5 Documentation written by Tom Zanussi
10 Histogram triggers are special event triggers that can be used to
11 aggregate trace event data into histograms. For information on
12 trace events and event triggers, see Documentation/trace/events.rst.
15 2. Histogram Trigger Command
16 ============================
18 A histogram trigger command is an event trigger command that
19 aggregates event hits into a hash table keyed on one or more trace
20 event format fields (or stacktrace) and a set of running totals
21 derived from one or more trace event format fields and/or event
24 The format of a hist trigger is as follows::
26 hist:keys=<field1[,field2,...]>[:values=<field1[,field2,...]>]
27 [:sort=<field1[,field2,...]>][:size=#entries][:pause][:continue]
28 [:clear][:name=histname1][:nohitcount][:<handler>.<action>] [if <filter>]
30 When a matching event is hit, an entry is added to a hash table
31 using the key(s) and value(s) named. Keys and values correspond to
32 fields in the event's format description. Values must correspond to
33 numeric fields - on an event hit, the value(s) will be added to a
34 sum kept for that field. The special string 'hitcount' can be used
35 in place of an explicit value field - this is simply a count of
36 event hits. If 'values' isn't specified, an implicit 'hitcount'
37 value will be automatically created and used as the only value.
38 Keys can be any field, or the special string 'common_stacktrace', which
39 will use the event's kernel stacktrace as the key. The keywords
40 'keys' or 'key' can be used to specify keys, and the keywords
41 'values', 'vals', or 'val' can be used to specify values. Compound
42 keys consisting of up to three fields can be specified by the 'keys'
43 keyword. Hashing a compound key produces a unique entry in the
44 table for each unique combination of component keys, and can be
45 useful for providing more fine-grained summaries of event data.
46 Additionally, sort keys consisting of up to two fields can be
47 specified by the 'sort' keyword. If more than one field is
48 specified, the result will be a 'sort within a sort': the first key
49 is taken to be the primary sort key and the second the secondary
50 key. If a hist trigger is given a name using the 'name' parameter,
51 its histogram data will be shared with other triggers of the same
52 name, and trigger hits will update this common data. Only triggers
53 with 'compatible' fields can be combined in this way; triggers are
54 'compatible' if the fields named in the trigger share the same
55 number and type of fields and those fields also have the same names.
56 Note that any two events always share the compatible 'hitcount' and
57 'common_stacktrace' fields and can therefore be combined using those
58 fields, however pointless that may be.
60 'hist' triggers add a 'hist' file to each event's subdirectory.
61 Reading the 'hist' file for the event will dump the hash table in
62 its entirety to stdout. If there are multiple hist triggers
63 attached to an event, there will be a table for each trigger in the
64 output. The table displayed for a named trigger will be the same as
65 any other instance having the same name. Each printed hash table
66 entry is a simple list of the keys and values comprising the entry;
67 keys are printed first and are delineated by curly braces, and are
68 followed by the set of value fields for the entry. By default,
69 numeric fields are displayed as base-10 integers. This can be
70 modified by appending any of the following modifiers to the field
73 ============= =================================================
74 .hex display a number as a hex value
75 .sym display an address as a symbol
76 .sym-offset display an address as a symbol and offset
77 .syscall display a syscall id as a system call name
78 .execname display a common_pid as a program name
79 .log2 display log2 value rather than raw number
80 .buckets=size display grouping of values rather than raw number
81 .usecs display a common_timestamp in microseconds
82 .percent display a number of percentage value
83 .graph display a bar-graph of a value
84 .stacktrace display as a stacktrace (must be a long[] type)
85 ============= =================================================
87 Note that in general the semantics of a given field aren't
88 interpreted when applying a modifier to it, but there are some
89 restrictions to be aware of in this regard:
91 - only the 'hex' modifier can be used for values (because values
92 are essentially sums, and the other modifiers don't make sense
94 - the 'execname' modifier can only be used on a 'common_pid'. The
95 reason for this is that the execname is simply the 'comm' value
96 saved for the 'current' process when an event was triggered,
97 which is the same as the common_pid value saved by the event
98 tracing code. Trying to apply that comm value to other pid
99 values wouldn't be correct, and typically events that care save
100 pid-specific comm fields in the event itself.
102 A typical usage scenario would be the following to enable a hist
103 trigger, read its current contents, and then turn it off::
105 # echo 'hist:keys=skbaddr.hex:vals=len' > \
106 /sys/kernel/tracing/events/net/netif_rx/trigger
108 # cat /sys/kernel/tracing/events/net/netif_rx/hist
110 # echo '!hist:keys=skbaddr.hex:vals=len' > \
111 /sys/kernel/tracing/events/net/netif_rx/trigger
113 The trigger file itself can be read to show the details of the
114 currently attached hist trigger. This information is also displayed
115 at the top of the 'hist' file when read.
117 By default, the size of the hash table is 2048 entries. The 'size'
118 parameter can be used to specify more or fewer than that. The units
119 are in terms of hashtable entries - if a run uses more entries than
120 specified, the results will show the number of 'drops', the number
121 of hits that were ignored. The size should be a power of 2 between
122 128 and 131072 (any non- power-of-2 number specified will be rounded
125 The 'sort' parameter can be used to specify a value field to sort
126 on. The default if unspecified is 'hitcount' and the default sort
127 order is 'ascending'. To sort in the opposite direction, append
128 .descending' to the sort key.
130 The 'pause' parameter can be used to pause an existing hist trigger
131 or to start a hist trigger but not log any events until told to do
132 so. 'continue' or 'cont' can be used to start or restart a paused
135 The 'clear' parameter will clear the contents of a running hist
136 trigger and leave its current paused/active state.
138 Note that the 'pause', 'cont', and 'clear' parameters should be
139 applied using 'append' shell operator ('>>') if applied to an
140 existing trigger, rather than via the '>' operator, which will cause
141 the trigger to be removed through truncation.
143 The 'nohitcount' (or NOHC) parameter will suppress display of
144 raw hitcount in the histogram. This option requires at least one
145 value field which is not a 'raw hitcount'. For example,
146 'hist:...:vals=hitcount:nohitcount' is rejected, but
147 'hist:...:vals=hitcount.percent:nohitcount' is OK.
149 - enable_hist/disable_hist
151 The enable_hist and disable_hist triggers can be used to have one
152 event conditionally start and stop another event's already-attached
153 hist trigger. Any number of enable_hist and disable_hist triggers
154 can be attached to a given event, allowing that event to kick off
155 and stop aggregations on a host of other events.
157 The format is very similar to the enable/disable_event triggers::
159 enable_hist:<system>:<event>[:count]
160 disable_hist:<system>:<event>[:count]
162 Instead of enabling or disabling the tracing of the target event
163 into the trace buffer as the enable/disable_event triggers do, the
164 enable/disable_hist triggers enable or disable the aggregation of
165 the target event into a hash table.
167 A typical usage scenario for the enable_hist/disable_hist triggers
168 would be to first set up a paused hist trigger on some event,
169 followed by an enable_hist/disable_hist pair that turns the hist
170 aggregation on and off when conditions of interest are hit::
172 # echo 'hist:keys=skbaddr.hex:vals=len:pause' > \
173 /sys/kernel/tracing/events/net/netif_receive_skb/trigger
175 # echo 'enable_hist:net:netif_receive_skb if filename==/usr/bin/wget' > \
176 /sys/kernel/tracing/events/sched/sched_process_exec/trigger
178 # echo 'disable_hist:net:netif_receive_skb if comm==wget' > \
179 /sys/kernel/tracing/events/sched/sched_process_exit/trigger
181 The above sets up an initially paused hist trigger which is unpaused
182 and starts aggregating events when a given program is executed, and
183 which stops aggregating when the process exits and the hist trigger
186 The examples below provide a more concrete illustration of the
187 concepts and typical usage patterns discussed above.
189 'special' event fields
190 ------------------------
192 There are a number of 'special event fields' available for use as
193 keys or values in a hist trigger. These look like and behave as if
194 they were actual event fields, but aren't really part of the event's
195 field definition or format file. They are however available for any
196 event, and can be used anywhere an actual event field could be.
199 ====================== ==== =======================================
200 common_timestamp u64 timestamp (from ring buffer) associated
201 with the event, in nanoseconds. May be
202 modified by .usecs to have timestamps
203 interpreted as microseconds.
204 common_cpu int the cpu on which the event occurred.
205 ====================== ==== =======================================
207 Extended error information
208 --------------------------
210 For some error conditions encountered when invoking a hist trigger
211 command, extended error information is available via the
212 tracing/error_log file. See Error Conditions in
213 :file:`Documentation/trace/ftrace.rst` for details.
215 6.2 'hist' trigger examples
216 ---------------------------
218 The first set of examples creates aggregations using the kmalloc
219 event. The fields that can be used for the hist trigger are listed
220 in the kmalloc event's format file::
222 # cat /sys/kernel/tracing/events/kmem/kmalloc/format
226 field:unsigned short common_type; offset:0; size:2; signed:0;
227 field:unsigned char common_flags; offset:2; size:1; signed:0;
228 field:unsigned char common_preempt_count; offset:3; size:1; signed:0;
229 field:int common_pid; offset:4; size:4; signed:1;
231 field:unsigned long call_site; offset:8; size:8; signed:0;
232 field:const void * ptr; offset:16; size:8; signed:0;
233 field:size_t bytes_req; offset:24; size:8; signed:0;
234 field:size_t bytes_alloc; offset:32; size:8; signed:0;
235 field:gfp_t gfp_flags; offset:40; size:4; signed:0;
237 We'll start by creating a hist trigger that generates a simple table
238 that lists the total number of bytes requested for each function in
239 the kernel that made one or more calls to kmalloc::
241 # echo 'hist:key=call_site:val=bytes_req.buckets=32' > \
242 /sys/kernel/tracing/events/kmem/kmalloc/trigger
244 This tells the tracing system to create a 'hist' trigger using the
245 call_site field of the kmalloc event as the key for the table, which
246 just means that each unique call_site address will have an entry
247 created for it in the table. The 'val=bytes_req' parameter tells
248 the hist trigger that for each unique entry (call_site) in the
249 table, it should keep a running total of the number of bytes
250 requested by that call_site.
252 We'll let it run for awhile and then dump the contents of the 'hist'
253 file in the kmalloc event's subdirectory (for readability, a number
254 of entries have been omitted)::
256 # cat /sys/kernel/tracing/events/kmem/kmalloc/hist
257 # trigger info: hist:keys=call_site:vals=bytes_req:sort=hitcount:size=2048 [active]
259 { call_site: 18446744072106379007 } hitcount: 1 bytes_req: 176
260 { call_site: 18446744071579557049 } hitcount: 1 bytes_req: 1024
261 { call_site: 18446744071580608289 } hitcount: 1 bytes_req: 16384
262 { call_site: 18446744071581827654 } hitcount: 1 bytes_req: 24
263 { call_site: 18446744071580700980 } hitcount: 1 bytes_req: 8
264 { call_site: 18446744071579359876 } hitcount: 1 bytes_req: 152
265 { call_site: 18446744071580795365 } hitcount: 3 bytes_req: 144
266 { call_site: 18446744071581303129 } hitcount: 3 bytes_req: 144
267 { call_site: 18446744071580713234 } hitcount: 4 bytes_req: 2560
268 { call_site: 18446744071580933750 } hitcount: 4 bytes_req: 736
272 { call_site: 18446744072106047046 } hitcount: 69 bytes_req: 5576
273 { call_site: 18446744071582116407 } hitcount: 73 bytes_req: 2336
274 { call_site: 18446744072106054684 } hitcount: 136 bytes_req: 140504
275 { call_site: 18446744072106224230 } hitcount: 136 bytes_req: 19584
276 { call_site: 18446744072106078074 } hitcount: 153 bytes_req: 2448
277 { call_site: 18446744072106062406 } hitcount: 153 bytes_req: 36720
278 { call_site: 18446744071582507929 } hitcount: 153 bytes_req: 37088
279 { call_site: 18446744072102520590 } hitcount: 273 bytes_req: 10920
280 { call_site: 18446744071582143559 } hitcount: 358 bytes_req: 716
281 { call_site: 18446744072106465852 } hitcount: 417 bytes_req: 56712
282 { call_site: 18446744072102523378 } hitcount: 485 bytes_req: 27160
283 { call_site: 18446744072099568646 } hitcount: 1676 bytes_req: 33520
290 The output displays a line for each entry, beginning with the key
291 specified in the trigger, followed by the value(s) also specified in
292 the trigger. At the beginning of the output is a line that displays
293 the trigger info, which can also be displayed by reading the
296 # cat /sys/kernel/tracing/events/kmem/kmalloc/trigger
297 hist:keys=call_site:vals=bytes_req:sort=hitcount:size=2048 [active]
299 At the end of the output are a few lines that display the overall
300 totals for the run. The 'Hits' field shows the total number of
301 times the event trigger was hit, the 'Entries' field shows the total
302 number of used entries in the hash table, and the 'Dropped' field
303 shows the number of hits that were dropped because the number of
304 used entries for the run exceeded the maximum number of entries
305 allowed for the table (normally 0, but if not a hint that you may
306 want to increase the size of the table using the 'size' parameter).
