Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / Documentation / scheduler / sched-capacity.rst
blobde414b33dd2abd574c0ece056e085f3d885c9d7e
1 =========================
2 Capacity Aware Scheduling
3 =========================
5 1. CPU Capacity
6 ===============
8 1.1 Introduction
9 ----------------
11 Conventional, homogeneous SMP platforms are composed of purely identical
12 CPUs. Heterogeneous platforms on the other hand are composed of CPUs with
13 different performance characteristics - on such platforms, not all CPUs can be
14 considered equal.
16 CPU capacity is a measure of the performance a CPU can reach, normalized against
17 the most performant CPU in the system. Heterogeneous systems are also called
18 asymmetric CPU capacity systems, as they contain CPUs of different capacities.
20 Disparity in maximum attainable performance (IOW in maximum CPU capacity) stems
21 from two factors:
23 - not all CPUs may have the same microarchitecture (µarch).
24 - with Dynamic Voltage and Frequency Scaling (DVFS), not all CPUs may be
25   physically able to attain the higher Operating Performance Points (OPP).
27 Arm big.LITTLE systems are an example of both. The big CPUs are more
28 performance-oriented than the LITTLE ones (more pipeline stages, bigger caches,
29 smarter predictors, etc), and can usually reach higher OPPs than the LITTLE ones
30 can.
32 CPU performance is usually expressed in Millions of Instructions Per Second
33 (MIPS), which can also be expressed as a given amount of instructions attainable
34 per Hz, leading to::
36   capacity(cpu) = work_per_hz(cpu) * max_freq(cpu)
38 1.2 Scheduler terms
39 -------------------
41 Two different capacity values are used within the scheduler. A CPU's
42 ``original capacity`` is its maximum attainable capacity, i.e. its maximum
43 attainable performance level. This original capacity is returned by
44 the function arch_scale_cpu_capacity(). A CPU's ``capacity`` is its ``original
45 capacity`` to which some loss of available performance (e.g. time spent
46 handling IRQs) is subtracted.
48 Note that a CPU's ``capacity`` is solely intended to be used by the CFS class,
49 while ``original capacity`` is class-agnostic. The rest of this document will use
50 the term ``capacity`` interchangeably with ``original capacity`` for the sake of
51 brevity.
53 1.3 Platform examples
54 ---------------------
56 1.3.1 Identical OPPs
57 ~~~~~~~~~~~~~~~~~~~~
59 Consider an hypothetical dual-core asymmetric CPU capacity system where
61 - work_per_hz(CPU0) = W
62 - work_per_hz(CPU1) = W/2
63 - all CPUs are running at the same fixed frequency
65 By the above definition of capacity:
67 - capacity(CPU0) = C
68 - capacity(CPU1) = C/2
70 To draw the parallel with Arm big.LITTLE, CPU0 would be a big while CPU1 would
71 be a LITTLE.
73 With a workload that periodically does a fixed amount of work, you will get an
74 execution trace like so::
76  CPU0 work ^
77            |     ____                ____                ____
78            |    |    |              |    |              |    |
79            +----+----+----+----+----+----+----+----+----+----+-> time
81  CPU1 work ^
82            |     _________           _________           ____
83            |    |         |         |         |         |
84            +----+----+----+----+----+----+----+----+----+----+-> time
86 CPU0 has the highest capacity in the system (C), and completes a fixed amount of
87 work W in T units of time. On the other hand, CPU1 has half the capacity of
88 CPU0, and thus only completes W/2 in T.
90 1.3.2 Different max OPPs
91 ~~~~~~~~~~~~~~~~~~~~~~~~
93 Usually, CPUs of different capacity values also have different maximum
94 OPPs. Consider the same CPUs as above (i.e. same work_per_hz()) with:
96 - max_freq(CPU0) = F
97 - max_freq(CPU1) = 2/3 * F
99 This yields:
101 - capacity(CPU0) = C
102 - capacity(CPU1) = C/3
104 Executing the same workload as described in 1.3.1, which each CPU running at its
105 maximum frequency results in::
107  CPU0 work ^
108            |     ____                ____                ____
109            |    |    |              |    |              |    |
110            +----+----+----+----+----+----+----+----+----+----+-> time
112                             workload on CPU1
113  CPU1 work ^
114            |     ______________      ______________      ____
115            |    |              |    |              |    |
116            +----+----+----+----+----+----+----+----+----+----+-> time
118 1.4 Representation caveat
119 -------------------------
121 It should be noted that having a *single* value to represent differences in CPU
122 performance is somewhat of a contentious point. The relative performance
123 difference between two different µarchs could be X% on integer operations, Y% on
124 floating point operations, Z% on branches, and so on. Still, results using this
125 simple approach have been satisfactory for now.
