1 // SPDX-License-Identifier: GPL-2.0-or-later
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
7 #include <linux/acpi.h>
8 #include <linux/cache.h>
9 #include <linux/clk/clk-conf.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/export.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/highmem.h>
17 #include <linux/idr.h>
18 #include <linux/init.h>
19 #include <linux/ioport.h>
20 #include <linux/kernel.h>
21 #include <linux/kthread.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mutex.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/percpu.h>
27 #include <linux/platform_data/x86/apple.h>
28 #include <linux/pm_domain.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/property.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/sched/rt.h>
33 #include <linux/slab.h>
34 #include <linux/spi/spi.h>
35 #include <linux/spi/spi-mem.h>
36 #include <uapi/linux/sched/types.h>
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/spi.h>
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start
);
41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop
);
43 #include "internals.h"
45 static DEFINE_IDR(spi_master_idr
);
47 static void spidev_release(struct device
*dev
)
49 struct spi_device
*spi
= to_spi_device(dev
);
51 spi_controller_put(spi
->controller
);
52 kfree(spi
->driver_override
);
53 free_percpu(spi
->pcpu_statistics
);
58 modalias_show(struct device
*dev
, struct device_attribute
*a
, char *buf
)
60 const struct spi_device
*spi
= to_spi_device(dev
);
63 len
= acpi_device_modalias(dev
, buf
, PAGE_SIZE
- 1);
67 return sysfs_emit(buf
, "%s%s\n", SPI_MODULE_PREFIX
, spi
->modalias
);
69 static DEVICE_ATTR_RO(modalias
);
71 static ssize_t
driver_override_store(struct device
*dev
,
72 struct device_attribute
*a
,
73 const char *buf
, size_t count
)
75 struct spi_device
*spi
= to_spi_device(dev
);
78 ret
= driver_set_override(dev
, &spi
->driver_override
, buf
, count
);
85 static ssize_t
driver_override_show(struct device
*dev
,
86 struct device_attribute
*a
, char *buf
)
88 const struct spi_device
*spi
= to_spi_device(dev
);
92 len
= sysfs_emit(buf
, "%s\n", spi
->driver_override
? : "");
96 static DEVICE_ATTR_RW(driver_override
);
98 static struct spi_statistics __percpu
*spi_alloc_pcpu_stats(struct device
*dev
)
100 struct spi_statistics __percpu
*pcpu_stats
;
103 pcpu_stats
= devm_alloc_percpu(dev
, struct spi_statistics
);
105 pcpu_stats
= alloc_percpu_gfp(struct spi_statistics
, GFP_KERNEL
);
110 for_each_possible_cpu(cpu
) {
111 struct spi_statistics
*stat
;
113 stat
= per_cpu_ptr(pcpu_stats
, cpu
);
114 u64_stats_init(&stat
->syncp
);
120 static ssize_t
spi_emit_pcpu_stats(struct spi_statistics __percpu
*stat
,
121 char *buf
, size_t offset
)
126 for_each_possible_cpu(i
) {
127 const struct spi_statistics
*pcpu_stats
;
132 pcpu_stats
= per_cpu_ptr(stat
, i
);
133 field
= (void *)pcpu_stats
+ offset
;
135 start
= u64_stats_fetch_begin(&pcpu_stats
->syncp
);
136 inc
= u64_stats_read(field
);
137 } while (u64_stats_fetch_retry(&pcpu_stats
->syncp
, start
));
140 return sysfs_emit(buf
, "%llu\n", val
);
143 #define SPI_STATISTICS_ATTRS(field, file) \
144 static ssize_t spi_controller_##field##_show(struct device *dev, \
145 struct device_attribute *attr, \
148 struct spi_controller *ctlr = container_of(dev, \
149 struct spi_controller, dev); \
150 return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
152 static struct device_attribute dev_attr_spi_controller_##field = { \
153 .attr = { .name = file, .mode = 0444 }, \
154 .show = spi_controller_##field##_show, \
156 static ssize_t spi_device_##field##_show(struct device *dev, \
157 struct device_attribute *attr, \
160 struct spi_device *spi = to_spi_device(dev); \
161 return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
163 static struct device_attribute dev_attr_spi_device_##field = { \
164 .attr = { .name = file, .mode = 0444 }, \
165 .show = spi_device_##field##_show, \
168 #define SPI_STATISTICS_SHOW_NAME(name, file, field) \
169 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
172 return spi_emit_pcpu_stats(stat, buf, \
173 offsetof(struct spi_statistics, field)); \
175 SPI_STATISTICS_ATTRS(name, file)
177 #define SPI_STATISTICS_SHOW(field) \
178 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
181 SPI_STATISTICS_SHOW(messages
);
182 SPI_STATISTICS_SHOW(transfers
);
183 SPI_STATISTICS_SHOW(errors
);
184 SPI_STATISTICS_SHOW(timedout
);
186 SPI_STATISTICS_SHOW(spi_sync
);
187 SPI_STATISTICS_SHOW(spi_sync_immediate
);
188 SPI_STATISTICS_SHOW(spi_async
);
190 SPI_STATISTICS_SHOW(bytes
);
191 SPI_STATISTICS_SHOW(bytes_rx
);
192 SPI_STATISTICS_SHOW(bytes_tx
);
194 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
195 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
196 "transfer_bytes_histo_" number, \
197 transfer_bytes_histo[index])
198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
216 SPI_STATISTICS_SHOW(transfers_split_maxsize
);
218 static struct attribute
*spi_dev_attrs
[] = {
219 &dev_attr_modalias
.attr
,
220 &dev_attr_driver_override
.attr
,
224 static const struct attribute_group spi_dev_group
= {
225 .attrs
= spi_dev_attrs
,
228 static struct attribute
*spi_device_statistics_attrs
[] = {
229 &dev_attr_spi_device_messages
.attr
,
230 &dev_attr_spi_device_transfers
.attr
,
231 &dev_attr_spi_device_errors
.attr
,
232 &dev_attr_spi_device_timedout
.attr
,
233 &dev_attr_spi_device_spi_sync
.attr
,
234 &dev_attr_spi_device_spi_sync_immediate
.attr
,
235 &dev_attr_spi_device_spi_async
.attr
,
236 &dev_attr_spi_device_bytes
.attr
,
237 &dev_attr_spi_device_bytes_rx
.attr
,
238 &dev_attr_spi_device_bytes_tx
.attr
,
239 &dev_attr_spi_device_transfer_bytes_histo0
.attr
,
240 &dev_attr_spi_device_transfer_bytes_histo1
.attr
,
241 &dev_attr_spi_device_transfer_bytes_histo2
.attr
,
242 &dev_attr_spi_device_transfer_bytes_histo3
.attr
,
243 &dev_attr_spi_device_transfer_bytes_histo4
.attr
,
244 &dev_attr_spi_device_transfer_bytes_histo5
.attr
,
245 &dev_attr_spi_device_transfer_bytes_histo6
.attr
,
246 &dev_attr_spi_device_transfer_bytes_histo7
.attr
,
247 &dev_attr_spi_device_transfer_bytes_histo8
.attr
,
248 &dev_attr_spi_device_transfer_bytes_histo9
.attr
,
249 &dev_attr_spi_device_transfer_bytes_histo10
.attr
,
250 &dev_attr_spi_device_transfer_bytes_histo11
.attr
,
251 &dev_attr_spi_device_transfer_bytes_histo12
.attr
,
252 &dev_attr_spi_device_transfer_bytes_histo13
.attr
,
253 &dev_attr_spi_device_transfer_bytes_histo14
.attr
,
254 &dev_attr_spi_device_transfer_bytes_histo15
.attr
,
255 &dev_attr_spi_device_transfer_bytes_histo16
.attr
,
256 &dev_attr_spi_device_transfers_split_maxsize
.attr
,
260 static const struct attribute_group spi_device_statistics_group
= {
261 .name
= "statistics",
262 .attrs
= spi_device_statistics_attrs
,
265 static const struct attribute_group
*spi_dev_groups
[] = {
267 &spi_device_statistics_group
,
271 static struct attribute
*spi_controller_statistics_attrs
[] = {
272 &dev_attr_spi_controller_messages
.attr
,
273 &dev_attr_spi_controller_transfers
.attr
,
274 &dev_attr_spi_controller_errors
.attr
,
275 &dev_attr_spi_controller_timedout
.attr
,
276 &dev_attr_spi_controller_spi_sync
.attr
,
277 &dev_attr_spi_controller_spi_sync_immediate
.attr
,
278 &dev_attr_spi_controller_spi_async
.attr
,
279 &dev_attr_spi_controller_bytes
.attr
,
280 &dev_attr_spi_controller_bytes_rx
.attr
,
281 &dev_attr_spi_controller_bytes_tx
.attr
,
282 &dev_attr_spi_controller_transfer_bytes_histo0
.attr
,
283 &dev_attr_spi_controller_transfer_bytes_histo1
.attr
,
284 &dev_attr_spi_controller_transfer_bytes_histo2
.attr
,
285 &dev_attr_spi_controller_transfer_bytes_histo3
.attr
,
286 &dev_attr_spi_controller_transfer_bytes_histo4
.attr
,
287 &dev_attr_spi_controller_transfer_bytes_histo5
.attr
,
288 &dev_attr_spi_controller_transfer_bytes_histo6
.attr
,
289 &dev_attr_spi_controller_transfer_bytes_histo7
.attr
,
290 &dev_attr_spi_controller_transfer_bytes_histo8
.attr
,
291 &dev_attr_spi_controller_transfer_bytes_histo9
.attr
,
292 &dev_attr_spi_controller_transfer_bytes_histo10
.attr
,
293 &dev_attr_spi_controller_transfer_bytes_histo11
.attr
,
294 &dev_attr_spi_controller_transfer_bytes_histo12
.attr
,
295 &dev_attr_spi_controller_transfer_bytes_histo13
.attr
,
296 &dev_attr_spi_controller_transfer_bytes_histo14
.attr
,
297 &dev_attr_spi_controller_transfer_bytes_histo15
.attr
,
298 &dev_attr_spi_controller_transfer_bytes_histo16
.attr
,
299 &dev_attr_spi_controller_transfers_split_maxsize
.attr
,
303 static const struct attribute_group spi_controller_statistics_group
= {
304 .name
= "statistics",
305 .attrs
= spi_controller_statistics_attrs
,
308 static const struct attribute_group
*spi_master_groups
[] = {
309 &spi_controller_statistics_group
,
313 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu
*pcpu_stats
,
314 struct spi_transfer
*xfer
,
315 struct spi_message
*msg
)
317 int l2len
= min(fls(xfer
->len
), SPI_STATISTICS_HISTO_SIZE
) - 1;
318 struct spi_statistics
*stats
;
324 stats
= this_cpu_ptr(pcpu_stats
);
325 u64_stats_update_begin(&stats
->syncp
);
327 u64_stats_inc(&stats
->transfers
);
328 u64_stats_inc(&stats
->transfer_bytes_histo
[l2len
]);
330 u64_stats_add(&stats
->bytes
, xfer
->len
);
331 if (spi_valid_txbuf(msg
, xfer
))
332 u64_stats_add(&stats
->bytes_tx
, xfer
->len
);
333 if (spi_valid_rxbuf(msg
, xfer
))
334 u64_stats_add(&stats
->bytes_rx
, xfer
->len
);
336 u64_stats_update_end(&stats
->syncp
);
341 * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
342 * and the sysfs version makes coldplug work too.
344 static const struct spi_device_id
*spi_match_id(const struct spi_device_id
*id
, const char *name
)
346 while (id
->name
[0]) {
347 if (!strcmp(name
, id
->name
))
354 const struct spi_device_id
*spi_get_device_id(const struct spi_device
*sdev
)
356 const struct spi_driver
*sdrv
= to_spi_driver(sdev
->dev
.driver
);
358 return spi_match_id(sdrv
->id_table
, sdev
->modalias
);
360 EXPORT_SYMBOL_GPL(spi_get_device_id
);
362 const void *spi_get_device_match_data(const struct spi_device
*sdev
)
366 match
= device_get_match_data(&sdev
->dev
);
370 return (const void *)spi_get_device_id(sdev
)->driver_data
;
372 EXPORT_SYMBOL_GPL(spi_get_device_match_data
);
374 static int spi_match_device(struct device
*dev
, const struct device_driver
*drv
)
376 const struct spi_device
*spi
= to_spi_device(dev
);
377 const struct spi_driver
*sdrv
= to_spi_driver(drv
);
379 /* Check override first, and if set, only use the named driver */
380 if (spi
->driver_override
)
381 return strcmp(spi
->driver_override
, drv
->name
) == 0;
383 /* Attempt an OF style match */
384 if (of_driver_match_device(dev
, drv
))
388 if (acpi_driver_match_device(dev
, drv
))
392 return !!spi_match_id(sdrv
->id_table
, spi
->modalias
);
394 return strcmp(spi
->modalias
, drv
->name
) == 0;
397 static int spi_uevent(const struct device
*dev
, struct kobj_uevent_env
*env
)
399 const struct spi_device
*spi
= to_spi_device(dev
);
402 rc
= acpi_device_uevent_modalias(dev
, env
);
406 return add_uevent_var(env
, "MODALIAS=%s%s", SPI_MODULE_PREFIX
, spi
->modalias
);
409 static int spi_probe(struct device
*dev
)
411 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
412 struct spi_device
*spi
= to_spi_device(dev
);
415 ret
= of_clk_set_defaults(dev
->of_node
, false);
420 spi
->irq
= of_irq_get(dev
->of_node
, 0);
421 if (spi
->irq
== -EPROBE_DEFER
)
422 return dev_err_probe(dev
, -EPROBE_DEFER
, "Failed to get irq\n");
427 if (has_acpi_companion(dev
) && spi
->irq
< 0) {
428 struct acpi_device
*adev
= to_acpi_device_node(dev
->fwnode
);
430 spi
->irq
= acpi_dev_gpio_irq_get(adev
, 0);
431 if (spi
->irq
== -EPROBE_DEFER
)
432 return -EPROBE_DEFER
;
437 ret
= dev_pm_domain_attach(dev
, true);
442 ret
= sdrv
->probe(spi
);
444 dev_pm_domain_detach(dev
, true);
450 static void spi_remove(struct device
*dev
)
452 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
455 sdrv
->remove(to_spi_device(dev
));
457 dev_pm_domain_detach(dev
, true);
460 static void spi_shutdown(struct device
*dev
)
463 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
466 sdrv
->shutdown(to_spi_device(dev
));
470 const struct bus_type spi_bus_type
= {
472 .dev_groups
= spi_dev_groups
,
473 .match
= spi_match_device
,
474 .uevent
= spi_uevent
,
476 .remove
= spi_remove
,
477 .shutdown
= spi_shutdown
,
479 EXPORT_SYMBOL_GPL(spi_bus_type
);
482 * __spi_register_driver - register a SPI driver
483 * @owner: owner module of the driver to register
484 * @sdrv: the driver to register
487 * Return: zero on success, else a negative error code.
489 int __spi_register_driver(struct module
*owner
, struct spi_driver
*sdrv
)
491 sdrv
->driver
.owner
= owner
;
492 sdrv
->driver
.bus
= &spi_bus_type
;
495 * For Really Good Reasons we use spi: modaliases not of:
496 * modaliases for DT so module autoloading won't work if we
497 * don't have a spi_device_id as well as a compatible string.
499 if (sdrv
->driver
.of_match_table
) {
500 const struct of_device_id
*of_id
;
502 for (of_id
= sdrv
->driver
.of_match_table
; of_id
->compatible
[0];
506 /* Strip off any vendor prefix */
507 of_name
= strnchr(of_id
->compatible
,
508 sizeof(of_id
->compatible
), ',');
512 of_name
= of_id
->compatible
;
514 if (sdrv
->id_table
) {
515 const struct spi_device_id
*spi_id
;
517 spi_id
= spi_match_id(sdrv
->id_table
, of_name
);
521 if (strcmp(sdrv
->driver
.name
, of_name
) == 0)
525 pr_warn("SPI driver %s has no spi_device_id for %s\n",
526 sdrv
->driver
.name
, of_id
->compatible
);
530 return driver_register(&sdrv
->driver
);
532 EXPORT_SYMBOL_GPL(__spi_register_driver
);
534 /*-------------------------------------------------------------------------*/
537 * SPI devices should normally not be created by SPI device drivers; that
538 * would make them board-specific. Similarly with SPI controller drivers.
539 * Device registration normally goes into like arch/.../mach.../board-YYY.c
540 * with other readonly (flashable) information about mainboard devices.
544 struct list_head list
;
545 struct spi_board_info board_info
;
548 static LIST_HEAD(board_list
);
549 static LIST_HEAD(spi_controller_list
);
552 * Used to protect add/del operation for board_info list and
553 * spi_controller list, and their matching process also used
554 * to protect object of type struct idr.
556 static DEFINE_MUTEX(board_lock
);
559 * spi_alloc_device - Allocate a new SPI device
560 * @ctlr: Controller to which device is connected
563 * Allows a driver to allocate and initialize a spi_device without
564 * registering it immediately. This allows a driver to directly
565 * fill the spi_device with device parameters before calling
566 * spi_add_device() on it.
568 * Caller is responsible to call spi_add_device() on the returned
569 * spi_device structure to add it to the SPI controller. If the caller
570 * needs to discard the spi_device without adding it, then it should
571 * call spi_dev_put() on it.
573 * Return: a pointer to the new device, or NULL.
575 struct spi_device
*spi_alloc_device(struct spi_controller
*ctlr
)
577 struct spi_device
*spi
;
579 if (!spi_controller_get(ctlr
))
582 spi
= kzalloc(sizeof(*spi
), GFP_KERNEL
);
584 spi_controller_put(ctlr
);
588 spi
->pcpu_statistics
= spi_alloc_pcpu_stats(NULL
);
589 if (!spi
->pcpu_statistics
) {
591 spi_controller_put(ctlr
);
595 spi
->controller
= ctlr
;
596 spi
->dev
.parent
= &ctlr
->dev
;
597 spi
->dev
.bus
= &spi_bus_type
;
598 spi
->dev
.release
= spidev_release
;
599 spi
->mode
= ctlr
->buswidth_override_bits
;
601 device_initialize(&spi
->dev
);
604 EXPORT_SYMBOL_GPL(spi_alloc_device
);
606 static void spi_dev_set_name(struct spi_device
*spi
)
608 struct device
*dev
= &spi
->dev
;
609 struct fwnode_handle
*fwnode
= dev_fwnode(dev
);
611 if (is_acpi_device_node(fwnode
)) {
612 dev_set_name(dev
, "spi-%s", acpi_dev_name(to_acpi_device_node(fwnode
)));
616 if (is_software_node(fwnode
)) {
617 dev_set_name(dev
, "spi-%pfwP", fwnode
);
621 dev_set_name(&spi
->dev
, "%s.%u", dev_name(&spi
->controller
->dev
),
622 spi_get_chipselect(spi
, 0));
626 * Zero(0) is a valid physical CS value and can be located at any
627 * logical CS in the spi->chip_select[]. If all the physical CS
628 * are initialized to 0 then It would be difficult to differentiate
629 * between a valid physical CS 0 & an unused logical CS whose physical
630 * CS can be 0. As a solution to this issue initialize all the CS to -1.