308 Notice in the above output that there's an extra field, 'hitcount',
309 which wasn't specified in the trigger. Also notice that in the
310 trigger info output, there's a parameter, 'sort=hitcount', which
311 wasn't specified in the trigger either. The reason for that is that
312 every trigger implicitly keeps a count of the total number of hits
313 attributed to a given entry, called the 'hitcount'. That hitcount
314 information is explicitly displayed in the output, and in the
315 absence of a user-specified sort parameter, is used as the default
318 The value 'hitcount' can be used in place of an explicit value in
319 the 'values' parameter if you don't really need to have any
320 particular field summed and are mainly interested in hit
323 To turn the hist trigger off, simply call up the trigger in the
324 command history and re-execute it with a '!' prepended::
326 # echo '!hist:key=call_site:val=bytes_req' > \
327 /sys/kernel/tracing/events/kmem/kmalloc/trigger
329 Finally, notice that the call_site as displayed in the output above
330 isn't really very useful. It's an address, but normally addresses
331 are displayed in hex. To have a numeric field displayed as a hex
332 value, simply append '.hex' to the field name in the trigger::
334 # echo 'hist:key=call_site.hex:val=bytes_req' > \
335 /sys/kernel/tracing/events/kmem/kmalloc/trigger
337 # cat /sys/kernel/tracing/events/kmem/kmalloc/hist
338 # trigger info: hist:keys=call_site.hex:vals=bytes_req:sort=hitcount:size=2048 [active]
340 { call_site: ffffffffa026b291 } hitcount: 1 bytes_req: 433
341 { call_site: ffffffffa07186ff } hitcount: 1 bytes_req: 176
342 { call_site: ffffffff811ae721 } hitcount: 1 bytes_req: 16384
343 { call_site: ffffffff811c5134 } hitcount: 1 bytes_req: 8
344 { call_site: ffffffffa04a9ebb } hitcount: 1 bytes_req: 511
345 { call_site: ffffffff8122e0a6 } hitcount: 1 bytes_req: 12
346 { call_site: ffffffff8107da84 } hitcount: 1 bytes_req: 152
347 { call_site: ffffffff812d8246 } hitcount: 1 bytes_req: 24
348 { call_site: ffffffff811dc1e5 } hitcount: 3 bytes_req: 144
349 { call_site: ffffffffa02515e8 } hitcount: 3 bytes_req: 648
350 { call_site: ffffffff81258159 } hitcount: 3 bytes_req: 144
351 { call_site: ffffffff811c80f4 } hitcount: 4 bytes_req: 544
355 { call_site: ffffffffa06c7646 } hitcount: 106 bytes_req: 8024
356 { call_site: ffffffffa06cb246 } hitcount: 132 bytes_req: 31680
357 { call_site: ffffffffa06cef7a } hitcount: 132 bytes_req: 2112
358 { call_site: ffffffff8137e399 } hitcount: 132 bytes_req: 23232
359 { call_site: ffffffffa06c941c } hitcount: 185 bytes_req: 171360
360 { call_site: ffffffffa06f2a66 } hitcount: 185 bytes_req: 26640
361 { call_site: ffffffffa036a70e } hitcount: 265 bytes_req: 10600
362 { call_site: ffffffff81325447 } hitcount: 292 bytes_req: 584
363 { call_site: ffffffffa072da3c } hitcount: 446 bytes_req: 60656
364 { call_site: ffffffffa036b1f2 } hitcount: 526 bytes_req: 29456
365 { call_site: ffffffffa0099c06 } hitcount: 1780 bytes_req: 35600
372 Even that's only marginally more useful - while hex values do look
373 more like addresses, what users are typically more interested in
374 when looking at text addresses are the corresponding symbols
375 instead. To have an address displayed as symbolic value instead,
376 simply append '.sym' or '.sym-offset' to the field name in the
379 # echo 'hist:key=call_site.sym:val=bytes_req' > \
380 /sys/kernel/tracing/events/kmem/kmalloc/trigger
382 # cat /sys/kernel/tracing/events/kmem/kmalloc/hist
383 # trigger info: hist:keys=call_site.sym:vals=bytes_req:sort=hitcount:size=2048 [active]
385 { call_site: [ffffffff810adcb9] syslog_print_all } hitcount: 1 bytes_req: 1024
386 { call_site: [ffffffff8154bc62] usb_control_msg } hitcount: 1 bytes_req: 8
387 { call_site: [ffffffffa00bf6fe] hidraw_send_report [hid] } hitcount: 1 bytes_req: 7
388 { call_site: [ffffffff8154acbe] usb_alloc_urb } hitcount: 1 bytes_req: 192
389 { call_site: [ffffffffa00bf1ca] hidraw_report_event [hid] } hitcount: 1 bytes_req: 7
390 { call_site: [ffffffff811e3a25] __seq_open_private } hitcount: 1 bytes_req: 40
391 { call_site: [ffffffff8109524a] alloc_fair_sched_group } hitcount: 2 bytes_req: 128
392 { call_site: [ffffffff811febd5] fsnotify_alloc_group } hitcount: 2 bytes_req: 528
393 { call_site: [ffffffff81440f58] __tty_buffer_request_room } hitcount: 2 bytes_req: 2624
394 { call_site: [ffffffff81200ba6] inotify_new_group } hitcount: 2 bytes_req: 96
395 { call_site: [ffffffffa05e19af] ieee80211_start_tx_ba_session [mac80211] } hitcount: 2 bytes_req: 464
396 { call_site: [ffffffff81672406] tcp_get_metrics } hitcount: 2 bytes_req: 304
397 { call_site: [ffffffff81097ec2] alloc_rt_sched_group } hitcount: 2 bytes_req: 128
398 { call_site: [ffffffff81089b05] sched_create_group } hitcount: 2 bytes_req: 1424
402 { call_site: [ffffffffa04a580c] intel_crtc_page_flip [i915] } hitcount: 1185 bytes_req: 123240
403 { call_site: [ffffffffa0287592] drm_mode_page_flip_ioctl [drm] } hitcount: 1185 bytes_req: 104280
404 { call_site: [ffffffffa04c4a3c] intel_plane_duplicate_state [i915] } hitcount: 1402 bytes_req: 190672
405 { call_site: [ffffffff812891ca] ext4_find_extent } hitcount: 1518 bytes_req: 146208
406 { call_site: [ffffffffa029070e] drm_vma_node_allow [drm] } hitcount: 1746 bytes_req: 69840
407 { call_site: [ffffffffa045e7c4] i915_gem_do_execbuffer.isra.23 [i915] } hitcount: 2021 bytes_req: 792312
408 { call_site: [ffffffffa02911f2] drm_modeset_lock_crtc [drm] } hitcount: 2592 bytes_req: 145152
409 { call_site: [ffffffffa0489a66] intel_ring_begin [i915] } hitcount: 2629 bytes_req: 378576
410 { call_site: [ffffffffa046041c] i915_gem_execbuffer2 [i915] } hitcount: 2629 bytes_req: 3783248
411 { call_site: [ffffffff81325607] apparmor_file_alloc_security } hitcount: 5192 bytes_req: 10384
412 { call_site: [ffffffffa00b7c06] hid_report_raw_event [hid] } hitcount: 5529 bytes_req: 110584
413 { call_site: [ffffffff8131ebf7] aa_alloc_task_context } hitcount: 21943 bytes_req: 702176
414 { call_site: [ffffffff8125847d] ext4_htree_store_dirent } hitcount: 55759 bytes_req: 5074265
421 Because the default sort key above is 'hitcount', the above shows a
422 the list of call_sites by increasing hitcount, so that at the bottom
423 we see the functions that made the most kmalloc calls during the
424 run. If instead we wanted to see the top kmalloc callers in
425 terms of the number of bytes requested rather than the number of
426 calls, and we wanted the top caller to appear at the top, we can use
427 the 'sort' parameter, along with the 'descending' modifier::
429 # echo 'hist:key=call_site.sym:val=bytes_req:sort=bytes_req.descending' > \
430 /sys/kernel/tracing/events/kmem/kmalloc/trigger
432 # cat /sys/kernel/tracing/events/kmem/kmalloc/hist
433 # trigger info: hist:keys=call_site.sym:vals=bytes_req:sort=bytes_req.descending:size=2048 [active]
435 { call_site: [ffffffffa046041c] i915_gem_execbuffer2 [i915] } hitcount: 2186 bytes_req: 3397464
436 { call_site: [ffffffffa045e7c4] i915_gem_do_execbuffer.isra.23 [i915] } hitcount: 1790 bytes_req: 712176
437 { call_site: [ffffffff8125847d] ext4_htree_store_dirent } hitcount: 8132 bytes_req: 513135
438 { call_site: [ffffffff811e2a1b] seq_buf_alloc } hitcount: 106 bytes_req: 440128
439 { call_site: [ffffffffa0489a66] intel_ring_begin [i915] } hitcount: 2186 bytes_req: 314784
440 { call_site: [ffffffff812891ca] ext4_find_extent } hitcount: 2174 bytes_req: 208992
441 { call_site: [ffffffff811ae8e1] __kmalloc } hitcount: 8 bytes_req: 131072
442 { call_site: [ffffffffa04c4a3c] intel_plane_duplicate_state [i915] } hitcount: 859 bytes_req: 116824
443 { call_site: [ffffffffa02911f2] drm_modeset_lock_crtc [drm] } hitcount: 1834 bytes_req: 102704
444 { call_site: [ffffffffa04a580c] intel_crtc_page_flip [i915] } hitcount: 972 bytes_req: 101088
445 { call_site: [ffffffffa0287592] drm_mode_page_flip_ioctl [drm] } hitcount: 972 bytes_req: 85536
446 { call_site: [ffffffffa00b7c06] hid_report_raw_event [hid] } hitcount: 3333 bytes_req: 66664
447 { call_site: [ffffffff8137e559] sg_kmalloc } hitcount: 209 bytes_req: 61632
451 { call_site: [ffffffff81095225] alloc_fair_sched_group } hitcount: 2 bytes_req: 128
452 { call_site: [ffffffff81097ec2] alloc_rt_sched_group } hitcount: 2 bytes_req: 128
453 { call_site: [ffffffff812d8406] copy_semundo } hitcount: 2 bytes_req: 48
454 { call_site: [ffffffff81200ba6] inotify_new_group } hitcount: 1 bytes_req: 48
455 { call_site: [ffffffffa027121a] drm_getmagic [drm] } hitcount: 1 bytes_req: 48
456 { call_site: [ffffffff811e3a25] __seq_open_private } hitcount: 1 bytes_req: 40
457 { call_site: [ffffffff811c52f4] bprm_change_interp } hitcount: 2 bytes_req: 16
458 { call_site: [ffffffff8154bc62] usb_control_msg } hitcount: 1 bytes_req: 8
459 { call_site: [ffffffffa00bf1ca] hidraw_report_event [hid] } hitcount: 1 bytes_req: 7
460 { call_site: [ffffffffa00bf6fe] hidraw_send_report [hid] } hitcount: 1 bytes_req: 7
467 To display the offset and size information in addition to the symbol
468 name, just use 'sym-offset' instead::
470 # echo 'hist:key=call_site.sym-offset:val=bytes_req:sort=bytes_req.descending' > \
471 /sys/kernel/tracing/events/kmem/kmalloc/trigger
473 # cat /sys/kernel/tracing/events/kmem/kmalloc/hist
474 # trigger info: hist:keys=call_site.sym-offset:vals=bytes_req:sort=bytes_req.descending:size=2048 [active]
476 { call_site: [ffffffffa046041c] i915_gem_execbuffer2+0x6c/0x2c0 [i915] } hitcount: 4569 bytes_req: 3163720
477 { call_site: [ffffffffa0489a66] intel_ring_begin+0xc6/0x1f0 [i915] } hitcount: 4569 bytes_req: 657936
478 { call_site: [ffffffffa045e7c4] i915_gem_do_execbuffer.isra.23+0x694/0x1020 [i915] } hitcount: 1519 bytes_req: 472936
479 { call_site: [ffffffffa045e646] i915_gem_do_execbuffer.isra.23+0x516/0x1020 [i915] } hitcount: 3050 bytes_req: 211832
480 { call_site: [ffffffff811e2a1b] seq_buf_alloc+0x1b/0x50 } hitcount: 34 bytes_req: 148384
481 { call_site: [ffffffffa04a580c] intel_crtc_page_flip+0xbc/0x870 [i915] } hitcount: 1385 bytes_req: 144040
482 { call_site: [ffffffff811ae8e1] __kmalloc+0x191/0x1b0 } hitcount: 8 bytes_req: 131072
483 { call_site: [ffffffffa0287592] drm_mode_page_flip_ioctl+0x282/0x360 [drm] } hitcount: 1385 bytes_req: 121880
484 { call_site: [ffffffffa02911f2] drm_modeset_lock_crtc+0x32/0x100 [drm] } hitcount: 1848 bytes_req: 103488
485 { call_site: [ffffffffa04c4a3c] intel_plane_duplicate_state+0x2c/0xa0 [i915] } hitcount: 461 bytes_req: 62696
486 { call_site: [ffffffffa029070e] drm_vma_node_allow+0x2e/0xd0 [drm] } hitcount: 1541 bytes_req: 61640
487 { call_site: [ffffffff815f8d7b] sk_prot_alloc+0xcb/0x1b0 } hitcount: 57 bytes_req: 57456
