1 .. SPDX-License-Identifier: GPL-2.0
3 ====================================
5 ====================================
10 This document explains how a guest operating system can act as a
11 hypervisor and run nested guests through the use of hypercalls, if the
12 hypervisor has implemented them. The terms L0, L1, and L2 are used to
13 refer to different software entities. L0 is the hypervisor mode entity
14 that would normally be called the "host" or "hypervisor". L1 is a
15 guest virtual machine that is directly run under L0 and is initiated
16 and controlled by L0. L2 is a guest virtual machine that is initiated
17 and controlled by L1 acting as a hypervisor.
22 Linux/KVM has had support for Nesting as an L0 or L1 since 2018
24 The L0 code was added::
26 commit 8e3f5fc1045dc49fd175b978c5457f5f51e7a2ce
27 Author: Paul Mackerras <paulus@ozlabs.org>
28 Date: Mon Oct 8 16:31:03 2018 +1100
29 KVM: PPC: Book3S HV: Framework and hcall stubs for nested virtualization
31 The L1 code was added::
33 commit 360cae313702cdd0b90f82c261a8302fecef030a
34 Author: Paul Mackerras <paulus@ozlabs.org>
35 Date: Mon Oct 8 16:31:04 2018 +1100
36 KVM: PPC: Book3S HV: Nested guest entry via hypercall
38 This API works primarily using a single hcall h_enter_nested(). This
39 call made by the L1 to tell the L0 to start an L2 vCPU with the given
40 state. The L0 then starts this L2 and runs until an L2 exit condition
41 is reached. Once the L2 exits, the state of the L2 is given back to
42 the L1 by the L0. The full L2 vCPU state is always transferred from
43 and to L1 when the L2 is run. The L0 doesn't keep any state on the L2
44 vCPU (except in the short sequence in the L0 on L1 -> L2 entry and L2
47 The only state kept by the L0 is the partition table. The L1 registers
48 it's partition table using the h_set_partition_table() hcall. All
49 other state held by the L0 about the L2s is cached state (such as
52 The L1 may run any L2 or vCPU without first informing the L0. It
53 simply starts the vCPU using h_enter_nested(). The creation of L2s and
54 vCPUs is done implicitly whenever h_enter_nested() is called.
56 In this document, we call this existing API the v1 API.
61 The new PAPR API changes from the v1 API such that the creating L2 and
62 associated vCPUs is explicit. In this document, we call this the v2
65 h_enter_nested() is replaced with H_GUEST_VCPU_RUN(). Before this can
66 be called the L1 must explicitly create the L2 using h_guest_create()
67 and any associated vCPUs() created with h_guest_create_vCPU(). Getting
68 and setting vCPU state can also be performed using h_guest_{g|s}et
71 The basic execution flow is for an L1 to create an L2, run it, and
74 - L1 and L0 negotiate capabilities with H_GUEST_{G,S}ET_CAPABILITIES()
75 (normally at L1 boot time).
77 - L1 requests the L0 create an L2 with H_GUEST_CREATE() and receives a token
79 - L1 requests the L0 create an L2 vCPU with H_GUEST_CREATE_VCPU()
81 - L1 and L0 communicate the vCPU state using the H_GUEST_{G,S}ET() hcall
83 - L1 requests the L0 runs the vCPU running H_GUEST_VCPU_RUN() hcall
85 - L1 deletes L2 with H_GUEST_DELETE()
87 More details of the individual hcalls follows:
92 This documentation is provided to give an overall understating of the
93 API. It doesn't aim to provide all the details required to implement
94 an L1 or L0. Latest version of PAPR can be referred to for more details.