631 * Now all the unused logical CS will have -1 physical CS value & can be
632 * ignored while performing physical CS validity checks.
634 #define SPI_INVALID_CS ((s8)-1)
636 static inline bool is_valid_cs(s8 chip_select
)
638 return chip_select
!= SPI_INVALID_CS
;
641 static inline int spi_dev_check_cs(struct device
*dev
,
642 struct spi_device
*spi
, u8 idx
,
643 struct spi_device
*new_spi
, u8 new_idx
)
648 cs
= spi_get_chipselect(spi
, idx
);
649 for (idx_new
= new_idx
; idx_new
< SPI_CS_CNT_MAX
; idx_new
++) {
650 cs_new
= spi_get_chipselect(new_spi
, idx_new
);
651 if (is_valid_cs(cs
) && is_valid_cs(cs_new
) && cs
== cs_new
) {
652 dev_err(dev
, "chipselect %u already in use\n", cs_new
);
659 static int spi_dev_check(struct device
*dev
, void *data
)
661 struct spi_device
*spi
= to_spi_device(dev
);
662 struct spi_device
*new_spi
= data
;
665 if (spi
->controller
== new_spi
->controller
) {
666 for (idx
= 0; idx
< SPI_CS_CNT_MAX
; idx
++) {
667 status
= spi_dev_check_cs(dev
, spi
, idx
, new_spi
, 0);
675 static void spi_cleanup(struct spi_device
*spi
)
677 if (spi
->controller
->cleanup
)
678 spi
->controller
->cleanup(spi
);
681 static int __spi_add_device(struct spi_device
*spi
)
683 struct spi_controller
*ctlr
= spi
->controller
;
684 struct device
*dev
= ctlr
->dev
.parent
;
688 for (idx
= 0; idx
< SPI_CS_CNT_MAX
; idx
++) {
689 /* Chipselects are numbered 0..max; validate. */
690 cs
= spi_get_chipselect(spi
, idx
);
691 if (is_valid_cs(cs
) && cs
>= ctlr
->num_chipselect
) {
692 dev_err(dev
, "cs%d >= max %d\n", spi_get_chipselect(spi
, idx
),
693 ctlr
->num_chipselect
);
699 * Make sure that multiple logical CS doesn't map to the same physical CS.
700 * For example, spi->chip_select[0] != spi->chip_select[1] and so on.
702 if (!spi_controller_is_target(ctlr
)) {
703 for (idx
= 0; idx
< SPI_CS_CNT_MAX
; idx
++) {
704 status
= spi_dev_check_cs(dev
, spi
, idx
, spi
, idx
+ 1);
710 /* Set the bus ID string */
711 spi_dev_set_name(spi
);
714 * We need to make sure there's no other device with this
715 * chipselect **BEFORE** we call setup(), else we'll trash
718 status
= bus_for_each_dev(&spi_bus_type
, NULL
, spi
, spi_dev_check
);
722 /* Controller may unregister concurrently */
723 if (IS_ENABLED(CONFIG_SPI_DYNAMIC
) &&
724 !device_is_registered(&ctlr
->dev
)) {
728 if (ctlr
->cs_gpiods
) {
731 for (idx
= 0; idx
< SPI_CS_CNT_MAX
; idx
++) {
732 cs
= spi_get_chipselect(spi
, idx
);
734 spi_set_csgpiod(spi
, idx
, ctlr
->cs_gpiods
[cs
]);
739 * Drivers may modify this initial i/o setup, but will
740 * normally rely on the device being setup. Devices
741 * using SPI_CS_HIGH can't coexist well otherwise...
743 status
= spi_setup(spi
);
745 dev_err(dev
, "can't setup %s, status %d\n",
746 dev_name(&spi
->dev
), status
);
750 /* Device may be bound to an active driver when this returns */
751 status
= device_add(&spi
->dev
);
753 dev_err(dev
, "can't add %s, status %d\n",
754 dev_name(&spi
->dev
), status
);
757 dev_dbg(dev
, "registered child %s\n", dev_name(&spi
->dev
));
764 * spi_add_device - Add spi_device allocated with spi_alloc_device
765 * @spi: spi_device to register
767 * Companion function to spi_alloc_device. Devices allocated with
768 * spi_alloc_device can be added onto the SPI bus with this function.
770 * Return: 0 on success; negative errno on failure
772 int spi_add_device(struct spi_device
*spi
)
774 struct spi_controller
*ctlr
= spi
->controller
;
777 /* Set the bus ID string */
778 spi_dev_set_name(spi
);
780 mutex_lock(&ctlr
->add_lock
);
781 status
= __spi_add_device(spi
);
782 mutex_unlock(&ctlr
->add_lock
);
785 EXPORT_SYMBOL_GPL(spi_add_device
);
787 static void spi_set_all_cs_unused(struct spi_device
*spi
)
791 for (idx
= 0; idx
< SPI_CS_CNT_MAX
; idx
++)
792 spi_set_chipselect(spi
, idx
, SPI_INVALID_CS
);
796 * spi_new_device - instantiate one new SPI device
797 * @ctlr: Controller to which device is connected
798 * @chip: Describes the SPI device
801 * On typical mainboards, this is purely internal; and it's not needed
802 * after board init creates the hard-wired devices. Some development
803 * platforms may not be able to use spi_register_board_info though, and
804 * this is exported so that for example a USB or parport based adapter
805 * driver could add devices (which it would learn about out-of-band).
807 * Return: the new device, or NULL.
809 struct spi_device
*spi_new_device(struct spi_controller
*ctlr
,
810 struct spi_board_info
*chip
)
812 struct spi_device
*proxy
;
816 * NOTE: caller did any chip->bus_num checks necessary.
818 * Also, unless we change the return value convention to use
819 * error-or-pointer (not NULL-or-pointer), troubleshootability
820 * suggests syslogged diagnostics are best here (ugh).
823 proxy
= spi_alloc_device(ctlr
);
827 WARN_ON(strlen(chip
->modalias
) >= sizeof(proxy
->modalias
));
829 /* Use provided chip-select for proxy device */
830 spi_set_all_cs_unused(proxy
);
831 spi_set_chipselect(proxy
, 0, chip
->chip_select
);
833 proxy
->max_speed_hz
= chip
->max_speed_hz
;
834 proxy
->mode
= chip
->mode
;
835 proxy
->irq
= chip
->irq
;
836 strscpy(proxy
->modalias
, chip
->modalias
, sizeof(proxy
->modalias
));
837 proxy
->dev
.platform_data
= (void *) chip
->platform_data
;
838 proxy
->controller_data
= chip
->controller_data
;
839 proxy
->controller_state
= NULL
;
841 * By default spi->chip_select[0] will hold the physical CS number,
842 * so set bit 0 in spi->cs_index_mask.
844 proxy
->cs_index_mask
= BIT(0);
847 status
= device_add_software_node(&proxy
->dev
, chip
->swnode
);
849 dev_err(&ctlr
->dev
, "failed to add software node to '%s': %d\n",
850 chip
->modalias
, status
);
855 status
= spi_add_device(proxy
);
862 device_remove_software_node(&proxy
->dev
);
866 EXPORT_SYMBOL_GPL(spi_new_device
);
869 * spi_unregister_device - unregister a single SPI device
870 * @spi: spi_device to unregister
872 * Start making the passed SPI device vanish. Normally this would be handled
873 * by spi_unregister_controller().
875 void spi_unregister_device(struct spi_device
*spi
)
880 if (spi
->dev
.of_node
) {
881 of_node_clear_flag(spi
->dev
.of_node
, OF_POPULATED
);
882 of_node_put(spi
->dev
.of_node
);
884 if (ACPI_COMPANION(&spi
->dev
))
885 acpi_device_clear_enumerated(ACPI_COMPANION(&spi
->dev
));
886 device_remove_software_node(&spi
->dev
);
887 device_del(&spi
->dev
);
889 put_device(&spi
->dev
);
891 EXPORT_SYMBOL_GPL(spi_unregister_device
);
893 static void spi_match_controller_to_boardinfo(struct spi_controller
*ctlr
,
894 struct spi_board_info
*bi
)
896 struct spi_device
*dev
;
898 if (ctlr
->bus_num
!= bi
->bus_num
)
901 dev
= spi_new_device(ctlr
, bi
);
903 dev_err(ctlr
->dev
.parent
, "can't create new device for %s\n",
908 * spi_register_board_info - register SPI devices for a given board
909 * @info: array of chip descriptors
910 * @n: how many descriptors are provided
913 * Board-specific early init code calls this (probably during arch_initcall)
914 * with segments of the SPI device table. Any device nodes are created later,
915 * after the relevant parent SPI controller (bus_num) is defined. We keep
916 * this table of devices forever, so that reloading a controller driver will
917 * not make Linux forget about these hard-wired devices.
919 * Other code can also call this, e.g. a particular add-on board might provide
920 * SPI devices through its expansion connector, so code initializing that board
921 * would naturally declare its SPI devices.
923 * The board info passed can safely be __initdata ... but be careful of
924 * any embedded pointers (platform_data, etc), they're copied as-is.
926 * Return: zero on success, else a negative error code.
928 int spi_register_board_info(struct spi_board_info
const *info
, unsigned n
)
930 struct boardinfo
*bi
;
936 bi
= kcalloc(n
, sizeof(*bi
), GFP_KERNEL
);
940 for (i
= 0; i
< n
; i
++, bi
++, info
++) {
941 struct spi_controller
*ctlr
;
943 memcpy(&bi
->board_info
, info
, sizeof(*info
));
945 mutex_lock(&board_lock
);
946 list_add_tail(&bi
->list
, &board_list
);
947 list_for_each_entry(ctlr
, &spi_controller_list
, list
)
948 spi_match_controller_to_boardinfo(ctlr
,
950 mutex_unlock(&board_lock
);
956 /*-------------------------------------------------------------------------*/
958 /* Core methods for SPI resource management */
961 * spi_res_alloc - allocate a spi resource that is life-cycle managed
962 * during the processing of a spi_message while using
964 * @spi: the SPI device for which we allocate memory
965 * @release: the release code to execute for this resource
966 * @size: size to alloc and return
967 * @gfp: GFP allocation flags
969 * Return: the pointer to the allocated data
971 * This may get enhanced in the future to allocate from a memory pool
972 * of the @spi_device or @spi_controller to avoid repeated allocations.
974 static void *spi_res_alloc(struct spi_device
*spi
, spi_res_release_t release
,
975 size_t size
, gfp_t gfp
)
977 struct spi_res
*sres
;
979 sres
= kzalloc(sizeof(*sres
) + size
, gfp
);
983 INIT_LIST_HEAD(&sres
->entry
);
984 sres
->release
= release
;
990 * spi_res_free - free an SPI resource
991 * @res: pointer to the custom data of a resource
993 static void spi_res_free(void *res
)
995 struct spi_res
*sres
= container_of(res
, struct spi_res
, data
);
997 WARN_ON(!list_empty(&sres
->entry
));
1002 * spi_res_add - add a spi_res to the spi_message
1003 * @message: the SPI message
1004 * @res: the spi_resource
1006 static void spi_res_add(struct spi_message
*message
, void *res
)
1008 struct spi_res
*sres
= container_of(res
, struct spi_res
, data
);
1010 WARN_ON(!list_empty(&sres
->entry
));
1011 list_add_tail(&sres
->entry
, &message
->resources
);
1015 * spi_res_release - release all SPI resources for this message
1016 * @ctlr: the @spi_controller
1017 * @message: the @spi_message
1019 static void spi_res_release(struct spi_controller
*ctlr
, struct spi_message
*message
)
1021 struct spi_res
*res
, *tmp
;
1023 list_for_each_entry_safe_reverse(res
, tmp
, &message
->resources
, entry
) {
1025 res
->release(ctlr
, message
, res
->data
);
1027 list_del(&res
->entry
);
1033 /*-------------------------------------------------------------------------*/
1034 #define spi_for_each_valid_cs(spi, idx) \
1035 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) \
1036 if (!(spi->cs_index_mask & BIT(idx))) {} else
1038 static inline bool spi_is_last_cs(struct spi_device
*spi
)
1043 spi_for_each_valid_cs(spi
, idx
) {
1044 if (spi
->controller
->last_cs
[idx
] == spi_get_chipselect(spi
, idx
))
1050 static void spi_toggle_csgpiod(struct spi_device
*spi
, u8 idx
, bool enable
, bool activate
)
1053 * Historically ACPI has no means of the GPIO polarity and
1054 * thus the SPISerialBus() resource defines it on the per-chip
1055 * basis. In order to avoid a chain of negations, the GPIO
1056 * polarity is considered being Active High. Even for the cases
1057 * when _DSD() is involved (in the updated versions of ACPI)
1058 * the GPIO CS polarity must be defined Active High to avoid
1059 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
1062 if (has_acpi_companion(&spi
->dev
))
1063 gpiod_set_value_cansleep(spi_get_csgpiod(spi
, idx
), !enable
);
1065 /* Polarity handled by GPIO library */
1066 gpiod_set_value_cansleep(spi_get_csgpiod(spi
, idx
), activate
);
1069 spi_delay_exec(&spi
->cs_setup
, NULL
);
1071 spi_delay_exec(&spi
->cs_inactive
, NULL
);
1074 static void spi_set_cs(struct spi_device
*spi
, bool enable
, bool force
)
1076 bool activate
= enable
;
1080 * Avoid calling into the driver (or doing delays) if the chip select
1081 * isn't actually changing from the last time this was called.
1083 if (!force
&& ((enable
&& spi
->controller
->last_cs_index_mask
== spi
->cs_index_mask
&&
1084 spi_is_last_cs(spi
)) ||
1085 (!enable
&& spi
->controller
->last_cs_index_mask
== spi
->cs_index_mask
&&
1086 !spi_is_last_cs(spi
))) &&
1087 (spi
->controller
->last_cs_mode_high
== (spi
->mode
& SPI_CS_HIGH
)))
1090 trace_spi_set_cs(spi
, activate
);
1092 spi
->controller
->last_cs_index_mask
= spi
->cs_index_mask
;
1093 for (idx
= 0; idx
< SPI_CS_CNT_MAX
; idx
++)
1094 spi
->controller
->last_cs
[idx
] = enable
? spi_get_chipselect(spi
, 0) : SPI_INVALID_CS
;
1095 spi
->controller
->last_cs_mode_high
= spi
->mode
& SPI_CS_HIGH
;
1097 if (spi
->mode
& SPI_CS_HIGH
)
1101 * Handle chip select delays for GPIO based CS or controllers without
1102 * programmable chip select timing.
