport
->assoc_list
, a_list
) {
969 if (association_id
== assoc
->association_id
) {
970 queue
= assoc
->queues
[qid
];
972 (!atomic_read(&queue
->connected
) ||
973 !nvmet_fc_tgt_q_get(queue
)))
984 nvmet_fc_hostport_free(struct kref
*ref
)
986 struct nvmet_fc_hostport
*hostport
=
987 container_of(ref
, struct nvmet_fc_hostport
, ref
);
988 struct nvmet_fc_tgtport
*tgtport
= hostport
->tgtport
;
991 spin_lock_irqsave(&tgtport
->lock
, flags
);
992 list_del(&hostport
->host_list
);
993 spin_unlock_irqrestore(&tgtport
->lock
, flags
);
994 if (tgtport
->ops
->host_release
&& hostport
->invalid
)
995 tgtport
->ops
->host_release(hostport
->hosthandle
);
997 nvmet_fc_tgtport_put(tgtport
);
1001 nvmet_fc_hostport_put(struct nvmet_fc_hostport
*hostport
)
1003 kref_put(&hostport
->ref
, nvmet_fc_hostport_free
);
1007 nvmet_fc_hostport_get(struct nvmet_fc_hostport
*hostport
)
1009 return kref_get_unless_zero(&hostport
->ref
);
1013 nvmet_fc_free_hostport(struct nvmet_fc_hostport
*hostport
)
1015 /* if LLDD not implemented, leave as NULL */
1016 if (!hostport
|| !hostport
->hosthandle
)
1019 nvmet_fc_hostport_put(hostport
);
1022 static struct nvmet_fc_hostport
*
1023 nvmet_fc_match_hostport(struct nvmet_fc_tgtport
*tgtport
, void *hosthandle
)
1025 struct nvmet_fc_hostport
*host
;
1027 lockdep_assert_held(&tgtport
->lock
);
1029 list_for_each_entry(host
, &tgtport
->host_list
, host_list
) {
1030 if (host
->hosthandle
== hosthandle
&& !host
->invalid
) {
1031 if (nvmet_fc_hostport_get(host
))
1039 static struct nvmet_fc_hostport
*
1040 nvmet_fc_alloc_hostport(struct nvmet_fc_tgtport
*tgtport
, void *hosthandle
)
1042 struct nvmet_fc_hostport
*newhost
, *match
= NULL
;
1043 unsigned long flags
;
1045 /* if LLDD not implemented, leave as NULL */
1050 * take reference for what will be the newly allocated hostport if
1051 * we end up using a new allocation
1053 if (!nvmet_fc_tgtport_get(tgtport
))
1054 return ERR_PTR(-EINVAL
);
1056 spin_lock_irqsave(&tgtport
->lock
, flags
);
1057 match
= nvmet_fc_match_hostport(tgtport
, hosthandle
);
1058 spin_unlock_irqrestore(&tgtport
->lock
, flags
);
1061 /* no new allocation - release reference */
1062 nvmet_fc_tgtport_put(tgtport
);
1066 newhost
= kzalloc(sizeof(*newhost
), GFP_KERNEL
);
1068 /* no new allocation - release reference */
1069 nvmet_fc_tgtport_put(tgtport
);
1070 return ERR_PTR(-ENOMEM
);
1073 spin_lock_irqsave(&tgtport
->lock
, flags
);
1074 match
= nvmet_fc_match_hostport(tgtport
, hosthandle
);
1076 /* new allocation not needed */
1080 newhost
->tgtport
= tgtport
;
1081 newhost
->hosthandle
= hosthandle
;
1082 INIT_LIST_HEAD(&newhost
->host_list
);
1083 kref_init(&newhost
->ref
);
1085 list_add_tail(&newhost
->host_list
, &tgtport
->host_list
);
1087 spin_unlock_irqrestore(&tgtport
->lock
, flags
);
1093 nvmet_fc_delete_assoc(struct nvmet_fc_tgt_assoc
*assoc
)
1095 nvmet_fc_delete_target_assoc(assoc
);
1096 nvmet_fc_tgt_a_put(assoc
);
1100 nvmet_fc_delete_assoc_work(struct work_struct
*work
)
1102 struct nvmet_fc_tgt_assoc
*assoc
=
1103 container_of(work
, struct nvmet_fc_tgt_assoc
, del_work
);
1104 struct nvmet_fc_tgtport
*tgtport
= assoc
->tgtport
;
1106 nvmet_fc_delete_assoc(assoc
);
1107 nvmet_fc_tgtport_put(tgtport
);
1111 nvmet_fc_schedule_delete_assoc(struct nvmet_fc_tgt_assoc
*assoc
)
1113 nvmet_fc_tgtport_get(assoc
->tgtport
);
1114 queue_work(nvmet_wq
, &assoc
->del_work
);
1118 nvmet_fc_assoc_exists(struct nvmet_fc_tgtport
*tgtport
, u64 association_id
)
1120 struct nvmet_fc_tgt_assoc
*a
;
1124 list_for_each_entry_rcu(a
, &tgtport
->assoc_list
, a_list
) {
1125 if (association_id
== a
->association_id
) {
1135 static struct nvmet_fc_tgt_assoc
*
1136 nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport
*tgtport
, void *hosthandle
)
1138 struct nvmet_fc_tgt_assoc
*assoc
;
1139 unsigned long flags
;
1147 assoc
= kzalloc(sizeof(*assoc
), GFP_KERNEL
);
1151 idx
= ida_alloc(&tgtport
->assoc_cnt
, GFP_KERNEL
);
1153 goto out_free_assoc
;
1155 assoc
->hostport
= nvmet_fc_alloc_hostport(tgtport
, hosthandle
);
1156 if (IS_ERR(assoc
->hostport
))
1159 assoc
->tgtport
= tgtport
;
1161 INIT_LIST_HEAD(&assoc
->a_list
);
1162 kref_init(&assoc
->ref
);
1163 INIT_WORK(&assoc
->del_work
, nvmet_fc_delete_assoc_work
);
1164 atomic_set(&assoc
->terminating
, 0);
1168 get_random_bytes(&ran
, sizeof(ran
) - BYTES_FOR_QID
);
1169 ran
= ran
<< BYTES_FOR_QID_SHIFT
;
1171 spin_lock_irqsave(&tgtport
->lock
, flags
);
1172 if (!nvmet_fc_assoc_exists(tgtport
, ran
)) {
1173 assoc
->association_id
= ran
;
1174 list_add_tail_rcu(&assoc
->a_list
, &tgtport
->assoc_list
);
1177 spin_unlock_irqrestore(&tgtport
->lock
, flags
);
1183 ida_free(&tgtport
->assoc_cnt
, idx
);
1190 nvmet_fc_target_assoc_free(struct kref
*ref
)
1192 struct nvmet_fc_tgt_assoc
*assoc
=
1193 container_of(ref
, struct nvmet_fc_tgt_assoc
, ref
);
1194 struct nvmet_fc_tgtport
*tgtport
= assoc
->tgtport
;
1195 struct nvmet_fc_ls_iod
*oldls
;
1196 unsigned long flags
;
1199 for (i
= NVMET_NR_QUEUES
; i
>= 0; i
--) {
1200 if (assoc
->queues
[i
])
1201 nvmet_fc_delete_target_queue(assoc
->queues
[i
]);
1204 /* Send Disconnect now that all i/o has completed */
1205 nvmet_fc_xmt_disconnect_assoc(assoc
);
1207 nvmet_fc_free_hostport(assoc
->hostport
);
1208 spin_lock_irqsave(&tgtport
->lock
, flags
);
1209 oldls
= assoc
->rcv_disconn
;
1210 spin_unlock_irqrestore(&tgtport
->lock
, flags
);
1211 /* if pending Rcv Disconnect Association LS, send rsp now */
1213 nvmet_fc_xmt_ls_rsp(tgtport
, oldls
);
1214 ida_free(&tgtport
->assoc_cnt
, assoc
->a_id
);
1215 dev_info(tgtport
->dev
,
1216 "{%d:%d} Association freed\n",
1217 tgtport
->fc_target_port
.port_num
, assoc
->a_id
);
1222 nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc
*assoc
)
1224 kref_put(&assoc
->ref
, nvmet_fc_target_assoc_free
);
1228 nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc
*assoc
)
1230 return kref_get_unless_zero(&assoc
->ref
);
1234 nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc
*assoc
)
1236 struct nvmet_fc_tgtport
*tgtport
= assoc
->tgtport
;
1237 unsigned long flags
;
1240 terminating
= atomic_xchg(&assoc
->terminating
, 1);
1242 /* if already terminating, do nothing */
1246 spin_lock_irqsave(&tgtport
->lock
, flags
);
1247 list_del_rcu(&assoc
->a_list
);
1248 spin_unlock_irqrestore(&tgtport
->lock
, flags
);
1252 /* ensure all in-flight I/Os have been processed */
1253 for (i
= NVMET_NR_QUEUES
; i
>= 0; i
--) {
1254 if (assoc
->queues
[i
])
1255 flush_workqueue(assoc
->queues
[i
]->work_q
);
1258 dev_info(tgtport
->dev
,
1259 "{%d:%d} Association deleted\n",
1260 tgtport
->fc_target_port
.port_num
, assoc
->a_id
);
1263 static struct nvmet_fc_tgt_assoc
*
1264 nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport
*tgtport
,
1267 struct nvmet_fc_tgt_assoc
*assoc
;
1268 struct nvmet_fc_tgt_assoc
*ret
= NULL
;
1271 list_for_each_entry_rcu(assoc
, &tgtport
->assoc_list
, a_list
) {
1272 if (association_id
== assoc
->association_id
) {
1274 if (!nvmet_fc_tgt_a_get(assoc
))
1285 nvmet_fc_portentry_bind(struct nvmet_fc_tgtport
*tgtport
,
1286 struct nvmet_fc_port_entry
*pe
,
1287 struct nvmet_port
*port
)
1289 lockdep_assert_held(&nvmet_fc_tgtlock
);
1291 pe
->tgtport
= tgtport
;
1297 pe
->node_name
= tgtport
->fc_target_port
.node_name
;
1298 pe
->port_name
= tgtport
->fc_target_port
.port_name
;
1299 INIT_LIST_HEAD(&pe
->pe_list
);
1301 list_add_tail(&pe
->pe_list
, &nvmet_fc_portentry_list
);
1305 nvmet_fc_portentry_unbind(struct nvmet_fc_port_entry
*pe
)
1307 unsigned long flags
;
1309 spin_lock_irqsave(&nvmet_fc_tgtlock
, flags
);
1311 pe
->tgtport
->pe
= NULL
;
1312 list_del(&pe
->pe_list
);
1313 spin_unlock_irqrestore(&nvmet_fc_tgtlock
, flags
);
1317 * called when a targetport deregisters. Breaks the relationship
1318 * with the nvmet port, but leaves the port_entry in place so that
1319 * re-registration can resume operation.
