Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / Documentation / arch / arm64 / memory.rst
blob8a658984b8bb67ce59d8198ee3be35c0d75091e9
1 ==============================
2 Memory Layout on AArch64 Linux
3 ==============================
5 Author: Catalin Marinas <catalin.marinas@arm.com>
7 This document describes the virtual memory layout used by the AArch64
8 Linux kernel. The architecture allows up to 4 levels of translation
9 tables with a 4KB page size and up to 3 levels with a 64KB page size.
11 AArch64 Linux uses either 3 levels or 4 levels of translation tables
12 with the 4KB page configuration, allowing 39-bit (512GB) or 48-bit
13 (256TB) virtual addresses, respectively, for both user and kernel. With
14 64KB pages, only 2 levels of translation tables, allowing 42-bit (4TB)
15 virtual address, are used but the memory layout is the same.
17 ARMv8.2 adds optional support for Large Virtual Address space. This is
18 only available when running with a 64KB page size and expands the
19 number of descriptors in the first level of translation.
21 TTBRx selection is given by bit 55 of the virtual address. The
22 swapper_pg_dir contains only kernel (global) mappings while the user pgd
23 contains only user (non-global) mappings.  The swapper_pg_dir address is
24 written to TTBR1 and never written to TTBR0.
27 AArch64 Linux memory layout with 4KB pages + 4 levels (48-bit)::
29   Start                 End                     Size            Use
30   -----------------------------------------------------------------------
31   0000000000000000      0000ffffffffffff         256TB          user
32   ffff000000000000      ffff7fffffffffff         128TB          kernel logical memory map
33  [ffff600000000000      ffff7fffffffffff]         32TB          [kasan shadow region]
34   ffff800000000000      ffff80007fffffff           2GB          modules
35   ffff800080000000      fffffbffefffffff         124TB          vmalloc
36   fffffbfff0000000      fffffbfffdffffff         224MB          fixed mappings (top down)
37   fffffbfffe000000      fffffbfffe7fffff           8MB          [guard region]
38   fffffbfffe800000      fffffbffff7fffff          16MB          PCI I/O space
39   fffffbffff800000      fffffbffffffffff           8MB          [guard region]
40   fffffc0000000000      fffffdffffffffff           2TB          vmemmap
41   fffffe0000000000      ffffffffffffffff           2TB          [guard region]
44 AArch64 Linux memory layout with 64KB pages + 3 levels (52-bit with HW support)::
46   Start                 End                     Size            Use
47   -----------------------------------------------------------------------
48   0000000000000000      000fffffffffffff           4PB          user
49   fff0000000000000      ffff7fffffffffff          ~4PB          kernel logical memory map
50  [fffd800000000000      ffff7fffffffffff]        512TB          [kasan shadow region]
51   ffff800000000000      ffff80007fffffff           2GB          modules
52   ffff800080000000      fffffbffefffffff         124TB          vmalloc
53   fffffbfff0000000      fffffbfffdffffff         224MB          fixed mappings (top down)
54   fffffbfffe000000      fffffbfffe7fffff           8MB          [guard region]
55   fffffbfffe800000      fffffbffff7fffff          16MB          PCI I/O space
56   fffffbffff800000      fffffbffffffffff           8MB          [guard region]
57   fffffc0000000000      ffffffdfffffffff          ~4TB          vmemmap
58   ffffffe000000000      ffffffffffffffff         128GB          [guard region]
61 Translation table lookup with 4KB pages::
63   +--------+--------+--------+--------+--------+--------+--------+--------+
64   |63    56|55    48|47    40|39    32|31    24|23    16|15     8|7      0|
65   +--------+--------+--------+--------+--------+--------+--------+--------+
66             |        |         |         |         |         |
67             |        |         |         |         |         v
68             |        |         |         |         |   [11:0]  in-page offset
69             |        |         |         |         +-> [20:12] L3 index
70             |        |         |         +-----------> [29:21] L2 index
71             |        |         +---------------------> [38:30] L1 index