96 All these HCALLs are made by the L1 to the L0.
98 H_GUEST_GET_CAPABILITIES()
99 --------------------------
101 This is called to get the capabilities of the L0 nested
102 hypervisor. This includes capabilities such the CPU versions (eg
103 POWER9, POWER10) that are supported as L2s::
105 H_GUEST_GET_CAPABILITIES(uint64 flags)
112 R4: Hypervisor Supported Capabilities bitmap 1
114 H_GUEST_SET_CAPABILITIES()
115 --------------------------
117 This is called to inform the L0 of the capabilities of the L1
118 hypervisor. The set of flags passed here are the same as
119 H_GUEST_GET_CAPABILITIES()
121 Typically, GET will be called first and then SET will be called with a
122 subset of the flags returned from GET. This process allows the L0 and
123 L1 to negotiate an agreed set of capabilities::
125 H_GUEST_SET_CAPABILITIES(uint64 flags,
126 uint64 capabilitiesBitmap1)
130 capabilitiesBitmap1: Only capabilities advertised through
131 H_GUEST_GET_CAPABILITIES
134 R4: If R3 = H_P2: The number of invalid bitmaps
135 R5: If R3 = H_P2: The index of first invalid bitmap
140 This is called to create an L2. A unique ID of the L2 created
141 (similar to an LPID) is returned, which can be used on subsequent HCALLs to
144 H_GUEST_CREATE(uint64 flags,
145 uint64 continueToken);
149 continueToken: Initial call set to -1. Subsequent calls,
150 after H_Busy or H_LongBusyOrder has been
151 returned, value that was returned in R4.
153 R3: Return code. Notable:
154 H_Not_Enough_Resources: Unable to create Guest VCPU due to not
155 enough Hypervisor memory. See H_GUEST_CREATE_GET_STATE(flags =
156 takeOwnershipOfVcpuState)
157 R4: If R3 = H_Busy or_H_LongBusyOrder -> continueToken
159 H_GUEST_CREATE_VCPU()
160 ---------------------
162 This is called to create a vCPU associated with an L2. The L2 id
163 (returned from H_GUEST_CREATE()) should be passed it. Also passed in
164 is a unique (for this L2) vCPUid. This vCPUid is allocated by the
167 H_GUEST_CREATE_VCPU(uint64 flags,
173 guestId: ID obtained from H_GUEST_CREATE
174 vcpuId: ID of the vCPU to be created. This must be within the
177 R3: Return code. Notable:
178 H_Not_Enough_Resources: Unable to create Guest VCPU due to not
179 enough Hypervisor memory. See H_GUEST_CREATE_GET_STATE(flags =
180 takeOwnershipOfVcpuState)
185 This is called to get state associated with an L2 (Guest-wide or vCPU specific).
186 This info is passed via the Guest State Buffer (GSB), a standard format as
187 explained later in this doc, necessary details below:
189 This can get either L2 wide or vcpu specific information. Examples of
190 L2 wide is the timebase offset or process scoped page table
191 info. Examples of vCPU specific are GPRs or VSRs. A bit in the flags
192 parameter specifies if this call is L2 wide or vCPU specific and the
193 IDs in the GSB must match this.
195 The L1 provides a pointer to the GSB as a parameter to this call. Also
196 provided is the L2 and vCPU IDs associated with the state to set.
198 The L1 writes only the IDs and sizes in the GSB. L0 writes the
199 associated values for each ID in the GSB::
201 H_GUEST_GET_STATE(uint64 flags,
205 uint64 dataBufferSizeInBytes);
209 Bit 0: getGuestWideState: Request state of the Guest instead
210 of an individual VCPU.
211 Bit 1: takeOwnershipOfVcpuState Indicate the L1 is taking
212 over ownership of the VCPU state and that the L0 can free
213 the storage holding the state. The VCPU state will need to
214 be returned to the Hypervisor via H_GUEST_SET_STATE prior
215 to H_GUEST_RUN_VCPU being called for this VCPU. The data
216 returned in the dataBuffer is in a Hypervisor internal
219 guestId: ID obtained from H_GUEST_CREATE
220 vcpuId: ID of the vCPU pass to H_GUEST_CREATE_VCPU
221 dataBuffer: A L1 real address of the GSB.
222 If takeOwnershipOfVcpuState, size must be at least the size
223 returned by ID=0x0001
224 dataBufferSizeInBytes: Size of dataBuffer
227 R4: If R3 = H_Invalid_Element_Id: The array index of the bad
229 If R3 = H_Invalid_Element_Size: The array index of the bad
231 If R3 = H_Invalid_Element_Value: The array index of the bad
237 This is called to set L2 wide or vCPU specific L2 state. This info is
238 passed via the Guest State Buffer (GSB), necessary details below:
240 This can set either L2 wide or vcpu specific information. Examples of
241 L2 wide is the timebase offset or process scoped page table
242 info. Examples of vCPU specific are GPRs or VSRs. A bit in the flags
243 parameter specifies if this call is L2 wide or vCPU specific and the
244 IDs in the GSB must match this.
246 The L1 provides a pointer to the GSB as a parameter to this call. Also
247 provided is the L2 and vCPU IDs associated with the state to set.