1322 nvmet_fc_portentry_unbind_tgt(struct nvmet_fc_tgtport
*tgtport
)
1324 struct nvmet_fc_port_entry
*pe
;
1325 unsigned long flags
;
1327 spin_lock_irqsave(&nvmet_fc_tgtlock
, flags
);
1332 spin_unlock_irqrestore(&nvmet_fc_tgtlock
, flags
);
1336 * called when a new targetport is registered. Looks in the
1337 * existing nvmet port_entries to see if the nvmet layer is
1338 * configured for the targetport's wwn's. (the targetport existed,
1339 * nvmet configured, the lldd unregistered the tgtport, and is now
1340 * reregistering the same targetport). If so, set the nvmet port
1341 * port entry on the targetport.
1344 nvmet_fc_portentry_rebind_tgt(struct nvmet_fc_tgtport
*tgtport
)
1346 struct nvmet_fc_port_entry
*pe
;
1347 unsigned long flags
;
1349 spin_lock_irqsave(&nvmet_fc_tgtlock
, flags
);
1350 list_for_each_entry(pe
, &nvmet_fc_portentry_list
, pe_list
) {
1351 if (tgtport
->fc_target_port
.node_name
== pe
->node_name
&&
1352 tgtport
->fc_target_port
.port_name
== pe
->port_name
) {
1353 WARN_ON(pe
->tgtport
);
1355 pe
->tgtport
= tgtport
;
1359 spin_unlock_irqrestore(&nvmet_fc_tgtlock
, flags
);
1363 * nvmet_fc_register_targetport - transport entry point called by an
1364 * LLDD to register the existence of a local
1365 * NVME subystem FC port.
1366 * @pinfo: pointer to information about the port to be registered
1367 * @template: LLDD entrypoints and operational parameters for the port
1368 * @dev: physical hardware device node port corresponds to. Will be
1369 * used for DMA mappings
1370 * @portptr: pointer to a local port pointer. Upon success, the routine
1371 * will allocate a nvme_fc_local_port structure and place its
1372 * address in the local port pointer. Upon failure, local port
1373 * pointer will be set to NULL.
1376 * a completion status. Must be 0 upon success; a negative errno
1377 * (ex: -ENXIO) upon failure.
1380 nvmet_fc_register_targetport(struct nvmet_fc_port_info
*pinfo
,
1381 struct nvmet_fc_target_template
*template,
1383 struct nvmet_fc_target_port
**portptr
)
1385 struct nvmet_fc_tgtport
*newrec
;
1386 unsigned long flags
;
1389 if (!template->xmt_ls_rsp
|| !template->fcp_op
||
1390 !template->fcp_abort
||
1391 !template->fcp_req_release
|| !template->targetport_delete
||
1392 !template->max_hw_queues
|| !template->max_sgl_segments
||
1393 !template->max_dif_sgl_segments
|| !template->dma_boundary
) {
1395 goto out_regtgt_failed
;
1398 newrec
= kzalloc((sizeof(*newrec
) + template->target_priv_sz
),
1402 goto out_regtgt_failed
;
1405 idx
= ida_alloc(&nvmet_fc_tgtport_cnt
, GFP_KERNEL
);
1408 goto out_fail_kfree
;
1411 if (!get_device(dev
) && dev
) {
1416 newrec
->fc_target_port
.node_name
= pinfo
->node_name
;
1417 newrec
->fc_target_port
.port_name
= pinfo
->port_name
;
1418 if (template->target_priv_sz
)
1419 newrec
->fc_target_port
.private = &newrec
[1];
1421 newrec
->fc_target_port
.private = NULL
;
1422 newrec
->fc_target_port
.port_id
= pinfo
->port_id
;
1423 newrec
->fc_target_port
.port_num
= idx
;
1424 INIT_LIST_HEAD(&newrec
->tgt_list
);
1426 newrec
->ops
= template;
1427 spin_lock_init(&newrec
->lock
);
1428 INIT_LIST_HEAD(&newrec
->ls_rcv_list
);
1429 INIT_LIST_HEAD(&newrec
->ls_req_list
);
1430 INIT_LIST_HEAD(&newrec
->ls_busylist
);
1431 INIT_LIST_HEAD(&newrec
->assoc_list
);
1432 INIT_LIST_HEAD(&newrec
->host_list
);
1433 kref_init(&newrec
->ref
);
1434 ida_init(&newrec
->assoc_cnt
);
1435 newrec
->max_sg_cnt
= template->max_sgl_segments
;
1436 INIT_WORK(&newrec
->put_work
, nvmet_fc_put_tgtport_work
);
1438 ret
= nvmet_fc_alloc_ls_iodlist(newrec
);
1441 goto out_free_newrec
;
1444 nvmet_fc_portentry_rebind_tgt(newrec
);
1446 spin_lock_irqsave(&nvmet_fc_tgtlock
, flags
);
1447 list_add_tail(&newrec
->tgt_list
, &nvmet_fc_target_list
);
1448 spin_unlock_irqrestore(&nvmet_fc_tgtlock
, flags
);
1450 *portptr
= &newrec
->fc_target_port
;
1456 ida_free(&nvmet_fc_tgtport_cnt
, idx
);
1463 EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport
);
1467 nvmet_fc_free_tgtport(struct kref
*ref
)
1469 struct nvmet_fc_tgtport
*tgtport
=
1470 container_of(ref
, struct nvmet_fc_tgtport
, ref
);
1471 struct device
*dev
= tgtport
->dev
;
1472 unsigned long flags
;
1474 spin_lock_irqsave(&nvmet_fc_tgtlock
, flags
);
1475 list_del(&tgtport
->tgt_list
);
1476 spin_unlock_irqrestore(&nvmet_fc_tgtlock
, flags
);
1478 nvmet_fc_free_ls_iodlist(tgtport
);
1480 /* let the LLDD know we've finished tearing it down */
1481 tgtport
->ops
->targetport_delete(&tgtport
->fc_target_port
);
1483 ida_free(&nvmet_fc_tgtport_cnt
,
1484 tgtport
->fc_target_port
.port_num
);
1486 ida_destroy(&tgtport
->assoc_cnt
);
1494 nvmet_fc_tgtport_put(struct nvmet_fc_tgtport
*tgtport
)
1496 kref_put(&tgtport
->ref
, nvmet_fc_free_tgtport
);
1500 nvmet_fc_tgtport_get(struct nvmet_fc_tgtport
*tgtport
)
1502 return kref_get_unless_zero(&tgtport
->ref
);
1506 __nvmet_fc_free_assocs(struct nvmet_fc_tgtport
*tgtport
)
1508 struct nvmet_fc_tgt_assoc
*assoc
;
1511 list_for_each_entry_rcu(assoc
, &tgtport
->assoc_list
, a_list
) {
1512 if (!nvmet_fc_tgt_a_get(assoc
))
1514 nvmet_fc_schedule_delete_assoc(assoc
);
1515 nvmet_fc_tgt_a_put(assoc
);
1521 * nvmet_fc_invalidate_host - transport entry point called by an LLDD
1522 * to remove references to a hosthandle for LS's.
1524 * The nvmet-fc layer ensures that any references to the hosthandle
1525 * on the targetport are forgotten (set to NULL). The LLDD will
1526 * typically call this when a login with a remote host port has been
1527 * lost, thus LS's for the remote host port are no longer possible.
1529 * If an LS request is outstanding to the targetport/hosthandle (or
1530 * issued concurrently with the call to invalidate the host), the
1531 * LLDD is responsible for terminating/aborting the LS and completing
1532 * the LS request. It is recommended that these terminations/aborts
1533 * occur after calling to invalidate the host handle to avoid additional
1534 * retries by the nvmet-fc transport. The nvmet-fc transport may
1535 * continue to reference host handle while it cleans up outstanding
1536 * NVME associations. The nvmet-fc transport will call the
1537 * ops->host_release() callback to notify the LLDD that all references
1538 * are complete and the related host handle can be recovered.