491 { call_site: [ffffffff8109524a] alloc_fair_sched_group+0x5a/0x1a0 } hitcount: 2 bytes_req: 128
492 { call_site: [ffffffffa027b921] drm_vm_open_locked+0x31/0xa0 [drm] } hitcount: 3 bytes_req: 96
493 { call_site: [ffffffff8122e266] proc_self_follow_link+0x76/0xb0 } hitcount: 8 bytes_req: 96
494 { call_site: [ffffffff81213e80] load_elf_binary+0x240/0x1650 } hitcount: 3 bytes_req: 84
495 { call_site: [ffffffff8154bc62] usb_control_msg+0x42/0x110 } hitcount: 1 bytes_req: 8
496 { call_site: [ffffffffa00bf6fe] hidraw_send_report+0x7e/0x1a0 [hid] } hitcount: 1 bytes_req: 7
497 { call_site: [ffffffffa00bf1ca] hidraw_report_event+0x8a/0x120 [hid] } hitcount: 1 bytes_req: 7
504 We can also add multiple fields to the 'values' parameter. For
505 example, we might want to see the total number of bytes allocated
506 alongside bytes requested, and display the result sorted by bytes
507 allocated in a descending order::
509 # echo 'hist:keys=call_site.sym:values=bytes_req,bytes_alloc:sort=bytes_alloc.descending' > \
510 /sys/kernel/tracing/events/kmem/kmalloc/trigger
512 # cat /sys/kernel/tracing/events/kmem/kmalloc/hist
513 # trigger info: hist:keys=call_site.sym:vals=bytes_req,bytes_alloc:sort=bytes_alloc.descending:size=2048 [active]
515 { call_site: [ffffffffa046041c] i915_gem_execbuffer2 [i915] } hitcount: 7403 bytes_req: 4084360 bytes_alloc: 5958016
516 { call_site: [ffffffff811e2a1b] seq_buf_alloc } hitcount: 541 bytes_req: 2213968 bytes_alloc: 2228224
517 { call_site: [ffffffffa0489a66] intel_ring_begin [i915] } hitcount: 7404 bytes_req: 1066176 bytes_alloc: 1421568
518 { call_site: [ffffffffa045e7c4] i915_gem_do_execbuffer.isra.23 [i915] } hitcount: 1565 bytes_req: 557368 bytes_alloc: 1037760
519 { call_site: [ffffffff8125847d] ext4_htree_store_dirent } hitcount: 9557 bytes_req: 595778 bytes_alloc: 695744
520 { call_site: [ffffffffa045e646] i915_gem_do_execbuffer.isra.23 [i915] } hitcount: 5839 bytes_req: 430680 bytes_alloc: 470400
521 { call_site: [ffffffffa04c4a3c] intel_plane_duplicate_state [i915] } hitcount: 2388 bytes_req: 324768 bytes_alloc: 458496
522 { call_site: [ffffffffa02911f2] drm_modeset_lock_crtc [drm] } hitcount: 3911 bytes_req: 219016 bytes_alloc: 250304
523 { call_site: [ffffffff815f8d7b] sk_prot_alloc } hitcount: 235 bytes_req: 236880 bytes_alloc: 240640
524 { call_site: [ffffffff8137e559] sg_kmalloc } hitcount: 557 bytes_req: 169024 bytes_alloc: 221760
525 { call_site: [ffffffffa00b7c06] hid_report_raw_event [hid] } hitcount: 9378 bytes_req: 187548 bytes_alloc: 206312
526 { call_site: [ffffffffa04a580c] intel_crtc_page_flip [i915] } hitcount: 1519 bytes_req: 157976 bytes_alloc: 194432
530 { call_site: [ffffffff8109bd3b] sched_autogroup_create_attach } hitcount: 2 bytes_req: 144 bytes_alloc: 192
531 { call_site: [ffffffff81097ee8] alloc_rt_sched_group } hitcount: 2 bytes_req: 128 bytes_alloc: 128
532 { call_site: [ffffffff8109524a] alloc_fair_sched_group } hitcount: 2 bytes_req: 128 bytes_alloc: 128
533 { call_site: [ffffffff81095225] alloc_fair_sched_group } hitcount: 2 bytes_req: 128 bytes_alloc: 128
534 { call_site: [ffffffff81097ec2] alloc_rt_sched_group } hitcount: 2 bytes_req: 128 bytes_alloc: 128
535 { call_site: [ffffffff81213e80] load_elf_binary } hitcount: 3 bytes_req: 84 bytes_alloc: 96
536 { call_site: [ffffffff81079a2e] kthread_create_on_node } hitcount: 1 bytes_req: 56 bytes_alloc: 64
537 { call_site: [ffffffffa00bf6fe] hidraw_send_report [hid] } hitcount: 1 bytes_req: 7 bytes_alloc: 8
538 { call_site: [ffffffff8154bc62] usb_control_msg } hitcount: 1 bytes_req: 8 bytes_alloc: 8
539 { call_site: [ffffffffa00bf1ca] hidraw_report_event [hid] } hitcount: 1 bytes_req: 7 bytes_alloc: 8
546 Finally, to finish off our kmalloc example, instead of simply having
547 the hist trigger display symbolic call_sites, we can have the hist
548 trigger additionally display the complete set of kernel stack traces
549 that led to each call_site. To do that, we simply use the special
550 value 'common_stacktrace' for the key parameter::
552 # echo 'hist:keys=common_stacktrace:values=bytes_req,bytes_alloc:sort=bytes_alloc' > \
553 /sys/kernel/tracing/events/kmem/kmalloc/trigger
555 The above trigger will use the kernel stack trace in effect when an
556 event is triggered as the key for the hash table. This allows the
557 enumeration of every kernel callpath that led up to a particular
558 event, along with a running total of any of the event fields for
559 that event. Here we tally bytes requested and bytes allocated for
560 every callpath in the system that led up to a kmalloc (in this case
561 every callpath to a kmalloc for a kernel compile)::
563 # cat /sys/kernel/tracing/events/kmem/kmalloc/hist
564 # trigger info: hist:keys=common_stacktrace:vals=bytes_req,bytes_alloc:sort=bytes_alloc:size=2048 [active]
567 __kmalloc_track_caller+0x10b/0x1a0
569 hidraw_report_event+0x8a/0x120 [hid]
570 hid_report_raw_event+0x3ea/0x440 [hid]
571 hid_input_report+0x112/0x190 [hid]
572 hid_irq_in+0xc2/0x260 [usbhid]
573 __usb_hcd_giveback_urb+0x72/0x120
574 usb_giveback_urb_bh+0x9e/0xe0
575 tasklet_hi_action+0xf8/0x100
576 __do_softirq+0x114/0x2c0
579 ret_from_intr+0x0/0x30
580 cpuidle_enter+0x17/0x20
581 cpu_startup_entry+0x315/0x3e0
583 } hitcount: 3 bytes_req: 21 bytes_alloc: 24
585 __kmalloc_track_caller+0x10b/0x1a0
587 hidraw_report_event+0x8a/0x120 [hid]
588 hid_report_raw_event+0x3ea/0x440 [hid]
589 hid_input_report+0x112/0x190 [hid]
590 hid_irq_in+0xc2/0x260 [usbhid]
591 __usb_hcd_giveback_urb+0x72/0x120
592 usb_giveback_urb_bh+0x9e/0xe0
593 tasklet_hi_action+0xf8/0x100
594 __do_softirq+0x114/0x2c0
597 ret_from_intr+0x0/0x30
598 } hitcount: 3 bytes_req: 21 bytes_alloc: 24
600 kmem_cache_alloc_trace+0xeb/0x150
601 aa_alloc_task_context+0x27/0x40
602 apparmor_cred_prepare+0x1f/0x50
603 security_prepare_creds+0x16/0x20
604 prepare_creds+0xdf/0x1a0
605 SyS_capset+0xb5/0x200
606 system_call_fastpath+0x12/0x6a
607 } hitcount: 1 bytes_req: 32 bytes_alloc: 32
612 __kmalloc+0x11b/0x1b0
613 i915_gem_execbuffer2+0x6c/0x2c0 [i915]
614 drm_ioctl+0x349/0x670 [drm]
615 do_vfs_ioctl+0x2f0/0x4f0
617 system_call_fastpath+0x12/0x6a
618 } hitcount: 17726 bytes_req: 13944120 bytes_alloc: 19593808
620 __kmalloc+0x11b/0x1b0
621 load_elf_phdrs+0x76/0xa0
622 load_elf_binary+0x102/0x1650
623 search_binary_handler+0x97/0x1d0
624 do_execveat_common.isra.34+0x551/0x6e0
626 return_from_execve+0x0/0x23
627 } hitcount: 33348 bytes_req: 17152128 bytes_alloc: 20226048
629 kmem_cache_alloc_trace+0xeb/0x150
630 apparmor_file_alloc_security+0x27/0x40
631 security_file_alloc+0x16/0x20
632 get_empty_filp+0x93/0x1c0
633 path_openat+0x31/0x5f0
634 do_filp_open+0x3a/0x90
635 do_sys_open+0x128/0x220
637 system_call_fastpath+0x12/0x6a
638 } hitcount: 4766422 bytes_req: 9532844 bytes_alloc: 38131376
640 __kmalloc+0x11b/0x1b0
641 seq_buf_alloc+0x1b/0x50
643 proc_reg_read+0x3d/0x80
647 system_call_fastpath+0x12/0x6a
648 } hitcount: 19133 bytes_req: 78368768 bytes_alloc: 78368768
655 If you key a hist trigger on common_pid, in order for example to
656 gather and display sorted totals for each process, you can use the
657 special .execname modifier to display the executable names for the
658 processes in the table rather than raw pids. The example below
659 keeps a per-process sum of total bytes read::
661 # echo 'hist:key=common_pid.execname:val=count:sort=count.descending' > \
662 /sys/kernel/tracing/events/syscalls/sys_enter_read/trigger
664 # cat /sys/kernel/tracing/events/syscalls/sys_enter_read/hist
665 # trigger info: hist:keys=common_pid.execname:vals=count:sort=count.descending:size=2048 [active]
667 { common_pid: gnome-terminal [ 3196] } hitcount: 280 count: 1093512
668 { common_pid: Xorg [ 1309] } hitcount: 525 count: 256640
669 { common_pid: compiz [ 2889] } hitcount: 59 count: 254400
670 { common_pid: bash [ 8710] } hitcount: 3 count: 66369
671 { common_pid: dbus-daemon-lau [ 8703] } hitcount: 49 count: 47739
672 { common_pid: irqbalance [ 1252] } hitcount: 27 count: 27648
673 { common_pid: 01ifupdown [ 8705] } hitcount: 3 count: 17216
674 { common_pid: dbus-daemon [ 772] } hitcount: 10 count: 12396
675 { common_pid: Socket Thread [ 8342] } hitcount: 11 count: 11264
676 { common_pid: nm-dhcp-client. [ 8701] } hitcount: 6 count: 7424
677 { common_pid: gmain [ 1315] } hitcount: 18 count: 6336
681 { common_pid: postgres [ 1892] } hitcount: 2 count: 32
682 { common_pid: postgres [ 1891] } hitcount: 2 count: 32
683 { common_pid: gmain [ 8704] } hitcount: 2 count: 32
684 { common_pid: upstart-dbus-br [ 2740] } hitcount: 21 count: 21
685 { common_pid: nm-dispatcher.a [ 8696] } hitcount: 1 count: 16
686 { common_pid: indicator-datet [ 2904] } hitcount: 1 count: 16
687 { common_pid: gdbus [ 2998] } hitcount: 1 count: 16
688 { common_pid: rtkit-daemon [ 2052] } hitcount: 1 count: 8
689 { common_pid: init [ 1] } hitcount: 2 count: 2
696 Similarly, if you key a hist trigger on syscall id, for example to
697 gather and display a list of systemwide syscall hits, you can use
698 the special .syscall modifier to display the syscall names rather
699 than raw ids. The example below keeps a running total of syscall
700 counts for the system during the run::
702 # echo 'hist:key=id.syscall:val=hitcount' > \
703 /sys/kernel/tracing/events/raw_syscalls/sys_enter/trigger
705 # cat /sys/kernel/tracing/events/raw_syscalls/sys_enter/hist
706 # trigger info: hist:keys=id.syscall:vals=hitcount:sort=hitcount:size=2048 [active]
708 { id: sys_fsync [ 74] } hitcount: 1
709 { id: sys_newuname [ 63] } hitcount: 1
710 { id: sys_prctl [157] } hitcount: 1
711 { id: sys_statfs [137] } hitcount: 1
712 { id: sys_symlink [ 88] } hitcount: 1
713 { id: sys_sendmmsg [307] } hitcount: 1
714 { id: sys_semctl [ 66] } hitcount: 1
715 { id: sys_readlink [ 89] } hitcount: 3
716 { id: sys_bind [ 49] } hitcount: 3
717 { id: sys_getsockname [ 51] } hitcount: 3
718 { id: sys_unlink [ 87] } hitcount: 3
719 { id: sys_rename [ 82] } hitcount: 4
720 { id: unknown_syscall [ 58] } hitcount: 4
721 { id: sys_connect [ 42] } hitcount: 4
722 { id: sys_getpid [ 39] } hitcount: 4
726 { id: sys_rt_sigprocmask [ 14] } hitcount: 952
727 { id: sys_futex [202] } hitcount: 1534
728 { id: sys_write [ 1] } hitcount: 2689
729 { id: sys_setitimer [ 38] } hitcount: 2797
730 { id: sys_read [ 0] } hitcount: 3202
731 { id: sys_select [ 23] } hitcount: 3773
732 { id: sys_writev [ 20] } hitcount: 4531
733 { id: sys_poll [ 7] } hitcount: 8314
734 { id: sys_recvmsg [ 47] } hitcount: 13738
735 { id: sys_ioctl [ 16] } hitcount: 21843
742 The syscall counts above provide a rough overall picture of system
743 call activity on the system; we can see for example that the most
744 popular system call on this system was the 'sys_ioctl' system call.