1104 if ((spi_is_csgpiod(spi
) || !spi
->controller
->set_cs_timing
) && !activate
)
1105 spi_delay_exec(&spi
->cs_hold
, NULL
);
1107 if (spi_is_csgpiod(spi
)) {
1108 if (!(spi
->mode
& SPI_NO_CS
)) {
1109 spi_for_each_valid_cs(spi
, idx
) {
1110 if (spi_get_csgpiod(spi
, idx
))
1111 spi_toggle_csgpiod(spi
, idx
, enable
, activate
);
1114 /* Some SPI masters need both GPIO CS & slave_select */
1115 if ((spi
->controller
->flags
& SPI_CONTROLLER_GPIO_SS
) &&
1116 spi
->controller
->set_cs
)
1117 spi
->controller
->set_cs(spi
, !enable
);
1118 } else if (spi
->controller
->set_cs
) {
1119 spi
->controller
->set_cs(spi
, !enable
);
1122 if (spi_is_csgpiod(spi
) || !spi
->controller
->set_cs_timing
) {
1124 spi_delay_exec(&spi
->cs_setup
, NULL
);
1126 spi_delay_exec(&spi
->cs_inactive
, NULL
);
1130 #ifdef CONFIG_HAS_DMA
1131 static int spi_map_buf_attrs(struct spi_controller
*ctlr
, struct device
*dev
,
1132 struct sg_table
*sgt
, void *buf
, size_t len
,
1133 enum dma_data_direction dir
, unsigned long attrs
)
1135 const bool vmalloced_buf
= is_vmalloc_addr(buf
);
1136 unsigned int max_seg_size
= dma_get_max_seg_size(dev
);
1137 #ifdef CONFIG_HIGHMEM
1138 const bool kmap_buf
= ((unsigned long)buf
>= PKMAP_BASE
&&
1139 (unsigned long)buf
< (PKMAP_BASE
+
1140 (LAST_PKMAP
* PAGE_SIZE
)));
1142 const bool kmap_buf
= false;
1146 struct page
*vm_page
;
1147 struct scatterlist
*sg
;
1152 if (vmalloced_buf
|| kmap_buf
) {
1153 desc_len
= min_t(unsigned long, max_seg_size
, PAGE_SIZE
);
1154 sgs
= DIV_ROUND_UP(len
+ offset_in_page(buf
), desc_len
);
1155 } else if (virt_addr_valid(buf
)) {
1156 desc_len
= min_t(size_t, max_seg_size
, ctlr
->max_dma_len
);
1157 sgs
= DIV_ROUND_UP(len
, desc_len
);
1162 ret
= sg_alloc_table(sgt
, sgs
, GFP_KERNEL
);
1167 for (i
= 0; i
< sgs
; i
++) {
1169 if (vmalloced_buf
|| kmap_buf
) {
1171 * Next scatterlist entry size is the minimum between
1172 * the desc_len and the remaining buffer length that
1175 min
= min_t(size_t, desc_len
,
1177 PAGE_SIZE
- offset_in_page(buf
)));
1179 vm_page
= vmalloc_to_page(buf
);
1181 vm_page
= kmap_to_page(buf
);
1186 sg_set_page(sg
, vm_page
,
1187 min
, offset_in_page(buf
));
1189 min
= min_t(size_t, len
, desc_len
);
1191 sg_set_buf(sg
, sg_buf
, min
);
1199 ret
= dma_map_sgtable(dev
, sgt
, dir
, attrs
);
1208 int spi_map_buf(struct spi_controller
*ctlr
, struct device
*dev
,
1209 struct sg_table
*sgt
, void *buf
, size_t len
,
1210 enum dma_data_direction dir
)
1212 return spi_map_buf_attrs(ctlr
, dev
, sgt
, buf
, len
, dir
, 0);
1215 static void spi_unmap_buf_attrs(struct spi_controller
*ctlr
,
1216 struct device
*dev
, struct sg_table
*sgt
,
1217 enum dma_data_direction dir
,
1218 unsigned long attrs
)
1220 dma_unmap_sgtable(dev
, sgt
, dir
, attrs
);
1222 sgt
->orig_nents
= 0;
1226 void spi_unmap_buf(struct spi_controller
*ctlr
, struct device
*dev
,
1227 struct sg_table
*sgt
, enum dma_data_direction dir
)
1229 spi_unmap_buf_attrs(ctlr
, dev
, sgt
, dir
, 0);
1232 static int __spi_map_msg(struct spi_controller
*ctlr
, struct spi_message
*msg
)
1234 struct device
*tx_dev
, *rx_dev
;
1235 struct spi_transfer
*xfer
;
1242 tx_dev
= ctlr
->dma_tx
->device
->dev
;
1243 else if (ctlr
->dma_map_dev
)
1244 tx_dev
= ctlr
->dma_map_dev
;
1246 tx_dev
= ctlr
->dev
.parent
;
1249 rx_dev
= ctlr
->dma_rx
->device
->dev
;
1250 else if (ctlr
->dma_map_dev
)
1251 rx_dev
= ctlr
->dma_map_dev
;
1253 rx_dev
= ctlr
->dev
.parent
;
1256 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
1257 /* The sync is done before each transfer. */
1258 unsigned long attrs
= DMA_ATTR_SKIP_CPU_SYNC
;
1260 if (!ctlr
->can_dma(ctlr
, msg
->spi
, xfer
))
1263 if (xfer
->tx_buf
!= NULL
) {
1264 ret
= spi_map_buf_attrs(ctlr
, tx_dev
, &xfer
->tx_sg
,
1265 (void *)xfer
->tx_buf
,
1266 xfer
->len
, DMA_TO_DEVICE
,
1271 xfer
->tx_sg_mapped
= true;
1274 if (xfer
->rx_buf
!= NULL
) {
1275 ret
= spi_map_buf_attrs(ctlr
, rx_dev
, &xfer
->rx_sg
,
1276 xfer
->rx_buf
, xfer
->len
,
1277 DMA_FROM_DEVICE
, attrs
);
1279 spi_unmap_buf_attrs(ctlr
, tx_dev
,
1280 &xfer
->tx_sg
, DMA_TO_DEVICE
,
1286 xfer
->rx_sg_mapped
= true;
1289 /* No transfer has been mapped, bail out with success */
1293 ctlr
->cur_rx_dma_dev
= rx_dev
;
1294 ctlr
->cur_tx_dma_dev
= tx_dev
;
1299 static int __spi_unmap_msg(struct spi_controller
*ctlr
, struct spi_message
*msg
)
1301 struct device
*rx_dev
= ctlr
->cur_rx_dma_dev
;
1302 struct device
*tx_dev
= ctlr
->cur_tx_dma_dev
;
1303 struct spi_transfer
*xfer
;
1305 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
1306 /* The sync has already been done after each transfer. */
1307 unsigned long attrs
= DMA_ATTR_SKIP_CPU_SYNC
;
1309 if (xfer
->rx_sg_mapped
)
1310 spi_unmap_buf_attrs(ctlr
, rx_dev
, &xfer
->rx_sg
,
1311 DMA_FROM_DEVICE
, attrs
);
1312 xfer
->rx_sg_mapped
= false;
1314 if (xfer
->tx_sg_mapped
)
1315 spi_unmap_buf_attrs(ctlr
, tx_dev
, &xfer
->tx_sg
,
1316 DMA_TO_DEVICE
, attrs
);
1317 xfer
->tx_sg_mapped
= false;
1323 static void spi_dma_sync_for_device(struct spi_controller
*ctlr
,
1324 struct spi_transfer
*xfer
)
1326 struct device
*rx_dev
= ctlr
->cur_rx_dma_dev
;
1327 struct device
*tx_dev
= ctlr
->cur_tx_dma_dev
;
1329 if (xfer
->tx_sg_mapped
)
1330 dma_sync_sgtable_for_device(tx_dev
, &xfer
->tx_sg
, DMA_TO_DEVICE
);
1331 if (xfer
->rx_sg_mapped
)
1332 dma_sync_sgtable_for_device(rx_dev
, &xfer
->rx_sg
, DMA_FROM_DEVICE
);
1335 static void spi_dma_sync_for_cpu(struct spi_controller
*ctlr
,
1336 struct spi_transfer
*xfer
)
1338 struct device
*rx_dev
= ctlr
->cur_rx_dma_dev
;
1339 struct device
*tx_dev
= ctlr
->cur_tx_dma_dev
;
1341 if (xfer
->rx_sg_mapped
)
1342 dma_sync_sgtable_for_cpu(rx_dev
, &xfer
->rx_sg
, DMA_FROM_DEVICE
);
1343 if (xfer
->tx_sg_mapped
)
1344 dma_sync_sgtable_for_cpu(tx_dev
, &xfer
->tx_sg
, DMA_TO_DEVICE
);
1346 #else /* !CONFIG_HAS_DMA */
1347 static inline int __spi_map_msg(struct spi_controller
*ctlr
,
1348 struct spi_message
*msg
)
1353 static inline int __spi_unmap_msg(struct spi_controller
*ctlr
,
1354 struct spi_message
*msg
)
1359 static void spi_dma_sync_for_device(struct spi_controller
*ctrl
,
1360 struct spi_transfer
*xfer
)
1364 static void spi_dma_sync_for_cpu(struct spi_controller
*ctrl
,
1365 struct spi_transfer
*xfer
)
1368 #endif /* !CONFIG_HAS_DMA */
1370 static inline int spi_unmap_msg(struct spi_controller
*ctlr
,
1371 struct spi_message
*msg
)
1373 struct spi_transfer
*xfer
;
1375 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
1377 * Restore the original value of tx_buf or rx_buf if they are
1380 if (xfer
->tx_buf
== ctlr
->dummy_tx
)
1381 xfer
->tx_buf
= NULL
;
1382 if (xfer
->rx_buf
== ctlr
->dummy_rx
)
1383 xfer
->rx_buf
= NULL
;
1386 return __spi_unmap_msg(ctlr
, msg
);
1389 static int spi_map_msg(struct spi_controller
*ctlr
, struct spi_message
*msg
)
1391 struct spi_transfer
*xfer
;
1393 unsigned int max_tx
, max_rx
;
1395 if ((ctlr
->flags
& (SPI_CONTROLLER_MUST_RX
| SPI_CONTROLLER_MUST_TX
))
1396 && !(msg
->spi
->mode
& SPI_3WIRE
)) {
1400 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
1401 if ((ctlr
->flags
& SPI_CONTROLLER_MUST_TX
) &&
1403 max_tx
= max(xfer
->len
, max_tx
);
1404 if ((ctlr
->flags
& SPI_CONTROLLER_MUST_RX
) &&
1406 max_rx
= max(xfer
->len
, max_rx
);
1410 tmp
= krealloc(ctlr
->dummy_tx
, max_tx
,
1411 GFP_KERNEL
| GFP_DMA
| __GFP_ZERO
);
1414 ctlr
->dummy_tx
= tmp
;
1418 tmp
= krealloc(ctlr
->dummy_rx
, max_rx
,
1419 GFP_KERNEL
| GFP_DMA
);
1422 ctlr
->dummy_rx
= tmp
;
1425 if (max_tx
|| max_rx
) {
1426 list_for_each_entry(xfer
, &msg
->transfers
,
1431 xfer
->tx_buf
= ctlr
->dummy_tx
;
1433 xfer
->rx_buf
= ctlr
->dummy_rx
;
1438 return __spi_map_msg(ctlr
, msg
);
1441 static int spi_transfer_wait(struct spi_controller
*ctlr
,
1442 struct spi_message
*msg
,
1443 struct spi_transfer
*xfer
)
1445 struct spi_statistics __percpu
*statm
= ctlr
->pcpu_statistics
;
1446 struct spi_statistics __percpu
*stats
= msg
->spi
->pcpu_statistics
;
1447 u32 speed_hz
= xfer
->speed_hz
;
1448 unsigned long long ms
;
1450 if (spi_controller_is_target(ctlr
)) {
1451 if (wait_for_completion_interruptible(&ctlr
->xfer_completion
)) {
1452 dev_dbg(&msg
->spi
->dev
, "SPI transfer interrupted\n");
1460 * For each byte we wait for 8 cycles of the SPI clock.
1461 * Since speed is defined in Hz and we want milliseconds,
1462 * use respective multiplier, but before the division,
1463 * otherwise we may get 0 for short transfers.
1465 ms
= 8LL * MSEC_PER_SEC
* xfer
->len
;
1466 do_div(ms
, speed_hz
);
1469 * Increase it twice and add 200 ms tolerance, use
1470 * predefined maximum in case of overflow.
1476 ms
= wait_for_completion_timeout(&ctlr
->xfer_completion
,
1477 msecs_to_jiffies(ms
));
1480 SPI_STATISTICS_INCREMENT_FIELD(statm
, timedout
);
1481 SPI_STATISTICS_INCREMENT_FIELD(stats
, timedout
);
1482 dev_err(&msg
->spi
->dev
,
1483 "SPI transfer timed out\n");
1487 if (xfer
->error
& SPI_TRANS_FAIL_IO
)
1494 static void _spi_transfer_delay_ns(u32 ns
)
1498 if (ns
<= NSEC_PER_USEC
) {
1501 u32 us
= DIV_ROUND_UP(ns
, NSEC_PER_USEC
);
1506 usleep_range(us
, us
+ DIV_ROUND_UP(us
, 10));
1510 int spi_delay_to_ns(struct spi_delay
*_delay
, struct spi_transfer
*xfer
)
1512 u32 delay
= _delay
->value
;
1513 u32 unit
= _delay
->unit
;
1520 case SPI_DELAY_UNIT_USECS
:
1521 delay
*= NSEC_PER_USEC
;
1523 case SPI_DELAY_UNIT_NSECS
:
1524 /* Nothing to do here */
1526 case SPI_DELAY_UNIT_SCK
:
1527 /* Clock cycles need to be obtained from spi_transfer */
1531 * If there is unknown effective speed, approximate it
1532 * by underestimating with half of the requested Hz.
1534 hz
= xfer
->effective_speed_hz
?: xfer
->speed_hz
/ 2;
1538 /* Convert delay to nanoseconds */
1539 delay
*= DIV_ROUND_UP(NSEC_PER_SEC
, hz
);
1547 EXPORT_SYMBOL_GPL(spi_delay_to_ns
);
1549 int spi_delay_exec(struct spi_delay
*_delay
, struct spi_transfer
*xfer
)
1558 delay
= spi_delay_to_ns(_delay
, xfer
);
1562 _spi_transfer_delay_ns(delay
);
1566 EXPORT_SYMBOL_GPL(spi_delay_exec
);
1568 static void _spi_transfer_cs_change_delay(struct spi_message
*msg
,
1569 struct spi_transfer
*xfer
)
1571 u32 default_delay_ns
= 10 * NSEC_PER_USEC
;
1572 u32 delay
= xfer
->cs_change_delay
.value
;
1573 u32 unit
= xfer
->cs_change_delay
.unit
;
1576 /* Return early on "fast" mode - for everything but USECS */
1578 if (unit
== SPI_DELAY_UNIT_USECS
)
1579 _spi_transfer_delay_ns(default_delay_ns
);
1583 ret
= spi_delay_exec(&xfer
->cs_change_delay
, xfer
);
1585 dev_err_once(&msg
->spi
->dev
,
1586 "Use of unsupported delay unit %i, using default of %luus\n",
1587 unit
, default_delay_ns
/ NSEC_PER_USEC
);
1588 _spi_transfer_delay_ns(default_delay_ns
);
1592 void spi_transfer_cs_change_delay_exec(struct spi_message
*msg
,
1593 struct spi_transfer
*xfer
)
1595 _spi_transfer_cs_change_delay(msg
, xfer
);
1597 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec
);
1600 * spi_transfer_one_message - Default implementation of transfer_one_message()
1602 * This is a standard implementation of transfer_one_message() for
1603 * drivers which implement a transfer_one() operation. It provides
1604 * standard handling of delays and chip select management.
1606 static int spi_transfer_one_message(struct spi_controller
*ctlr
,
1607 struct spi_message
*msg
)
1609 struct spi_transfer
*xfer
;
1610 bool keep_cs
= false;
1612 struct spi_statistics __percpu
*statm
= ctlr
->pcpu_statistics
;
1613 struct spi_statistics __percpu
*stats
= msg
->spi
->pcpu_statistics
;
1615 xfer
= list_first_entry(&msg
->transfers
, struct spi_transfer
, transfer_list
);
1616 spi_set_cs(msg
->spi
, !xfer
->cs_off
, false);
1618 SPI_STATISTICS_INCREMENT_FIELD(statm
, messages
);
1619 SPI_STATISTICS_INCREMENT_FIELD(stats
, messages
);
1621 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
1622 trace_spi_transfer_start(msg
, xfer
);
1624 spi_statistics_add_transfer_stats(statm
, xfer
, msg
);
1625 spi_statistics_add_transfer_stats(stats
, xfer
, msg
);
1627 if (!ctlr
->ptp_sts_supported
) {
1628 xfer
->ptp_sts_word_pre
= 0;
1629 ptp_read_system_prets(xfer
->ptp_sts
);
1632 if ((xfer
->tx_buf
|| xfer
->rx_buf
) && xfer
->len
) {
1633 reinit_completion(&ctlr
->xfer_completion
);
1636 spi_dma_sync_for_device(ctlr
, xfer
);
1637 ret
= ctlr
->transfer_one(ctlr
, msg
->spi
, xfer
);
1639 spi_dma_sync_for_cpu(ctlr
, xfer
);
1641 if ((xfer
->tx_sg_mapped
|| xfer
->rx_sg_mapped
) &&
1642 (xfer
->error
& SPI_TRANS_FAIL_NO_START
)) {
1643 __spi_unmap_msg(ctlr
, msg
);
1644 ctlr
->fallback
= true;
1645 xfer
->error
&= ~SPI_TRANS_FAIL_NO_START
;
1649 SPI_STATISTICS_INCREMENT_FIELD(statm
,
1651 SPI_STATISTICS_INCREMENT_FIELD(stats
,
1653 dev_err(&msg
->spi
->dev
,
1654 "SPI transfer failed: %d\n", ret
);
1659 ret
= spi_transfer_wait(ctlr
, msg
, xfer
);
1664 spi_dma_sync_for_cpu(ctlr
, xfer
);
1667 dev_err(&msg
->spi
->dev
,
1668 "Bufferless transfer has length %u\n",
1672 if (!ctlr
->ptp_sts_supported
) {
1673 ptp_read_system_postts(xfer
->ptp_sts
);
1674 xfer
->ptp_sts_word_post
= xfer
->len
;
1677 trace_spi_transfer_stop(msg
, xfer
);
1679 if (msg
->status
!= -EINPROGRESS
)
1682 spi_transfer_delay_exec(xfer
);
1684 if (xfer
->cs_change
) {
1685 if (list_is_last(&xfer
->transfer_list
,
1690 spi_set_cs(msg
->spi
, false, false);
1691 _spi_transfer_cs_change_delay(msg
, xfer
);
1692 if (!list_next_entry(xfer
, transfer_list
)->cs_off
)
1693 spi_set_cs(msg
->spi
, true, false);
1695 } else if (!list_is_last(&xfer
->transfer_list
, &msg
->transfers
) &&
1696 xfer
->cs_off
!= list_next_entry(xfer
, transfer_list
)->cs_off
) {
1697 spi_set_cs(msg
->spi
, xfer
->cs_off
, false);
1700 msg
->actual_length
+= xfer
->len
;
1704 if (ret
!= 0 || !keep_cs
)
1705 spi_set_cs(msg
->spi
, false, false);
1707 if (msg
->status
== -EINPROGRESS
)
1710 if (msg
->status
&& ctlr
->handle_err
)
1711 ctlr
->handle_err(ctlr
, msg
);
1713 spi_finalize_current_message(ctlr
);
1719 * spi_finalize_current_transfer - report completion of a transfer
1720 * @ctlr: the controller reporting completion
1722 * Called by SPI drivers using the core transfer_one_message()
1723 * implementation to notify it that the current interrupt driven
1724 * transfer has finished and the next one may be scheduled.
1726 void spi_finalize_current_transfer(struct spi_controller
*ctlr
)
1728 complete(&ctlr
->xfer_completion
);
1730 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer
);
1732 static void spi_idle_runtime_pm(struct spi_controller
*ctlr
)
1734 if (ctlr
->auto_runtime_pm
) {
1735 pm_runtime_mark_last_busy(ctlr
->dev
.parent
);
1736 pm_runtime_put_autosuspend(ctlr
->dev
.parent
);
1740 static int __spi_pump_transfer_message(struct spi_controller
*ctlr
,
1741 struct spi_message
*msg
, bool was_busy
)
1743 struct spi_transfer
*xfer
;
1746 if (!was_busy
&& ctlr
->auto_runtime_pm
) {
1747 ret
= pm_runtime_get_sync(ctlr
->dev
.parent
);
1749 pm_runtime_put_noidle(ctlr
->dev
.parent
);
1750 dev_err(&ctlr
->dev
, "Failed to power device: %d\n",
1754 spi_finalize_current_message(ctlr
);
1761 trace_spi_controller_busy(ctlr
);
1763 if (!was_busy
&& ctlr
->prepare_transfer_hardware
) {
1764 ret
= ctlr
->prepare_transfer_hardware(ctlr
);
1767 "failed to prepare transfer hardware: %d\n",
1770 if (ctlr
->auto_runtime_pm
)
1771 pm_runtime_put(ctlr
->dev
.parent
);
1774 spi_finalize_current_message(ctlr
);
1780 trace_spi_message_start(msg
);
1782 if (ctlr
->prepare_message
) {
1783 ret
= ctlr
->prepare_message(ctlr
, msg
);
1785 dev_err(&ctlr
->dev
, "failed to prepare message: %d\n",
1788 spi_finalize_current_message(ctlr
);
1791 msg
->prepared
= true;
1794 ret
= spi_map_msg(ctlr
, msg
);
1797 spi_finalize_current_message(ctlr
);
1801 if (!ctlr
->ptp_sts_supported
&& !ctlr
->transfer_one
) {
1802 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
1803 xfer
->ptp_sts_word_pre
= 0;
1804 ptp_read_system_prets(xfer
->ptp_sts
);
1809 * Drivers implementation of transfer_one_message() must arrange for
1810 * spi_finalize_current_message() to get called. Most drivers will do
1811 * this in the calling context, but some don't. For those cases, a
1812 * completion is used to guarantee that this function does not return
1813 * until spi_finalize_current_message() is done accessing
1815 * Use of the following two flags enable to opportunistically skip the
1816 * use of the completion since its use involves expensive spin locks.
1817 * In case of a race with the context that calls
1818 * spi_finalize_current_message() the completion will always be used,
1819 * due to strict ordering of these flags using barriers.
1821 WRITE_ONCE(ctlr
->cur_msg_incomplete
, true);
1822 WRITE_ONCE(ctlr
->cur_msg_need_completion
, false);
1823 reinit_completion(&ctlr
->cur_msg_completion
);
1824 smp_wmb(); /* Make these available to spi_finalize_current_message() */
1826 ret
= ctlr
->transfer_one_message(ctlr
, msg
);
1829 "failed to transfer one message from queue\n");
1833 WRITE_ONCE(ctlr
->cur_msg_need_completion
, true);
1834 smp_mb(); /* See spi_finalize_current_message()... */
1835 if (READ_ONCE(ctlr
->cur_msg_incomplete
))
1836 wait_for_completion(&ctlr
->cur_msg_completion
);
1842 * __spi_pump_messages - function which processes SPI message queue
1843 * @ctlr: controller to process queue for
1844 * @in_kthread: true if we are in the context of the message pump thread
1846 * This function checks if there is any SPI message in the queue that
1847 * needs processing and if so call out to the driver to initialize hardware
1848 * and transfer each message.