1539 * Note: if there are no references, the callback may be called before
1540 * the invalidate host call returns.
1542 * @target_port: pointer to the (registered) target port that a prior
1543 * LS was received on and which supplied the transport the
1545 * @hosthandle: the handle (pointer) that represents the host port
1546 * that no longer has connectivity and that LS's should
1547 * no longer be directed to.
1550 nvmet_fc_invalidate_host(struct nvmet_fc_target_port
*target_port
,
1553 struct nvmet_fc_tgtport
*tgtport
= targetport_to_tgtport(target_port
);
1554 struct nvmet_fc_tgt_assoc
*assoc
, *next
;
1555 unsigned long flags
;
1556 bool noassoc
= true;
1558 spin_lock_irqsave(&tgtport
->lock
, flags
);
1559 list_for_each_entry_safe(assoc
, next
,
1560 &tgtport
->assoc_list
, a_list
) {
1561 if (assoc
->hostport
->hosthandle
!= hosthandle
)
1563 if (!nvmet_fc_tgt_a_get(assoc
))
1565 assoc
->hostport
->invalid
= 1;
1567 nvmet_fc_schedule_delete_assoc(assoc
);
1568 nvmet_fc_tgt_a_put(assoc
);
1570 spin_unlock_irqrestore(&tgtport
->lock
, flags
);
1572 /* if there's nothing to wait for - call the callback */
1573 if (noassoc
&& tgtport
->ops
->host_release
)
1574 tgtport
->ops
->host_release(hosthandle
);
1576 EXPORT_SYMBOL_GPL(nvmet_fc_invalidate_host
);
1579 * nvmet layer has called to terminate an association
1582 nvmet_fc_delete_ctrl(struct nvmet_ctrl
*ctrl
)
1584 struct nvmet_fc_tgtport
*tgtport
, *next
;
1585 struct nvmet_fc_tgt_assoc
*assoc
;
1586 struct nvmet_fc_tgt_queue
*queue
;
1587 unsigned long flags
;
1588 bool found_ctrl
= false;
1590 /* this is a bit ugly, but don't want to make locks layered */
1591 spin_lock_irqsave(&nvmet_fc_tgtlock
, flags
);
1592 list_for_each_entry_safe(tgtport
, next
, &nvmet_fc_target_list
,
1594 if (!nvmet_fc_tgtport_get(tgtport
))
1596 spin_unlock_irqrestore(&nvmet_fc_tgtlock
, flags
);
1599 list_for_each_entry_rcu(assoc
, &tgtport
->assoc_list
, a_list
) {
1600 queue
= assoc
->queues
[0];
1601 if (queue
&& queue
->nvme_sq
.ctrl
== ctrl
) {
1602 if (nvmet_fc_tgt_a_get(assoc
))
1609 nvmet_fc_tgtport_put(tgtport
);
1612 nvmet_fc_schedule_delete_assoc(assoc
);
1613 nvmet_fc_tgt_a_put(assoc
);
1617 spin_lock_irqsave(&nvmet_fc_tgtlock
, flags
);
1619 spin_unlock_irqrestore(&nvmet_fc_tgtlock
, flags
);
1623 * nvmet_fc_unregister_targetport - transport entry point called by an
1624 * LLDD to deregister/remove a previously
1625 * registered a local NVME subsystem FC port.
1626 * @target_port: pointer to the (registered) target port that is to be
1630 * a completion status. Must be 0 upon success; a negative errno
1631 * (ex: -ENXIO) upon failure.
1634 nvmet_fc_unregister_targetport(struct nvmet_fc_target_port
*target_port
)
1636 struct nvmet_fc_tgtport
*tgtport
= targetport_to_tgtport(target_port
);
1638 nvmet_fc_portentry_unbind_tgt(tgtport
);
1640 /* terminate any outstanding associations */
1641 __nvmet_fc_free_assocs(tgtport
);
1643 flush_workqueue(nvmet_wq
);
1646 * should terminate LS's as well. However, LS's will be generated
1647 * at the tail end of association termination, so they likely don't
1648 * exist yet. And even if they did, it's worthwhile to just let
1649 * them finish and targetport ref counting will clean things up.
1652 nvmet_fc_tgtport_put(tgtport
);
1656 EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport
);
1659 /* ********************** FC-NVME LS RCV Handling ************************* */
1663 nvmet_fc_ls_create_association(struct nvmet_fc_tgtport
*tgtport
,
1664 struct nvmet_fc_ls_iod
*iod
)
1666 struct fcnvme_ls_cr_assoc_rqst
*rqst
= &iod
->rqstbuf
->rq_cr_assoc
;
1667 struct fcnvme_ls_cr_assoc_acc
*acc
= &iod
->rspbuf
->rsp_cr_assoc
;
1668 struct nvmet_fc_tgt_queue
*queue
;
1671 memset(acc
, 0, sizeof(*acc
));
1674 * FC-NVME spec changes. There are initiators sending different
1675 * lengths as padding sizes for Create Association Cmd descriptor
1677 * Accept anything of "minimum" length. Assume format per 1.15
1678 * spec (with HOSTID reduced to 16 bytes), ignore how long the
1679 * trailing pad length is.
1681 if (iod
->rqstdatalen
< FCNVME_LSDESC_CRA_RQST_MINLEN
)
1682 ret
= VERR_CR_ASSOC_LEN
;
1683 else if (be32_to_cpu(rqst
->desc_list_len
) <
1684 FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN
)
1685 ret
= VERR_CR_ASSOC_RQST_LEN
;
1686 else if (rqst
->assoc_cmd
.desc_tag
!=
1687 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD
))
1688 ret
= VERR_CR_ASSOC_CMD
;
1689 else if (be32_to_cpu(rqst
->assoc_cmd
.desc_len
) <
1690 FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN
)
1691 ret
= VERR_CR_ASSOC_CMD_LEN
;
1692 else if (!rqst
->assoc_cmd
.ersp_ratio
||
1693 (be16_to_cpu(rqst
->assoc_cmd
.ersp_ratio
) >=
1694 be16_to_cpu(rqst
->assoc_cmd
.sqsize
)))
1695 ret
= VERR_ERSP_RATIO
;
1698 /* new association w/ admin queue */
1699 iod
->assoc
= nvmet_fc_alloc_target_assoc(
1700 tgtport
, iod
->hosthandle
);
1702 ret
= VERR_ASSOC_ALLOC_FAIL
;
1704 queue
= nvmet_fc_alloc_target_queue(iod
->assoc
, 0,
1705 be16_to_cpu(rqst
->assoc_cmd
.sqsize
));
1707 ret
= VERR_QUEUE_ALLOC_FAIL
;
1708 nvmet_fc_tgt_a_put(iod
->assoc
);
1714 dev_err(tgtport
->dev
,
1715 "Create Association LS failed: %s\n",
1716 validation_errors
[ret
]);
1717 iod
->lsrsp
->rsplen
= nvme_fc_format_rjt(acc
,
1718 sizeof(*acc
), rqst
->w0
.ls_cmd
,
1719 FCNVME_RJT_RC_LOGIC
,
1720 FCNVME_RJT_EXP_NONE
, 0);
1724 queue
->ersp_ratio
= be16_to_cpu(rqst
->assoc_cmd
.ersp_ratio
);
1725 atomic_set(&queue
->connected
, 1);
1726 queue
->sqhd
= 0; /* best place to init value */
1728 dev_info(tgtport
->dev
,
1729 "{%d:%d} Association created\n",
1730 tgtport
->fc_target_port
.port_num
, iod
->assoc
->a_id
);
1732 /* format a response */
1734 iod
->lsrsp
->rsplen
= sizeof(*acc
);
1736 nvme_fc_format_rsp_hdr(acc
, FCNVME_LS_ACC
,
1738 sizeof(struct fcnvme_ls_cr_assoc_acc
)),
1739 FCNVME_LS_CREATE_ASSOCIATION
);
1740 acc
->associd
.desc_tag
= cpu_to_be32(FCNVME_LSDESC_ASSOC_ID
);
1741 acc
->associd
.desc_len
=
1743 sizeof(struct fcnvme_lsdesc_assoc_id
));
1744 acc
->associd
.association_id
=
1745 cpu_to_be64(nvmet_fc_makeconnid(iod
->assoc
, 0));
1746 acc
->connectid
.desc_tag
= cpu_to_be32(FCNVME_LSDESC_CONN_ID
);
1747 acc
->connectid
.desc_len
=
1749 sizeof(struct fcnvme_lsdesc_conn_id
));
1750 acc
->connectid
.connection_id
= acc
->associd
.association_id
;
1754 nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport
*tgtport
,
1755 struct nvmet_fc_ls_iod
*iod
)
1757 struct fcnvme_ls_cr_conn_rqst
*rqst
= &iod
->rqstbuf
->rq_cr_conn
;
1758 struct fcnvme_ls_cr_conn_acc
*acc
= &iod
->rspbuf
->rsp_cr_conn
;
1759 struct nvmet_fc_tgt_queue
*queue
;
1762 memset(acc
, 0, sizeof(*acc
));
1764 if (iod
->rqstdatalen
< sizeof(struct fcnvme_ls_cr_conn_rqst
))
1765 ret
= VERR_CR_CONN_LEN
;
1766 else if (rqst
->desc_list_len
!=
1768 sizeof(struct fcnvme_ls_cr_conn_rqst
)))
1769 ret
= VERR_CR_CONN_RQST_LEN
;
1770 else if (rqst
->associd
.desc_tag
!= cpu_to_be32(FCNVME_LSDESC_ASSOC_ID
))
1771 ret
= VERR_ASSOC_ID
;
1772 else if (rqst
->associd
.desc_len
!=
1774 sizeof(struct fcnvme_lsdesc_assoc_id
)))
1775 ret
= VERR_ASSOC_ID_LEN
;
1776 else if (rqst
->connect_cmd
.desc_tag
!=
1777 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD
))
1778 ret
= VERR_CR_CONN_CMD
;
1779 else if (rqst
->connect_cmd
.desc_len
!=
1781 sizeof(struct fcnvme_lsdesc_cr_conn_cmd
)))
1782 ret
= VERR_CR_CONN_CMD_LEN
;
1783 else if (!rqst
->connect_cmd
.ersp_ratio
||
1784 (be16_to_cpu(rqst
->connect_cmd
.ersp_ratio
) >=
1785 be16_to_cpu(rqst
->connect_cmd
.sqsize
)))
1786 ret
= VERR_ERSP_RATIO
;
1790 iod
->assoc
= nvmet_fc_find_target_assoc(tgtport
,
1791 be64_to_cpu(rqst
->associd
.association_id
));
1793 ret
= VERR_NO_ASSOC
;
1795 queue
= nvmet_fc_alloc_target_queue(iod
->assoc
,
1796 be16_to_cpu(rqst
->connect_cmd
.qid
),
1797 be16_to_cpu(rqst
->connect_cmd
.sqsize
));
1799 ret
= VERR_QUEUE_ALLOC_FAIL
;
1801 /* release get taken in nvmet_fc_find_target_assoc */
1802 nvmet_fc_tgt_a_put(iod
->assoc
);
1807 dev_err(tgtport
->dev
,
1808 "Create Connection LS failed: %s\n",
1809 validation_errors
[ret
]);
1810 iod
->lsrsp
->rsplen
= nvme_fc_format_rjt(acc
,
1811 sizeof(*acc
), rqst
->w0
.ls_cmd
,
1812 (ret
== VERR_NO_ASSOC
) ?