746 We can use 'compound' keys to refine that number and provide some
747 further insight as to which processes exactly contribute to the
750 The command below keeps a hitcount for every unique combination of
751 system call id and pid - the end result is essentially a table
752 that keeps a per-pid sum of system call hits. The results are
753 sorted using the system call id as the primary key, and the
754 hitcount sum as the secondary key::
756 # echo 'hist:key=id.syscall,common_pid.execname:val=hitcount:sort=id,hitcount' > \
757 /sys/kernel/tracing/events/raw_syscalls/sys_enter/trigger
759 # cat /sys/kernel/tracing/events/raw_syscalls/sys_enter/hist
760 # trigger info: hist:keys=id.syscall,common_pid.execname:vals=hitcount:sort=id.syscall,hitcount:size=2048 [active]
762 { id: sys_read [ 0], common_pid: rtkit-daemon [ 1877] } hitcount: 1
763 { id: sys_read [ 0], common_pid: gdbus [ 2976] } hitcount: 1
764 { id: sys_read [ 0], common_pid: console-kit-dae [ 3400] } hitcount: 1
765 { id: sys_read [ 0], common_pid: postgres [ 1865] } hitcount: 1
766 { id: sys_read [ 0], common_pid: deja-dup-monito [ 3543] } hitcount: 2
767 { id: sys_read [ 0], common_pid: NetworkManager [ 890] } hitcount: 2
768 { id: sys_read [ 0], common_pid: evolution-calen [ 3048] } hitcount: 2
769 { id: sys_read [ 0], common_pid: postgres [ 1864] } hitcount: 2
770 { id: sys_read [ 0], common_pid: nm-applet [ 3022] } hitcount: 2
771 { id: sys_read [ 0], common_pid: whoopsie [ 1212] } hitcount: 2
775 { id: sys_ioctl [ 16], common_pid: bash [ 8479] } hitcount: 1
776 { id: sys_ioctl [ 16], common_pid: bash [ 3472] } hitcount: 12
777 { id: sys_ioctl [ 16], common_pid: gnome-terminal [ 3199] } hitcount: 16
778 { id: sys_ioctl [ 16], common_pid: Xorg [ 1267] } hitcount: 1808
779 { id: sys_ioctl [ 16], common_pid: compiz [ 2994] } hitcount: 5580
783 { id: sys_waitid [247], common_pid: upstart-dbus-br [ 2690] } hitcount: 3
784 { id: sys_waitid [247], common_pid: upstart-dbus-br [ 2688] } hitcount: 16
785 { id: sys_inotify_add_watch [254], common_pid: gmain [ 975] } hitcount: 2
786 { id: sys_inotify_add_watch [254], common_pid: gmain [ 3204] } hitcount: 4
787 { id: sys_inotify_add_watch [254], common_pid: gmain [ 2888] } hitcount: 4
788 { id: sys_inotify_add_watch [254], common_pid: gmain [ 3003] } hitcount: 4
789 { id: sys_inotify_add_watch [254], common_pid: gmain [ 2873] } hitcount: 4
790 { id: sys_inotify_add_watch [254], common_pid: gmain [ 3196] } hitcount: 6
791 { id: sys_openat [257], common_pid: java [ 2623] } hitcount: 2
792 { id: sys_eventfd2 [290], common_pid: ibus-ui-gtk3 [ 2760] } hitcount: 4
793 { id: sys_eventfd2 [290], common_pid: compiz [ 2994] } hitcount: 6
800 The above list does give us a breakdown of the ioctl syscall by
801 pid, but it also gives us quite a bit more than that, which we
802 don't really care about at the moment. Since we know the syscall
803 id for sys_ioctl (16, displayed next to the sys_ioctl name), we
804 can use that to filter out all the other syscalls::
806 # echo 'hist:key=id.syscall,common_pid.execname:val=hitcount:sort=id,hitcount if id == 16' > \
807 /sys/kernel/tracing/events/raw_syscalls/sys_enter/trigger
809 # cat /sys/kernel/tracing/events/raw_syscalls/sys_enter/hist
810 # trigger info: hist:keys=id.syscall,common_pid.execname:vals=hitcount:sort=id.syscall,hitcount:size=2048 if id == 16 [active]
812 { id: sys_ioctl [ 16], common_pid: gmain [ 2769] } hitcount: 1
813 { id: sys_ioctl [ 16], common_pid: evolution-addre [ 8571] } hitcount: 1
814 { id: sys_ioctl [ 16], common_pid: gmain [ 3003] } hitcount: 1
815 { id: sys_ioctl [ 16], common_pid: gmain [ 2781] } hitcount: 1
816 { id: sys_ioctl [ 16], common_pid: gmain [ 2829] } hitcount: 1
817 { id: sys_ioctl [ 16], common_pid: bash [ 8726] } hitcount: 1
818 { id: sys_ioctl [ 16], common_pid: bash [ 8508] } hitcount: 1
819 { id: sys_ioctl [ 16], common_pid: gmain [ 2970] } hitcount: 1
820 { id: sys_ioctl [ 16], common_pid: gmain [ 2768] } hitcount: 1
824 { id: sys_ioctl [ 16], common_pid: pool [ 8559] } hitcount: 45
825 { id: sys_ioctl [ 16], common_pid: pool [ 8555] } hitcount: 48
826 { id: sys_ioctl [ 16], common_pid: pool [ 8551] } hitcount: 48
827 { id: sys_ioctl [ 16], common_pid: avahi-daemon [ 896] } hitcount: 66
828 { id: sys_ioctl [ 16], common_pid: Xorg [ 1267] } hitcount: 26674
829 { id: sys_ioctl [ 16], common_pid: compiz [ 2994] } hitcount: 73443
836 The above output shows that 'compiz' and 'Xorg' are far and away
837 the heaviest ioctl callers (which might lead to questions about
838 whether they really need to be making all those calls and to
839 possible avenues for further investigation.)
841 The compound key examples used a key and a sum value (hitcount) to
842 sort the output, but we can just as easily use two keys instead.
843 Here's an example where we use a compound key composed of the the
844 common_pid and size event fields. Sorting with pid as the primary
845 key and 'size' as the secondary key allows us to display an
846 ordered summary of the recvfrom sizes, with counts, received by
849 # echo 'hist:key=common_pid.execname,size:val=hitcount:sort=common_pid,size' > \
850 /sys/kernel/tracing/events/syscalls/sys_enter_recvfrom/trigger
852 # cat /sys/kernel/tracing/events/syscalls/sys_enter_recvfrom/hist
853 # trigger info: hist:keys=common_pid.execname,size:vals=hitcount:sort=common_pid.execname,size:size=2048 [active]
855 { common_pid: smbd [ 784], size: 4 } hitcount: 1
856 { common_pid: dnsmasq [ 1412], size: 4096 } hitcount: 672
857 { common_pid: postgres [ 1796], size: 1000 } hitcount: 6
858 { common_pid: postgres [ 1867], size: 1000 } hitcount: 10
859 { common_pid: bamfdaemon [ 2787], size: 28 } hitcount: 2
860 { common_pid: bamfdaemon [ 2787], size: 14360 } hitcount: 1
861 { common_pid: compiz [ 2994], size: 8 } hitcount: 1
862 { common_pid: compiz [ 2994], size: 20 } hitcount: 11
863 { common_pid: gnome-terminal [ 3199], size: 4 } hitcount: 2
864 { common_pid: firefox [ 8817], size: 4 } hitcount: 1
865 { common_pid: firefox [ 8817], size: 8 } hitcount: 5
866 { common_pid: firefox [ 8817], size: 588 } hitcount: 2
867 { common_pid: firefox [ 8817], size: 628 } hitcount: 1
868 { common_pid: firefox [ 8817], size: 6944 } hitcount: 1
869 { common_pid: firefox [ 8817], size: 408880 } hitcount: 2
870 { common_pid: firefox [ 8822], size: 8 } hitcount: 2
871 { common_pid: firefox [ 8822], size: 160 } hitcount: 2
872 { common_pid: firefox [ 8822], size: 320 } hitcount: 2
873 { common_pid: firefox [ 8822], size: 352 } hitcount: 1
877 { common_pid: pool [ 8923], size: 1960 } hitcount: 10
878 { common_pid: pool [ 8923], size: 2048 } hitcount: 10
879 { common_pid: pool [ 8924], size: 1960 } hitcount: 10
880 { common_pid: pool [ 8924], size: 2048 } hitcount: 10
881 { common_pid: pool [ 8928], size: 1964 } hitcount: 4
882 { common_pid: pool [ 8928], size: 1965 } hitcount: 2
883 { common_pid: pool [ 8928], size: 2048 } hitcount: 6
884 { common_pid: pool [ 8929], size: 1982 } hitcount: 1
885 { common_pid: pool [ 8929], size: 2048 } hitcount: 1
892 The above example also illustrates the fact that although a compound
893 key is treated as a single entity for hashing purposes, the sub-keys
894 it's composed of can be accessed independently.
896 The next example uses a string field as the hash key and
897 demonstrates how you can manually pause and continue a hist trigger.
898 In this example, we'll aggregate fork counts and don't expect a
899 large number of entries in the hash table, so we'll drop it to a
900 much smaller number, say 256::
902 # echo 'hist:key=child_comm:val=hitcount:size=256' > \
903 /sys/kernel/tracing/events/sched/sched_process_fork/trigger
905 # cat /sys/kernel/tracing/events/sched/sched_process_fork/hist
906 # trigger info: hist:keys=child_comm:vals=hitcount:sort=hitcount:size=256 [active]
908 { child_comm: dconf worker } hitcount: 1
909 { child_comm: ibus-daemon } hitcount: 1
910 { child_comm: whoopsie } hitcount: 1
911 { child_comm: smbd } hitcount: 1
912 { child_comm: gdbus } hitcount: 1
913 { child_comm: kthreadd } hitcount: 1
914 { child_comm: dconf worker } hitcount: 1
915 { child_comm: evolution-alarm } hitcount: 2
916 { child_comm: Socket Thread } hitcount: 2
917 { child_comm: postgres } hitcount: 2
918 { child_comm: bash } hitcount: 3
919 { child_comm: compiz } hitcount: 3
920 { child_comm: evolution-sourc } hitcount: 4
921 { child_comm: dhclient } hitcount: 4
922 { child_comm: pool } hitcount: 5
923 { child_comm: nm-dispatcher.a } hitcount: 8
924 { child_comm: firefox } hitcount: 8
925 { child_comm: dbus-daemon } hitcount: 8
926 { child_comm: glib-pacrunner } hitcount: 10
927 { child_comm: evolution } hitcount: 23
934 If we want to pause the hist trigger, we can simply append :pause to
935 the command that started the trigger. Notice that the trigger info
936 displays as [paused]::
938 # echo 'hist:key=child_comm:val=hitcount:size=256:pause' >> \
939 /sys/kernel/tracing/events/sched/sched_process_fork/trigger
941 # cat /sys/kernel/tracing/events/sched/sched_process_fork/hist
942 # trigger info: hist:keys=child_comm:vals=hitcount:sort=hitcount:size=256 [paused]
944 { child_comm: dconf worker } hitcount: 1
945 { child_comm: kthreadd } hitcount: 1
946 { child_comm: dconf worker } hitcount: 1
947 { child_comm: gdbus } hitcount: 1
948 { child_comm: ibus-daemon } hitcount: 1
949 { child_comm: Socket Thread } hitcount: 2
950 { child_comm: evolution-alarm } hitcount: 2
951 { child_comm: smbd } hitcount: 2
952 { child_comm: bash } hitcount: 3
953 { child_comm: whoopsie } hitcount: 3
954 { child_comm: compiz } hitcount: 3
955 { child_comm: evolution-sourc } hitcount: 4
956 { child_comm: pool } hitcount: 5
957 { child_comm: postgres } hitcount: 6
958 { child_comm: firefox } hitcount: 8
959 { child_comm: dhclient } hitcount: 10
960 { child_comm: emacs } hitcount: 12
961 { child_comm: dbus-daemon } hitcount: 20
962 { child_comm: nm-dispatcher.a } hitcount: 20
963 { child_comm: evolution } hitcount: 35
964 { child_comm: glib-pacrunner } hitcount: 59
971 To manually continue having the trigger aggregate events, append
972 :cont instead. Notice that the trigger info displays as [active]
973 again, and the data has changed::
975 # echo 'hist:key=child_comm:val=hitcount:size=256:cont' >> \
976 /sys/kernel/tracing/events/sched/sched_process_fork/trigger
978 # cat /sys/kernel/tracing/events/sched/sched_process_fork/hist
979 # trigger info: hist:keys=child_comm:vals=hitcount:sort=hitcount:size=256 [active]
981 { child_comm: dconf worker } hitcount: 1
982 { child_comm: dconf worker } hitcount: 1
983 { child_comm: kthreadd } hitcount: 1
984 { child_comm: gdbus } hitcount: 1
985 { child_comm: ibus-daemon } hitcount: 1
986 { child_comm: Socket Thread } hitcount: 2
987 { child_comm: evolution-alarm } hitcount: 2
988 { child_comm: smbd } hitcount: 2
989 { child_comm: whoopsie } hitcount: 3
990 { child_comm: compiz } hitcount: 3
991 { child_comm: evolution-sourc } hitcount: 4
992 { child_comm: bash } hitcount: 5
993 { child_comm: pool } hitcount: 5
994 { child_comm: postgres } hitcount: 6
995 { child_comm: firefox } hitcount: 8
996 { child_comm: dhclient } hitcount: 11
997 { child_comm: emacs } hitcount: 12
998 { child_comm: dbus-daemon } hitcount: 22
999 { child_comm: nm-dispatcher.a } hitcount: 22
1000 { child_comm: evolution } hitcount: 35
1001 { child_comm: glib-pacrunner } hitcount: 59
1008 The previous example showed how to start and stop a hist trigger by
1009 appending 'pause' and 'continue' to the hist trigger command. A
1010 hist trigger can also be started in a paused state by initially
1011 starting the trigger with ':pause' appended. This allows you to
1012 start the trigger only when you're ready to start collecting data
1013 and not before. For example, you could start the trigger in a
1014 paused state, then unpause it and do something you want to measure,
1015 then pause the trigger again when done.