127 2. Task utilization
128 ===================
130 2.1 Introduction
131 ----------------
133 Capacity aware scheduling requires an expression of a task's requirements with
134 regards to CPU capacity. Each scheduler class can express this differently, and
135 while task utilization is specific to CFS, it is convenient to describe it here
136 in order to introduce more generic concepts.
138 Task utilization is a percentage meant to represent the throughput requirements
139 of a task. A simple approximation of it is the task's duty cycle, i.e.::
141   task_util(p) = duty_cycle(p)
143 On an SMP system with fixed frequencies, 100% utilization suggests the task is a
144 busy loop. Conversely, 10% utilization hints it is a small periodic task that
145 spends more time sleeping than executing. Variable CPU frequencies and
146 asymmetric CPU capacities complexify this somewhat; the following sections will
147 expand on these.
149 2.2 Frequency invariance
150 ------------------------
152 One issue that needs to be taken into account is that a workload's duty cycle is
153 directly impacted by the current OPP the CPU is running at. Consider running a
154 periodic workload at a given frequency F::
156   CPU work ^
157            |     ____                ____                ____
158            |    |    |              |    |              |    |
159            +----+----+----+----+----+----+----+----+----+----+-> time
161 This yields duty_cycle(p) == 25%.
163 Now, consider running the *same* workload at frequency F/2::
165   CPU work ^
166            |     _________           _________           ____
167            |    |         |         |         |         |
168            +----+----+----+----+----+----+----+----+----+----+-> time
170 This yields duty_cycle(p) == 50%, despite the task having the exact same
171 behaviour (i.e. executing the same amount of work) in both executions.
173 The task utilization signal can be made frequency invariant using the following
174 formula::
176   task_util_freq_inv(p) = duty_cycle(p) * (curr_frequency(cpu) / max_frequency(cpu))
178 Applying this formula to the two examples above yields a frequency invariant
179 task utilization of 25%.
181 2.3 CPU invariance
182 ------------------
184 CPU capacity has a similar effect on task utilization in that running an
185 identical workload on CPUs of different capacity values will yield different
186 duty cycles.
188 Consider the system described in 1.3.2., i.e.::
190 - capacity(CPU0) = C
191 - capacity(CPU1) = C/3
193 Executing a given periodic workload on each CPU at their maximum frequency would
194 result in::
196  CPU0 work ^
197            |     ____                ____                ____
198            |    |    |              |    |              |    |
199            +----+----+----+----+----+----+----+----+----+----+-> time
201  CPU1 work ^
202            |     ______________      ______________      ____
203            |    |              |    |              |    |
204            +----+----+----+----+----+----+----+----+----+----+-> time
206 IOW,
208 - duty_cycle(p) == 25% if p runs on CPU0 at its maximum frequency
209 - duty_cycle(p) == 75% if p runs on CPU1 at its maximum frequency
211 The task utilization signal can be made CPU invariant using the following
212 formula::
214   task_util_cpu_inv(p) = duty_cycle(p) * (capacity(cpu) / max_capacity)
216 with ``max_capacity`` being the highest CPU capacity value in the
217 system. Applying this formula to the above example above yields a CPU
218 invariant task utilization of 25%.
220 2.4 Invariant task utilization
221 ------------------------------
223 Both frequency and CPU invariance need to be applied to task utilization in
224 order to obtain a truly invariant signal. The pseudo-formula for a task
225 utilization that is both CPU and frequency invariant is thus, for a given
226 task p::
228                                      curr_frequency(cpu)   capacity(cpu)
229   task_util_inv(p) = duty_cycle(p) * ------------------- * -------------
230                                      max_frequency(cpu)    max_capacity
232 In other words, invariant task utilization describes the behaviour of a task as
233 if it were running on the highest-capacity CPU in the system, running at its
234 maximum frequency.