249 The L1 writes all values in the GSB and the L0 only reads the GSB for
252 H_GUEST_SET_STATE(uint64 flags,
256 uint64 dataBufferSizeInBytes);
260 Bit 0: getGuestWideState: Request state of the Guest instead
261 of an individual VCPU.
262 Bit 1: returnOwnershipOfVcpuState Return Guest VCPU state. See
263 GET_STATE takeOwnershipOfVcpuState
265 guestId: ID obtained from H_GUEST_CREATE
266 vcpuId: ID of the vCPU pass to H_GUEST_CREATE_VCPU
267 dataBuffer: A L1 real address of the GSB.
268 If takeOwnershipOfVcpuState, size must be at least the size
269 returned by ID=0x0001
270 dataBufferSizeInBytes: Size of dataBuffer
273 R4: If R3 = H_Invalid_Element_Id: The array index of the bad
275 If R3 = H_Invalid_Element_Size: The array index of the bad
277 If R3 = H_Invalid_Element_Value: The array index of the bad
283 This is called to run an L2 vCPU. The L2 and vCPU IDs are passed in as
284 parameters. The vCPU runs with the state set previously using
285 H_GUEST_SET_STATE(). When the L2 exits, the L1 will resume from this
288 This hcall also has associated input and output GSBs. Unlike
289 H_GUEST_{S,G}ET_STATE(), these GSB pointers are not passed in as
290 parameters to the hcall (This was done in the interest of
291 performance). The locations of these GSBs must be preregistered using
292 the H_GUEST_SET_STATE() call with ID 0x0c00 and 0x0c01 (see table
295 The input GSB may contain only VCPU specific elements to be set. This
296 GSB may also contain zero elements (ie 0 in the first 4 bytes of the
297 GSB) if nothing needs to be set.
299 On exit from the hcall, the output buffer is filled with elements
300 determined by the L0. The reason for the exit is contained in GPR4 (ie
301 NIP is put in GPR4). The elements returned depend on the exit
302 type. For example, if the exit reason is the L2 doing a hcall (GPR4 =
303 0xc00), then GPR3-12 are provided in the output GSB as this is the
304 state likely needed to service the hcall. If additional state is
305 needed, H_GUEST_GET_STATE() may be called by the L1.
307 To synthesize interrupts in the L2, when calling H_GUEST_RUN_VCPU()
308 the L1 may set a flag (as a hcall parameter) and the L0 will
309 synthesize the interrupt in the L2. Alternatively, the L1 may
310 synthesize the interrupt itself using H_GUEST_SET_STATE() or the
311 H_GUEST_RUN_VCPU() input GSB to set the state appropriately::
313 H_GUEST_RUN_VCPU(uint64 flags,
317 uint64 dataBufferSizeInBytes);
321 Bit 0: generateExternalInterrupt: Generate an external interrupt
322 Bit 1: generatePrivilegedDoorbell: Generate a Privileged Doorbell
323 Bit 2: sendToSystemReset”: Generate a System Reset Interrupt
325 guestId: ID obtained from H_GUEST_CREATE
326 vcpuId: ID of the vCPU pass to H_GUEST_CREATE_VCPU
329 R4: If R3 = H_Success: The reason L1 VCPU exited (ie. NIA)
330 0x000: The VCPU stopped running for an unspecified reason. An
331 example of this is the Hypervisor stopping a VCPU running
332 due to an outstanding interrupt for the Host Partition.
338 0xF80: HV Fac Unavail
339 If R3 = H_Invalid_Element_Id, H_Invalid_Element_Size, or
340 H_Invalid_Element_Value: R4 is offset of the invalid element
346 This is called to delete an L2. All associated vCPUs are also
347 deleted. No specific vCPU delete call is provided.
349 A flag may be provided to delete all guests. This is used to reset the
350 L0 in the case of kdump/kexec::
352 H_GUEST_DELETE(uint64 flags,
357 Bit 0: deleteAllGuests: deletes all guests
359 guestId: ID obtained from H_GUEST_CREATE
366 The Guest State Buffer (GSB) is the main method of communicating state
367 about the L2 between the L1 and L0 via H_GUEST_{G,S}ET() and
368 H_GUEST_VCPU_RUN() calls.
370 State may be associated with a whole L2 (eg timebase offset) or a
371 specific L2 vCPU (eg. GPR state). Only L2 VCPU state maybe be set by
374 All data in the GSB is big endian (as is standard in PAPR)
376 The Guest state buffer has a header which gives the number of
377 elements, followed by the GSB elements themselves.