1850 * Note that it is called both from the kthread itself and also from
1851 * inside spi_sync(); the queue extraction handling at the top of the
1852 * function should deal with this safely.
1854 static void __spi_pump_messages(struct spi_controller
*ctlr
, bool in_kthread
)
1856 struct spi_message
*msg
;
1857 bool was_busy
= false;
1858 unsigned long flags
;
1861 /* Take the I/O mutex */
1862 mutex_lock(&ctlr
->io_mutex
);
1865 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1867 /* Make sure we are not already running a message */
1871 /* Check if the queue is idle */
1872 if (list_empty(&ctlr
->queue
) || !ctlr
->running
) {
1876 /* Defer any non-atomic teardown to the thread */
1878 if (!ctlr
->dummy_rx
&& !ctlr
->dummy_tx
&&
1879 !ctlr
->unprepare_transfer_hardware
) {
1880 spi_idle_runtime_pm(ctlr
);
1882 ctlr
->queue_empty
= true;
1883 trace_spi_controller_idle(ctlr
);
1885 kthread_queue_work(ctlr
->kworker
,
1886 &ctlr
->pump_messages
);
1892 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1894 kfree(ctlr
->dummy_rx
);
1895 ctlr
->dummy_rx
= NULL
;
1896 kfree(ctlr
->dummy_tx
);
1897 ctlr
->dummy_tx
= NULL
;
1898 if (ctlr
->unprepare_transfer_hardware
&&
1899 ctlr
->unprepare_transfer_hardware(ctlr
))
1901 "failed to unprepare transfer hardware\n");
1902 spi_idle_runtime_pm(ctlr
);
1903 trace_spi_controller_idle(ctlr
);
1905 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1906 ctlr
->queue_empty
= true;
1910 /* Extract head of queue */
1911 msg
= list_first_entry(&ctlr
->queue
, struct spi_message
, queue
);
1912 ctlr
->cur_msg
= msg
;
1914 list_del_init(&msg
->queue
);
1919 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1921 ret
= __spi_pump_transfer_message(ctlr
, msg
, was_busy
);
1922 kthread_queue_work(ctlr
->kworker
, &ctlr
->pump_messages
);
1924 ctlr
->cur_msg
= NULL
;
1925 ctlr
->fallback
= false;
1927 mutex_unlock(&ctlr
->io_mutex
);
1929 /* Prod the scheduler in case transfer_one() was busy waiting */
1935 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1936 mutex_unlock(&ctlr
->io_mutex
);
1940 * spi_pump_messages - kthread work function which processes spi message queue
1941 * @work: pointer to kthread work struct contained in the controller struct
1943 static void spi_pump_messages(struct kthread_work
*work
)
1945 struct spi_controller
*ctlr
=
1946 container_of(work
, struct spi_controller
, pump_messages
);
1948 __spi_pump_messages(ctlr
, true);
1952 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1953 * @ctlr: Pointer to the spi_controller structure of the driver
1954 * @xfer: Pointer to the transfer being timestamped
1955 * @progress: How many words (not bytes) have been transferred so far
1956 * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1957 * transfer, for less jitter in time measurement. Only compatible
1958 * with PIO drivers. If true, must follow up with
1959 * spi_take_timestamp_post or otherwise system will crash.
1960 * WARNING: for fully predictable results, the CPU frequency must
1961 * also be under control (governor).
1963 * This is a helper for drivers to collect the beginning of the TX timestamp
1964 * for the requested byte from the SPI transfer. The frequency with which this
1965 * function must be called (once per word, once for the whole transfer, once
1966 * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1967 * greater than or equal to the requested byte at the time of the call. The
1968 * timestamp is only taken once, at the first such call. It is assumed that
1969 * the driver advances its @tx buffer pointer monotonically.
1971 void spi_take_timestamp_pre(struct spi_controller
*ctlr
,
1972 struct spi_transfer
*xfer
,
1973 size_t progress
, bool irqs_off
)
1978 if (xfer
->timestamped
)
1981 if (progress
> xfer
->ptp_sts_word_pre
)
1984 /* Capture the resolution of the timestamp */
1985 xfer
->ptp_sts_word_pre
= progress
;
1988 local_irq_save(ctlr
->irq_flags
);
1992 ptp_read_system_prets(xfer
->ptp_sts
);
1994 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre
);
1997 * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1998 * @ctlr: Pointer to the spi_controller structure of the driver
1999 * @xfer: Pointer to the transfer being timestamped
2000 * @progress: How many words (not bytes) have been transferred so far
2001 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
2003 * This is a helper for drivers to collect the end of the TX timestamp for
2004 * the requested byte from the SPI transfer. Can be called with an arbitrary
2005 * frequency: only the first call where @tx exceeds or is equal to the
2006 * requested word will be timestamped.
2008 void spi_take_timestamp_post(struct spi_controller
*ctlr
,
2009 struct spi_transfer
*xfer
,
2010 size_t progress
, bool irqs_off
)
2015 if (xfer
->timestamped
)
2018 if (progress
< xfer
->ptp_sts_word_post
)
2021 ptp_read_system_postts(xfer
->ptp_sts
);
2024 local_irq_restore(ctlr
->irq_flags
);
2028 /* Capture the resolution of the timestamp */
2029 xfer
->ptp_sts_word_post
= progress
;
2031 xfer
->timestamped
= 1;
2033 EXPORT_SYMBOL_GPL(spi_take_timestamp_post
);
2036 * spi_set_thread_rt - set the controller to pump at realtime priority
2037 * @ctlr: controller to boost priority of
2039 * This can be called because the controller requested realtime priority
2040 * (by setting the ->rt value before calling spi_register_controller()) or
2041 * because a device on the bus said that its transfers needed realtime
2044 * NOTE: at the moment if any device on a bus says it needs realtime then
2045 * the thread will be at realtime priority for all transfers on that
2046 * controller. If this eventually becomes a problem we may see if we can
2047 * find a way to boost the priority only temporarily during relevant
2050 static void spi_set_thread_rt(struct spi_controller
*ctlr
)
2052 dev_info(&ctlr
->dev
,
2053 "will run message pump with realtime priority\n");
2054 sched_set_fifo(ctlr
->kworker
->task
);
2057 static int spi_init_queue(struct spi_controller
*ctlr
)
2059 ctlr
->running
= false;
2061 ctlr
->queue_empty
= true;
2063 ctlr
->kworker
= kthread_create_worker(0, dev_name(&ctlr
->dev
));
2064 if (IS_ERR(ctlr
->kworker
)) {
2065 dev_err(&ctlr
->dev
, "failed to create message pump kworker\n");
2066 return PTR_ERR(ctlr
->kworker
);
2069 kthread_init_work(&ctlr
->pump_messages
, spi_pump_messages
);
2072 * Controller config will indicate if this controller should run the
2073 * message pump with high (realtime) priority to reduce the transfer
2074 * latency on the bus by minimising the delay between a transfer
2075 * request and the scheduling of the message pump thread. Without this
2076 * setting the message pump thread will remain at default priority.
2079 spi_set_thread_rt(ctlr
);
2085 * spi_get_next_queued_message() - called by driver to check for queued
2087 * @ctlr: the controller to check for queued messages
2089 * If there are more messages in the queue, the next message is returned from
2092 * Return: the next message in the queue, else NULL if the queue is empty.
2094 struct spi_message
*spi_get_next_queued_message(struct spi_controller
*ctlr
)
2096 struct spi_message
*next
;
2097 unsigned long flags
;
2099 /* Get a pointer to the next message, if any */
2100 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
2101 next
= list_first_entry_or_null(&ctlr
->queue
, struct spi_message
,
2103 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
2107 EXPORT_SYMBOL_GPL(spi_get_next_queued_message
);
2110 * __spi_unoptimize_message - shared implementation of spi_unoptimize_message()
2111 * and spi_maybe_unoptimize_message()
2112 * @msg: the message to unoptimize
2114 * Peripheral drivers should use spi_unoptimize_message() and callers inside
2115 * core should use spi_maybe_unoptimize_message() rather than calling this
2116 * function directly.
2118 * It is not valid to call this on a message that is not currently optimized.
2120 static void __spi_unoptimize_message(struct spi_message
*msg
)
2122 struct spi_controller
*ctlr
= msg
->spi
->controller
;
2124 if (ctlr
->unoptimize_message
)
2125 ctlr
->unoptimize_message(msg
);
2127 spi_res_release(ctlr
, msg
);
2129 msg
->optimized
= false;
2130 msg
->opt_state
= NULL
;
2134 * spi_maybe_unoptimize_message - unoptimize msg not managed by a peripheral
2135 * @msg: the message to unoptimize
2137 * This function is used to unoptimize a message if and only if it was
2138 * optimized by the core (via spi_maybe_optimize_message()).
2140 static void spi_maybe_unoptimize_message(struct spi_message
*msg
)
2142 if (!msg
->pre_optimized
&& msg
->optimized
&&
2143 !msg
->spi
->controller
->defer_optimize_message
)
2144 __spi_unoptimize_message(msg
);
2148 * spi_finalize_current_message() - the current message is complete
2149 * @ctlr: the controller to return the message to
2151 * Called by the driver to notify the core that the message in the front of the
2152 * queue is complete and can be removed from the queue.
2154 void spi_finalize_current_message(struct spi_controller
*ctlr
)
2156 struct spi_transfer
*xfer
;
2157 struct spi_message
*mesg
;
2160 mesg
= ctlr
->cur_msg
;
2162 if (!ctlr
->ptp_sts_supported
&& !ctlr
->transfer_one
) {
2163 list_for_each_entry(xfer
, &mesg
->transfers
, transfer_list
) {
2164 ptp_read_system_postts(xfer
->ptp_sts
);
2165 xfer
->ptp_sts_word_post
= xfer
->len
;
2169 if (unlikely(ctlr
->ptp_sts_supported
))
2170 list_for_each_entry(xfer
, &mesg
->transfers
, transfer_list
)
2171 WARN_ON_ONCE(xfer
->ptp_sts
&& !xfer
->timestamped
);
2173 spi_unmap_msg(ctlr
, mesg
);
2175 if (mesg
->prepared
&& ctlr
->unprepare_message
) {
2176 ret
= ctlr
->unprepare_message(ctlr
, mesg
);
2178 dev_err(&ctlr
->dev
, "failed to unprepare message: %d\n",
2183 mesg
->prepared
= false;
2185 spi_maybe_unoptimize_message(mesg
);
2187 WRITE_ONCE(ctlr
->cur_msg_incomplete
, false);
2188 smp_mb(); /* See __spi_pump_transfer_message()... */
2189 if (READ_ONCE(ctlr
->cur_msg_need_completion
))
2190 complete(&ctlr
->cur_msg_completion
);
2192 trace_spi_message_done(mesg
);
2196 mesg
->complete(mesg
->context
);
2198 EXPORT_SYMBOL_GPL(spi_finalize_current_message
);
2200 static int spi_start_queue(struct spi_controller
*ctlr
)
2202 unsigned long flags
;
2204 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
2206 if (ctlr
->running
|| ctlr
->busy
) {
2207 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
2211 ctlr
->running
= true;
2212 ctlr
->cur_msg
= NULL
;
2213 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
2215 kthread_queue_work(ctlr
->kworker
, &ctlr
->pump_messages
);
2220 static int spi_stop_queue(struct spi_controller
*ctlr
)
2222 unsigned int limit
= 500;
2223 unsigned long flags
;
2226 * This is a bit lame, but is optimized for the common execution path.
2227 * A wait_queue on the ctlr->busy could be used, but then the common
2228 * execution path (pump_messages) would be required to call wake_up or
2229 * friends on every SPI message. Do this instead.
2232 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
2233 if (list_empty(&ctlr
->queue
) && !ctlr
->busy
) {
2234 ctlr
->running
= false;
2235 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
2238 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
2239 usleep_range(10000, 11000);
2245 static int spi_destroy_queue(struct spi_controller
*ctlr
)
2249 ret
= spi_stop_queue(ctlr
);
2252 * kthread_flush_worker will block until all work is done.
2253 * If the reason that stop_queue timed out is that the work will never
2254 * finish, then it does no good to call flush/stop thread, so
2258 dev_err(&ctlr
->dev
, "problem destroying queue\n");
2262 kthread_destroy_worker(ctlr
->kworker
);
2267 static int __spi_queued_transfer(struct spi_device
*spi
,
2268 struct spi_message
*msg
,
2271 struct spi_controller
*ctlr
= spi
->controller
;
2272 unsigned long flags
;
2274 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
2276 if (!ctlr
->running
) {
2277 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
2280 msg
->actual_length
= 0;
2281 msg
->status
= -EINPROGRESS
;
2283 list_add_tail(&msg
->queue
, &ctlr
->queue
);
2284 ctlr
->queue_empty
= false;
2285 if (!ctlr
->busy
&& need_pump
)
2286 kthread_queue_work(ctlr
->kworker
, &ctlr
->pump_messages
);
2288 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
2293 * spi_queued_transfer - transfer function for queued transfers
2294 * @spi: SPI device which is requesting transfer
2295 * @msg: SPI message which is to handled is queued to driver queue
2297 * Return: zero on success, else a negative error code.
2299 static int spi_queued_transfer(struct spi_device
*spi
, struct spi_message
*msg
)
2301 return __spi_queued_transfer(spi
, msg
, true);
2304 static int spi_controller_initialize_queue(struct spi_controller
*ctlr
)
2308 ctlr
->transfer
= spi_queued_transfer
;
2309 if (!ctlr
->transfer_one_message
)
2310 ctlr
->transfer_one_message
= spi_transfer_one_message
;
2312 /* Initialize and start queue */
2313 ret
= spi_init_queue(ctlr
);
2315 dev_err(&ctlr
->dev
, "problem initializing queue\n");
2316 goto err_init_queue
;
2318 ctlr
->queued
= true;
2319 ret
= spi_start_queue(ctlr
);
2321 dev_err(&ctlr
->dev
, "problem starting queue\n");
2322 goto err_start_queue
;
2328 spi_destroy_queue(ctlr
);
2334 * spi_flush_queue - Send all pending messages in the queue from the callers'
2336 * @ctlr: controller to process queue for
2338 * This should be used when one wants to ensure all pending messages have been
2339 * sent before doing something. Is used by the spi-mem code to make sure SPI
2340 * memory operations do not preempt regular SPI transfers that have been queued
2341 * before the spi-mem operation.
2343 void spi_flush_queue(struct spi_controller
*ctlr
)
2345 if (ctlr
->transfer
== spi_queued_transfer
)
2346 __spi_pump_messages(ctlr
, false);
2349 /*-------------------------------------------------------------------------*/
2351 #if defined(CONFIG_OF)
2352 static void of_spi_parse_dt_cs_delay(struct device_node
*nc
,
2353 struct spi_delay
*delay
, const char *prop
)
2357 if (!of_property_read_u32(nc
, prop
, &value
)) {
2358 if (value
> U16_MAX
) {
2359 delay
->value
= DIV_ROUND_UP(value
, 1000);
2360 delay
->unit
= SPI_DELAY_UNIT_USECS
;
2362 delay
->value
= value
;
2363 delay
->unit
= SPI_DELAY_UNIT_NSECS
;
2368 static int of_spi_parse_dt(struct spi_controller
*ctlr
, struct spi_device
*spi
,
2369 struct device_node
*nc
)
2371 u32 value
, cs
[SPI_CS_CNT_MAX
];
2374 /* Mode (clock phase/polarity/etc.) */
2375 if (of_property_read_bool(nc
, "spi-cpha"))
2376 spi
->mode
|= SPI_CPHA
;
2377 if (of_property_read_bool(nc
, "spi-cpol"))
2378 spi
->mode
|= SPI_CPOL
;
2379 if (of_property_read_bool(nc
, "spi-3wire"))
2380 spi
->mode
|= SPI_3WIRE
;
2381 if (of_property_read_bool(nc
, "spi-lsb-first"))
2382 spi
->mode
|= SPI_LSB_FIRST
;
2383 if (of_property_read_bool(nc
, "spi-cs-high"))
2384 spi
->mode
|= SPI_CS_HIGH
;
2386 /* Device DUAL/QUAD mode */
2387 if (!of_property_read_u32(nc
, "spi-tx-bus-width", &value
)) {
2390 spi
->mode
|= SPI_NO_TX
;
2395 spi
->mode
|= SPI_TX_DUAL
;
2398 spi
->mode
|= SPI_TX_QUAD
;
2401 spi
->mode
|= SPI_TX_OCTAL
;
2404 dev_warn(&ctlr
->dev
,
2405 "spi-tx-bus-width %d not supported\n",
2411 if (!of_property_read_u32(nc
, "spi-rx-bus-width", &value
)) {
2414 spi
->mode
|= SPI_NO_RX
;
2419 spi
->mode
|= SPI_RX_DUAL
;
2422 spi
->mode
|= SPI_RX_QUAD
;
2425 spi
->mode
|= SPI_RX_OCTAL
;
2428 dev_warn(&ctlr
->dev
,
2429 "spi-rx-bus-width %d not supported\n",
2435 if (spi_controller_is_target(ctlr
)) {
2436 if (!of_node_name_eq(nc
, "slave")) {
2437 dev_err(&ctlr
->dev
, "%pOF is not called 'slave'\n",
2444 if (ctlr
->num_chipselect
> SPI_CS_CNT_MAX
) {
2445 dev_err(&ctlr
->dev
, "No. of CS is more than max. no. of supported CS\n");
2449 spi_set_all_cs_unused(spi
);
2451 /* Device address */
2452 rc
= of_property_read_variable_u32_array(nc
, "reg", &cs
[0], 1,
2455 dev_err(&ctlr
->dev
, "%pOF has no valid 'reg' property (%d)\n",
2459 if (rc
> ctlr
->num_chipselect
) {
2460 dev_err(&ctlr
->dev
, "%pOF has number of CS > ctlr->num_chipselect (%d)\n",
2464 if ((of_property_present(nc
, "parallel-memories")) &&
2465 (!(ctlr
->flags
& SPI_CONTROLLER_MULTI_CS
))) {
2466 dev_err(&ctlr
->dev
, "SPI controller doesn't support multi CS\n");
2469 for (idx
= 0; idx
< rc
; idx
++)
2470 spi_set_chipselect(spi
, idx
, cs
[idx
]);
2473 * By default spi->chip_select[0] will hold the physical CS number,
2474 * so set bit 0 in spi->cs_index_mask.