1017 Of course, doing this manually can be difficult and error-prone, but
1018 it is possible to automatically start and stop a hist trigger based
1019 on some condition, via the enable_hist and disable_hist triggers.
1021 For example, suppose we wanted to take a look at the relative
1022 weights in terms of skb length for each callpath that leads to a
1023 netif_receive_skb event when downloading a decent-sized file using
1026 First we set up an initially paused stacktrace trigger on the
1027 netif_receive_skb event::
1029 # echo 'hist:key=common_stacktrace:vals=len:pause' > \
1030 /sys/kernel/tracing/events/net/netif_receive_skb/trigger
1032 Next, we set up an 'enable_hist' trigger on the sched_process_exec
1033 event, with an 'if filename==/usr/bin/wget' filter. The effect of
1034 this new trigger is that it will 'unpause' the hist trigger we just
1035 set up on netif_receive_skb if and only if it sees a
1036 sched_process_exec event with a filename of '/usr/bin/wget'. When
1037 that happens, all netif_receive_skb events are aggregated into a
1038 hash table keyed on stacktrace::
1040 # echo 'enable_hist:net:netif_receive_skb if filename==/usr/bin/wget' > \
1041 /sys/kernel/tracing/events/sched/sched_process_exec/trigger
1043 The aggregation continues until the netif_receive_skb is paused
1044 again, which is what the following disable_hist event does by
1045 creating a similar setup on the sched_process_exit event, using the
1046 filter 'comm==wget'::
1048 # echo 'disable_hist:net:netif_receive_skb if comm==wget' > \
1049 /sys/kernel/tracing/events/sched/sched_process_exit/trigger
1051 Whenever a process exits and the comm field of the disable_hist
1052 trigger filter matches 'comm==wget', the netif_receive_skb hist
1053 trigger is disabled.
1055 The overall effect is that netif_receive_skb events are aggregated
1056 into the hash table for only the duration of the wget. Executing a
1057 wget command and then listing the 'hist' file will display the
1058 output generated by the wget command::
1060 $ wget https://www.kernel.org/pub/linux/kernel/v3.x/patch-3.19.xz
1062 # cat /sys/kernel/tracing/events/net/netif_receive_skb/hist
1063 # trigger info: hist:keys=common_stacktrace:vals=len:sort=hitcount:size=2048 [paused]
1065 { common_stacktrace:
1066 __netif_receive_skb_core+0x46d/0x990
1067 __netif_receive_skb+0x18/0x60
1068 netif_receive_skb_internal+0x23/0x90
1069 napi_gro_receive+0xc8/0x100
1070 ieee80211_deliver_skb+0xd6/0x270 [mac80211]
1071 ieee80211_rx_handlers+0xccf/0x22f0 [mac80211]
1072 ieee80211_prepare_and_rx_handle+0x4e7/0xc40 [mac80211]
1073 ieee80211_rx+0x31d/0x900 [mac80211]
1074 iwlagn_rx_reply_rx+0x3db/0x6f0 [iwldvm]
1075 iwl_rx_dispatch+0x8e/0xf0 [iwldvm]
1076 iwl_pcie_irq_handler+0xe3c/0x12f0 [iwlwifi]
1077 irq_thread_fn+0x20/0x50
1078 irq_thread+0x11f/0x150
1080 ret_from_fork+0x42/0x70
1081 } hitcount: 85 len: 28884
1082 { common_stacktrace:
1083 __netif_receive_skb_core+0x46d/0x990
1084 __netif_receive_skb+0x18/0x60
1085 netif_receive_skb_internal+0x23/0x90
1086 napi_gro_complete+0xa4/0xe0
1087 dev_gro_receive+0x23a/0x360
1088 napi_gro_receive+0x30/0x100
1089 ieee80211_deliver_skb+0xd6/0x270 [mac80211]
1090 ieee80211_rx_handlers+0xccf/0x22f0 [mac80211]
1091 ieee80211_prepare_and_rx_handle+0x4e7/0xc40 [mac80211]
1092 ieee80211_rx+0x31d/0x900 [mac80211]
1093 iwlagn_rx_reply_rx+0x3db/0x6f0 [iwldvm]
1094 iwl_rx_dispatch+0x8e/0xf0 [iwldvm]
1095 iwl_pcie_irq_handler+0xe3c/0x12f0 [iwlwifi]
1096 irq_thread_fn+0x20/0x50
1097 irq_thread+0x11f/0x150
1099 } hitcount: 98 len: 664329
1100 { common_stacktrace:
1101 __netif_receive_skb_core+0x46d/0x990
1102 __netif_receive_skb+0x18/0x60
1103 process_backlog+0xa8/0x150
1104 net_rx_action+0x15d/0x340
1105 __do_softirq+0x114/0x2c0
1106 do_softirq_own_stack+0x1c/0x30
1107 do_softirq+0x65/0x70
1108 __local_bh_enable_ip+0xb5/0xc0
1109 ip_finish_output+0x1f4/0x840
1111 ip_local_out_sk+0x31/0x40
1112 ip_send_skb+0x1a/0x50
1113 udp_send_skb+0x173/0x2a0
1114 udp_sendmsg+0x2bf/0x9f0
1115 inet_sendmsg+0x64/0xa0
1116 sock_sendmsg+0x3d/0x50
1117 } hitcount: 115 len: 13030
1118 { common_stacktrace:
1119 __netif_receive_skb_core+0x46d/0x990
1120 __netif_receive_skb+0x18/0x60
1121 netif_receive_skb_internal+0x23/0x90
1122 napi_gro_complete+0xa4/0xe0
1123 napi_gro_flush+0x6d/0x90
1124 iwl_pcie_irq_handler+0x92a/0x12f0 [iwlwifi]
1125 irq_thread_fn+0x20/0x50
1126 irq_thread+0x11f/0x150
1128 ret_from_fork+0x42/0x70
1129 } hitcount: 934 len: 5512212
1136 The above shows all the netif_receive_skb callpaths and their total
1137 lengths for the duration of the wget command.
1139 The 'clear' hist trigger param can be used to clear the hash table.
1140 Suppose we wanted to try another run of the previous example but
1141 this time also wanted to see the complete list of events that went
1142 into the histogram. In order to avoid having to set everything up
1143 again, we can just clear the histogram first::
1145 # echo 'hist:key=common_stacktrace:vals=len:clear' >> \
1146 /sys/kernel/tracing/events/net/netif_receive_skb/trigger
1148 Just to verify that it is in fact cleared, here's what we now see in
1151 # cat /sys/kernel/tracing/events/net/netif_receive_skb/hist
1152 # trigger info: hist:keys=common_stacktrace:vals=len:sort=hitcount:size=2048 [paused]
1159 Since we want to see the detailed list of every netif_receive_skb
1160 event occurring during the new run, which are in fact the same
1161 events being aggregated into the hash table, we add some additional
1162 'enable_event' events to the triggering sched_process_exec and
1163 sched_process_exit events as such::
1165 # echo 'enable_event:net:netif_receive_skb if filename==/usr/bin/wget' > \
1166 /sys/kernel/tracing/events/sched/sched_process_exec/trigger
1168 # echo 'disable_event:net:netif_receive_skb if comm==wget' > \
1169 /sys/kernel/tracing/events/sched/sched_process_exit/trigger
1171 If you read the trigger files for the sched_process_exec and
1172 sched_process_exit triggers, you should see two triggers for each:
1173 one enabling/disabling the hist aggregation and the other
1174 enabling/disabling the logging of events::
1176 # cat /sys/kernel/tracing/events/sched/sched_process_exec/trigger
1177 enable_event:net:netif_receive_skb:unlimited if filename==/usr/bin/wget
1178 enable_hist:net:netif_receive_skb:unlimited if filename==/usr/bin/wget
1180 # cat /sys/kernel/tracing/events/sched/sched_process_exit/trigger
1181 enable_event:net:netif_receive_skb:unlimited if comm==wget
1182 disable_hist:net:netif_receive_skb:unlimited if comm==wget
1184 In other words, whenever either of the sched_process_exec or
1185 sched_process_exit events is hit and matches 'wget', it enables or
1186 disables both the histogram and the event log, and what you end up
1187 with is a hash table and set of events just covering the specified
1188 duration. Run the wget command again::
1190 $ wget https://www.kernel.org/pub/linux/kernel/v3.x/patch-3.19.xz
1192 Displaying the 'hist' file should show something similar to what you
1193 saw in the last run, but this time you should also see the
1194 individual events in the trace file::
1196 # cat /sys/kernel/tracing/trace
1200 # entries-in-buffer/entries-written: 183/1426 #P:4
1203 # / _----=> need-resched
1204 # | / _---=> hardirq/softirq
1205 # || / _--=> preempt-depth
1207 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
1209 wget-15108 [000] ..s1 31769.606929: netif_receive_skb: dev=lo skbaddr=ffff88009c353100 len=60
1210 wget-15108 [000] ..s1 31769.606999: netif_receive_skb: dev=lo skbaddr=ffff88009c353200 len=60
1211 dnsmasq-1382 [000] ..s1 31769.677652: netif_receive_skb: dev=lo skbaddr=ffff88009c352b00 len=130
1212 dnsmasq-1382 [000] ..s1 31769.685917: netif_receive_skb: dev=lo skbaddr=ffff88009c352200 len=138
1213 ##### CPU 2 buffer started ####
1214 irq/29-iwlwifi-559 [002] ..s. 31772.031529: netif_receive_skb: dev=wlan0 skbaddr=ffff88009d433d00 len=2948
1215 irq/29-iwlwifi-559 [002] ..s. 31772.031572: netif_receive_skb: dev=wlan0 skbaddr=ffff88009d432200 len=1500
1216 irq/29-iwlwifi-559 [002] ..s. 31772.032196: netif_receive_skb: dev=wlan0 skbaddr=ffff88009d433100 len=2948
1217 irq/29-iwlwifi-559 [002] ..s. 31772.032761: netif_receive_skb: dev=wlan0 skbaddr=ffff88009d433000 len=2948
1218 irq/29-iwlwifi-559 [002] ..s. 31772.033220: netif_receive_skb: dev=wlan0 skbaddr=ffff88009d432e00 len=1500
1223 The following example demonstrates how multiple hist triggers can be
1224 attached to a given event. This capability can be useful for
1225 creating a set of different summaries derived from the same set of
1226 events, or for comparing the effects of different filters, among
1229 # echo 'hist:keys=skbaddr.hex:vals=len if len < 0' >> \
1230 /sys/kernel/tracing/events/net/netif_receive_skb/trigger
1231 # echo 'hist:keys=skbaddr.hex:vals=len if len > 4096' >> \
1232 /sys/kernel/tracing/events/net/netif_receive_skb/trigger
1233 # echo 'hist:keys=skbaddr.hex:vals=len if len == 256' >> \
1234 /sys/kernel/tracing/events/net/netif_receive_skb/trigger
1235 # echo 'hist:keys=skbaddr.hex:vals=len' >> \
1236 /sys/kernel/tracing/events/net/netif_receive_skb/trigger
1237 # echo 'hist:keys=len:vals=common_preempt_count' >> \
1238 /sys/kernel/tracing/events/net/netif_receive_skb/trigger
1240 The above set of commands create four triggers differing only in
1241 their filters, along with a completely different though fairly
1242 nonsensical trigger. Note that in order to append multiple hist
1243 triggers to the same file, you should use the '>>' operator to
1244 append them ('>' will also add the new hist trigger, but will remove
1245 any existing hist triggers beforehand).