381 +----------+----------+-------------------------------------------+
382 | Offset | Size | Purpose |
384 +==========+==========+===========================================+
385 | 0 | 4 | Number of elements |
386 +----------+----------+-------------------------------------------+
387 | 4 | | Guest state buffer elements |
388 +----------+----------+-------------------------------------------+
392 +----------+----------+-------------------------------------------+
393 | Offset | Size | Purpose |
395 +==========+==========+===========================================+
397 +----------+----------+-------------------------------------------+
398 | 2 | 2 | Size of Value |
399 +----------+----------+-------------------------------------------+
400 | 4 | As above | Value |
401 +----------+----------+-------------------------------------------+
403 The ID in the GSB element specifies what is to be set. This includes
404 archtected state like GPRs, VSRs, SPRs, plus also some meta data about
405 the partition like the timebase offset and partition scoped page
408 +--------+-------+----+--------+----------------------------------+
409 | ID | Size | RW | Thread | Details |
410 | | Bytes | | Guest | |
412 +========+=======+====+========+==================================+
413 | 0x0000 | | RW | TG | NOP element |
414 +--------+-------+----+--------+----------------------------------+
415 | 0x0001 | 0x08 | R | G | Size of L0 vCPU state. See: |
416 | | | | | H_GUEST_GET_STATE: |
417 | | | | | flags = takeOwnershipOfVcpuState |
418 +--------+-------+----+--------+----------------------------------+
419 | 0x0002 | 0x08 | R | G | Size Run vCPU out buffer |
420 +--------+-------+----+--------+----------------------------------+
421 | 0x0003 | 0x04 | RW | G | Logical PVR |
422 +--------+-------+----+--------+----------------------------------+
423 | 0x0004 | 0x08 | RW | G | TB Offset (L1 relative) |
424 +--------+-------+----+--------+----------------------------------+
425 | 0x0005 | 0x18 | RW | G |Partition scoped page tbl info: |
427 | | | | |- 0x00 Addr part scope table |
428 | | | | |- 0x08 Num addr bits |
429 | | | | |- 0x10 Size root dir |
430 +--------+-------+----+--------+----------------------------------+
431 | 0x0006 | 0x10 | RW | G |Process Table Information: |
433 | | | | |- 0x0 Addr proc scope table |
434 | | | | |- 0x8 Table size. |
435 +--------+-------+----+--------+----------------------------------+
436 | 0x0007-| | | | Reserved |
438 +--------+-------+----+--------+----------------------------------+
439 | 0x0C00 | 0x10 | RW | T |Run vCPU Input Buffer: |
441 | | | | |- 0x0 Addr of buffer |
442 | | | | |- 0x8 Buffer Size. |
443 +--------+-------+----+--------+----------------------------------+
444 | 0x0C01 | 0x10 | RW | T |Run vCPU Output Buffer: |
446 | | | | |- 0x0 Addr of buffer |
447 | | | | |- 0x8 Buffer Size. |
448 +--------+-------+----+--------+----------------------------------+
449 | 0x0C02 | 0x08 | RW | T | vCPU VPA Address |
450 +--------+-------+----+--------+----------------------------------+
451 | 0x0C03-| | | | Reserved |
453 +--------+-------+----+--------+----------------------------------+
454 | 0x1000-| 0x08 | RW | T | GPR 0-31 |
456 +--------+-------+----+--------+----------------------------------+
457 | 0x1020 | 0x08 | T | T | HDEC expiry TB |
458 +--------+-------+----+--------+----------------------------------+
459 | 0x1021 | 0x08 | RW | T | NIA |
460 +--------+-------+----+--------+----------------------------------+
461 | 0x1022 | 0x08 | RW | T | MSR |
462 +--------+-------+----+--------+----------------------------------+
463 | 0x1023 | 0x08 | RW | T | LR |
464 +--------+-------+----+--------+----------------------------------+
465 | 0x1024 | 0x08 | RW | T | XER |
466 +--------+-------+----+--------+----------------------------------+
467 | 0x1025 | 0x08 | RW | T | CTR |
468 +--------+-------+----+--------+----------------------------------+
469 | 0x1026 | 0x08 | RW | T | CFAR |
470 +--------+-------+----+--------+----------------------------------+
471 | 0x1027 | 0x08 | RW | T | SRR0 |