2476 spi
->cs_index_mask
= BIT(0);
2479 if (!of_property_read_u32(nc
, "spi-max-frequency", &value
))
2480 spi
->max_speed_hz
= value
;
2482 /* Device CS delays */
2483 of_spi_parse_dt_cs_delay(nc
, &spi
->cs_setup
, "spi-cs-setup-delay-ns");
2484 of_spi_parse_dt_cs_delay(nc
, &spi
->cs_hold
, "spi-cs-hold-delay-ns");
2485 of_spi_parse_dt_cs_delay(nc
, &spi
->cs_inactive
, "spi-cs-inactive-delay-ns");
2490 static struct spi_device
*
2491 of_register_spi_device(struct spi_controller
*ctlr
, struct device_node
*nc
)
2493 struct spi_device
*spi
;
2496 /* Alloc an spi_device */
2497 spi
= spi_alloc_device(ctlr
);
2499 dev_err(&ctlr
->dev
, "spi_device alloc error for %pOF\n", nc
);
2504 /* Select device driver */
2505 rc
= of_alias_from_compatible(nc
, spi
->modalias
,
2506 sizeof(spi
->modalias
));
2508 dev_err(&ctlr
->dev
, "cannot find modalias for %pOF\n", nc
);
2512 rc
= of_spi_parse_dt(ctlr
, spi
, nc
);
2516 /* Store a pointer to the node in the device structure */
2519 device_set_node(&spi
->dev
, of_fwnode_handle(nc
));
2521 /* Register the new device */
2522 rc
= spi_add_device(spi
);
2524 dev_err(&ctlr
->dev
, "spi_device register error %pOF\n", nc
);
2525 goto err_of_node_put
;
2538 * of_register_spi_devices() - Register child devices onto the SPI bus
2539 * @ctlr: Pointer to spi_controller device
2541 * Registers an spi_device for each child node of controller node which
2542 * represents a valid SPI slave.
2544 static void of_register_spi_devices(struct spi_controller
*ctlr
)
2546 struct spi_device
*spi
;
2547 struct device_node
*nc
;
2549 for_each_available_child_of_node(ctlr
->dev
.of_node
, nc
) {
2550 if (of_node_test_and_set_flag(nc
, OF_POPULATED
))
2552 spi
= of_register_spi_device(ctlr
, nc
);
2554 dev_warn(&ctlr
->dev
,
2555 "Failed to create SPI device for %pOF\n", nc
);
2556 of_node_clear_flag(nc
, OF_POPULATED
);
2561 static void of_register_spi_devices(struct spi_controller
*ctlr
) { }
2565 * spi_new_ancillary_device() - Register ancillary SPI device
2566 * @spi: Pointer to the main SPI device registering the ancillary device
2567 * @chip_select: Chip Select of the ancillary device
2569 * Register an ancillary SPI device; for example some chips have a chip-select
2570 * for normal device usage and another one for setup/firmware upload.
2572 * This may only be called from main SPI device's probe routine.
2574 * Return: 0 on success; negative errno on failure
2576 struct spi_device
*spi_new_ancillary_device(struct spi_device
*spi
,
2579 struct spi_controller
*ctlr
= spi
->controller
;
2580 struct spi_device
*ancillary
;
2583 /* Alloc an spi_device */
2584 ancillary
= spi_alloc_device(ctlr
);
2590 strscpy(ancillary
->modalias
, "dummy", sizeof(ancillary
->modalias
));
2592 /* Use provided chip-select for ancillary device */
2593 spi_set_all_cs_unused(ancillary
);
2594 spi_set_chipselect(ancillary
, 0, chip_select
);
2596 /* Take over SPI mode/speed from SPI main device */
2597 ancillary
->max_speed_hz
= spi
->max_speed_hz
;
2598 ancillary
->mode
= spi
->mode
;
2600 * By default spi->chip_select[0] will hold the physical CS number,
2601 * so set bit 0 in spi->cs_index_mask.
2603 ancillary
->cs_index_mask
= BIT(0);
2605 WARN_ON(!mutex_is_locked(&ctlr
->add_lock
));
2607 /* Register the new device */
2608 rc
= __spi_add_device(ancillary
);
2610 dev_err(&spi
->dev
, "failed to register ancillary device\n");
2617 spi_dev_put(ancillary
);
2620 EXPORT_SYMBOL_GPL(spi_new_ancillary_device
);
2623 struct acpi_spi_lookup
{
2624 struct spi_controller
*ctlr
;
2634 static int acpi_spi_count(struct acpi_resource
*ares
, void *data
)
2636 struct acpi_resource_spi_serialbus
*sb
;
2639 if (ares
->type
!= ACPI_RESOURCE_TYPE_SERIAL_BUS
)
2642 sb
= &ares
->data
.spi_serial_bus
;
2643 if (sb
->type
!= ACPI_RESOURCE_SERIAL_TYPE_SPI
)
2646 *count
= *count
+ 1;
2652 * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2653 * @adev: ACPI device
2655 * Return: the number of SpiSerialBus resources in the ACPI-device's
2656 * resource-list; or a negative error code.
2658 int acpi_spi_count_resources(struct acpi_device
*adev
)
2664 ret
= acpi_dev_get_resources(adev
, &r
, acpi_spi_count
, &count
);
2668 acpi_dev_free_resource_list(&r
);
2672 EXPORT_SYMBOL_GPL(acpi_spi_count_resources
);
2674 static void acpi_spi_parse_apple_properties(struct acpi_device
*dev
,
2675 struct acpi_spi_lookup
*lookup
)
2677 const union acpi_object
*obj
;
2679 if (!x86_apple_machine
)
2682 if (!acpi_dev_get_property(dev
, "spiSclkPeriod", ACPI_TYPE_BUFFER
, &obj
)
2683 && obj
->buffer
.length
>= 4)
2684 lookup
->max_speed_hz
= NSEC_PER_SEC
/ *(u32
*)obj
->buffer
.pointer
;
2686 if (!acpi_dev_get_property(dev
, "spiWordSize", ACPI_TYPE_BUFFER
, &obj
)
2687 && obj
->buffer
.length
== 8)
2688 lookup
->bits_per_word
= *(u64
*)obj
->buffer
.pointer
;
2690 if (!acpi_dev_get_property(dev
, "spiBitOrder", ACPI_TYPE_BUFFER
, &obj
)
2691 && obj
->buffer
.length
== 8 && !*(u64
*)obj
->buffer
.pointer
)
2692 lookup
->mode
|= SPI_LSB_FIRST
;
2694 if (!acpi_dev_get_property(dev
, "spiSPO", ACPI_TYPE_BUFFER
, &obj
)
2695 && obj
->buffer
.length
== 8 && *(u64
*)obj
->buffer
.pointer
)
2696 lookup
->mode
|= SPI_CPOL
;
2698 if (!acpi_dev_get_property(dev
, "spiSPH", ACPI_TYPE_BUFFER
, &obj
)
2699 && obj
->buffer
.length
== 8 && *(u64
*)obj
->buffer
.pointer
)
2700 lookup
->mode
|= SPI_CPHA
;
2703 static int acpi_spi_add_resource(struct acpi_resource
*ares
, void *data
)
2705 struct acpi_spi_lookup
*lookup
= data
;
2706 struct spi_controller
*ctlr
= lookup
->ctlr
;
2708 if (ares
->type
== ACPI_RESOURCE_TYPE_SERIAL_BUS
) {
2709 struct acpi_resource_spi_serialbus
*sb
;
2710 acpi_handle parent_handle
;
2713 sb
= &ares
->data
.spi_serial_bus
;
2714 if (sb
->type
== ACPI_RESOURCE_SERIAL_TYPE_SPI
) {
2716 if (lookup
->index
!= -1 && lookup
->n
++ != lookup
->index
)
2719 status
= acpi_get_handle(NULL
,
2720 sb
->resource_source
.string_ptr
,
2723 if (ACPI_FAILURE(status
))
2727 if (!device_match_acpi_handle(ctlr
->dev
.parent
, parent_handle
))
2730 struct acpi_device
*adev
;
2732 adev
= acpi_fetch_acpi_dev(parent_handle
);
2736 ctlr
= acpi_spi_find_controller_by_adev(adev
);
2738 return -EPROBE_DEFER
;
2740 lookup
->ctlr
= ctlr
;
2744 * ACPI DeviceSelection numbering is handled by the
2745 * host controller driver in Windows and can vary
2746 * from driver to driver. In Linux we always expect
2747 * 0 .. max - 1 so we need to ask the driver to
2748 * translate between the two schemes.
2750 if (ctlr
->fw_translate_cs
) {
2751 int cs
= ctlr
->fw_translate_cs(ctlr
,
2752 sb
->device_selection
);
2755 lookup
->chip_select
= cs
;
2757 lookup
->chip_select
= sb
->device_selection
;
2760 lookup
->max_speed_hz
= sb
->connection_speed
;
2761 lookup
->bits_per_word
= sb
->data_bit_length
;
2763 if (sb
->clock_phase
== ACPI_SPI_SECOND_PHASE
)
2764 lookup
->mode
|= SPI_CPHA
;
2765 if (sb
->clock_polarity
== ACPI_SPI_START_HIGH
)
2766 lookup
->mode
|= SPI_CPOL
;
2767 if (sb
->device_polarity
== ACPI_SPI_ACTIVE_HIGH
)
2768 lookup
->mode
|= SPI_CS_HIGH
;
2770 } else if (lookup
->irq
< 0) {
2773 if (acpi_dev_resource_interrupt(ares
, 0, &r
))
2774 lookup
->irq
= r
.start
;
2777 /* Always tell the ACPI core to skip this resource */
2782 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2783 * @ctlr: controller to which the spi device belongs
2784 * @adev: ACPI Device for the spi device
2785 * @index: Index of the spi resource inside the ACPI Node
2787 * This should be used to allocate a new SPI device from and ACPI Device node.
2788 * The caller is responsible for calling spi_add_device to register the SPI device.
2790 * If ctlr is set to NULL, the Controller for the SPI device will be looked up
2791 * using the resource.
2792 * If index is set to -1, index is not used.
2793 * Note: If index is -1, ctlr must be set.
2795 * Return: a pointer to the new device, or ERR_PTR on error.
2797 struct spi_device
*acpi_spi_device_alloc(struct spi_controller
*ctlr
,
2798 struct acpi_device
*adev
,
2801 acpi_handle parent_handle
= NULL
;
2802 struct list_head resource_list
;
2803 struct acpi_spi_lookup lookup
= {};
2804 struct spi_device
*spi
;
2807 if (!ctlr
&& index
== -1)
2808 return ERR_PTR(-EINVAL
);
2812 lookup
.index
= index
;
2815 INIT_LIST_HEAD(&resource_list
);
2816 ret
= acpi_dev_get_resources(adev
, &resource_list
,
2817 acpi_spi_add_resource
, &lookup
);
2818 acpi_dev_free_resource_list(&resource_list
);
2821 /* Found SPI in _CRS but it points to another controller */
2822 return ERR_PTR(ret
);
2824 if (!lookup
.max_speed_hz
&&
2825 ACPI_SUCCESS(acpi_get_parent(adev
->handle
, &parent_handle
)) &&
2826 device_match_acpi_handle(lookup
.ctlr
->dev
.parent
, parent_handle
)) {
2827 /* Apple does not use _CRS but nested devices for SPI slaves */
2828 acpi_spi_parse_apple_properties(adev
, &lookup
);
2831 if (!lookup
.max_speed_hz
)
2832 return ERR_PTR(-ENODEV
);
2834 spi
= spi_alloc_device(lookup
.ctlr
);
2836 dev_err(&lookup
.ctlr
->dev
, "failed to allocate SPI device for %s\n",
2837 dev_name(&adev
->dev
));
2838 return ERR_PTR(-ENOMEM
);
2841 spi_set_all_cs_unused(spi
);
2842 spi_set_chipselect(spi
, 0, lookup
.chip_select
);
2844 ACPI_COMPANION_SET(&spi
->dev
, adev
);
2845 spi
->max_speed_hz
= lookup
.max_speed_hz
;
2846 spi
->mode
|= lookup
.mode
;
2847 spi
->irq
= lookup
.irq
;
2848 spi
->bits_per_word
= lookup
.bits_per_word
;
2850 * By default spi->chip_select[0] will hold the physical CS number,
2851 * so set bit 0 in spi->cs_index_mask.
2853 spi
->cs_index_mask
= BIT(0);
2857 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc
);
2859 static acpi_status
acpi_register_spi_device(struct spi_controller
*ctlr
,
2860 struct acpi_device
*adev
)
2862 struct spi_device
*spi
;
2864 if (acpi_bus_get_status(adev
) || !adev
->status
.present
||
2865 acpi_device_enumerated(adev
))
2868 spi
= acpi_spi_device_alloc(ctlr
, adev
, -1);
2870 if (PTR_ERR(spi
) == -ENOMEM
)
2871 return AE_NO_MEMORY
;
2876 acpi_set_modalias(adev
, acpi_device_hid(adev
), spi
->modalias
,
2877 sizeof(spi
->modalias
));
2879 acpi_device_set_enumerated(adev
);
2881 adev
->power
.flags
.ignore_parent
= true;
2882 if (spi_add_device(spi
)) {
2883 adev
->power
.flags
.ignore_parent
= false;
2884 dev_err(&ctlr
->dev
, "failed to add SPI device %s from ACPI\n",
2885 dev_name(&adev
->dev
));
2892 static acpi_status
acpi_spi_add_device(acpi_handle handle
, u32 level
,
2893 void *data
, void **return_value
)
2895 struct acpi_device
*adev
= acpi_fetch_acpi_dev(handle
);
2896 struct spi_controller
*ctlr
= data
;
2901 return acpi_register_spi_device(ctlr
, adev
);
2904 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32
2906 static void acpi_register_spi_devices(struct spi_controller
*ctlr
)
2911 handle
= ACPI_HANDLE(ctlr
->dev
.parent
);
2915 status
= acpi_walk_namespace(ACPI_TYPE_DEVICE
, ACPI_ROOT_OBJECT
,
2916 SPI_ACPI_ENUMERATE_MAX_DEPTH
,
2917 acpi_spi_add_device
, NULL
, ctlr
, NULL
);
2918 if (ACPI_FAILURE(status
))
2919 dev_warn(&ctlr
->dev
, "failed to enumerate SPI slaves\n");
2922 static inline void acpi_register_spi_devices(struct spi_controller
*ctlr
) {}
2923 #endif /* CONFIG_ACPI */
2925 static void spi_controller_release(struct device
*dev
)
2927 struct spi_controller
*ctlr
;
2929 ctlr
= container_of(dev
, struct spi_controller
, dev
);
2933 static const struct class spi_master_class
= {
2934 .name
= "spi_master",
2935 .dev_release
= spi_controller_release
,
2936 .dev_groups
= spi_master_groups
,
2939 #ifdef CONFIG_SPI_SLAVE
2941 * spi_target_abort - abort the ongoing transfer request on an SPI slave
2943 * @spi: device used for the current transfer
2945 int spi_target_abort(struct spi_device
*spi
)
2947 struct spi_controller
*ctlr
= spi
->controller
;
2949 if (spi_controller_is_target(ctlr
) && ctlr
->target_abort
)
2950 return ctlr
->target_abort(ctlr
);
2954 EXPORT_SYMBOL_GPL(spi_target_abort
);
2956 static ssize_t
slave_show(struct device
*dev
, struct device_attribute
*attr
,
2959 struct spi_controller
*ctlr
= container_of(dev
, struct spi_controller
,
2961 struct device
*child
;
2963 child
= device_find_any_child(&ctlr
->dev
);
2964 return sysfs_emit(buf
, "%s\n", child
? to_spi_device(child
)->modalias
: NULL
);
2967 static ssize_t
slave_store(struct device
*dev
, struct device_attribute
*attr
,
2968 const char *buf
, size_t count
)
2970 struct spi_controller
*ctlr
= container_of(dev
, struct spi_controller
,
2972 struct spi_device
*spi
;
2973 struct device
*child
;
2977 rc
= sscanf(buf
, "%31s", name
);
2978 if (rc
!= 1 || !name
[0])
2981 child
= device_find_any_child(&ctlr
->dev
);
2983 /* Remove registered slave */
2984 device_unregister(child
);
2988 if (strcmp(name
, "(null)")) {
2989 /* Register new slave */
2990 spi
= spi_alloc_device(ctlr
);
2994 strscpy(spi
->modalias
, name
, sizeof(spi
->modalias
));
2996 rc
= spi_add_device(spi
);
3006 static DEVICE_ATTR_RW(slave
);
3008 static struct attribute
*spi_slave_attrs
[] = {
3009 &dev_attr_slave
.attr
,
3013 static const struct attribute_group spi_slave_group
= {
3014 .attrs
= spi_slave_attrs
,
3017 static const struct attribute_group
*spi_slave_groups
[] = {
3018 &spi_controller_statistics_group
,
3023 static const struct class spi_slave_class
= {
3024 .name
= "spi_slave",
3025 .dev_release
= spi_controller_release
,
3026 .dev_groups
= spi_slave_groups
,
3029 extern struct class spi_slave_class
; /* dummy */
3033 * __spi_alloc_controller - allocate an SPI master or slave controller
3034 * @dev: the controller, possibly using the platform_bus
3035 * @size: how much zeroed driver-private data to allocate; the pointer to this
3036 * memory is in the driver_data field of the returned device, accessible
3037 * with spi_controller_get_devdata(); the memory is cacheline aligned;
3038 * drivers granting DMA access to portions of their private data need to
3039 * round up @size using ALIGN(size, dma_get_cache_alignment()).
3040 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
3041 * slave (true) controller
3042 * Context: can sleep
3044 * This call is used only by SPI controller drivers, which are the
3045 * only ones directly touching chip registers. It's how they allocate
3046 * an spi_controller structure, prior to calling spi_register_controller().
3048 * This must be called from context that can sleep.
3050 * The caller is responsible for assigning the bus number and initializing the
3051 * controller's methods before calling spi_register_controller(); and (after
3052 * errors adding the device) calling spi_controller_put() to prevent a memory
3055 * Return: the SPI controller structure on success, else NULL.
3057 struct spi_controller
*__spi_alloc_controller(struct device
*dev
,
3058 unsigned int size
, bool slave
)
3060 struct spi_controller
*ctlr
;
3061 size_t ctlr_size
= ALIGN(sizeof(*ctlr
), dma_get_cache_alignment());
3066 ctlr
= kzalloc(size
+ ctlr_size
, GFP_KERNEL
);
3070 device_initialize(&ctlr
->dev
);
3071 INIT_LIST_HEAD(&ctlr
->queue
);
3072 spin_lock_init(&ctlr
->queue_lock
);
3073 spin_lock_init(&ctlr
->bus_lock_spinlock
);
3074 mutex_init(&ctlr
->bus_lock_mutex
);
3075 mutex_init(&ctlr
->io_mutex
);
3076 mutex_init(&ctlr
->add_lock
);
3078 ctlr
->num_chipselect
= 1;
3079 ctlr
->slave
= slave
;
3080 if (IS_ENABLED(CONFIG_SPI_SLAVE
) && slave
)
3081 ctlr
->dev
.class = &spi_slave_class
;
3083 ctlr
->dev
.class = &spi_master_class
;
3084 ctlr
->dev
.parent
= dev
;
3085 pm_suspend_ignore_children(&ctlr
->dev
, true);
3086 spi_controller_set_devdata(ctlr
, (void *)ctlr
+ ctlr_size
);
3090 EXPORT_SYMBOL_GPL(__spi_alloc_controller
);
3092 static void devm_spi_release_controller(struct device
*dev
, void *ctlr
)
3094 spi_controller_put(*(struct spi_controller
**)ctlr
);
3098 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
3099 * @dev: physical device of SPI controller
3100 * @size: how much zeroed driver-private data to allocate
3101 * @slave: whether to allocate an SPI master (false) or SPI slave (true)
3102 * Context: can sleep
3104 * Allocate an SPI controller and automatically release a reference on it
3105 * when @dev is unbound from its driver. Drivers are thus relieved from
3106 * having to call spi_controller_put().