1813 FCNVME_RJT_RC_INV_ASSOC
:
1814 FCNVME_RJT_RC_LOGIC
,
1815 FCNVME_RJT_EXP_NONE
, 0);
1819 queue
->ersp_ratio
= be16_to_cpu(rqst
->connect_cmd
.ersp_ratio
);
1820 atomic_set(&queue
->connected
, 1);
1821 queue
->sqhd
= 0; /* best place to init value */
1823 /* format a response */
1825 iod
->lsrsp
->rsplen
= sizeof(*acc
);
1827 nvme_fc_format_rsp_hdr(acc
, FCNVME_LS_ACC
,
1828 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc
)),
1829 FCNVME_LS_CREATE_CONNECTION
);
1830 acc
->connectid
.desc_tag
= cpu_to_be32(FCNVME_LSDESC_CONN_ID
);
1831 acc
->connectid
.desc_len
=
1833 sizeof(struct fcnvme_lsdesc_conn_id
));
1834 acc
->connectid
.connection_id
=
1835 cpu_to_be64(nvmet_fc_makeconnid(iod
->assoc
,
1836 be16_to_cpu(rqst
->connect_cmd
.qid
)));
1840 * Returns true if the LS response is to be transmit
1841 * Returns false if the LS response is to be delayed
1844 nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport
*tgtport
,
1845 struct nvmet_fc_ls_iod
*iod
)
1847 struct fcnvme_ls_disconnect_assoc_rqst
*rqst
=
1848 &iod
->rqstbuf
->rq_dis_assoc
;
1849 struct fcnvme_ls_disconnect_assoc_acc
*acc
=
1850 &iod
->rspbuf
->rsp_dis_assoc
;
1851 struct nvmet_fc_tgt_assoc
*assoc
= NULL
;
1852 struct nvmet_fc_ls_iod
*oldls
= NULL
;
1853 unsigned long flags
;
1856 memset(acc
, 0, sizeof(*acc
));
1858 ret
= nvmefc_vldt_lsreq_discon_assoc(iod
->rqstdatalen
, rqst
);
1860 /* match an active association - takes an assoc ref if !NULL */
1861 assoc
= nvmet_fc_find_target_assoc(tgtport
,
1862 be64_to_cpu(rqst
->associd
.association_id
));
1865 ret
= VERR_NO_ASSOC
;
1868 if (ret
|| !assoc
) {
1869 dev_err(tgtport
->dev
,
1870 "Disconnect LS failed: %s\n",
1871 validation_errors
[ret
]);
1872 iod
->lsrsp
->rsplen
= nvme_fc_format_rjt(acc
,
1873 sizeof(*acc
), rqst
->w0
.ls_cmd
,
1874 (ret
== VERR_NO_ASSOC
) ?
1875 FCNVME_RJT_RC_INV_ASSOC
:
1876 FCNVME_RJT_RC_LOGIC
,
1877 FCNVME_RJT_EXP_NONE
, 0);
1881 /* format a response */
1883 iod
->lsrsp
->rsplen
= sizeof(*acc
);
1885 nvme_fc_format_rsp_hdr(acc
, FCNVME_LS_ACC
,
1887 sizeof(struct fcnvme_ls_disconnect_assoc_acc
)),
1888 FCNVME_LS_DISCONNECT_ASSOC
);
1891 * The rules for LS response says the response cannot
1892 * go back until ABTS's have been sent for all outstanding
1893 * I/O and a Disconnect Association LS has been sent.
1894 * So... save off the Disconnect LS to send the response
1895 * later. If there was a prior LS already saved, replace
1896 * it with the newer one and send a can't perform reject
1899 spin_lock_irqsave(&tgtport
->lock
, flags
);
1900 oldls
= assoc
->rcv_disconn
;
1901 assoc
->rcv_disconn
= iod
;
1902 spin_unlock_irqrestore(&tgtport
->lock
, flags
);
1905 dev_info(tgtport
->dev
,
1906 "{%d:%d} Multiple Disconnect Association LS's "
1908 tgtport
->fc_target_port
.port_num
, assoc
->a_id
);
1909 /* overwrite good response with bogus failure */
1910 oldls
->lsrsp
->rsplen
= nvme_fc_format_rjt(oldls
->rspbuf
,
1911 sizeof(*iod
->rspbuf
),
1912 /* ok to use rqst, LS is same */
1915 FCNVME_RJT_EXP_NONE
, 0);
1916 nvmet_fc_xmt_ls_rsp(tgtport
, oldls
);
1919 nvmet_fc_schedule_delete_assoc(assoc
);
1920 nvmet_fc_tgt_a_put(assoc
);
1926 /* *********************** NVME Ctrl Routines **************************** */
1929 static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req
*nvme_req
);
1931 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops
;
1934 nvmet_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp
*lsrsp
)
1936 struct nvmet_fc_ls_iod
*iod
= lsrsp
->nvme_fc_private
;
1937 struct nvmet_fc_tgtport
*tgtport
= iod
->tgtport
;
1939 fc_dma_sync_single_for_cpu(tgtport
->dev
, iod
->rspdma
,
1940 sizeof(*iod
->rspbuf
), DMA_TO_DEVICE
);
1941 nvmet_fc_free_ls_iod(tgtport
, iod
);
1942 nvmet_fc_tgtport_put(tgtport
);
1946 nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport
*tgtport
,
1947 struct nvmet_fc_ls_iod
*iod
)
1951 fc_dma_sync_single_for_device(tgtport
->dev
, iod
->rspdma
,
1952 sizeof(*iod
->rspbuf
), DMA_TO_DEVICE
);
1954 ret
= tgtport
->ops
->xmt_ls_rsp(&tgtport
->fc_target_port
, iod
->lsrsp
);
1956 nvmet_fc_xmt_ls_rsp_done(iod
->lsrsp
);
1960 * Actual processing routine for received FC-NVME LS Requests from the LLD
1963 nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport
*tgtport
,
1964 struct nvmet_fc_ls_iod
*iod
)
1966 struct fcnvme_ls_rqst_w0
*w0
= &iod
->rqstbuf
->rq_cr_assoc
.w0
;
1967 bool sendrsp
= true;
1969 iod
->lsrsp
->nvme_fc_private
= iod
;
1970 iod
->lsrsp
->rspbuf
= iod
->rspbuf
;
1971 iod
->lsrsp
->rspdma
= iod
->rspdma
;
1972 iod
->lsrsp
->done
= nvmet_fc_xmt_ls_rsp_done
;
1973 /* Be preventative. handlers will later set to valid length */
1974 iod
->lsrsp
->rsplen
= 0;
1980 * parse request input, execute the request, and format the
1983 switch (w0
->ls_cmd
) {
1984 case FCNVME_LS_CREATE_ASSOCIATION
:
1985 /* Creates Association and initial Admin Queue/Connection */
1986 nvmet_fc_ls_create_association(tgtport
, iod
);
1988 case FCNVME_LS_CREATE_CONNECTION
:
1989 /* Creates an IO Queue/Connection */
1990 nvmet_fc_ls_create_connection(tgtport
, iod
);
1992 case FCNVME_LS_DISCONNECT_ASSOC
:
1993 /* Terminate a Queue/Connection or the Association */
1994 sendrsp
= nvmet_fc_ls_disconnect(tgtport
, iod
);
1997 iod
->lsrsp
->rsplen
= nvme_fc_format_rjt(iod
->rspbuf
,
1998 sizeof(*iod
->rspbuf
), w0
->ls_cmd
,
1999 FCNVME_RJT_RC_INVAL
, FCNVME_RJT_EXP_NONE
, 0);
2003 nvmet_fc_xmt_ls_rsp(tgtport
, iod
);
2007 * Actual processing routine for received FC-NVME LS Requests from the LLD
2010 nvmet_fc_handle_ls_rqst_work(struct work_struct
*work
)
2012 struct nvmet_fc_ls_iod
*iod
=
2013 container_of(work
, struct nvmet_fc_ls_iod
, work
);
2014 struct nvmet_fc_tgtport
*tgtport
= iod
->tgtport
;
2016 nvmet_fc_handle_ls_rqst(tgtport
, iod
);
2021 * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD
2022 * upon the reception of a NVME LS request.