1247 Displaying the contents of the 'hist' file for the event shows the
1248 contents of all five histograms::
1250 # cat /sys/kernel/tracing/events/net/netif_receive_skb/hist
1254 # trigger info: hist:keys=len:vals=hitcount,common_preempt_count:sort=hitcount:size=2048 [active]
1257 { len: 176 } hitcount: 1 common_preempt_count: 0
1258 { len: 223 } hitcount: 1 common_preempt_count: 0
1259 { len: 4854 } hitcount: 1 common_preempt_count: 0
1260 { len: 395 } hitcount: 1 common_preempt_count: 0
1261 { len: 177 } hitcount: 1 common_preempt_count: 0
1262 { len: 446 } hitcount: 1 common_preempt_count: 0
1263 { len: 1601 } hitcount: 1 common_preempt_count: 0
1267 { len: 1280 } hitcount: 66 common_preempt_count: 0
1268 { len: 116 } hitcount: 81 common_preempt_count: 40
1269 { len: 708 } hitcount: 112 common_preempt_count: 0
1270 { len: 46 } hitcount: 221 common_preempt_count: 0
1271 { len: 1264 } hitcount: 458 common_preempt_count: 0
1281 # trigger info: hist:keys=skbaddr.hex:vals=hitcount,len:sort=hitcount:size=2048 [active]
1284 { skbaddr: ffff8800baee5e00 } hitcount: 1 len: 130
1285 { skbaddr: ffff88005f3d5600 } hitcount: 1 len: 1280
1286 { skbaddr: ffff88005f3d4900 } hitcount: 1 len: 1280
1287 { skbaddr: ffff88009fed6300 } hitcount: 1 len: 115
1288 { skbaddr: ffff88009fe0ad00 } hitcount: 1 len: 115
1289 { skbaddr: ffff88008cdb1900 } hitcount: 1 len: 46
1290 { skbaddr: ffff880064b5ef00 } hitcount: 1 len: 118
1291 { skbaddr: ffff880044e3c700 } hitcount: 1 len: 60
1292 { skbaddr: ffff880100065900 } hitcount: 1 len: 46
1293 { skbaddr: ffff8800d46bd500 } hitcount: 1 len: 116
1294 { skbaddr: ffff88005f3d5f00 } hitcount: 1 len: 1280
1295 { skbaddr: ffff880100064700 } hitcount: 1 len: 365
1296 { skbaddr: ffff8800badb6f00 } hitcount: 1 len: 60
1300 { skbaddr: ffff88009fe0be00 } hitcount: 27 len: 24677
1301 { skbaddr: ffff88009fe0a400 } hitcount: 27 len: 23052
1302 { skbaddr: ffff88009fe0b700 } hitcount: 31 len: 25589
1303 { skbaddr: ffff88009fe0b600 } hitcount: 32 len: 27326
1304 { skbaddr: ffff88006a462800 } hitcount: 68 len: 71678
1305 { skbaddr: ffff88006a463700 } hitcount: 70 len: 72678
1306 { skbaddr: ffff88006a462b00 } hitcount: 71 len: 77589
1307 { skbaddr: ffff88006a463600 } hitcount: 73 len: 71307
1308 { skbaddr: ffff88006a462200 } hitcount: 81 len: 81032
1318 # trigger info: hist:keys=skbaddr.hex:vals=hitcount,len:sort=hitcount:size=2048 if len == 256 [active]
1330 # trigger info: hist:keys=skbaddr.hex:vals=hitcount,len:sort=hitcount:size=2048 if len > 4096 [active]
1333 { skbaddr: ffff88009fd2c300 } hitcount: 1 len: 7212
1334 { skbaddr: ffff8800d2bcce00 } hitcount: 1 len: 7212
1335 { skbaddr: ffff8800d2bcd700 } hitcount: 1 len: 7212
1336 { skbaddr: ffff8800d2bcda00 } hitcount: 1 len: 21492
1337 { skbaddr: ffff8800ae2e2d00 } hitcount: 1 len: 7212
1338 { skbaddr: ffff8800d2bcdb00 } hitcount: 1 len: 7212
1339 { skbaddr: ffff88006a4df500 } hitcount: 1 len: 4854
1340 { skbaddr: ffff88008ce47b00 } hitcount: 1 len: 18636
1341 { skbaddr: ffff8800ae2e2200 } hitcount: 1 len: 12924
1342 { skbaddr: ffff88005f3e1000 } hitcount: 1 len: 4356
1343 { skbaddr: ffff8800d2bcdc00 } hitcount: 2 len: 24420
1344 { skbaddr: ffff8800d2bcc200 } hitcount: 2 len: 12996
1354 # trigger info: hist:keys=skbaddr.hex:vals=hitcount,len:sort=hitcount:size=2048 if len < 0 [active]
1363 Named triggers can be used to have triggers share a common set of
1364 histogram data. This capability is mostly useful for combining the
1365 output of events generated by tracepoints contained inside inline
1366 functions, but names can be used in a hist trigger on any event.
1367 For example, these two triggers when hit will update the same 'len'
1368 field in the shared 'foo' histogram data::
1370 # echo 'hist:name=foo:keys=skbaddr.hex:vals=len' > \
1371 /sys/kernel/tracing/events/net/netif_receive_skb/trigger
1372 # echo 'hist:name=foo:keys=skbaddr.hex:vals=len' > \
1373 /sys/kernel/tracing/events/net/netif_rx/trigger
1375 You can see that they're updating common histogram data by reading
1376 each event's hist files at the same time::
1378 # cat /sys/kernel/tracing/events/net/netif_receive_skb/hist;
1379 cat /sys/kernel/tracing/events/net/netif_rx/hist
1383 # trigger info: hist:name=foo:keys=skbaddr.hex:vals=hitcount,len:sort=hitcount:size=2048 [active]
1386 { skbaddr: ffff88000ad53500 } hitcount: 1 len: 46
1387 { skbaddr: ffff8800af5a1500 } hitcount: 1 len: 76
1388 { skbaddr: ffff8800d62a1900 } hitcount: 1 len: 46
1389 { skbaddr: ffff8800d2bccb00 } hitcount: 1 len: 468
1390 { skbaddr: ffff8800d3c69900 } hitcount: 1 len: 46
1391 { skbaddr: ffff88009ff09100 } hitcount: 1 len: 52
1392 { skbaddr: ffff88010f13ab00 } hitcount: 1 len: 168
1393 { skbaddr: ffff88006a54f400 } hitcount: 1 len: 46
1394 { skbaddr: ffff8800d2bcc500 } hitcount: 1 len: 260
1395 { skbaddr: ffff880064505000 } hitcount: 1 len: 46
1396 { skbaddr: ffff8800baf24e00 } hitcount: 1 len: 32
1397 { skbaddr: ffff88009fe0ad00 } hitcount: 1 len: 46
1398 { skbaddr: ffff8800d3edff00 } hitcount: 1 len: 44
1399 { skbaddr: ffff88009fe0b400 } hitcount: 1 len: 168
1400 { skbaddr: ffff8800a1c55a00 } hitcount: 1 len: 40
1401 { skbaddr: ffff8800d2bcd100 } hitcount: 1 len: 40
1402 { skbaddr: ffff880064505f00 } hitcount: 1 len: 174
1403 { skbaddr: ffff8800a8bff200 } hitcount: 1 len: 160
1404 { skbaddr: ffff880044e3cc00 } hitcount: 1 len: 76
1405 { skbaddr: ffff8800a8bfe700 } hitcount: 1 len: 46
1406 { skbaddr: ffff8800d2bcdc00 } hitcount: 1 len: 32
1407 { skbaddr: ffff8800a1f64800 } hitcount: 1 len: 46
1408 { skbaddr: ffff8800d2bcde00 } hitcount: 1 len: 988
1409 { skbaddr: ffff88006a5dea00 } hitcount: 1 len: 46
1410 { skbaddr: ffff88002e37a200 } hitcount: 1 len: 44
1411 { skbaddr: ffff8800a1f32c00 } hitcount: 2 len: 676
1412 { skbaddr: ffff88000ad52600 } hitcount: 2 len: 107
1413 { skbaddr: ffff8800a1f91e00 } hitcount: 2 len: 92
1414 { skbaddr: ffff8800af5a0200 } hitcount: 2 len: 142
1415 { skbaddr: ffff8800d2bcc600 } hitcount: 2 len: 220
1416 { skbaddr: ffff8800ba36f500 } hitcount: 2 len: 92
1417 { skbaddr: ffff8800d021f800 } hitcount: 2 len: 92
1418 { skbaddr: ffff8800a1f33600 } hitcount: 2 len: 675
1419 { skbaddr: ffff8800a8bfff00 } hitcount: 3 len: 138
1420 { skbaddr: ffff8800d62a1300 } hitcount: 3 len: 138
1421 { skbaddr: ffff88002e37a100 } hitcount: 4 len: 184
1422 { skbaddr: ffff880064504400 } hitcount: 4 len: 184
1423 { skbaddr: ffff8800a8bfec00 } hitcount: 4 len: 184
1424 { skbaddr: ffff88000ad53700 } hitcount: 5 len: 230
1425 { skbaddr: ffff8800d2bcdb00 } hitcount: 5 len: 196
1426 { skbaddr: ffff8800a1f90000 } hitcount: 6 len: 276
1427 { skbaddr: ffff88006a54f900 } hitcount: 6 len: 276
1435 # trigger info: hist:name=foo:keys=skbaddr.hex:vals=hitcount,len:sort=hitcount:size=2048 [active]
1438 { skbaddr: ffff88000ad53500 } hitcount: 1 len: 46
1439 { skbaddr: ffff8800af5a1500 } hitcount: 1 len: 76
1440 { skbaddr: ffff8800d62a1900 } hitcount: 1 len: 46
1441 { skbaddr: ffff8800d2bccb00 } hitcount: 1 len: 468
1442 { skbaddr: ffff8800d3c69900 } hitcount: 1 len: 46
1443 { skbaddr: ffff88009ff09100 } hitcount: 1 len: 52
1444 { skbaddr: ffff88010f13ab00 } hitcount: 1 len: 168
1445 { skbaddr: ffff88006a54f400 } hitcount: 1 len: 46
1446 { skbaddr: ffff8800d2bcc500 } hitcount: 1 len: 260
1447 { skbaddr: ffff880064505000 } hitcount: 1 len: 46
1448 { skbaddr: ffff8800baf24e00 } hitcount: 1 len: 32
1449 { skbaddr: ffff88009fe0ad00 } hitcount: 1 len: 46
1450 { skbaddr: ffff8800d3edff00 } hitcount: 1 len: 44
1451 { skbaddr: ffff88009fe0b400 } hitcount: 1 len: 168
1452 { skbaddr: ffff8800a1c55a00 } hitcount: 1 len: 40
1453 { skbaddr: ffff8800d2bcd100 } hitcount: 1 len: 40
1454 { skbaddr: ffff880064505f00 } hitcount: 1 len: 174
1455 { skbaddr: ffff8800a8bff200 } hitcount: 1 len: 160
1456 { skbaddr: ffff880044e3cc00 } hitcount: 1 len: 76
1457 { skbaddr: ffff8800a8bfe700 } hitcount: 1 len: 46
1458 { skbaddr: ffff8800d2bcdc00 } hitcount: 1 len: 32
1459 { skbaddr: ffff8800a1f64800 } hitcount: 1 len: 46
1460 { skbaddr: ffff8800d2bcde00 } hitcount: 1 len: 988
1461 { skbaddr: ffff88006a5dea00 } hitcount: 1 len: 46
1462 { skbaddr: ffff88002e37a200 } hitcount: 1 len: 44
1463 { skbaddr: ffff8800a1f32c00 } hitcount: 2 len: 676
1464 { skbaddr: ffff88000ad52600 } hitcount: 2 len: 107
1465 { skbaddr: ffff8800a1f91e00 } hitcount: 2 len: 92
1466 { skbaddr: ffff8800af5a0200 } hitcount: 2 len: 142
1467 { skbaddr: ffff8800d2bcc600 } hitcount: 2 len: 220
1468 { skbaddr: ffff8800ba36f500 } hitcount: 2 len: 92
1469 { skbaddr: ffff8800d021f800 } hitcount: 2 len: 92
1470 { skbaddr: ffff8800a1f33600 } hitcount: 2 len: 675
1471 { skbaddr: ffff8800a8bfff00 } hitcount: 3 len: 138
1472 { skbaddr: ffff8800d62a1300 } hitcount: 3 len: 138
1473 { skbaddr: ffff88002e37a100 } hitcount: 4 len: 184
1474 { skbaddr: ffff880064504400 } hitcount: 4 len: 184
1475 { skbaddr: ffff8800a8bfec00 } hitcount: 4 len: 184
1476 { skbaddr: ffff88000ad53700 } hitcount: 5 len: 230
1477 { skbaddr: ffff8800d2bcdb00 } hitcount: 5 len: 196
1478 { skbaddr: ffff8800a1f90000 } hitcount: 6 len: 276
1479 { skbaddr: ffff88006a54f900 } hitcount: 6 len: 276
1486 And here's an example that shows how to combine histogram data from
1487 any two events even if they don't share any 'compatible' fields
1488 other than 'hitcount' and 'common_stacktrace'. These commands create a
1489 couple of triggers named 'bar' using those fields::
1491 # echo 'hist:name=bar:key=common_stacktrace:val=hitcount' > \
1492 /sys/kernel/tracing/events/sched/sched_process_fork/trigger
1493 # echo 'hist:name=bar:key=common_stacktrace:val=hitcount' > \
1494 /sys/kernel/tracing/events/net/netif_rx/trigger
1496 And displaying the output of either shows some interesting if
1497 somewhat confusing output::
1499 # cat /sys/kernel/tracing/events/sched/sched_process_fork/hist
1500 # cat /sys/kernel/tracing/events/net/netif_rx/hist
1504 # trigger info: hist:name=bar:keys=common_stacktrace:vals=hitcount:sort=hitcount:size=2048 [active]
1507 { common_stacktrace:
1508 kernel_clone+0x18e/0x330
1509 kernel_thread+0x29/0x30
1510 kthreadd+0x154/0x1b0
1511 ret_from_fork+0x3f/0x70
1513 { common_stacktrace:
1514 netif_rx_internal+0xb2/0xd0
1515 netif_rx_ni+0x20/0x70
1516 dev_loopback_xmit+0xaa/0xd0
1517 ip_mc_output+0x126/0x240
1518 ip_local_out_sk+0x31/0x40
1519 igmp_send_report+0x1e9/0x230
1520 igmp_timer_expire+0xe9/0x120
1521 call_timer_fn+0x39/0xf0
1522 run_timer_softirq+0x1e1/0x290
1523 __do_softirq+0xfd/0x290
1525 smp_apic_timer_interrupt+0x4a/0x60
1526 apic_timer_interrupt+0x6d/0x80
1527 cpuidle_enter+0x17/0x20
1528 call_cpuidle+0x3b/0x60
1529 cpu_startup_entry+0x22d/0x310
1531 { common_stacktrace:
1532 netif_rx_internal+0xb2/0xd0
1533 netif_rx_ni+0x20/0x70
1534 dev_loopback_xmit+0xaa/0xd0
1535 ip_mc_output+0x17f/0x240
1536 ip_local_out_sk+0x31/0x40
1537 ip_send_skb+0x1a/0x50
1538 udp_send_skb+0x13e/0x270
1539 udp_sendmsg+0x2bf/0x980
1540 inet_sendmsg+0x67/0xa0
1541 sock_sendmsg+0x38/0x50
1542 SYSC_sendto+0xef/0x170
1544 entry_SYSCALL_64_fastpath+0x12/0x6a
1546 { common_stacktrace:
1547 netif_rx_internal+0xb2/0xd0
1549 loopback_xmit+0x6c/0xb0
1550 dev_hard_start_xmit+0x219/0x3a0
1551 __dev_queue_xmit+0x415/0x4f0
1552 dev_queue_xmit_sk+0x13/0x20
1553 ip_finish_output2+0x237/0x340
1554 ip_finish_output+0x113/0x1d0
1556 ip_local_out_sk+0x31/0x40
1557 ip_send_skb+0x1a/0x50
1558 udp_send_skb+0x16d/0x270
1559 udp_sendmsg+0x2bf/0x980
1560 inet_sendmsg+0x67/0xa0
1561 sock_sendmsg+0x38/0x50
1562 ___sys_sendmsg+0x14e/0x270
1564 { common_stacktrace:
1565 netif_rx_internal+0xb2/0xd0
1567 loopback_xmit+0x6c/0xb0
1568 dev_hard_start_xmit+0x219/0x3a0
1569 __dev_queue_xmit+0x415/0x4f0
1570 dev_queue_xmit_sk+0x13/0x20
1571 ip_finish_output2+0x237/0x340