3108 * The arguments to this function are identical to __spi_alloc_controller().
3110 * Return: the SPI controller structure on success, else NULL.
3112 struct spi_controller
*__devm_spi_alloc_controller(struct device
*dev
,
3116 struct spi_controller
**ptr
, *ctlr
;
3118 ptr
= devres_alloc(devm_spi_release_controller
, sizeof(*ptr
),
3123 ctlr
= __spi_alloc_controller(dev
, size
, slave
);
3125 ctlr
->devm_allocated
= true;
3127 devres_add(dev
, ptr
);
3134 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller
);
3137 * spi_get_gpio_descs() - grab chip select GPIOs for the master
3138 * @ctlr: The SPI master to grab GPIO descriptors for
3140 static int spi_get_gpio_descs(struct spi_controller
*ctlr
)
3143 struct gpio_desc
**cs
;
3144 struct device
*dev
= &ctlr
->dev
;
3145 unsigned long native_cs_mask
= 0;
3146 unsigned int num_cs_gpios
= 0;
3148 nb
= gpiod_count(dev
, "cs");
3150 /* No GPIOs at all is fine, else return the error */
3156 ctlr
->num_chipselect
= max_t(int, nb
, ctlr
->num_chipselect
);
3158 cs
= devm_kcalloc(dev
, ctlr
->num_chipselect
, sizeof(*cs
),
3162 ctlr
->cs_gpiods
= cs
;
3164 for (i
= 0; i
< nb
; i
++) {
3166 * Most chipselects are active low, the inverted
3167 * semantics are handled by special quirks in gpiolib,
3168 * so initializing them GPIOD_OUT_LOW here means
3169 * "unasserted", in most cases this will drive the physical
3172 cs
[i
] = devm_gpiod_get_index_optional(dev
, "cs", i
,
3175 return PTR_ERR(cs
[i
]);
3179 * If we find a CS GPIO, name it after the device and
3184 gpioname
= devm_kasprintf(dev
, GFP_KERNEL
, "%s CS%d",
3188 gpiod_set_consumer_name(cs
[i
], gpioname
);
3193 if (ctlr
->max_native_cs
&& i
>= ctlr
->max_native_cs
) {
3194 dev_err(dev
, "Invalid native chip select %d\n", i
);
3197 native_cs_mask
|= BIT(i
);
3200 ctlr
->unused_native_cs
= ffs(~native_cs_mask
) - 1;
3202 if ((ctlr
->flags
& SPI_CONTROLLER_GPIO_SS
) && num_cs_gpios
&&
3203 ctlr
->max_native_cs
&& ctlr
->unused_native_cs
>= ctlr
->max_native_cs
) {
3204 dev_err(dev
, "No unused native chip select available\n");
3211 static int spi_controller_check_ops(struct spi_controller
*ctlr
)
3214 * The controller may implement only the high-level SPI-memory like
3215 * operations if it does not support regular SPI transfers, and this is
3217 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least
3218 * one of the ->transfer_xxx() method be implemented.
3220 if (!ctlr
->mem_ops
|| !ctlr
->mem_ops
->exec_op
) {
3221 if (!ctlr
->transfer
&& !ctlr
->transfer_one
&&
3222 !ctlr
->transfer_one_message
) {
3230 /* Allocate dynamic bus number using Linux idr */
3231 static int spi_controller_id_alloc(struct spi_controller
*ctlr
, int start
, int end
)
3235 mutex_lock(&board_lock
);
3236 id
= idr_alloc(&spi_master_idr
, ctlr
, start
, end
, GFP_KERNEL
);
3237 mutex_unlock(&board_lock
);
3238 if (WARN(id
< 0, "couldn't get idr"))
3239 return id
== -ENOSPC
? -EBUSY
: id
;
3245 * spi_register_controller - register SPI host or target controller
3246 * @ctlr: initialized controller, originally from spi_alloc_host() or
3247 * spi_alloc_target()
3248 * Context: can sleep
3250 * SPI controllers connect to their drivers using some non-SPI bus,
3251 * such as the platform bus. The final stage of probe() in that code
3252 * includes calling spi_register_controller() to hook up to this SPI bus glue.
3254 * SPI controllers use board specific (often SOC specific) bus numbers,
3255 * and board-specific addressing for SPI devices combines those numbers
3256 * with chip select numbers. Since SPI does not directly support dynamic
3257 * device identification, boards need configuration tables telling which
3258 * chip is at which address.
3260 * This must be called from context that can sleep. It returns zero on
3261 * success, else a negative error code (dropping the controller's refcount).
3262 * After a successful return, the caller is responsible for calling
3263 * spi_unregister_controller().
3265 * Return: zero on success, else a negative error code.
3267 int spi_register_controller(struct spi_controller
*ctlr
)
3269 struct device
*dev
= ctlr
->dev
.parent
;
3270 struct boardinfo
*bi
;
3279 * Make sure all necessary hooks are implemented before registering
3280 * the SPI controller.
3282 status
= spi_controller_check_ops(ctlr
);
3286 if (ctlr
->bus_num
< 0)
3287 ctlr
->bus_num
= of_alias_get_id(ctlr
->dev
.of_node
, "spi");
3288 if (ctlr
->bus_num
>= 0) {
3289 /* Devices with a fixed bus num must check-in with the num */
3290 status
= spi_controller_id_alloc(ctlr
, ctlr
->bus_num
, ctlr
->bus_num
+ 1);
3294 if (ctlr
->bus_num
< 0) {
3295 first_dynamic
= of_alias_get_highest_id("spi");
3296 if (first_dynamic
< 0)
3301 status
= spi_controller_id_alloc(ctlr
, first_dynamic
, 0);
3305 ctlr
->bus_lock_flag
= 0;
3306 init_completion(&ctlr
->xfer_completion
);
3307 init_completion(&ctlr
->cur_msg_completion
);
3308 if (!ctlr
->max_dma_len
)
3309 ctlr
->max_dma_len
= INT_MAX
;
3312 * Register the device, then userspace will see it.
3313 * Registration fails if the bus ID is in use.
3315 dev_set_name(&ctlr
->dev
, "spi%u", ctlr
->bus_num
);
3317 if (!spi_controller_is_target(ctlr
) && ctlr
->use_gpio_descriptors
) {
3318 status
= spi_get_gpio_descs(ctlr
);
3322 * A controller using GPIO descriptors always
3323 * supports SPI_CS_HIGH if need be.
3325 ctlr
->mode_bits
|= SPI_CS_HIGH
;
3329 * Even if it's just one always-selected device, there must
3330 * be at least one chipselect.
3332 if (!ctlr
->num_chipselect
) {
3337 /* Setting last_cs to SPI_INVALID_CS means no chip selected */
3338 for (idx
= 0; idx
< SPI_CS_CNT_MAX
; idx
++)
3339 ctlr
->last_cs
[idx
] = SPI_INVALID_CS
;
3341 status
= device_add(&ctlr
->dev
);
3344 dev_dbg(dev
, "registered %s %s\n",
3345 spi_controller_is_target(ctlr
) ? "target" : "host",
3346 dev_name(&ctlr
->dev
));
3349 * If we're using a queued driver, start the queue. Note that we don't
3350 * need the queueing logic if the driver is only supporting high-level
3351 * memory operations.
3353 if (ctlr
->transfer
) {
3354 dev_info(dev
, "controller is unqueued, this is deprecated\n");
3355 } else if (ctlr
->transfer_one
|| ctlr
->transfer_one_message
) {
3356 status
= spi_controller_initialize_queue(ctlr
);
3358 device_del(&ctlr
->dev
);
3362 /* Add statistics */
3363 ctlr
->pcpu_statistics
= spi_alloc_pcpu_stats(dev
);
3364 if (!ctlr
->pcpu_statistics
) {
3365 dev_err(dev
, "Error allocating per-cpu statistics\n");
3370 mutex_lock(&board_lock
);
3371 list_add_tail(&ctlr
->list
, &spi_controller_list
);
3372 list_for_each_entry(bi
, &board_list
, list
)
3373 spi_match_controller_to_boardinfo(ctlr
, &bi
->board_info
);
3374 mutex_unlock(&board_lock
);
3376 /* Register devices from the device tree and ACPI */
3377 of_register_spi_devices(ctlr
);
3378 acpi_register_spi_devices(ctlr
);
3382 spi_destroy_queue(ctlr
);
3384 mutex_lock(&board_lock
);
3385 idr_remove(&spi_master_idr
, ctlr
->bus_num
);
3386 mutex_unlock(&board_lock
);
3389 EXPORT_SYMBOL_GPL(spi_register_controller
);
3391 static void devm_spi_unregister(struct device
*dev
, void *res
)
3393 spi_unregister_controller(*(struct spi_controller
**)res
);
3397 * devm_spi_register_controller - register managed SPI host or target
3399 * @dev: device managing SPI controller
3400 * @ctlr: initialized controller, originally from spi_alloc_host() or
3401 * spi_alloc_target()
3402 * Context: can sleep
3404 * Register a SPI device as with spi_register_controller() which will
3405 * automatically be unregistered and freed.
3407 * Return: zero on success, else a negative error code.
3409 int devm_spi_register_controller(struct device
*dev
,
3410 struct spi_controller
*ctlr
)
3412 struct spi_controller
**ptr
;
3415 ptr
= devres_alloc(devm_spi_unregister
, sizeof(*ptr
), GFP_KERNEL
);
3419 ret
= spi_register_controller(ctlr
);
3422 devres_add(dev
, ptr
);
3429 EXPORT_SYMBOL_GPL(devm_spi_register_controller
);
3431 static int __unregister(struct device
*dev
, void *null
)
3433 spi_unregister_device(to_spi_device(dev
));
3438 * spi_unregister_controller - unregister SPI master or slave controller
3439 * @ctlr: the controller being unregistered
3440 * Context: can sleep
3442 * This call is used only by SPI controller drivers, which are the
3443 * only ones directly touching chip registers.
3445 * This must be called from context that can sleep.
3447 * Note that this function also drops a reference to the controller.
3449 void spi_unregister_controller(struct spi_controller
*ctlr
)
3451 struct spi_controller
*found
;
3452 int id
= ctlr
->bus_num
;
3454 /* Prevent addition of new devices, unregister existing ones */
3455 if (IS_ENABLED(CONFIG_SPI_DYNAMIC
))
3456 mutex_lock(&ctlr
->add_lock
);
3458 device_for_each_child(&ctlr
->dev
, NULL
, __unregister
);
3460 /* First make sure that this controller was ever added */
3461 mutex_lock(&board_lock
);
3462 found
= idr_find(&spi_master_idr
, id
);
3463 mutex_unlock(&board_lock
);
3465 if (spi_destroy_queue(ctlr
))
3466 dev_err(&ctlr
->dev
, "queue remove failed\n");
3468 mutex_lock(&board_lock
);
3469 list_del(&ctlr
->list
);
3470 mutex_unlock(&board_lock
);
3472 device_del(&ctlr
->dev
);
3475 mutex_lock(&board_lock
);
3477 idr_remove(&spi_master_idr
, id
);
3478 mutex_unlock(&board_lock
);
3480 if (IS_ENABLED(CONFIG_SPI_DYNAMIC
))
3481 mutex_unlock(&ctlr
->add_lock
);
3484 * Release the last reference on the controller if its driver
3485 * has not yet been converted to devm_spi_alloc_host/target().
3487 if (!ctlr
->devm_allocated
)
3488 put_device(&ctlr
->dev
);
3490 EXPORT_SYMBOL_GPL(spi_unregister_controller
);
3492 static inline int __spi_check_suspended(const struct spi_controller
*ctlr
)
3494 return ctlr
->flags
& SPI_CONTROLLER_SUSPENDED
? -ESHUTDOWN
: 0;
3497 static inline void __spi_mark_suspended(struct spi_controller
*ctlr
)
3499 mutex_lock(&ctlr
->bus_lock_mutex
);
3500 ctlr
->flags
|= SPI_CONTROLLER_SUSPENDED
;
3501 mutex_unlock(&ctlr
->bus_lock_mutex
);
3504 static inline void __spi_mark_resumed(struct spi_controller
*ctlr
)
3506 mutex_lock(&ctlr
->bus_lock_mutex
);
3507 ctlr
->flags
&= ~SPI_CONTROLLER_SUSPENDED
;
3508 mutex_unlock(&ctlr
->bus_lock_mutex
);
3511 int spi_controller_suspend(struct spi_controller
*ctlr
)
3515 /* Basically no-ops for non-queued controllers */
3517 ret
= spi_stop_queue(ctlr
);
3519 dev_err(&ctlr
->dev
, "queue stop failed\n");
3522 __spi_mark_suspended(ctlr
);
3525 EXPORT_SYMBOL_GPL(spi_controller_suspend
);
3527 int spi_controller_resume(struct spi_controller
*ctlr
)
3531 __spi_mark_resumed(ctlr
);
3534 ret
= spi_start_queue(ctlr
);
3536 dev_err(&ctlr
->dev
, "queue restart failed\n");
3540 EXPORT_SYMBOL_GPL(spi_controller_resume
);
3542 /*-------------------------------------------------------------------------*/
3544 /* Core methods for spi_message alterations */
3546 static void __spi_replace_transfers_release(struct spi_controller
*ctlr
,
3547 struct spi_message
*msg
,
3550 struct spi_replaced_transfers
*rxfer
= res
;
3553 /* Call extra callback if requested */
3555 rxfer
->release(ctlr
, msg
, res
);
3557 /* Insert replaced transfers back into the message */
3558 list_splice(&rxfer
->replaced_transfers
, rxfer
->replaced_after
);
3560 /* Remove the formerly inserted entries */
3561 for (i
= 0; i
< rxfer
->inserted
; i
++)
3562 list_del(&rxfer
->inserted_transfers
[i
].transfer_list
);
3566 * spi_replace_transfers - replace transfers with several transfers
3567 * and register change with spi_message.resources
3568 * @msg: the spi_message we work upon
3569 * @xfer_first: the first spi_transfer we want to replace
3570 * @remove: number of transfers to remove
3571 * @insert: the number of transfers we want to insert instead
3572 * @release: extra release code necessary in some circumstances
3573 * @extradatasize: extra data to allocate (with alignment guarantees
3574 * of struct @spi_transfer)
3577 * Returns: pointer to @spi_replaced_transfers,
3578 * PTR_ERR(...) in case of errors.
3580 static struct spi_replaced_transfers
*spi_replace_transfers(
3581 struct spi_message
*msg
,
3582 struct spi_transfer
*xfer_first
,
3585 spi_replaced_release_t release
,
3586 size_t extradatasize
,
3589 struct spi_replaced_transfers
*rxfer
;
3590 struct spi_transfer
*xfer
;
3593 /* Allocate the structure using spi_res */
3594 rxfer
= spi_res_alloc(msg
->spi
, __spi_replace_transfers_release
,
3595 struct_size(rxfer
, inserted_transfers
, insert
)
3599 return ERR_PTR(-ENOMEM
);
3601 /* The release code to invoke before running the generic release */
3602 rxfer
->release
= release
;
3604 /* Assign extradata */
3607 &rxfer
->inserted_transfers
[insert
];
3609 /* Init the replaced_transfers list */
3610 INIT_LIST_HEAD(&rxfer
->replaced_transfers
);
3613 * Assign the list_entry after which we should reinsert
3614 * the @replaced_transfers - it may be spi_message.messages!
3616 rxfer
->replaced_after
= xfer_first
->transfer_list
.prev
;
3618 /* Remove the requested number of transfers */
3619 for (i
= 0; i
< remove
; i
++) {
3621 * If the entry after replaced_after it is msg->transfers
3622 * then we have been requested to remove more transfers
3623 * than are in the list.
3625 if (rxfer
->replaced_after
->next
== &msg
->transfers
) {
3626 dev_err(&msg
->spi
->dev
,
3627 "requested to remove more spi_transfers than are available\n");
3628 /* Insert replaced transfers back into the message */
3629 list_splice(&rxfer
->replaced_transfers
,
3630 rxfer
->replaced_after
);
3632 /* Free the spi_replace_transfer structure... */
3633 spi_res_free(rxfer
);
3635 /* ...and return with an error */
3636 return ERR_PTR(-EINVAL
);
3640 * Remove the entry after replaced_after from list of
3641 * transfers and add it to list of replaced_transfers.
3643 list_move_tail(rxfer
->replaced_after
->next
,
3644 &rxfer
->replaced_transfers
);
3648 * Create copy of the given xfer with identical settings
3649 * based on the first transfer to get removed.
3651 for (i
= 0; i
< insert
; i
++) {
3652 /* We need to run in reverse order */
3653 xfer
= &rxfer
->inserted_transfers
[insert
- 1 - i
];
3655 /* Copy all spi_transfer data */
3656 memcpy(xfer
, xfer_first
, sizeof(*xfer
));
3659 list_add(&xfer
->transfer_list
, rxfer
->replaced_after
);
3661 /* Clear cs_change and delay for all but the last */
3663 xfer
->cs_change
= false;
3664 xfer
->delay
.value
= 0;
3668 /* Set up inserted... */
3669 rxfer
->inserted
= insert
;
3671 /* ...and register it with spi_res/spi_message */
3672 spi_res_add(msg
, rxfer
);
3677 static int __spi_split_transfer_maxsize(struct spi_controller
*ctlr
,
3678 struct spi_message
*msg
,
3679 struct spi_transfer
**xferp
,
3682 struct spi_transfer
*xfer
= *xferp
, *xfers
;
3683 struct spi_replaced_transfers
*srt
;
3687 /* Calculate how many we have to replace */
3688 count
= DIV_ROUND_UP(xfer
->len
, maxsize
);
3690 /* Create replacement */
3691 srt
= spi_replace_transfers(msg
, xfer
, 1, count
, NULL
, 0, GFP_KERNEL
);
3693 return PTR_ERR(srt
);
3694 xfers
= srt
->inserted_transfers
;
3697 * Now handle each of those newly inserted spi_transfers.
3698 * Note that the replacements spi_transfers all are preset
3699 * to the same values as *xferp, so tx_buf, rx_buf and len
3700 * are all identical (as well as most others)
3701 * so we just have to fix up len and the pointers.
3705 * The first transfer just needs the length modified, so we
3706 * run it outside the loop.
3708 xfers
[0].len
= min_t(size_t, maxsize
, xfer
[0].len
);
3710 /* All the others need rx_buf/tx_buf also set */
3711 for (i
= 1, offset
= maxsize
; i
< count
; offset
+= maxsize
, i
++) {
3712 /* Update rx_buf, tx_buf and DMA */
3713 if (xfers
[i
].rx_buf
)
3714 xfers
[i
].rx_buf
+= offset
;
3715 if (xfers
[i
].tx_buf
)
3716 xfers
[i
].tx_buf
+= offset
;
3719 xfers
[i
].len
= min(maxsize
, xfers
[i
].len
- offset
);
3723 * We set up xferp to the last entry we have inserted,
3724 * so that we skip those already split transfers.