236 Any mention of task utilization in the following sections will imply its
237 invariant form.
239 2.5 Utilization estimation
240 --------------------------
242 Without a crystal ball, task behaviour (and thus task utilization) cannot
243 accurately be predicted the moment a task first becomes runnable. The CFS class
244 maintains a handful of CPU and task signals based on the Per-Entity Load
245 Tracking (PELT) mechanism, one of those yielding an *average* utilization (as
246 opposed to instantaneous).
248 This means that while the capacity aware scheduling criteria will be written
249 considering a "true" task utilization (using a crystal ball), the implementation
250 will only ever be able to use an estimator thereof.
252 3. Capacity aware scheduling requirements
253 =========================================
255 3.1 CPU capacity
256 ----------------
258 Linux cannot currently figure out CPU capacity on its own, this information thus
259 needs to be handed to it. Architectures must define arch_scale_cpu_capacity()
260 for that purpose.
262 The arm, arm64, and RISC-V architectures directly map this to the arch_topology driver
263 CPU scaling data, which is derived from the capacity-dmips-mhz CPU binding; see
264 Documentation/devicetree/bindings/cpu/cpu-capacity.txt.
266 3.2 Frequency invariance
267 ------------------------
269 As stated in 2.2, capacity-aware scheduling requires a frequency-invariant task
270 utilization. Architectures must define arch_scale_freq_capacity(cpu) for that
271 purpose.
273 Implementing this function requires figuring out at which frequency each CPU
274 have been running at. One way to implement this is to leverage hardware counters
275 whose increment rate scale with a CPU's current frequency (APERF/MPERF on x86,
276 AMU on arm64). Another is to directly hook into cpufreq frequency transitions,
277 when the kernel is aware of the switched-to frequency (also employed by
278 arm/arm64).
280 4. Scheduler topology
281 =====================
283 During the construction of the sched domains, the scheduler will figure out
284 whether the system exhibits asymmetric CPU capacities. Should that be the
285 case:
287 - The sched_asym_cpucapacity static key will be enabled.
288 - The SD_ASYM_CPUCAPACITY_FULL flag will be set at the lowest sched_domain
289   level that spans all unique CPU capacity values.
290 - The SD_ASYM_CPUCAPACITY flag will be set for any sched_domain that spans
291   CPUs with any range of asymmetry.
293 The sched_asym_cpucapacity static key is intended to guard sections of code that
294 cater to asymmetric CPU capacity systems. Do note however that said key is
295 *system-wide*. Imagine the following setup using cpusets::
297   capacity    C/2          C
298             ________    ________
299            /        \  /        \
300   CPUs     0  1  2  3  4  5  6  7
301            \__/  \______________/
302   cpusets   cs0         cs1
304 Which could be created via:
306 .. code-block:: sh
308   mkdir /sys/fs/cgroup/cpuset/cs0
309   echo 0-1 > /sys/fs/cgroup/cpuset/cs0/cpuset.cpus
310   echo 0 > /sys/fs/cgroup/cpuset/cs0/cpuset.mems
312   mkdir /sys/fs/cgroup/cpuset/cs1
313   echo 2-7 > /sys/fs/cgroup/cpuset/cs1/cpuset.cpus
314   echo 0 > /sys/fs/cgroup/cpuset/cs1/cpuset.mems
316   echo 0 > /sys/fs/cgroup/cpuset/cpuset.sched_load_balance
318 Since there *is* CPU capacity asymmetry in the system, the
319 sched_asym_cpucapacity static key will be enabled. However, the sched_domain
320 hierarchy of CPUs 0-1 spans a single capacity value: SD_ASYM_CPUCAPACITY isn't
321 set in that hierarchy, it describes an SMP island and should be treated as such.
323 Therefore, the 'canonical' pattern for protecting codepaths that cater to
324 asymmetric CPU capacities is to:
326 - Check the sched_asym_cpucapacity static key
327 - If it is enabled, then also check for the presence of SD_ASYM_CPUCAPACITY in
328   the sched_domain hierarchy (if relevant, i.e. the codepath targets a specific
329   CPU or group thereof)
331 5. Capacity aware scheduling implementation
332 ===========================================
334 5.1 CFS
335 -------
337 5.1.1 Capacity fitness
338 ~~~~~~~~~~~~~~~~~~~~~~
340 The main capacity scheduling criterion of CFS is::
342   task_util(p) < capacity(task_cpu(p))
344 This is commonly called the capacity fitness criterion, i.e. CFS must ensure a
345 task "fits" on its CPU. If it is violated, the task will need to achieve more
346 work than what its CPU can provide: it will be CPU-bound.