72             |        +-------------------------------> [47:39] L0 index
73             +----------------------------------------> [55] TTBR0/1
76 Translation table lookup with 64KB pages::
78   +--------+--------+--------+--------+--------+--------+--------+--------+
79   |63    56|55    48|47    40|39    32|31    24|23    16|15     8|7      0|
80   +--------+--------+--------+--------+--------+--------+--------+--------+
81             |        |    |               |              |
82             |        |    |               |              v
83             |        |    |               |            [15:0]  in-page offset
84             |        |    |               +----------> [28:16] L3 index
85             |        |    +--------------------------> [41:29] L2 index
86             |        +-------------------------------> [47:42] L1 index (48-bit)
87             |                                          [51:42] L1 index (52-bit)
88             +----------------------------------------> [55] TTBR0/1
91 When using KVM without the Virtualization Host Extensions, the
92 hypervisor maps kernel pages in EL2 at a fixed (and potentially
93 random) offset from the linear mapping. See the kern_hyp_va macro and
94 kvm_update_va_mask function for more details. MMIO devices such as
95 GICv2 gets mapped next to the HYP idmap page, as do vectors when
96 ARM64_SPECTRE_V3A is enabled for particular CPUs.
98 When using KVM with the Virtualization Host Extensions, no additional
99 mappings are created, since the host kernel runs directly in EL2.
101 52-bit VA support in the kernel
102 -------------------------------
103 If the ARMv8.2-LVA optional feature is present, and we are running
104 with a 64KB page size; then it is possible to use 52-bits of address
105 space for both userspace and kernel addresses. However, any kernel
106 binary that supports 52-bit must also be able to fall back to 48-bit
107 at early boot time if the hardware feature is not present.
109 This fallback mechanism necessitates the kernel .text to be in the
110 higher addresses such that they are invariant to 48/52-bit VAs. Due
111 to the kasan shadow being a fraction of the entire kernel VA space,
112 the end of the kasan shadow must also be in the higher half of the
113 kernel VA space for both 48/52-bit. (Switching from 48-bit to 52-bit,
114 the end of the kasan shadow is invariant and dependent on ~0UL,
115 whilst the start address will "grow" towards the lower addresses).
117 In order to optimise phys_to_virt and virt_to_phys, the PAGE_OFFSET
118 is kept constant at 0xFFF0000000000000 (corresponding to 52-bit),
119 this obviates the need for an extra variable read. The physvirt
120 offset and vmemmap offsets are computed at early boot to enable
121 this logic.
123 As a single binary will need to support both 48-bit and 52-bit VA
124 spaces, the VMEMMAP must be sized large enough for 52-bit VAs and
125 also must be sized large enough to accommodate a fixed PAGE_OFFSET.
127 Most code in the kernel should not need to consider the VA_BITS, for
128 code that does need to know the VA size the variables are
129 defined as follows:
131 VA_BITS         constant        the *maximum* VA space size
133 VA_BITS_MIN     constant        the *minimum* VA space size
135 vabits_actual   variable        the *actual* VA space size
138 Maximum and minimum sizes can be useful to ensure that buffers are
139 sized large enough or that addresses are positioned close enough for
140 the "worst" case.
142 52-bit userspace VAs
143 --------------------
144 To maintain compatibility with software that relies on the ARMv8.0
145 VA space maximum size of 48-bits, the kernel will, by default,
146 return virtual addresses to userspace from a 48-bit range.
148 Software can "opt-in" to receiving VAs from a 52-bit space by
149 specifying an mmap hint parameter that is larger than 48-bit.
151 For example:
153 .. code-block:: c
155    maybe_high_address = mmap(~0UL, size, prot, flags,...);
157 It is also possible to build a debug kernel that returns addresses
158 from a 52-bit space by enabling the following kernel config options:
160 .. code-block:: sh
162    CONFIG_EXPERT=y && CONFIG_ARM64_FORCE_52BIT=y
164 Note that this option is only intended for debugging applications
165 and should not be used in production.