3726 *xferp
= &xfers
[count
- 1];
3728 /* Increment statistics counters */
3729 SPI_STATISTICS_INCREMENT_FIELD(ctlr
->pcpu_statistics
,
3730 transfers_split_maxsize
);
3731 SPI_STATISTICS_INCREMENT_FIELD(msg
->spi
->pcpu_statistics
,
3732 transfers_split_maxsize
);
3738 * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3739 * when an individual transfer exceeds a
3741 * @ctlr: the @spi_controller for this transfer
3742 * @msg: the @spi_message to transform
3743 * @maxsize: the maximum when to apply this
3745 * This function allocates resources that are automatically freed during the
3746 * spi message unoptimize phase so this function should only be called from
3747 * optimize_message callbacks.
3749 * Return: status of transformation
3751 int spi_split_transfers_maxsize(struct spi_controller
*ctlr
,
3752 struct spi_message
*msg
,
3755 struct spi_transfer
*xfer
;
3759 * Iterate over the transfer_list,
3760 * but note that xfer is advanced to the last transfer inserted
3761 * to avoid checking sizes again unnecessarily (also xfer does
3762 * potentially belong to a different list by the time the
3763 * replacement has happened).
3765 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
3766 if (xfer
->len
> maxsize
) {
3767 ret
= __spi_split_transfer_maxsize(ctlr
, msg
, &xfer
,
3776 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize
);
3780 * spi_split_transfers_maxwords - split SPI transfers into multiple transfers
3781 * when an individual transfer exceeds a
3782 * certain number of SPI words
3783 * @ctlr: the @spi_controller for this transfer
3784 * @msg: the @spi_message to transform
3785 * @maxwords: the number of words to limit each transfer to
3787 * This function allocates resources that are automatically freed during the
3788 * spi message unoptimize phase so this function should only be called from
3789 * optimize_message callbacks.
3791 * Return: status of transformation
3793 int spi_split_transfers_maxwords(struct spi_controller
*ctlr
,
3794 struct spi_message
*msg
,
3797 struct spi_transfer
*xfer
;
3800 * Iterate over the transfer_list,
3801 * but note that xfer is advanced to the last transfer inserted
3802 * to avoid checking sizes again unnecessarily (also xfer does
3803 * potentially belong to a different list by the time the
3804 * replacement has happened).
3806 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
3810 maxsize
= maxwords
* roundup_pow_of_two(BITS_TO_BYTES(xfer
->bits_per_word
));
3811 if (xfer
->len
> maxsize
) {
3812 ret
= __spi_split_transfer_maxsize(ctlr
, msg
, &xfer
,
3821 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords
);
3823 /*-------------------------------------------------------------------------*/
3826 * Core methods for SPI controller protocol drivers. Some of the
3827 * other core methods are currently defined as inline functions.
3830 static int __spi_validate_bits_per_word(struct spi_controller
*ctlr
,
3833 if (ctlr
->bits_per_word_mask
) {
3834 /* Only 32 bits fit in the mask */
3835 if (bits_per_word
> 32)
3837 if (!(ctlr
->bits_per_word_mask
& SPI_BPW_MASK(bits_per_word
)))
3845 * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3846 * @spi: the device that requires specific CS timing configuration
3848 * Return: zero on success, else a negative error code.
3850 static int spi_set_cs_timing(struct spi_device
*spi
)
3852 struct device
*parent
= spi
->controller
->dev
.parent
;
3855 if (spi
->controller
->set_cs_timing
&& !spi_get_csgpiod(spi
, 0)) {
3856 if (spi
->controller
->auto_runtime_pm
) {
3857 status
= pm_runtime_get_sync(parent
);
3859 pm_runtime_put_noidle(parent
);
3860 dev_err(&spi
->controller
->dev
, "Failed to power device: %d\n",
3865 status
= spi
->controller
->set_cs_timing(spi
);
3866 pm_runtime_mark_last_busy(parent
);
3867 pm_runtime_put_autosuspend(parent
);
3869 status
= spi
->controller
->set_cs_timing(spi
);
3876 * spi_setup - setup SPI mode and clock rate
3877 * @spi: the device whose settings are being modified
3878 * Context: can sleep, and no requests are queued to the device
3880 * SPI protocol drivers may need to update the transfer mode if the
3881 * device doesn't work with its default. They may likewise need
3882 * to update clock rates or word sizes from initial values. This function
3883 * changes those settings, and must be called from a context that can sleep.
3884 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3885 * effect the next time the device is selected and data is transferred to
3886 * or from it. When this function returns, the SPI device is deselected.
3888 * Note that this call will fail if the protocol driver specifies an option
3889 * that the underlying controller or its driver does not support. For
3890 * example, not all hardware supports wire transfers using nine bit words,
3891 * LSB-first wire encoding, or active-high chipselects.
3893 * Return: zero on success, else a negative error code.
3895 int spi_setup(struct spi_device
*spi
)
3897 unsigned bad_bits
, ugly_bits
;
3901 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3902 * are set at the same time.
3904 if ((hweight_long(spi
->mode
&
3905 (SPI_TX_DUAL
| SPI_TX_QUAD
| SPI_NO_TX
)) > 1) ||
3906 (hweight_long(spi
->mode
&
3907 (SPI_RX_DUAL
| SPI_RX_QUAD
| SPI_NO_RX
)) > 1)) {
3909 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3912 /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3913 if ((spi
->mode
& SPI_3WIRE
) && (spi
->mode
&
3914 (SPI_TX_DUAL
| SPI_TX_QUAD
| SPI_TX_OCTAL
|
3915 SPI_RX_DUAL
| SPI_RX_QUAD
| SPI_RX_OCTAL
)))
3917 /* Check against conflicting MOSI idle configuration */
3918 if ((spi
->mode
& SPI_MOSI_IDLE_LOW
) && (spi
->mode
& SPI_MOSI_IDLE_HIGH
)) {
3920 "setup: MOSI configured to idle low and high at the same time.\n");
3924 * Help drivers fail *cleanly* when they need options
3925 * that aren't supported with their current controller.
3926 * SPI_CS_WORD has a fallback software implementation,
3927 * so it is ignored here.
3929 bad_bits
= spi
->mode
& ~(spi
->controller
->mode_bits
| SPI_CS_WORD
|
3930 SPI_NO_TX
| SPI_NO_RX
);
3931 ugly_bits
= bad_bits
&
3932 (SPI_TX_DUAL
| SPI_TX_QUAD
| SPI_TX_OCTAL
|
3933 SPI_RX_DUAL
| SPI_RX_QUAD
| SPI_RX_OCTAL
);
3936 "setup: ignoring unsupported mode bits %x\n",
3938 spi
->mode
&= ~ugly_bits
;
3939 bad_bits
&= ~ugly_bits
;
3942 dev_err(&spi
->dev
, "setup: unsupported mode bits %x\n",
3947 if (!spi
->bits_per_word
) {
3948 spi
->bits_per_word
= 8;
3951 * Some controllers may not support the default 8 bits-per-word
3952 * so only perform the check when this is explicitly provided.
3954 status
= __spi_validate_bits_per_word(spi
->controller
,
3955 spi
->bits_per_word
);
3960 if (spi
->controller
->max_speed_hz
&&
3961 (!spi
->max_speed_hz
||
3962 spi
->max_speed_hz
> spi
->controller
->max_speed_hz
))
3963 spi
->max_speed_hz
= spi
->controller
->max_speed_hz
;
3965 mutex_lock(&spi
->controller
->io_mutex
);
3967 if (spi
->controller
->setup
) {
3968 status
= spi
->controller
->setup(spi
);
3970 mutex_unlock(&spi
->controller
->io_mutex
);
3971 dev_err(&spi
->controller
->dev
, "Failed to setup device: %d\n",
3977 status
= spi_set_cs_timing(spi
);
3979 mutex_unlock(&spi
->controller
->io_mutex
);
3983 if (spi
->controller
->auto_runtime_pm
&& spi
->controller
->set_cs
) {
3984 status
= pm_runtime_resume_and_get(spi
->controller
->dev
.parent
);
3986 mutex_unlock(&spi
->controller
->io_mutex
);
3987 dev_err(&spi
->controller
->dev
, "Failed to power device: %d\n",
3993 * We do not want to return positive value from pm_runtime_get,
3994 * there are many instances of devices calling spi_setup() and
3995 * checking for a non-zero return value instead of a negative
4000 spi_set_cs(spi
, false, true);
4001 pm_runtime_mark_last_busy(spi
->controller
->dev
.parent
);
4002 pm_runtime_put_autosuspend(spi
->controller
->dev
.parent
);
4004 spi_set_cs(spi
, false, true);
4007 mutex_unlock(&spi
->controller
->io_mutex
);
4009 if (spi
->rt
&& !spi
->controller
->rt
) {
4010 spi
->controller
->rt
= true;
4011 spi_set_thread_rt(spi
->controller
);
4014 trace_spi_setup(spi
, status
);
4016 dev_dbg(&spi
->dev
, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
4017 spi
->mode
& SPI_MODE_X_MASK
,
4018 (spi
->mode
& SPI_CS_HIGH
) ? "cs_high, " : "",
4019 (spi
->mode
& SPI_LSB_FIRST
) ? "lsb, " : "",
4020 (spi
->mode
& SPI_3WIRE
) ? "3wire, " : "",
4021 (spi
->mode
& SPI_LOOP
) ? "loopback, " : "",
4022 spi
->bits_per_word
, spi
->max_speed_hz
,
4027 EXPORT_SYMBOL_GPL(spi_setup
);
4029 static int _spi_xfer_word_delay_update(struct spi_transfer
*xfer
,
4030 struct spi_device
*spi
)
4034 delay1
= spi_delay_to_ns(&xfer
->word_delay
, xfer
);
4038 delay2
= spi_delay_to_ns(&spi
->word_delay
, xfer
);
4042 if (delay1
< delay2
)
4043 memcpy(&xfer
->word_delay
, &spi
->word_delay
,
4044 sizeof(xfer
->word_delay
));
4049 static int __spi_validate(struct spi_device
*spi
, struct spi_message
*message
)
4051 struct spi_controller
*ctlr
= spi
->controller
;
4052 struct spi_transfer
*xfer
;
4055 if (list_empty(&message
->transfers
))
4061 * Half-duplex links include original MicroWire, and ones with
4062 * only one data pin like SPI_3WIRE (switches direction) or where
4063 * either MOSI or MISO is missing. They can also be caused by
4064 * software limitations.
4066 if ((ctlr
->flags
& SPI_CONTROLLER_HALF_DUPLEX
) ||
4067 (spi
->mode
& SPI_3WIRE
)) {
4068 unsigned flags
= ctlr
->flags
;
4070 list_for_each_entry(xfer
, &message
->transfers
, transfer_list
) {
4071 if (xfer
->rx_buf
&& xfer
->tx_buf
)
4073 if ((flags
& SPI_CONTROLLER_NO_TX
) && xfer
->tx_buf
)
4075 if ((flags
& SPI_CONTROLLER_NO_RX
) && xfer
->rx_buf
)
4081 * Set transfer bits_per_word and max speed as spi device default if
4082 * it is not set for this transfer.
4083 * Set transfer tx_nbits and rx_nbits as single transfer default
4084 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
4085 * Ensure transfer word_delay is at least as long as that required by
4088 message
->frame_length
= 0;
4089 list_for_each_entry(xfer
, &message
->transfers
, transfer_list
) {
4090 xfer
->effective_speed_hz
= 0;
4091 message
->frame_length
+= xfer
->len
;
4092 if (!xfer
->bits_per_word
)
4093 xfer
->bits_per_word
= spi
->bits_per_word
;
4095 if (!xfer
->speed_hz
)
4096 xfer
->speed_hz
= spi
->max_speed_hz
;
4098 if (ctlr
->max_speed_hz
&& xfer
->speed_hz
> ctlr
->max_speed_hz
)
4099 xfer
->speed_hz
= ctlr
->max_speed_hz
;
4101 if (__spi_validate_bits_per_word(ctlr
, xfer
->bits_per_word
))
4105 * SPI transfer length should be multiple of SPI word size
4106 * where SPI word size should be power-of-two multiple.
4108 if (xfer
->bits_per_word
<= 8)
4110 else if (xfer
->bits_per_word
<= 16)
4115 /* No partial transfers accepted */
4116 if (xfer
->len
% w_size
)
4119 if (xfer
->speed_hz
&& ctlr
->min_speed_hz
&&
4120 xfer
->speed_hz
< ctlr
->min_speed_hz
)
4123 if (xfer
->tx_buf
&& !xfer
->tx_nbits
)
4124 xfer
->tx_nbits
= SPI_NBITS_SINGLE
;
4125 if (xfer
->rx_buf
&& !xfer
->rx_nbits
)
4126 xfer
->rx_nbits
= SPI_NBITS_SINGLE
;
4128 * Check transfer tx/rx_nbits:
4129 * 1. check the value matches one of single, dual and quad
4130 * 2. check tx/rx_nbits match the mode in spi_device
4133 if (spi
->mode
& SPI_NO_TX
)
4135 if (xfer
->tx_nbits
!= SPI_NBITS_SINGLE
&&
4136 xfer
->tx_nbits
!= SPI_NBITS_DUAL
&&
4137 xfer
->tx_nbits
!= SPI_NBITS_QUAD
&&
4138 xfer
->tx_nbits
!= SPI_NBITS_OCTAL
)
4140 if ((xfer
->tx_nbits
== SPI_NBITS_DUAL
) &&
4141 !(spi
->mode
& (SPI_TX_DUAL
| SPI_TX_QUAD
)))
4143 if ((xfer
->tx_nbits
== SPI_NBITS_QUAD
) &&
4144 !(spi
->mode
& SPI_TX_QUAD
))
4147 /* Check transfer rx_nbits */
4149 if (spi
->mode
& SPI_NO_RX
)
4151 if (xfer
->rx_nbits
!= SPI_NBITS_SINGLE
&&
4152 xfer
->rx_nbits
!= SPI_NBITS_DUAL
&&
4153 xfer
->rx_nbits
!= SPI_NBITS_QUAD
&&
4154 xfer
->rx_nbits
!= SPI_NBITS_OCTAL
)
4156 if ((xfer
->rx_nbits
== SPI_NBITS_DUAL
) &&
4157 !(spi
->mode
& (SPI_RX_DUAL
| SPI_RX_QUAD
)))
4159 if ((xfer
->rx_nbits
== SPI_NBITS_QUAD
) &&
4160 !(spi
->mode
& SPI_RX_QUAD
))
4164 if (_spi_xfer_word_delay_update(xfer
, spi
))
4168 message
->status
= -EINPROGRESS
;
4174 * spi_split_transfers - generic handling of transfer splitting
4175 * @msg: the message to split
4177 * Under certain conditions, a SPI controller may not support arbitrary
4178 * transfer sizes or other features required by a peripheral. This function
4179 * will split the transfers in the message into smaller transfers that are
4180 * supported by the controller.
4182 * Controllers with special requirements not covered here can also split
4183 * transfers in the optimize_message() callback.
4185 * Context: can sleep
4186 * Return: zero on success, else a negative error code
4188 static int spi_split_transfers(struct spi_message
*msg
)
4190 struct spi_controller
*ctlr
= msg
->spi
->controller
;
4191 struct spi_transfer
*xfer
;
4195 * If an SPI controller does not support toggling the CS line on each
4196 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
4197 * for the CS line, we can emulate the CS-per-word hardware function by
4198 * splitting transfers into one-word transfers and ensuring that
4199 * cs_change is set for each transfer.
4201 if ((msg
->spi
->mode
& SPI_CS_WORD
) &&
4202 (!(ctlr
->mode_bits
& SPI_CS_WORD
) || spi_is_csgpiod(msg
->spi
))) {
4203 ret
= spi_split_transfers_maxwords(ctlr
, msg
, 1);
4207 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
4208 /* Don't change cs_change on the last entry in the list */
4209 if (list_is_last(&xfer
->transfer_list
, &msg
->transfers
))
4212 xfer
->cs_change
= 1;
4215 ret
= spi_split_transfers_maxsize(ctlr
, msg
,
4216 spi_max_transfer_size(msg
->spi
));
4225 * __spi_optimize_message - shared implementation for spi_optimize_message()
4226 * and spi_maybe_optimize_message()
4227 * @spi: the device that will be used for the message
4228 * @msg: the message to optimize
4230 * Peripheral drivers will call spi_optimize_message() and the spi core will
4231 * call spi_maybe_optimize_message() instead of calling this directly.
4233 * It is not valid to call this on a message that has already been optimized.
4235 * Return: zero on success, else a negative error code
4237 static int __spi_optimize_message(struct spi_device
*spi
,
4238 struct spi_message
*msg
)
4240 struct spi_controller
*ctlr
= spi
->controller
;
4243 ret
= __spi_validate(spi
, msg
);
4247 ret
= spi_split_transfers(msg
);
4251 if (ctlr
->optimize_message
) {
4252 ret
= ctlr
->optimize_message(msg
);
4254 spi_res_release(ctlr
, msg
);
4259 msg
->optimized
= true;
4265 * spi_maybe_optimize_message - optimize message if it isn't already pre-optimized
4266 * @spi: the device that will be used for the message
4267 * @msg: the message to optimize
4268 * Return: zero on success, else a negative error code
4270 static int spi_maybe_optimize_message(struct spi_device
*spi
,
4271 struct spi_message
*msg
)
4273 if (spi
->controller
->defer_optimize_message
) {
4278 if (msg
->pre_optimized
)
4281 return __spi_optimize_message(spi
, msg
);
4285 * spi_optimize_message - do any one-time validation and setup for a SPI message
4286 * @spi: the device that will be used for the message
4287 * @msg: the message to optimize
4289 * Peripheral drivers that reuse the same message repeatedly may call this to
4290 * perform as much message prep as possible once, rather than repeating it each
4291 * time a message transfer is performed to improve throughput and reduce CPU
4294 * Once a message has been optimized, it cannot be modified with the exception
4295 * of updating the contents of any xfer->tx_buf (the pointer can't be changed,
4296 * only the data in the memory it points to).
4298 * Calls to this function must be balanced with calls to spi_unoptimize_message()
4299 * to avoid leaking resources.
4301 * Context: can sleep
4302 * Return: zero on success, else a negative error code
4304 int spi_optimize_message(struct spi_device
*spi
, struct spi_message
*msg
)
4309 * Pre-optimization is not supported and optimization is deferred e.g.
4310 * when using spi-mux.
4312 if (spi
->controller
->defer_optimize_message
)
4315 ret
= __spi_optimize_message(spi
, msg
);
4320 * This flag indicates that the peripheral driver called spi_optimize_message()
4321 * and therefore we shouldn't unoptimize message automatically when finalizing
4322 * the message but rather wait until spi_unoptimize_message() is called
4323 * by the peripheral driver.
4325 msg
->pre_optimized
= true;
4329 EXPORT_SYMBOL_GPL(spi_optimize_message
);
4332 * spi_unoptimize_message - releases any resources allocated by spi_optimize_message()
4333 * @msg: the message to unoptimize
4335 * Calls to this function must be balanced with calls to spi_optimize_message().