2024 * The nvmet-fc layer will copy payload to an internal structure for
2025 * processing. As such, upon completion of the routine, the LLDD may
2026 * immediately free/reuse the LS request buffer passed in the call.
2028 * If this routine returns error, the LLDD should abort the exchange.
2030 * @target_port: pointer to the (registered) target port the LS was
2032 * @hosthandle: pointer to the host specific data, gets stored in iod.
2033 * @lsrsp: pointer to a lsrsp structure to be used to reference
2034 * the exchange corresponding to the LS.
2035 * @lsreqbuf: pointer to the buffer containing the LS Request
2036 * @lsreqbuf_len: length, in bytes, of the received LS request
2039 nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port
*target_port
,
2041 struct nvmefc_ls_rsp
*lsrsp
,
2042 void *lsreqbuf
, u32 lsreqbuf_len
)
2044 struct nvmet_fc_tgtport
*tgtport
= targetport_to_tgtport(target_port
);
2045 struct nvmet_fc_ls_iod
*iod
;
2046 struct fcnvme_ls_rqst_w0
*w0
= (struct fcnvme_ls_rqst_w0
*)lsreqbuf
;
2048 if (lsreqbuf_len
> sizeof(union nvmefc_ls_requests
)) {
2049 dev_info(tgtport
->dev
,
2050 "RCV %s LS failed: payload too large (%d)\n",
2051 (w0
->ls_cmd
<= NVME_FC_LAST_LS_CMD_VALUE
) ?
2052 nvmefc_ls_names
[w0
->ls_cmd
] : "",
2057 if (!nvmet_fc_tgtport_get(tgtport
)) {
2058 dev_info(tgtport
->dev
,
2059 "RCV %s LS failed: target deleting\n",
2060 (w0
->ls_cmd
<= NVME_FC_LAST_LS_CMD_VALUE
) ?
2061 nvmefc_ls_names
[w0
->ls_cmd
] : "");
2065 iod
= nvmet_fc_alloc_ls_iod(tgtport
);
2067 dev_info(tgtport
->dev
,
2068 "RCV %s LS failed: context allocation failed\n",
2069 (w0
->ls_cmd
<= NVME_FC_LAST_LS_CMD_VALUE
) ?
2070 nvmefc_ls_names
[w0
->ls_cmd
] : "");
2071 nvmet_fc_tgtport_put(tgtport
);
2077 memcpy(iod
->rqstbuf
, lsreqbuf
, lsreqbuf_len
);
2078 iod
->rqstdatalen
= lsreqbuf_len
;
2079 iod
->hosthandle
= hosthandle
;
2081 queue_work(nvmet_wq
, &iod
->work
);
2085 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req
);
2089 * **********************
2090 * Start of FCP handling
2091 * **********************
2095 nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod
*fod
)
2097 struct scatterlist
*sg
;
2100 sg
= sgl_alloc(fod
->req
.transfer_len
, GFP_KERNEL
, &nent
);
2105 fod
->data_sg_cnt
= nent
;
2106 fod
->data_sg_cnt
= fc_dma_map_sg(fod
->tgtport
->dev
, sg
, nent
,
2107 ((fod
->io_dir
== NVMET_FCP_WRITE
) ?
2108 DMA_FROM_DEVICE
: DMA_TO_DEVICE
));
2109 /* note: write from initiator perspective */
2110 fod
->next_sg
= fod
->data_sg
;
2115 return NVME_SC_INTERNAL
;
2119 nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod
*fod
)
2121 if (!fod
->data_sg
|| !fod
->data_sg_cnt
)
2124 fc_dma_unmap_sg(fod
->tgtport
->dev
, fod
->data_sg
, fod
->data_sg_cnt
,
2125 ((fod
->io_dir
== NVMET_FCP_WRITE
) ?
2126 DMA_FROM_DEVICE
: DMA_TO_DEVICE
));
2127 sgl_free(fod
->data_sg
);
2128 fod
->data_sg
= NULL
;
2129 fod
->data_sg_cnt
= 0;
2134 queue_90percent_full(struct nvmet_fc_tgt_queue
*q
, u32 sqhd
)
2138 /* egad, this is ugly. And sqtail is just a best guess */
2139 sqtail
= atomic_read(&q
->sqtail
) % q
->sqsize
;
2141 used
= (sqtail
< sqhd
) ? (sqtail
+ q
->sqsize
- sqhd
) : (sqtail
- sqhd
);
2142 return ((used
* 10) >= (((u32
)(q
->sqsize
- 1) * 9)));
2147 * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op
2150 nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport
*tgtport
,
2151 struct nvmet_fc_fcp_iod
*fod
)
2153 struct nvme_fc_ersp_iu
*ersp
= &fod
->rspiubuf
;
2154 struct nvme_common_command
*sqe
= &fod
->cmdiubuf
.sqe
.common
;
2155 struct nvme_completion
*cqe
= &ersp
->cqe
;
2156 u32
*cqewd
= (u32
*)cqe
;
2157 bool send_ersp
= false;
2158 u32 rsn
, rspcnt
, xfr_length
;
2160 if (fod
->fcpreq
->op
== NVMET_FCOP_READDATA_RSP
)
2161 xfr_length
= fod
->req
.transfer_len
;
2163 xfr_length
= fod
->offset
;
2166 * check to see if we can send a 0's rsp.
2167 * Note: to send a 0's response, the NVME-FC host transport will
2168 * recreate the CQE. The host transport knows: sq id, SQHD (last
2169 * seen in an ersp), and command_id. Thus it will create a
2170 * zero-filled CQE with those known fields filled in. Transport
2171 * must send an ersp for any condition where the cqe won't match
2174 * Here are the FC-NVME mandated cases where we must send an ersp:
2175 * every N responses, where N=ersp_ratio
2176 * force fabric commands to send ersp's (not in FC-NVME but good
2178 * normal cmds: any time status is non-zero, or status is zero
2179 * but words 0 or 1 are non-zero.
2180 * the SQ is 90% or more full
2181 * the cmd is a fused command
2182 * transferred data length not equal to cmd iu length
2184 rspcnt
= atomic_inc_return(&fod
->queue
->zrspcnt
);
2185 if (!(rspcnt
% fod
->queue
->ersp_ratio
) ||
2186 nvme_is_fabrics((struct nvme_command
*) sqe
) ||
2187 xfr_length
!= fod
->req
.transfer_len
||
2188 (le16_to_cpu(cqe
->status
) & 0xFFFE) || cqewd
[0] || cqewd
[1] ||
2189 (sqe
->flags
& (NVME_CMD_FUSE_FIRST
| NVME_CMD_FUSE_SECOND
)) ||
2190 queue_90percent_full(fod
->queue
, le16_to_cpu(cqe
->sq_head
)))
2193 /* re-set the fields */
2194 fod
->fcpreq
->rspaddr
= ersp
;
2195 fod
->fcpreq
->rspdma
= fod
->rspdma
;
2198 memset(ersp
, 0, NVME_FC_SIZEOF_ZEROS_RSP
);
2199 fod
->fcpreq
->rsplen
= NVME_FC_SIZEOF_ZEROS_RSP
;
2201 ersp
->iu_len
= cpu_to_be16(sizeof(*ersp
)/sizeof(u32
));
2202 rsn
= atomic_inc_return(&fod
->queue
->rsn
);
2203 ersp
->rsn
= cpu_to_be32(rsn
);
2204 ersp
->xfrd_len
= cpu_to_be32(xfr_length
);
2205 fod
->fcpreq
->rsplen
= sizeof(*ersp
);
2208 fc_dma_sync_single_for_device(tgtport
->dev
, fod
->rspdma
,
2209 sizeof(fod
->rspiubuf
), DMA_TO_DEVICE
);
2212 static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req
*fcpreq
);
2215 nvmet_fc_abort_op(struct nvmet_fc_tgtport
*tgtport
,
2216 struct nvmet_fc_fcp_iod
*fod
)
2218 struct nvmefc_tgt_fcp_req
*fcpreq
= fod
->fcpreq
;
2220 /* data no longer needed */
2221 nvmet_fc_free_tgt_pgs(fod
);
2224 * if an ABTS was received or we issued the fcp_abort early
2225 * don't call abort routine again.