472 +--------+-------+----+--------+----------------------------------+
473 | 0x1028 | 0x08 | RW | T | SRR1 |
474 +--------+-------+----+--------+----------------------------------+
475 | 0x1029 | 0x08 | RW | T | DAR |
476 +--------+-------+----+--------+----------------------------------+
477 | 0x102A | 0x08 | RW | T | DEC expiry TB |
478 +--------+-------+----+--------+----------------------------------+
479 | 0x102B | 0x08 | RW | T | VTB |
480 +--------+-------+----+--------+----------------------------------+
481 | 0x102C | 0x08 | RW | T | LPCR |
482 +--------+-------+----+--------+----------------------------------+
483 | 0x102D | 0x08 | RW | T | HFSCR |
484 +--------+-------+----+--------+----------------------------------+
485 | 0x102E | 0x08 | RW | T | FSCR |
486 +--------+-------+----+--------+----------------------------------+
487 | 0x102F | 0x08 | RW | T | FPSCR |
488 +--------+-------+----+--------+----------------------------------+
489 | 0x1030 | 0x08 | RW | T | DAWR0 |
490 +--------+-------+----+--------+----------------------------------+
491 | 0x1031 | 0x08 | RW | T | DAWR1 |
492 +--------+-------+----+--------+----------------------------------+
493 | 0x1032 | 0x08 | RW | T | CIABR |
494 +--------+-------+----+--------+----------------------------------+
495 | 0x1033 | 0x08 | RW | T | PURR |
496 +--------+-------+----+--------+----------------------------------+
497 | 0x1034 | 0x08 | RW | T | SPURR |
498 +--------+-------+----+--------+----------------------------------+
499 | 0x1035 | 0x08 | RW | T | IC |
500 +--------+-------+----+--------+----------------------------------+
501 | 0x1036-| 0x08 | RW | T | SPRG 0-3 |
503 +--------+-------+----+--------+----------------------------------+
504 | 0x103A | 0x08 | W | T | PPR |
505 +--------+-------+----+--------+----------------------------------+
506 | 0x103B | 0x08 | RW | T | MMCR 0-3 |
508 +--------+-------+----+--------+----------------------------------+
509 | 0x103F | 0x08 | RW | T | MMCRA |
510 +--------+-------+----+--------+----------------------------------+
511 | 0x1040 | 0x08 | RW | T | SIER |
512 +--------+-------+----+--------+----------------------------------+
513 | 0x1041 | 0x08 | RW | T | SIER 2 |
514 +--------+-------+----+--------+----------------------------------+
515 | 0x1042 | 0x08 | RW | T | SIER 3 |
516 +--------+-------+----+--------+----------------------------------+
517 | 0x1043 | 0x08 | RW | T | BESCR |
518 +--------+-------+----+--------+----------------------------------+
519 | 0x1044 | 0x08 | RW | T | EBBHR |
520 +--------+-------+----+--------+----------------------------------+
521 | 0x1045 | 0x08 | RW | T | EBBRR |
522 +--------+-------+----+--------+----------------------------------+
523 | 0x1046 | 0x08 | RW | T | AMR |
524 +--------+-------+----+--------+----------------------------------+
525 | 0x1047 | 0x08 | RW | T | IAMR |
526 +--------+-------+----+--------+----------------------------------+
527 | 0x1048 | 0x08 | RW | T | AMOR |
528 +--------+-------+----+--------+----------------------------------+
529 | 0x1049 | 0x08 | RW | T | UAMOR |
530 +--------+-------+----+--------+----------------------------------+
531 | 0x104A | 0x08 | RW | T | SDAR |
532 +--------+-------+----+--------+----------------------------------+
533 | 0x104B | 0x08 | RW | T | SIAR |
534 +--------+-------+----+--------+----------------------------------+
535 | 0x104C | 0x08 | RW | T | DSCR |
536 +--------+-------+----+--------+----------------------------------+
537 | 0x104D | 0x08 | RW | T | TAR |
538 +--------+-------+----+--------+----------------------------------+
539 | 0x104E | 0x08 | RW | T | DEXCR |
540 +--------+-------+----+--------+----------------------------------+
541 | 0x104F | 0x08 | RW | T | HDEXCR |
542 +--------+-------+----+--------+----------------------------------+
543 | 0x1050 | 0x08 | RW | T | HASHKEYR |
544 +--------+-------+----+--------+----------------------------------+
545 | 0x1051 | 0x08 | RW | T | HASHPKEYR |
546 +--------+-------+----+--------+----------------------------------+
547 | 0x1052 | 0x08 | RW | T | CTRL |