4337 * Context: can sleep
4339 void spi_unoptimize_message(struct spi_message
*msg
)
4341 if (msg
->spi
->controller
->defer_optimize_message
)
4344 __spi_unoptimize_message(msg
);
4345 msg
->pre_optimized
= false;
4347 EXPORT_SYMBOL_GPL(spi_unoptimize_message
);
4349 static int __spi_async(struct spi_device
*spi
, struct spi_message
*message
)
4351 struct spi_controller
*ctlr
= spi
->controller
;
4352 struct spi_transfer
*xfer
;
4355 * Some controllers do not support doing regular SPI transfers. Return
4356 * ENOTSUPP when this is the case.
4358 if (!ctlr
->transfer
)
4361 SPI_STATISTICS_INCREMENT_FIELD(ctlr
->pcpu_statistics
, spi_async
);
4362 SPI_STATISTICS_INCREMENT_FIELD(spi
->pcpu_statistics
, spi_async
);
4364 trace_spi_message_submit(message
);
4366 if (!ctlr
->ptp_sts_supported
) {
4367 list_for_each_entry(xfer
, &message
->transfers
, transfer_list
) {
4368 xfer
->ptp_sts_word_pre
= 0;
4369 ptp_read_system_prets(xfer
->ptp_sts
);
4373 return ctlr
->transfer(spi
, message
);
4376 static void devm_spi_unoptimize_message(void *msg
)
4378 spi_unoptimize_message(msg
);
4382 * devm_spi_optimize_message - managed version of spi_optimize_message()
4383 * @dev: the device that manages @msg (usually @spi->dev)
4384 * @spi: the device that will be used for the message
4385 * @msg: the message to optimize
4386 * Return: zero on success, else a negative error code
4388 * spi_unoptimize_message() will automatically be called when the device is
4391 int devm_spi_optimize_message(struct device
*dev
, struct spi_device
*spi
,
4392 struct spi_message
*msg
)
4396 ret
= spi_optimize_message(spi
, msg
);
4400 return devm_add_action_or_reset(dev
, devm_spi_unoptimize_message
, msg
);
4402 EXPORT_SYMBOL_GPL(devm_spi_optimize_message
);
4405 * spi_async - asynchronous SPI transfer
4406 * @spi: device with which data will be exchanged
4407 * @message: describes the data transfers, including completion callback
4408 * Context: any (IRQs may be blocked, etc)
4410 * This call may be used in_irq and other contexts which can't sleep,
4411 * as well as from task contexts which can sleep.
4413 * The completion callback is invoked in a context which can't sleep.
4414 * Before that invocation, the value of message->status is undefined.
4415 * When the callback is issued, message->status holds either zero (to
4416 * indicate complete success) or a negative error code. After that
4417 * callback returns, the driver which issued the transfer request may
4418 * deallocate the associated memory; it's no longer in use by any SPI
4419 * core or controller driver code.
4421 * Note that although all messages to a spi_device are handled in
4422 * FIFO order, messages may go to different devices in other orders.
4423 * Some device might be higher priority, or have various "hard" access
4424 * time requirements, for example.
4426 * On detection of any fault during the transfer, processing of
4427 * the entire message is aborted, and the device is deselected.
4428 * Until returning from the associated message completion callback,
4429 * no other spi_message queued to that device will be processed.
4430 * (This rule applies equally to all the synchronous transfer calls,
4431 * which are wrappers around this core asynchronous primitive.)
4433 * Return: zero on success, else a negative error code.
4435 int spi_async(struct spi_device
*spi
, struct spi_message
*message
)
4437 struct spi_controller
*ctlr
= spi
->controller
;
4439 unsigned long flags
;
4441 ret
= spi_maybe_optimize_message(spi
, message
);
4445 spin_lock_irqsave(&ctlr
->bus_lock_spinlock
, flags
);
4447 if (ctlr
->bus_lock_flag
)
4450 ret
= __spi_async(spi
, message
);
4452 spin_unlock_irqrestore(&ctlr
->bus_lock_spinlock
, flags
);
4456 EXPORT_SYMBOL_GPL(spi_async
);
4458 static void __spi_transfer_message_noqueue(struct spi_controller
*ctlr
, struct spi_message
*msg
)
4463 mutex_lock(&ctlr
->io_mutex
);
4465 was_busy
= ctlr
->busy
;
4467 ctlr
->cur_msg
= msg
;
4468 ret
= __spi_pump_transfer_message(ctlr
, msg
, was_busy
);
4470 dev_err(&ctlr
->dev
, "noqueue transfer failed\n");
4471 ctlr
->cur_msg
= NULL
;
4472 ctlr
->fallback
= false;
4475 kfree(ctlr
->dummy_rx
);
4476 ctlr
->dummy_rx
= NULL
;
4477 kfree(ctlr
->dummy_tx
);
4478 ctlr
->dummy_tx
= NULL
;
4479 if (ctlr
->unprepare_transfer_hardware
&&
4480 ctlr
->unprepare_transfer_hardware(ctlr
))
4482 "failed to unprepare transfer hardware\n");
4483 spi_idle_runtime_pm(ctlr
);
4486 mutex_unlock(&ctlr
->io_mutex
);
4489 /*-------------------------------------------------------------------------*/
4492 * Utility methods for SPI protocol drivers, layered on
4493 * top of the core. Some other utility methods are defined as
4497 static void spi_complete(void *arg
)
4502 static int __spi_sync(struct spi_device
*spi
, struct spi_message
*message
)
4504 DECLARE_COMPLETION_ONSTACK(done
);
4505 unsigned long flags
;
4507 struct spi_controller
*ctlr
= spi
->controller
;
4509 if (__spi_check_suspended(ctlr
)) {
4510 dev_warn_once(&spi
->dev
, "Attempted to sync while suspend\n");
4514 status
= spi_maybe_optimize_message(spi
, message
);
4518 SPI_STATISTICS_INCREMENT_FIELD(ctlr
->pcpu_statistics
, spi_sync
);
4519 SPI_STATISTICS_INCREMENT_FIELD(spi
->pcpu_statistics
, spi_sync
);
4522 * Checking queue_empty here only guarantees async/sync message
4523 * ordering when coming from the same context. It does not need to
4524 * guard against reentrancy from a different context. The io_mutex
4525 * will catch those cases.
4527 if (READ_ONCE(ctlr
->queue_empty
) && !ctlr
->must_async
) {
4528 message
->actual_length
= 0;
4529 message
->status
= -EINPROGRESS
;
4531 trace_spi_message_submit(message
);
4533 SPI_STATISTICS_INCREMENT_FIELD(ctlr
->pcpu_statistics
, spi_sync_immediate
);
4534 SPI_STATISTICS_INCREMENT_FIELD(spi
->pcpu_statistics
, spi_sync_immediate
);
4536 __spi_transfer_message_noqueue(ctlr
, message
);
4538 return message
->status
;
4542 * There are messages in the async queue that could have originated
4543 * from the same context, so we need to preserve ordering.
4544 * Therefor we send the message to the async queue and wait until they
4547 message
->complete
= spi_complete
;
4548 message
->context
= &done
;
4550 spin_lock_irqsave(&ctlr
->bus_lock_spinlock
, flags
);
4551 status
= __spi_async(spi
, message
);
4552 spin_unlock_irqrestore(&ctlr
->bus_lock_spinlock
, flags
);
4555 wait_for_completion(&done
);
4556 status
= message
->status
;
4558 message
->complete
= NULL
;
4559 message
->context
= NULL
;
4565 * spi_sync - blocking/synchronous SPI data transfers
4566 * @spi: device with which data will be exchanged
4567 * @message: describes the data transfers
4568 * Context: can sleep
4570 * This call may only be used from a context that may sleep. The sleep
4571 * is non-interruptible, and has no timeout. Low-overhead controller
4572 * drivers may DMA directly into and out of the message buffers.
4574 * Note that the SPI device's chip select is active during the message,
4575 * and then is normally disabled between messages. Drivers for some
4576 * frequently-used devices may want to minimize costs of selecting a chip,
4577 * by leaving it selected in anticipation that the next message will go
4578 * to the same chip. (That may increase power usage.)
4580 * Also, the caller is guaranteeing that the memory associated with the
4581 * message will not be freed before this call returns.
4583 * Return: zero on success, else a negative error code.
4585 int spi_sync(struct spi_device
*spi
, struct spi_message
*message
)
4589 mutex_lock(&spi
->controller
->bus_lock_mutex
);
4590 ret
= __spi_sync(spi
, message
);
4591 mutex_unlock(&spi
->controller
->bus_lock_mutex
);
4595 EXPORT_SYMBOL_GPL(spi_sync
);
4598 * spi_sync_locked - version of spi_sync with exclusive bus usage
4599 * @spi: device with which data will be exchanged
4600 * @message: describes the data transfers
4601 * Context: can sleep
4603 * This call may only be used from a context that may sleep. The sleep
4604 * is non-interruptible, and has no timeout. Low-overhead controller
4605 * drivers may DMA directly into and out of the message buffers.
4607 * This call should be used by drivers that require exclusive access to the
4608 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4609 * be released by a spi_bus_unlock call when the exclusive access is over.
4611 * Return: zero on success, else a negative error code.
4613 int spi_sync_locked(struct spi_device
*spi
, struct spi_message
*message
)
4615 return __spi_sync(spi
, message
);
4617 EXPORT_SYMBOL_GPL(spi_sync_locked
);
4620 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4621 * @ctlr: SPI bus master that should be locked for exclusive bus access
4622 * Context: can sleep
4624 * This call may only be used from a context that may sleep. The sleep
4625 * is non-interruptible, and has no timeout.
4627 * This call should be used by drivers that require exclusive access to the
4628 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4629 * exclusive access is over. Data transfer must be done by spi_sync_locked
4630 * and spi_async_locked calls when the SPI bus lock is held.
4632 * Return: always zero.
4634 int spi_bus_lock(struct spi_controller
*ctlr
)
4636 unsigned long flags
;
4638 mutex_lock(&ctlr
->bus_lock_mutex
);
4640 spin_lock_irqsave(&ctlr
->bus_lock_spinlock
, flags
);
4641 ctlr
->bus_lock_flag
= 1;
4642 spin_unlock_irqrestore(&ctlr
->bus_lock_spinlock
, flags
);
4644 /* Mutex remains locked until spi_bus_unlock() is called */
4648 EXPORT_SYMBOL_GPL(spi_bus_lock
);
4651 * spi_bus_unlock - release the lock for exclusive SPI bus usage
4652 * @ctlr: SPI bus master that was locked for exclusive bus access
4653 * Context: can sleep
4655 * This call may only be used from a context that may sleep. The sleep
4656 * is non-interruptible, and has no timeout.
4658 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4661 * Return: always zero.
4663 int spi_bus_unlock(struct spi_controller
*ctlr
)
4665 ctlr
->bus_lock_flag
= 0;
4667 mutex_unlock(&ctlr
->bus_lock_mutex
);
4671 EXPORT_SYMBOL_GPL(spi_bus_unlock
);
4673 /* Portable code must never pass more than 32 bytes */
4674 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
4679 * spi_write_then_read - SPI synchronous write followed by read
4680 * @spi: device with which data will be exchanged
4681 * @txbuf: data to be written (need not be DMA-safe)
4682 * @n_tx: size of txbuf, in bytes
4683 * @rxbuf: buffer into which data will be read (need not be DMA-safe)
4684 * @n_rx: size of rxbuf, in bytes
4685 * Context: can sleep
4687 * This performs a half duplex MicroWire style transaction with the
4688 * device, sending txbuf and then reading rxbuf. The return value
4689 * is zero for success, else a negative errno status code.
4690 * This call may only be used from a context that may sleep.
4692 * Parameters to this routine are always copied using a small buffer.
4693 * Performance-sensitive or bulk transfer code should instead use
4694 * spi_{async,sync}() calls with DMA-safe buffers.
4696 * Return: zero on success, else a negative error code.
4698 int spi_write_then_read(struct spi_device
*spi
,
4699 const void *txbuf
, unsigned n_tx
,
4700 void *rxbuf
, unsigned n_rx
)
4702 static DEFINE_MUTEX(lock
);
4705 struct spi_message message
;
4706 struct spi_transfer x
[2];
4710 * Use preallocated DMA-safe buffer if we can. We can't avoid
4711 * copying here, (as a pure convenience thing), but we can
4712 * keep heap costs out of the hot path unless someone else is
4713 * using the pre-allocated buffer or the transfer is too large.
4715 if ((n_tx
+ n_rx
) > SPI_BUFSIZ
|| !mutex_trylock(&lock
)) {
4716 local_buf
= kmalloc(max((unsigned)SPI_BUFSIZ
, n_tx
+ n_rx
),
4717 GFP_KERNEL
| GFP_DMA
);
4724 spi_message_init(&message
);
4725 memset(x
, 0, sizeof(x
));
4728 spi_message_add_tail(&x
[0], &message
);
4732 spi_message_add_tail(&x
[1], &message
);
4735 memcpy(local_buf
, txbuf
, n_tx
);
4736 x
[0].tx_buf
= local_buf
;
4737 x
[1].rx_buf
= local_buf
+ n_tx
;
4740 status
= spi_sync(spi
, &message
);
4742 memcpy(rxbuf
, x
[1].rx_buf
, n_rx
);
4744 if (x
[0].tx_buf
== buf
)
4745 mutex_unlock(&lock
);
4751 EXPORT_SYMBOL_GPL(spi_write_then_read
);
4753 /*-------------------------------------------------------------------------*/
4755 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4756 /* Must call put_device() when done with returned spi_device device */
4757 static struct spi_device
*of_find_spi_device_by_node(struct device_node
*node
)
4759 struct device
*dev
= bus_find_device_by_of_node(&spi_bus_type
, node
);
4761 return dev
? to_spi_device(dev
) : NULL
;
4764 /* The spi controllers are not using spi_bus, so we find it with another way */
4765 static struct spi_controller
*of_find_spi_controller_by_node(struct device_node
*node
)
4769 dev
= class_find_device_by_of_node(&spi_master_class
, node
);
4770 if (!dev
&& IS_ENABLED(CONFIG_SPI_SLAVE
))
4771 dev
= class_find_device_by_of_node(&spi_slave_class
, node
);
4775 /* Reference got in class_find_device */
4776 return container_of(dev
, struct spi_controller
, dev
);
4779 static int of_spi_notify(struct notifier_block
*nb
, unsigned long action
,
4782 struct of_reconfig_data
*rd
= arg
;
4783 struct spi_controller
*ctlr
;
4784 struct spi_device
*spi
;
4786 switch (of_reconfig_get_state_change(action
, arg
)) {
4787 case OF_RECONFIG_CHANGE_ADD
:
4788 ctlr
= of_find_spi_controller_by_node(rd
->dn
->parent
);
4790 return NOTIFY_OK
; /* Not for us */
4792 if (of_node_test_and_set_flag(rd
->dn
, OF_POPULATED
)) {
4793 put_device(&ctlr
->dev
);
4798 * Clear the flag before adding the device so that fw_devlink
4799 * doesn't skip adding consumers to this device.
4801 rd
->dn
->fwnode
.flags
&= ~FWNODE_FLAG_NOT_DEVICE
;
4802 spi
= of_register_spi_device(ctlr
, rd
->dn
);
4803 put_device(&ctlr
->dev
);
4806 pr_err("%s: failed to create for '%pOF'\n",
4808 of_node_clear_flag(rd
->dn
, OF_POPULATED
);
4809 return notifier_from_errno(PTR_ERR(spi
));
4813 case OF_RECONFIG_CHANGE_REMOVE
:
4814 /* Already depopulated? */
4815 if (!of_node_check_flag(rd
->dn
, OF_POPULATED
))
4818 /* Find our device by node */
4819 spi
= of_find_spi_device_by_node(rd
->dn
);
4821 return NOTIFY_OK
; /* No? not meant for us */
4823 /* Unregister takes one ref away */
4824 spi_unregister_device(spi
);
4826 /* And put the reference of the find */
4827 put_device(&spi
->dev
);
4834 static struct notifier_block spi_of_notifier
= {
4835 .notifier_call
= of_spi_notify
,
4837 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4838 extern struct notifier_block spi_of_notifier
;
4839 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4841 #if IS_ENABLED(CONFIG_ACPI)
4842 static int spi_acpi_controller_match(struct device
*dev
, const void *data
)
4844 return ACPI_COMPANION(dev
->parent
) == data
;
4847 struct spi_controller
*acpi_spi_find_controller_by_adev(struct acpi_device
*adev
)
4851 dev
= class_find_device(&spi_master_class
, NULL
, adev
,
4852 spi_acpi_controller_match
);
4853 if (!dev
&& IS_ENABLED(CONFIG_SPI_SLAVE
))
4854 dev
= class_find_device(&spi_slave_class
, NULL
, adev
,
4855 spi_acpi_controller_match
);
4859 return container_of(dev
, struct spi_controller
, dev
);
4861 EXPORT_SYMBOL_GPL(acpi_spi_find_controller_by_adev
);
4863 static struct spi_device
*acpi_spi_find_device_by_adev(struct acpi_device
*adev
)
4867 dev
= bus_find_device_by_acpi_dev(&spi_bus_type
, adev
);
4868 return to_spi_device(dev
);
4871 static int acpi_spi_notify(struct notifier_block
*nb
, unsigned long value
,
4874 struct acpi_device
*adev
= arg
;
4875 struct spi_controller
*ctlr
;
4876 struct spi_device
*spi
;
4879 case ACPI_RECONFIG_DEVICE_ADD
:
4880 ctlr
= acpi_spi_find_controller_by_adev(acpi_dev_parent(adev
));
4884 acpi_register_spi_device(ctlr
, adev
);
4885 put_device(&ctlr
->dev
);
4887 case ACPI_RECONFIG_DEVICE_REMOVE
:
4888 if (!acpi_device_enumerated(adev
))
4891 spi
= acpi_spi_find_device_by_adev(adev
);
4895 spi_unregister_device(spi
);
4896 put_device(&spi
->dev
);
4903 static struct notifier_block spi_acpi_notifier
= {
4904 .notifier_call
= acpi_spi_notify
,
4907 extern struct notifier_block spi_acpi_notifier
;
4910 static int __init
spi_init(void)
4914 buf
= kmalloc(SPI_BUFSIZ
, GFP_KERNEL
);
4920 status
= bus_register(&spi_bus_type
);
4924 status
= class_register(&spi_master_class
);
4928 if (IS_ENABLED(CONFIG_SPI_SLAVE
)) {
4929 status
= class_register(&spi_slave_class
);
4934 if (IS_ENABLED(CONFIG_OF_DYNAMIC
))
4935 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier
));
4936 if (IS_ENABLED(CONFIG_ACPI
))
4937 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier
));
4942 class_unregister(&spi_master_class
);
4944 bus_unregister(&spi_bus_type
);
4953 * A board_info is normally registered in arch_initcall(),
4954 * but even essential drivers wait till later.
4956 * REVISIT only boardinfo really needs static linking. The rest (device and
4957 * driver registration) _could_ be dynamically linked (modular) ... Costs
4958 * include needing to have boardinfo data structures be much more public.
4960 postcore_initcall(spi_init
);