2227 /* no need to take lock - lock was taken earlier to get here */
2229 tgtport
->ops
->fcp_abort(&tgtport
->fc_target_port
, fcpreq
);
2231 nvmet_fc_free_fcp_iod(fod
->queue
, fod
);
2235 nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport
*tgtport
,
2236 struct nvmet_fc_fcp_iod
*fod
)
2240 fod
->fcpreq
->op
= NVMET_FCOP_RSP
;
2241 fod
->fcpreq
->timeout
= 0;
2243 nvmet_fc_prep_fcp_rsp(tgtport
, fod
);
2245 ret
= tgtport
->ops
->fcp_op(&tgtport
->fc_target_port
, fod
->fcpreq
);
2247 nvmet_fc_abort_op(tgtport
, fod
);
2251 nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport
*tgtport
,
2252 struct nvmet_fc_fcp_iod
*fod
, u8 op
)
2254 struct nvmefc_tgt_fcp_req
*fcpreq
= fod
->fcpreq
;
2255 struct scatterlist
*sg
= fod
->next_sg
;
2256 unsigned long flags
;
2257 u32 remaininglen
= fod
->req
.transfer_len
- fod
->offset
;
2262 fcpreq
->offset
= fod
->offset
;
2263 fcpreq
->timeout
= NVME_FC_TGTOP_TIMEOUT_SEC
;
2266 * for next sequence:
2267 * break at a sg element boundary
2268 * attempt to keep sequence length capped at
2269 * NVMET_FC_MAX_SEQ_LENGTH but allow sequence to
2270 * be longer if a single sg element is larger
2271 * than that amount. This is done to avoid creating
2272 * a new sg list to use for the tgtport api.
2276 while (tlen
< remaininglen
&&
2277 fcpreq
->sg_cnt
< tgtport
->max_sg_cnt
&&
2278 tlen
+ sg_dma_len(sg
) < NVMET_FC_MAX_SEQ_LENGTH
) {
2280 tlen
+= sg_dma_len(sg
);
2283 if (tlen
< remaininglen
&& fcpreq
->sg_cnt
== 0) {
2285 tlen
+= min_t(u32
, sg_dma_len(sg
), remaininglen
);
2288 if (tlen
< remaininglen
)
2291 fod
->next_sg
= NULL
;
2293 fcpreq
->transfer_length
= tlen
;
2294 fcpreq
->transferred_length
= 0;
2295 fcpreq
->fcp_error
= 0;
2299 * If the last READDATA request: check if LLDD supports
2300 * combined xfr with response.
2302 if ((op
== NVMET_FCOP_READDATA
) &&
2303 ((fod
->offset
+ fcpreq
->transfer_length
) == fod
->req
.transfer_len
) &&
2304 (tgtport
->ops
->target_features
& NVMET_FCTGTFEAT_READDATA_RSP
)) {
2305 fcpreq
->op
= NVMET_FCOP_READDATA_RSP
;
2306 nvmet_fc_prep_fcp_rsp(tgtport
, fod
);
2309 ret
= tgtport
->ops
->fcp_op(&tgtport
->fc_target_port
, fod
->fcpreq
);
2312 * should be ok to set w/o lock as its in the thread of
2313 * execution (not an async timer routine) and doesn't
2314 * contend with any clearing action
2318 if (op
== NVMET_FCOP_WRITEDATA
) {
2319 spin_lock_irqsave(&fod
->flock
, flags
);
2320 fod
->writedataactive
= false;
2321 spin_unlock_irqrestore(&fod
->flock
, flags
);
2322 nvmet_req_complete(&fod
->req
, NVME_SC_INTERNAL
);
2323 } else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ {
2324 fcpreq
->fcp_error
= ret
;
2325 fcpreq
->transferred_length
= 0;
2326 nvmet_fc_xmt_fcp_op_done(fod
->fcpreq
);
2332 __nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod
*fod
, bool abort
)
2334 struct nvmefc_tgt_fcp_req
*fcpreq
= fod
->fcpreq
;
2335 struct nvmet_fc_tgtport
*tgtport
= fod
->tgtport
;
2337 /* if in the middle of an io and we need to tear down */
2339 if (fcpreq
->op
== NVMET_FCOP_WRITEDATA
) {
2340 nvmet_req_complete(&fod
->req
, NVME_SC_INTERNAL
);
2344 nvmet_fc_abort_op(tgtport
, fod
);
2352 * actual done handler for FCP operations when completed by the lldd
2355 nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod
*fod
)
2357 struct nvmefc_tgt_fcp_req
*fcpreq
= fod
->fcpreq
;
2358 struct nvmet_fc_tgtport
*tgtport
= fod
->tgtport
;
2359 unsigned long flags
;
2362 spin_lock_irqsave(&fod
->flock
, flags
);
2364 fod
->writedataactive
= false;
2365 spin_unlock_irqrestore(&fod
->flock
, flags
);
2367 switch (fcpreq
->op
) {
2369 case NVMET_FCOP_WRITEDATA
:
2370 if (__nvmet_fc_fod_op_abort(fod
, abort
))
2372 if (fcpreq
->fcp_error
||
2373 fcpreq
->transferred_length
!= fcpreq
->transfer_length
) {
2374 spin_lock_irqsave(&fod
->flock
, flags
);
2376 spin_unlock_irqrestore(&fod
->flock
, flags
);
2378 nvmet_req_complete(&fod
->req
, NVME_SC_INTERNAL
);
2382 fod
->offset
+= fcpreq
->transferred_length
;
2383 if (fod
->offset
!= fod
->req
.transfer_len
) {
2384 spin_lock_irqsave(&fod
->flock
, flags
);
2385 fod
->writedataactive
= true;
2386 spin_unlock_irqrestore(&fod
->flock
, flags
);
2388 /* transfer the next chunk */
2389 nvmet_fc_transfer_fcp_data(tgtport
, fod
,
2390 NVMET_FCOP_WRITEDATA
);
2394 /* data transfer complete, resume with nvmet layer */
2395 fod
->req
.execute(&fod
->req
);
2398 case NVMET_FCOP_READDATA
:
2399 case NVMET_FCOP_READDATA_RSP
:
2400 if (__nvmet_fc_fod_op_abort(fod
, abort
))
2402 if (fcpreq
->fcp_error
||
2403 fcpreq
->transferred_length
!= fcpreq
->transfer_length
) {
2404 nvmet_fc_abort_op(tgtport
, fod
);
2410 if (fcpreq
->op
== NVMET_FCOP_READDATA_RSP
) {
2411 /* data no longer needed */
2412 nvmet_fc_free_tgt_pgs(fod
);
2413 nvmet_fc_free_fcp_iod(fod
->queue
, fod
);
2417 fod
->offset
+= fcpreq
->transferred_length
;
2418 if (fod
->offset
!= fod
->req
.transfer_len
) {
2419 /* transfer the next chunk */
2420 nvmet_fc_transfer_fcp_data(tgtport
, fod
,
2421 NVMET_FCOP_READDATA
);
2425 /* data transfer complete, send response */
2427 /* data no longer needed */
2428 nvmet_fc_free_tgt_pgs(fod
);
2430 nvmet_fc_xmt_fcp_rsp(tgtport
, fod
);
2434 case NVMET_FCOP_RSP
:
2435 if (__nvmet_fc_fod_op_abort(fod
, abort
))
2437 nvmet_fc_free_fcp_iod(fod
->queue
, fod
);
2446 nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req
*fcpreq
)
2448 struct nvmet_fc_fcp_iod
*fod
= fcpreq
->nvmet_fc_private
;
2450 nvmet_fc_fod_op_done(fod
);
2454 * actual completion handler after execution by the nvmet layer
2457 __nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport
*tgtport
,
2458 struct nvmet_fc_fcp_iod
*fod
, int status
)
2460 struct nvme_common_command
*sqe
= &fod
->cmdiubuf
.sqe
.common
;
2461 struct nvme_completion
*cqe
= &fod
->rspiubuf
.cqe
;
2462 unsigned long flags
;
2465 spin_lock_irqsave(&fod
->flock
, flags
);
2467 spin_unlock_irqrestore(&fod
->flock
, flags
);
2469 /* if we have a CQE, snoop the last sq_head value */
2471 fod
->queue
->sqhd
= cqe
->sq_head
;
2474 nvmet_fc_abort_op(tgtport
, fod
);
2478 /* if an error handling the cmd post initial parsing */
2480 /* fudge up a failed CQE status for our transport error */
2481 memset(cqe
, 0, sizeof(*cqe
));
2482 cqe
->sq_head
= fod
->queue
->sqhd
; /* echo last cqe sqhd */
2483 cqe
->sq_id
= cpu_to_le16(fod
->queue
->qid
);
2484 cqe
->command_id
= sqe
->command_id
;
2485 cqe
->status
= cpu_to_le16(status
);
2489 * try to push the data even if the SQE status is non-zero.