548 +--------+-------+----+--------+----------------------------------+
549 | 0x1053 | 0x08 | RW | T | DPDES |
550 +--------+-------+----+--------+----------------------------------+
551 | 0x1054-| | | | Reserved |
553 +--------+-------+----+--------+----------------------------------+
554 | 0x2000 | 0x04 | RW | T | CR |
555 +--------+-------+----+--------+----------------------------------+
556 | 0x2001 | 0x04 | RW | T | PIDR |
557 +--------+-------+----+--------+----------------------------------+
558 | 0x2002 | 0x04 | RW | T | DSISR |
559 +--------+-------+----+--------+----------------------------------+
560 | 0x2003 | 0x04 | RW | T | VSCR |
561 +--------+-------+----+--------+----------------------------------+
562 | 0x2004 | 0x04 | RW | T | VRSAVE |
563 +--------+-------+----+--------+----------------------------------+
564 | 0x2005 | 0x04 | RW | T | DAWRX0 |
565 +--------+-------+----+--------+----------------------------------+
566 | 0x2006 | 0x04 | RW | T | DAWRX1 |
567 +--------+-------+----+--------+----------------------------------+
568 | 0x2007-| 0x04 | RW | T | PMC 1-6 |
570 +--------+-------+----+--------+----------------------------------+
571 | 0x200D | 0x04 | RW | T | WORT |
572 +--------+-------+----+--------+----------------------------------+
573 | 0x200E | 0x04 | RW | T | PSPB |
574 +--------+-------+----+--------+----------------------------------+
575 | 0x200F-| | | | Reserved |
577 +--------+-------+----+--------+----------------------------------+
578 | 0x3000-| 0x10 | RW | T | VSR 0-63 |
580 +--------+-------+----+--------+----------------------------------+
581 | 0x3040-| | | | Reserved |
583 +--------+-------+----+--------+----------------------------------+
584 | 0xF000 | 0x08 | R | T | HDAR |
585 +--------+-------+----+--------+----------------------------------+
586 | 0xF001 | 0x04 | R | T | HDSISR |
587 +--------+-------+----+--------+----------------------------------+
588 | 0xF002 | 0x04 | R | T | HEIR |
589 +--------+-------+----+--------+----------------------------------+
590 | 0xF003 | 0x08 | R | T | ASDR |
591 +--------+-------+----+--------+----------------------------------+
597 State not in ptregs/hvregs
598 --------------------------
600 In the v1 API, some state is not in the ptregs/hvstate. This includes
601 the vector register and some SPRs. For the L1 to set this state for
602 the L2, the L1 loads up these hardware registers before the
603 h_enter_nested() call and the L0 ensures they end up as the L2 state
604 (by not touching them).
606 The v2 API removes this and explicitly sets this state via the GSB.
608 L1 Implementation details: Caching state
609 ----------------------------------------
611 In the v1 API, all state is sent from the L1 to the L0 and vice versa
612 on every h_enter_nested() hcall. If the L0 is not currently running
613 any L2s, the L0 has no state information about them. The only
614 exception to this is the location of the partition table, registered
615 via h_set_partition_table().
617 The v2 API changes this so that the L0 retains the L2 state even when
618 it's vCPUs are no longer running. This means that the L1 only needs to
619 communicate with the L0 about L2 state when it needs to modify the L2
620 state, or when it's value is out of date. This provides an opportunity
621 for performance optimisation.
623 When a vCPU exits from a H_GUEST_RUN_VCPU() call, the L1 internally
624 marks all L2 state as invalid. This means that if the L1 wants to know
625 the L2 state (say via a kvm_get_one_reg() call), it needs call
626 H_GUEST_GET_STATE() to get that state. Once it's read, it's marked as
627 valid in L1 until the L2 is run again.
629 Also, when an L1 modifies L2 vcpu state, it doesn't need to write it
630 to the L0 until that L2 vcpu runs again. Hence when the L1 updates
631 state (say via a kvm_set_one_reg() call), it writes to an internal L1
632 copy and only flushes this copy to the L0 when the L2 runs again via
633 the H_GUEST_VCPU_RUN() input buffer.
635 This lazy updating of state by the L1 avoids unnecessary
636 H_GUEST_{G|S}ET_STATE() calls.