348 Furthermore, uclamp lets userspace specify a minimum and a maximum utilization
349 value for a task, either via sched_setattr() or via the cgroup interface (see
350 Documentation/admin-guide/cgroup-v2.rst). As its name imply, this can be used to
351 clamp task_util() in the previous criterion.
353 5.1.2 Wakeup CPU selection
354 ~~~~~~~~~~~~~~~~~~~~~~~~~~
356 CFS task wakeup CPU selection follows the capacity fitness criterion described
357 above. On top of that, uclamp is used to clamp the task utilization values,
358 which lets userspace have more leverage over the CPU selection of CFS
359 tasks. IOW, CFS wakeup CPU selection searches for a CPU that satisfies::
361   clamp(task_util(p), task_uclamp_min(p), task_uclamp_max(p)) < capacity(cpu)
363 By using uclamp, userspace can e.g. allow a busy loop (100% utilization) to run
364 on any CPU by giving it a low uclamp.max value. Conversely, it can force a small
365 periodic task (e.g. 10% utilization) to run on the highest-performance CPUs by
366 giving it a high uclamp.min value.
368 .. note::
370   Wakeup CPU selection in CFS can be eclipsed by Energy Aware Scheduling
371   (EAS), which is described in Documentation/scheduler/sched-energy.rst.
373 5.1.3 Load balancing
374 ~~~~~~~~~~~~~~~~~~~~
376 A pathological case in the wakeup CPU selection occurs when a task rarely
377 sleeps, if at all - it thus rarely wakes up, if at all. Consider::
379   w == wakeup event
381   capacity(CPU0) = C
382   capacity(CPU1) = C / 3
384                            workload on CPU0
385   CPU work ^
386            |     _________           _________           ____
387            |    |         |         |         |         |
388            +----+----+----+----+----+----+----+----+----+----+-> time
389                 w                   w                   w
391                            workload on CPU1
392   CPU work ^
393            |     ____________________________________________
394            |    |
395            +----+----+----+----+----+----+----+----+----+----+->
396                 w
398 This workload should run on CPU0, but if the task either:
400 - was improperly scheduled from the start (inaccurate initial
401   utilization estimation)
402 - was properly scheduled from the start, but suddenly needs more
403   processing power
405 then it might become CPU-bound, IOW ``task_util(p) > capacity(task_cpu(p))``;
406 the CPU capacity scheduling criterion is violated, and there may not be any more
407 wakeup event to fix this up via wakeup CPU selection.
409 Tasks that are in this situation are dubbed "misfit" tasks, and the mechanism
410 put in place to handle this shares the same name. Misfit task migration
411 leverages the CFS load balancer, more specifically the active load balance part
412 (which caters to migrating currently running tasks). When load balance happens,
413 a misfit active load balance will be triggered if a misfit task can be migrated
414 to a CPU with more capacity than its current one.
416 5.2 RT
417 ------
419 5.2.1 Wakeup CPU selection
420 ~~~~~~~~~~~~~~~~~~~~~~~~~~
422 RT task wakeup CPU selection searches for a CPU that satisfies::
424   task_uclamp_min(p) <= capacity(task_cpu(cpu))
426 while still following the usual priority constraints. If none of the candidate
427 CPUs can satisfy this capacity criterion, then strict priority based scheduling
428 is followed and CPU capacities are ignored.
430 5.3 DL
431 ------
433 5.3.1 Wakeup CPU selection
434 ~~~~~~~~~~~~~~~~~~~~~~~~~~
436 DL task wakeup CPU selection searches for a CPU that satisfies::
438   task_bandwidth(p) < capacity(task_cpu(p))
440 while still respecting the usual bandwidth and deadline constraints. If
441 none of the candidate CPUs can satisfy this capacity criterion, then the
442 task will remain on its current CPU.