2490 * There may be a status where data still was intended to
2493 if ((fod
->io_dir
== NVMET_FCP_READ
) && (fod
->data_sg_cnt
)) {
2494 /* push the data over before sending rsp */
2495 nvmet_fc_transfer_fcp_data(tgtport
, fod
,
2496 NVMET_FCOP_READDATA
);
2500 /* writes & no data - fall thru */
2503 /* data no longer needed */
2504 nvmet_fc_free_tgt_pgs(fod
);
2506 nvmet_fc_xmt_fcp_rsp(tgtport
, fod
);
2511 nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req
*nvme_req
)
2513 struct nvmet_fc_fcp_iod
*fod
= nvmet_req_to_fod(nvme_req
);
2514 struct nvmet_fc_tgtport
*tgtport
= fod
->tgtport
;
2516 __nvmet_fc_fcp_nvme_cmd_done(tgtport
, fod
, 0);
2521 * Actual processing routine for received FC-NVME I/O Requests from the LLD
2524 nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport
*tgtport
,
2525 struct nvmet_fc_fcp_iod
*fod
)
2527 struct nvme_fc_cmd_iu
*cmdiu
= &fod
->cmdiubuf
;
2528 u32 xfrlen
= be32_to_cpu(cmdiu
->data_len
);
2532 * Fused commands are currently not supported in the linux
2535 * As such, the implementation of the FC transport does not
2536 * look at the fused commands and order delivery to the upper
2537 * layer until we have both based on csn.
2540 fod
->fcpreq
->done
= nvmet_fc_xmt_fcp_op_done
;
2542 if (cmdiu
->flags
& FCNVME_CMD_FLAGS_WRITE
) {
2543 fod
->io_dir
= NVMET_FCP_WRITE
;
2544 if (!nvme_is_write(&cmdiu
->sqe
))
2545 goto transport_error
;
2546 } else if (cmdiu
->flags
& FCNVME_CMD_FLAGS_READ
) {
2547 fod
->io_dir
= NVMET_FCP_READ
;
2548 if (nvme_is_write(&cmdiu
->sqe
))
2549 goto transport_error
;
2551 fod
->io_dir
= NVMET_FCP_NODATA
;
2553 goto transport_error
;
2556 fod
->req
.cmd
= &fod
->cmdiubuf
.sqe
;
2557 fod
->req
.cqe
= &fod
->rspiubuf
.cqe
;
2559 goto transport_error
;
2560 fod
->req
.port
= tgtport
->pe
->port
;
2562 /* clear any response payload */
2563 memset(&fod
->rspiubuf
, 0, sizeof(fod
->rspiubuf
));
2565 fod
->data_sg
= NULL
;
2566 fod
->data_sg_cnt
= 0;
2568 ret
= nvmet_req_init(&fod
->req
,
2569 &fod
->queue
->nvme_cq
,
2570 &fod
->queue
->nvme_sq
,
2571 &nvmet_fc_tgt_fcp_ops
);
2573 /* bad SQE content or invalid ctrl state */
2574 /* nvmet layer has already called op done to send rsp. */
2578 fod
->req
.transfer_len
= xfrlen
;
2580 /* keep a running counter of tail position */
2581 atomic_inc(&fod
->queue
->sqtail
);
2583 if (fod
->req
.transfer_len
) {
2584 ret
= nvmet_fc_alloc_tgt_pgs(fod
);
2586 nvmet_req_complete(&fod
->req
, ret
);
2590 fod
->req
.sg
= fod
->data_sg
;
2591 fod
->req
.sg_cnt
= fod
->data_sg_cnt
;
2594 if (fod
->io_dir
== NVMET_FCP_WRITE
) {
2595 /* pull the data over before invoking nvmet layer */
2596 nvmet_fc_transfer_fcp_data(tgtport
, fod
, NVMET_FCOP_WRITEDATA
);
2603 * can invoke the nvmet_layer now. If read data, cmd completion will
2606 fod
->req
.execute(&fod
->req
);
2610 nvmet_fc_abort_op(tgtport
, fod
);
2614 * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD
2615 * upon the reception of a NVME FCP CMD IU.
2617 * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc
2618 * layer for processing.
2620 * The nvmet_fc layer allocates a local job structure (struct
2621 * nvmet_fc_fcp_iod) from the queue for the io and copies the
2622 * CMD IU buffer to the job structure. As such, on a successful
2623 * completion (returns 0), the LLDD may immediately free/reuse
2624 * the CMD IU buffer passed in the call.
2626 * However, in some circumstances, due to the packetized nature of FC
2627 * and the api of the FC LLDD which may issue a hw command to send the
2628 * response, but the LLDD may not get the hw completion for that command
2629 * and upcall the nvmet_fc layer before a new command may be
2630 * asynchronously received - its possible for a command to be received
2631 * before the LLDD and nvmet_fc have recycled the job structure. It gives
2632 * the appearance of more commands received than fits in the sq.
2633 * To alleviate this scenario, a temporary queue is maintained in the
2634 * transport for pending LLDD requests waiting for a queue job structure.
2635 * In these "overrun" cases, a temporary queue element is allocated
2636 * the LLDD request and CMD iu buffer information remembered, and the
2637 * routine returns a -EOVERFLOW status. Subsequently, when a queue job
2638 * structure is freed, it is immediately reallocated for anything on the
2639 * pending request list. The LLDDs defer_rcv() callback is called,
2640 * informing the LLDD that it may reuse the CMD IU buffer, and the io
2641 * is then started normally with the transport.
2643 * The LLDD, when receiving an -EOVERFLOW completion status, is to treat
2644 * the completion as successful but must not reuse the CMD IU buffer
2645 * until the LLDD's defer_rcv() callback has been called for the
2646 * corresponding struct nvmefc_tgt_fcp_req pointer.
2648 * If there is any other condition in which an error occurs, the
2649 * transport will return a non-zero status indicating the error.
2650 * In all cases other than -EOVERFLOW, the transport has not accepted the
2651 * request and the LLDD should abort the exchange.
2653 * @target_port: pointer to the (registered) target port the FCP CMD IU
2655 * @fcpreq: pointer to a fcpreq request structure to be used to reference
2656 * the exchange corresponding to the FCP Exchange.
2657 * @cmdiubuf: pointer to the buffer containing the FCP CMD IU
2658 * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU
2661 nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port
*target_port
,
2662 struct nvmefc_tgt_fcp_req
*fcpreq
,
2663 void *cmdiubuf
, u32 cmdiubuf_len
)
2665 struct nvmet_fc_tgtport
*tgtport
= targetport_to_tgtport(target_port
);
2666 struct nvme_fc_cmd_iu
*cmdiu
= cmdiubuf
;
2667 struct nvmet_fc_tgt_queue
*queue
;
2668 struct nvmet_fc_fcp_iod
*fod
;
2669 struct nvmet_fc_defer_fcp_req
*deferfcp
;
2670 unsigned long flags
;
2672 /* validate iu, so the connection id can be used to find the queue */
2673 if ((cmdiubuf_len
!= sizeof(*cmdiu
)) ||
2674 (cmdiu
->format_id
!= NVME_CMD_FORMAT_ID
) ||
2675 (cmdiu
->fc_id
!= NVME_CMD_FC_ID
) ||
2676 (be16_to_cpu(cmdiu
->iu_len
) != (sizeof(*cmdiu
)/4)))
2679 queue
= nvmet_fc_find_target_queue(tgtport
,
2680 be64_to_cpu(cmdiu
->connection_id
));
2685 * note: reference taken by find_target_queue
2686 * After successful fod allocation, the fod will inherit the
2687 * ownership of that reference and will remove the reference
2688 * when the fod is freed.
2691 spin_lock_irqsave(&queue
->qlock
, flags
);
2693 fod
= nvmet_fc_alloc_fcp_iod(queue
);
2695 spin_unlock_irqrestore(&queue
->qlock
, flags
);
2697 fcpreq
->nvmet_fc_private
= fod
;
2698 fod
->fcpreq
= fcpreq
;
2700 memcpy(&fod
->cmdiubuf
, cmdiubuf
, cmdiubuf_len
);
2702 nvmet_fc_queue_fcp_req(tgtport
, queue
, fcpreq
);
2707 if (!tgtport
->ops
->defer_rcv
) {
2708 spin_unlock_irqrestore(&queue
->qlock
, flags
);
2709 /* release the queue lookup reference */
2710 nvmet_fc_tgt_q_put(queue
);
2714 deferfcp
= list_first_entry_or_null(&queue
->avail_defer_list
,
2715 struct nvmet_fc_defer_fcp_req
, req_list
);
2717 /* Just re-use one that was previously allocated */
2718 list_del(&deferfcp
->req_list
);
2720 spin_unlock_irqrestore(&queue
->qlock
, flags
);
2722 /* Now we need to dynamically allocate one */
2723 deferfcp
= kmalloc(sizeof(*deferfcp
), GFP_KERNEL
);
2725 /* release the queue lookup reference */
2726 nvmet_fc_tgt_q_put(queue
);
2729 spin_lock_irqsave(&queue
->qlock
, flags
);
2732 /* For now, use rspaddr / rsplen to save payload information */
2733 fcpreq
->rspaddr
= cmdiubuf
;
2734 fcpreq
->rsplen
= cmdiubuf_len
;
2735 deferfcp
->fcp_req
= fcpreq
;
2737 /* defer processing till a fod becomes available */
2738 list_add_tail(&deferfcp
->req_list
, &queue
->pending_cmd_list
);
2740 /* NOTE: the queue lookup reference is still valid */
2742 spin_unlock_irqrestore(&queue
->qlock
, flags
);
2746 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req
);
2749 * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD
2750 * upon the reception of an ABTS for a FCP command
2752 * Notify the transport that an ABTS has been received for a FCP command
2753 * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The
2754 * LLDD believes the command is still being worked on
2755 * (template_ops->fcp_req_release() has not been called).