1572 ip_finish_output+0x113/0x1d0
1574 ip_local_out_sk+0x31/0x40
1575 ip_send_skb+0x1a/0x50
1576 udp_send_skb+0x16d/0x270
1577 udp_sendmsg+0x2bf/0x980
1578 inet_sendmsg+0x67/0xa0
1579 sock_sendmsg+0x38/0x50
1580 ___sys_sendmsg+0x269/0x270
1582 { common_stacktrace:
1583 netif_rx_internal+0xb2/0xd0
1585 loopback_xmit+0x6c/0xb0
1586 dev_hard_start_xmit+0x219/0x3a0
1587 __dev_queue_xmit+0x415/0x4f0
1588 dev_queue_xmit_sk+0x13/0x20
1589 ip_finish_output2+0x237/0x340
1590 ip_finish_output+0x113/0x1d0
1592 ip_local_out_sk+0x31/0x40
1593 ip_send_skb+0x1a/0x50
1594 udp_send_skb+0x16d/0x270
1595 udp_sendmsg+0x2bf/0x980
1596 inet_sendmsg+0x67/0xa0
1597 sock_sendmsg+0x38/0x50
1598 SYSC_sendto+0xef/0x170
1600 { common_stacktrace:
1601 kernel_clone+0x18e/0x330
1603 entry_SYSCALL_64_fastpath+0x12/0x6a
1611 2.2 Inter-event hist triggers
1612 -----------------------------
1614 Inter-event hist triggers are hist triggers that combine values from
1615 one or more other events and create a histogram using that data. Data
1616 from an inter-event histogram can in turn become the source for
1617 further combined histograms, thus providing a chain of related
1618 histograms, which is important for some applications.
1620 The most important example of an inter-event quantity that can be used
1621 in this manner is latency, which is simply a difference in timestamps
1622 between two events. Although latency is the most important
1623 inter-event quantity, note that because the support is completely
1624 general across the trace event subsystem, any event field can be used
1625 in an inter-event quantity.
1627 An example of a histogram that combines data from other histograms
1628 into a useful chain would be a 'wakeupswitch latency' histogram that
1629 combines a 'wakeup latency' histogram and a 'switch latency'
1632 Normally, a hist trigger specification consists of a (possibly
1633 compound) key along with one or more numeric values, which are
1634 continually updated sums associated with that key. A histogram
1635 specification in this case consists of individual key and value
1636 specifications that refer to trace event fields associated with a
1639 The inter-event hist trigger extension allows fields from multiple
1640 events to be referenced and combined into a multi-event histogram
1641 specification. In support of this overall goal, a few enabling
1642 features have been added to the hist trigger support:
1644 - In order to compute an inter-event quantity, a value from one
1645 event needs to saved and then referenced from another event. This
1646 requires the introduction of support for histogram 'variables'.
1648 - The computation of inter-event quantities and their combination
1649 require some minimal amount of support for applying simple
1650 expressions to variables (+ and -).
1652 - A histogram consisting of inter-event quantities isn't logically a
1653 histogram on either event (so having the 'hist' file for either
1654 event host the histogram output doesn't really make sense). To
1655 address the idea that the histogram is associated with a
1656 combination of events, support is added allowing the creation of
1657 'synthetic' events that are events derived from other events.
1658 These synthetic events are full-fledged events just like any other
1659 and can be used as such, as for instance to create the
1660 'combination' histograms mentioned previously.
1662 - A set of 'actions' can be associated with histogram entries -
1663 these can be used to generate the previously mentioned synthetic
1664 events, but can also be used for other purposes, such as for
1665 example saving context when a 'max' latency has been hit.
1667 - Trace events don't have a 'timestamp' associated with them, but
1668 there is an implicit timestamp saved along with an event in the
1669 underlying ftrace ring buffer. This timestamp is now exposed as a
1670 a synthetic field named 'common_timestamp' which can be used in
1671 histograms as if it were any other event field; it isn't an actual
1672 field in the trace format but rather is a synthesized value that
1673 nonetheless can be used as if it were an actual field. By default
1674 it is in units of nanoseconds; appending '.usecs' to a
1675 common_timestamp field changes the units to microseconds.
1677 A note on inter-event timestamps: If common_timestamp is used in a
1678 histogram, the trace buffer is automatically switched over to using
1679 absolute timestamps and the "global" trace clock, in order to avoid
1680 bogus timestamp differences with other clocks that aren't coherent
1681 across CPUs. This can be overridden by specifying one of the other
1682 trace clocks instead, using the "clock=XXX" hist trigger attribute,
1683 where XXX is any of the clocks listed in the tracing/trace_clock
1686 These features are described in more detail in the following sections.
1688 2.2.1 Histogram Variables
1689 -------------------------
1691 Variables are simply named locations used for saving and retrieving
1692 values between matching events. A 'matching' event is defined as an
1693 event that has a matching key - if a variable is saved for a histogram
1694 entry corresponding to that key, any subsequent event with a matching
1695 key can access that variable.
1697 A variable's value is normally available to any subsequent event until
1698 it is set to something else by a subsequent event. The one exception
1699 to that rule is that any variable used in an expression is essentially
1700 'read-once' - once it's used by an expression in a subsequent event,
1701 it's reset to its 'unset' state, which means it can't be used again
1702 unless it's set again. This ensures not only that an event doesn't
1703 use an uninitialized variable in a calculation, but that that variable
1704 is used only once and not for any unrelated subsequent match.
1706 The basic syntax for saving a variable is to simply prefix a unique
1707 variable name not corresponding to any keyword along with an '=' sign
1710 Either keys or values can be saved and retrieved in this way. This
1711 creates a variable named 'ts0' for a histogram entry with the key
1714 # echo 'hist:keys=next_pid:vals=$ts0:ts0=common_timestamp ... >> \
1717 The ts0 variable can be accessed by any subsequent event having the
1718 same pid as 'next_pid'.
1720 Variable references are formed by prepending the variable name with
1721 the '$' sign. Thus for example, the ts0 variable above would be
1722 referenced as '$ts0' in expressions.
1724 Because 'vals=' is used, the common_timestamp variable value above
1725 will also be summed as a normal histogram value would (though for a
1726 timestamp it makes little sense).
1728 The below shows that a key value can also be saved in the same way::
1730 # echo 'hist:timer_pid=common_pid:key=timer_pid ...' >> event/trigger
1732 If a variable isn't a key variable or prefixed with 'vals=', the
1733 associated event field will be saved in a variable but won't be summed
1736 # echo 'hist:keys=next_pid:ts1=common_timestamp ...' >> event/trigger
1738 Multiple variables can be assigned at the same time. The below would
1739 result in both ts0 and b being created as variables, with both
1740 common_timestamp and field1 additionally being summed as values::
1742 # echo 'hist:keys=pid:vals=$ts0,$b:ts0=common_timestamp,b=field1 ...' >> \
1745 Note that variable assignments can appear either preceding or
1746 following their use. The command below behaves identically to the
1749 # echo 'hist:keys=pid:ts0=common_timestamp,b=field1:vals=$ts0,$b ...' >> \
1752 Any number of variables not bound to a 'vals=' prefix can also be
1753 assigned by simply separating them with colons. Below is the same
1754 thing but without the values being summed in the histogram::
1756 # echo 'hist:keys=pid:ts0=common_timestamp:b=field1 ...' >> event/trigger
1758 Variables set as above can be referenced and used in expressions on
1761 For example, here's how a latency can be calculated::
1763 # echo 'hist:keys=pid,prio:ts0=common_timestamp ...' >> event1/trigger
1764 # echo 'hist:keys=next_pid:wakeup_lat=common_timestamp-$ts0 ...' >> event2/trigger
1766 In the first line above, the event's timestamp is saved into the
1767 variable ts0. In the next line, ts0 is subtracted from the second
1768 event's timestamp to produce the latency, which is then assigned into
1769 yet another variable, 'wakeup_lat'. The hist trigger below in turn
1770 makes use of the wakeup_lat variable to compute a combined latency
1771 using the same key and variable from yet another event::
1773 # echo 'hist:key=pid:wakeupswitch_lat=$wakeup_lat+$switchtime_lat ...' >> event3/trigger
1775 Expressions support the use of addition, subtraction, multiplication and
1776 division operators (+-\*/).
1778 Note if division by zero cannot be detected at parse time (i.e. the
1779 divisor is not a constant), the result will be -1.
1781 Numeric constants can also be used directly in an expression::
1783 # echo 'hist:keys=next_pid:timestamp_secs=common_timestamp/1000000 ...' >> event/trigger
1785 or assigned to a variable and referenced in a subsequent expression::
1787 # echo 'hist:keys=next_pid:us_per_sec=1000000 ...' >> event/trigger
1788 # echo 'hist:keys=next_pid:timestamp_secs=common_timestamp/$us_per_sec ...' >> event/trigger
1790 Variables can even hold stacktraces, which are useful with synthetic events.
1792 2.2.2 Synthetic Events
1793 ----------------------
1795 Synthetic events are user-defined events generated from hist trigger
1796 variables or fields associated with one or more other events. Their
1797 purpose is to provide a mechanism for displaying data spanning
1798 multiple events consistent with the existing and already familiar
1799 usage for normal events.
1801 To define a synthetic event, the user writes a simple specification
1802 consisting of the name of the new event along with one or more
1803 variables and their types, which can be any valid field type,
1804 separated by semicolons, to the tracing/synthetic_events file.
1806 See synth_field_size() for available types.
1808 If field_name contains [n], the field is considered to be a static array.
1810 If field_names contains[] (no subscript), the field is considered to
1811 be a dynamic array, which will only take as much space in the event as
1812 is required to hold the array.
1814 A string field can be specified using either the static notation:
1822 The size limit for either is 256.
1824 For instance, the following creates a new event named 'wakeup_latency'
1825 with 3 fields: lat, pid, and prio. Each of those fields is simply a
1826 variable reference to a variable on another event::
1828 # echo 'wakeup_latency \
1832 /sys/kernel/tracing/synthetic_events
1834 Reading the tracing/synthetic_events file lists all the currently
1835 defined synthetic events, in this case the event defined above::
1837 # cat /sys/kernel/tracing/synthetic_events
1838 wakeup_latency u64 lat; pid_t pid; int prio
1840 An existing synthetic event definition can be removed by prepending
1841 the command that defined it with a '!'::
1843 # echo '!wakeup_latency u64 lat pid_t pid int prio' >> \
1844 /sys/kernel/tracing/synthetic_events
1846 At this point, there isn't yet an actual 'wakeup_latency' event
1847 instantiated in the event subsystem - for this to happen, a 'hist
1848 trigger action' needs to be instantiated and bound to actual fields
1849 and variables defined on other events (see Section 2.2.3 below on
1850 how that is done using hist trigger 'onmatch' action). Once that is
1851 done, the 'wakeup_latency' synthetic event instance is created.