2757 * The transport will wait for any outstanding work (an op to the LLDD,
2758 * which the lldd should complete with error due to the ABTS; or the
2759 * completion from the nvmet layer of the nvme command), then will
2760 * stop processing and call the nvmet_fc_rcv_fcp_req() callback to
2761 * return the i/o context to the LLDD. The LLDD may send the BA_ACC
2762 * to the ABTS either after return from this function (assuming any
2763 * outstanding op work has been terminated) or upon the callback being
2766 * @target_port: pointer to the (registered) target port the FCP CMD IU
2768 * @fcpreq: pointer to the fcpreq request structure that corresponds
2769 * to the exchange that received the ABTS.
2772 nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port
*target_port
,
2773 struct nvmefc_tgt_fcp_req
*fcpreq
)
2775 struct nvmet_fc_fcp_iod
*fod
= fcpreq
->nvmet_fc_private
;
2776 struct nvmet_fc_tgt_queue
*queue
;
2777 unsigned long flags
;
2779 if (!fod
|| fod
->fcpreq
!= fcpreq
)
2780 /* job appears to have already completed, ignore abort */
2785 spin_lock_irqsave(&queue
->qlock
, flags
);
2788 * mark as abort. The abort handler, invoked upon completion
2789 * of any work, will detect the aborted status and do the
2792 spin_lock(&fod
->flock
);
2794 fod
->aborted
= true;
2795 spin_unlock(&fod
->flock
);
2797 spin_unlock_irqrestore(&queue
->qlock
, flags
);
2799 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort
);
2802 struct nvmet_fc_traddr
{
2808 __nvme_fc_parse_u64(substring_t
*sstr
, u64
*val
)
2812 if (match_u64(sstr
, &token64
))
2820 * This routine validates and extracts the WWN's from the TRADDR string.
2821 * As kernel parsers need the 0x to determine number base, universally
2822 * build string to parse with 0x prefix before parsing name strings.
2825 nvme_fc_parse_traddr(struct nvmet_fc_traddr
*traddr
, char *buf
, size_t blen
)
2827 char name
[2 + NVME_FC_TRADDR_HEXNAMELEN
+ 1];
2828 substring_t wwn
= { name
, &name
[sizeof(name
)-1] };
2829 int nnoffset
, pnoffset
;
2831 /* validate if string is one of the 2 allowed formats */
2832 if (strnlen(buf
, blen
) == NVME_FC_TRADDR_MAXLENGTH
&&
2833 !strncmp(buf
, "nn-0x", NVME_FC_TRADDR_OXNNLEN
) &&
2834 !strncmp(&buf
[NVME_FC_TRADDR_MAX_PN_OFFSET
],
2835 "pn-0x", NVME_FC_TRADDR_OXNNLEN
)) {
2836 nnoffset
= NVME_FC_TRADDR_OXNNLEN
;
2837 pnoffset
= NVME_FC_TRADDR_MAX_PN_OFFSET
+
2838 NVME_FC_TRADDR_OXNNLEN
;
2839 } else if ((strnlen(buf
, blen
) == NVME_FC_TRADDR_MINLENGTH
&&
2840 !strncmp(buf
, "nn-", NVME_FC_TRADDR_NNLEN
) &&
2841 !strncmp(&buf
[NVME_FC_TRADDR_MIN_PN_OFFSET
],
2842 "pn-", NVME_FC_TRADDR_NNLEN
))) {
2843 nnoffset
= NVME_FC_TRADDR_NNLEN
;
2844 pnoffset
= NVME_FC_TRADDR_MIN_PN_OFFSET
+ NVME_FC_TRADDR_NNLEN
;
2850 name
[2 + NVME_FC_TRADDR_HEXNAMELEN
] = 0;
2852 memcpy(&name
[2], &buf
[nnoffset
], NVME_FC_TRADDR_HEXNAMELEN
);
2853 if (__nvme_fc_parse_u64(&wwn
, &traddr
->nn
))
2856 memcpy(&name
[2], &buf
[pnoffset
], NVME_FC_TRADDR_HEXNAMELEN
);
2857 if (__nvme_fc_parse_u64(&wwn
, &traddr
->pn
))
2863 pr_warn("%s: bad traddr string\n", __func__
);
2868 nvmet_fc_add_port(struct nvmet_port
*port
)
2870 struct nvmet_fc_tgtport
*tgtport
;
2871 struct nvmet_fc_port_entry
*pe
;
2872 struct nvmet_fc_traddr traddr
= { 0L, 0L };
2873 unsigned long flags
;
2876 /* validate the address info */
2877 if ((port
->disc_addr
.trtype
!= NVMF_TRTYPE_FC
) ||
2878 (port
->disc_addr
.adrfam
!= NVMF_ADDR_FAMILY_FC
))
2881 /* map the traddr address info to a target port */
2883 ret
= nvme_fc_parse_traddr(&traddr
, port
->disc_addr
.traddr
,
2884 sizeof(port
->disc_addr
.traddr
));
2888 pe
= kzalloc(sizeof(*pe
), GFP_KERNEL
);
2893 spin_lock_irqsave(&nvmet_fc_tgtlock
, flags
);
2894 list_for_each_entry(tgtport
, &nvmet_fc_target_list
, tgt_list
) {
2895 if ((tgtport
->fc_target_port
.node_name
== traddr
.nn
) &&
2896 (tgtport
->fc_target_port
.port_name
== traddr
.pn
)) {
2897 /* a FC port can only be 1 nvmet port id */
2899 nvmet_fc_portentry_bind(tgtport
, pe
, port
);
2906 spin_unlock_irqrestore(&nvmet_fc_tgtlock
, flags
);
2915 nvmet_fc_remove_port(struct nvmet_port
*port
)
2917 struct nvmet_fc_port_entry
*pe
= port
->priv
;
2919 nvmet_fc_portentry_unbind(pe
);
2921 /* terminate any outstanding associations */
2922 __nvmet_fc_free_assocs(pe
->tgtport
);
2928 nvmet_fc_discovery_chg(struct nvmet_port
*port
)
2930 struct nvmet_fc_port_entry
*pe
= port
->priv
;
2931 struct nvmet_fc_tgtport
*tgtport
= pe
->tgtport
;
2933 if (tgtport
&& tgtport
->ops
->discovery_event
)
2934 tgtport
->ops
->discovery_event(&tgtport
->fc_target_port
);
2938 nvmet_fc_host_traddr(struct nvmet_ctrl
*ctrl
,
2939 char *traddr
, size_t traddr_size
)
2941 struct nvmet_sq
*sq
= ctrl
->sqs
[0];
2942 struct nvmet_fc_tgt_queue
*queue
=
2943 container_of(sq
, struct nvmet_fc_tgt_queue
, nvme_sq
);
2944 struct nvmet_fc_tgtport
*tgtport
= queue
->assoc
? queue
->assoc
->tgtport
: NULL
;
2945 struct nvmet_fc_hostport
*hostport
= queue
->assoc
? queue
->assoc
->hostport
: NULL
;
2949 if (!tgtport
|| !nvmet_fc_tgtport_get(tgtport
))
2951 if (!hostport
|| !nvmet_fc_hostport_get(hostport
)) {
2956 if (tgtport
->ops
->host_traddr
) {
2957 ret
= tgtport
->ops
->host_traddr(hostport
->hosthandle
, &wwnn
, &wwpn
);
2960 ret
= snprintf(traddr
, traddr_size
, "nn-0x%llx:pn-0x%llx", wwnn
, wwpn
);
2963 nvmet_fc_hostport_put(hostport
);
2965 nvmet_fc_tgtport_put(tgtport
);
2969 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops
= {
2970 .owner
= THIS_MODULE
,
2971 .type
= NVMF_TRTYPE_FC
,
2973 .add_port
= nvmet_fc_add_port
,
2974 .remove_port
= nvmet_fc_remove_port
,
2975 .queue_response
= nvmet_fc_fcp_nvme_cmd_done
,
2976 .delete_ctrl
= nvmet_fc_delete_ctrl
,
2977 .discovery_chg
= nvmet_fc_discovery_chg
,
2978 .host_traddr
= nvmet_fc_host_traddr
,
2981 static int __init
nvmet_fc_init_module(void)
2983 return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops
);
2986 static void __exit
nvmet_fc_exit_module(void)
2988 /* ensure any shutdown operation, e.g. delete ctrls have finished */
2989 flush_workqueue(nvmet_wq
);
2991 /* sanity check - all lports should be removed */
2992 if (!list_empty(&nvmet_fc_target_list
))
2993 pr_warn("%s: targetport list not empty\n", __func__
);
2995 nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops
);
2997 ida_destroy(&nvmet_fc_tgtport_cnt
);
3000 module_init(nvmet_fc_init_module
);
3001 module_exit(nvmet_fc_exit_module
);
3003 MODULE_DESCRIPTION("NVMe target FC transport driver");
3004 MODULE_LICENSE("GPL v2");