1853 The new event is created under the tracing/events/synthetic/ directory
1854 and looks and behaves just like any other event::
1856 # ls /sys/kernel/tracing/events/synthetic/wakeup_latency
1857 enable filter format hist id trigger
1859 A histogram can now be defined for the new synthetic event::
1861 # echo 'hist:keys=pid,prio,lat.log2:sort=lat' >> \
1862 /sys/kernel/tracing/events/synthetic/wakeup_latency/trigger
1864 The above shows the latency "lat" in a power of 2 grouping.
1866 Like any other event, once a histogram is enabled for the event, the
1867 output can be displayed by reading the event's 'hist' file::
1869 # cat /sys/kernel/tracing/events/synthetic/wakeup_latency/hist
1873 # trigger info: hist:keys=pid,prio,lat.log2:vals=hitcount:sort=lat.log2:size=2048 [active]
1876 { pid: 2035, prio: 9, lat: ~ 2^2 } hitcount: 43
1877 { pid: 2034, prio: 9, lat: ~ 2^2 } hitcount: 60
1878 { pid: 2029, prio: 9, lat: ~ 2^2 } hitcount: 965
1879 { pid: 2034, prio: 120, lat: ~ 2^2 } hitcount: 9
1880 { pid: 2033, prio: 120, lat: ~ 2^2 } hitcount: 5
1881 { pid: 2030, prio: 9, lat: ~ 2^2 } hitcount: 335
1882 { pid: 2030, prio: 120, lat: ~ 2^2 } hitcount: 10
1883 { pid: 2032, prio: 120, lat: ~ 2^2 } hitcount: 1
1884 { pid: 2035, prio: 120, lat: ~ 2^2 } hitcount: 2
1885 { pid: 2031, prio: 9, lat: ~ 2^2 } hitcount: 176
1886 { pid: 2028, prio: 120, lat: ~ 2^2 } hitcount: 15
1887 { pid: 2033, prio: 9, lat: ~ 2^2 } hitcount: 91
1888 { pid: 2032, prio: 9, lat: ~ 2^2 } hitcount: 125
1889 { pid: 2029, prio: 120, lat: ~ 2^2 } hitcount: 4
1890 { pid: 2031, prio: 120, lat: ~ 2^2 } hitcount: 3
1891 { pid: 2029, prio: 120, lat: ~ 2^3 } hitcount: 2
1892 { pid: 2035, prio: 9, lat: ~ 2^3 } hitcount: 41
1893 { pid: 2030, prio: 120, lat: ~ 2^3 } hitcount: 1
1894 { pid: 2032, prio: 9, lat: ~ 2^3 } hitcount: 32
1895 { pid: 2031, prio: 9, lat: ~ 2^3 } hitcount: 44
1896 { pid: 2034, prio: 9, lat: ~ 2^3 } hitcount: 40
1897 { pid: 2030, prio: 9, lat: ~ 2^3 } hitcount: 29
1898 { pid: 2033, prio: 9, lat: ~ 2^3 } hitcount: 31
1899 { pid: 2029, prio: 9, lat: ~ 2^3 } hitcount: 31
1900 { pid: 2028, prio: 120, lat: ~ 2^3 } hitcount: 18
1901 { pid: 2031, prio: 120, lat: ~ 2^3 } hitcount: 2
1902 { pid: 2028, prio: 120, lat: ~ 2^4 } hitcount: 1
1903 { pid: 2029, prio: 9, lat: ~ 2^4 } hitcount: 4
1904 { pid: 2031, prio: 120, lat: ~ 2^7 } hitcount: 1
1905 { pid: 2032, prio: 120, lat: ~ 2^7 } hitcount: 1
1913 The latency values can also be grouped linearly by a given size with
1914 the ".buckets" modifier and specify a size (in this case groups of 10)::
1916 # echo 'hist:keys=pid,prio,lat.buckets=10:sort=lat' >> \
1917 /sys/kernel/tracing/events/synthetic/wakeup_latency/trigger
1921 # trigger info: hist:keys=pid,prio,lat.buckets=10:vals=hitcount:sort=lat.buckets=10:size=2048 [active]
1924 { pid: 2067, prio: 9, lat: ~ 0-9 } hitcount: 220
1925 { pid: 2068, prio: 9, lat: ~ 0-9 } hitcount: 157
1926 { pid: 2070, prio: 9, lat: ~ 0-9 } hitcount: 100
1927 { pid: 2067, prio: 120, lat: ~ 0-9 } hitcount: 6
1928 { pid: 2065, prio: 120, lat: ~ 0-9 } hitcount: 2
1929 { pid: 2066, prio: 120, lat: ~ 0-9 } hitcount: 2
1930 { pid: 2069, prio: 9, lat: ~ 0-9 } hitcount: 122
1931 { pid: 2069, prio: 120, lat: ~ 0-9 } hitcount: 8
1932 { pid: 2070, prio: 120, lat: ~ 0-9 } hitcount: 1
1933 { pid: 2068, prio: 120, lat: ~ 0-9 } hitcount: 7
1934 { pid: 2066, prio: 9, lat: ~ 0-9 } hitcount: 365
1935 { pid: 2064, prio: 120, lat: ~ 0-9 } hitcount: 35
1936 { pid: 2065, prio: 9, lat: ~ 0-9 } hitcount: 998
1937 { pid: 2071, prio: 9, lat: ~ 0-9 } hitcount: 85
1938 { pid: 2065, prio: 9, lat: ~ 10-19 } hitcount: 2
1939 { pid: 2064, prio: 120, lat: ~ 10-19 } hitcount: 2
1946 To save stacktraces, create a synthetic event with a field of type "unsigned long[]"
1947 or even just "long[]". For example, to see how long a task is blocked in an
1948 uninterruptible state::
1950 # cd /sys/kernel/tracing
1951 # echo 's:block_lat pid_t pid; u64 delta; unsigned long[] stack;' > dynamic_events
1952 # echo 'hist:keys=next_pid:ts=common_timestamp.usecs,st=common_stacktrace if prev_state == 2' >> events/sched/sched_switch/trigger
1953 # echo 'hist:keys=prev_pid:delta=common_timestamp.usecs-$ts,s=$st:onmax($delta).trace(block_lat,prev_pid,$delta,$s)' >> events/sched/sched_switch/trigger
1954 # echo 1 > events/synthetic/block_lat/enable
1959 # entries-in-buffer/entries-written: 2/2 #P:8
1961 # _-----=> irqs-off/BH-disabled
1962 # / _----=> need-resched
1963 # | / _---=> hardirq/softirq
1964 # || / _--=> preempt-depth
1965 # ||| / _-=> migrate-disable
1967 # TASK-PID CPU# ||||| TIMESTAMP FUNCTION
1969 <idle>-0 [005] d..4. 521.164922: block_lat: pid=0 delta=8322 stack=STACK:
1970 => __schedule+0x448/0x7b0
1971 => schedule+0x5a/0xb0
1972 => io_schedule+0x42/0x70
1973 => bit_wait_io+0xd/0x60
1974 => __wait_on_bit+0x4b/0x140
1975 => out_of_line_wait_on_bit+0x91/0xb0
1976 => jbd2_journal_commit_transaction+0x1679/0x1a70
1977 => kjournald2+0xa9/0x280
1978 => kthread+0xe9/0x110
1979 => ret_from_fork+0x2c/0x50
1981 <...>-2 [004] d..4. 525.184257: block_lat: pid=2 delta=76 stack=STACK:
1982 => __schedule+0x448/0x7b0
1983 => schedule+0x5a/0xb0
1984 => schedule_timeout+0x11a/0x150
1985 => wait_for_completion_killable+0x144/0x1f0
1986 => __kthread_create_on_node+0xe7/0x1e0
1987 => kthread_create_on_node+0x51/0x70
1988 => create_worker+0xcc/0x1a0
1989 => worker_thread+0x2ad/0x380
1990 => kthread+0xe9/0x110
1991 => ret_from_fork+0x2c/0x50
1993 A synthetic event that has a stacktrace field may use it as a key in
1996 # echo 'hist:keys=delta.buckets=100,stack.stacktrace:sort=delta' > events/synthetic/block_lat/trigger
1997 # cat events/synthetic/block_lat/hist
2001 # trigger info: hist:keys=delta.buckets=100,stack.stacktrace:vals=hitcount:sort=delta.buckets=100:size=2048 [active]
2003 { delta: ~ 0-99, stack.stacktrace __schedule+0xa19/0x1520
2005 io_schedule+0x46/0x80
2006 bit_wait_io+0x11/0x80
2007 __wait_on_bit+0x4e/0x120
2008 out_of_line_wait_on_bit+0x8d/0xb0
2009 __wait_on_buffer+0x33/0x40
2010 jbd2_journal_commit_transaction+0x155a/0x19b0
2011 kjournald2+0xab/0x270
2013 ret_from_fork+0x29/0x50
2015 { delta: ~ 0-99, stack.stacktrace __schedule+0xa19/0x1520
2017 io_schedule+0x46/0x80
2018 rq_qos_wait+0xd0/0x170
2020 __rq_qos_throttle+0x25/0x40
2021 blk_mq_submit_bio+0x2c3/0x5b0
2022 __submit_bio+0xff/0x190
2023 submit_bio_noacct_nocheck+0x25b/0x2b0
2024 submit_bio_noacct+0x20b/0x600
2025 submit_bio+0x28/0x90
2026 ext4_bio_write_page+0x1e0/0x8c0
2027 mpage_submit_page+0x60/0x80
2028 mpage_process_page_bufs+0x16c/0x180
2029 mpage_prepare_extent_to_map+0x23f/0x530
2031 { delta: ~ 0-99, stack.stacktrace __schedule+0xa19/0x1520
2033 schedule_hrtimeout_range_clock+0x97/0x110
2034 schedule_hrtimeout_range+0x13/0x20
2035 usleep_range_state+0x65/0x90
2036 __intel_wait_for_register+0x1c1/0x230 [i915]
2037 intel_psr_wait_for_idle_locked+0x171/0x2a0 [i915]
2038 intel_pipe_update_start+0x169/0x360 [i915]
2039 intel_update_crtc+0x112/0x490 [i915]
2040 skl_commit_modeset_enables+0x199/0x600 [i915]
2041 intel_atomic_commit_tail+0x7c4/0x1080 [i915]
2042 intel_atomic_commit_work+0x12/0x20 [i915]
2043 process_one_work+0x21c/0x3f0
2044 worker_thread+0x50/0x3e0
2047 { delta: ~ 0-99, stack.stacktrace __schedule+0xa19/0x1520
2049 schedule_timeout+0x11e/0x160
2050 __wait_for_common+0x8f/0x190
2051 wait_for_completion+0x24/0x30
2052 __flush_work.isra.0+0x1cc/0x360
2054 drm_mode_rmfb+0x18b/0x1d0 [drm]
2055 drm_mode_rmfb_ioctl+0x10/0x20 [drm]
2056 drm_ioctl_kernel+0xb8/0x150 [drm]
2057 drm_ioctl+0x243/0x560 [drm]
2058 __x64_sys_ioctl+0x92/0xd0
2059 do_syscall_64+0x59/0x90
2060 entry_SYSCALL_64_after_hwframe+0x72/0xdc
2062 { delta: ~ 0-99, stack.stacktrace __schedule+0xa19/0x1520
2064 schedule_timeout+0x87/0x160
2065 __wait_for_common+0x8f/0x190
2066 wait_for_completion_timeout+0x1d/0x30
2067 drm_atomic_helper_wait_for_flip_done+0x57/0x90 [drm_kms_helper]
2068 intel_atomic_commit_tail+0x8ce/0x1080 [i915]
2069 intel_atomic_commit_work+0x12/0x20 [i915]
2070 process_one_work+0x21c/0x3f0
2071 worker_thread+0x50/0x3e0
2073 ret_from_fork+0x29/0x50
2075 { delta: ~ 100-199, stack.stacktrace __schedule+0xa19/0x1520
2077 schedule_hrtimeout_range_clock+0x97/0x110
2078 schedule_hrtimeout_range+0x13/0x20
2079 usleep_range_state+0x65/0x90
2080 pci_set_low_power_state+0x17f/0x1f0
2081 pci_set_power_state+0x49/0x250
2082 pci_finish_runtime_suspend+0x4a/0x90
2083 pci_pm_runtime_suspend+0xcb/0x1b0
2084 __rpm_callback+0x48/0x120
2085 rpm_callback+0x67/0x70
2086 rpm_suspend+0x167/0x780
2087 rpm_idle+0x25a/0x380
2088 pm_runtime_work+0x93/0xc0
2089 process_one_work+0x21c/0x3f0
2097 2.2.3 Hist trigger 'handlers' and 'actions'
2098 -------------------------------------------
2100 A hist trigger 'action' is a function that's executed (in most cases
2101 conditionally) whenever a histogram entry is added or updated.
2103 When a histogram entry is added or updated, a hist trigger 'handler'
2104 is what decides whether the corresponding action is actually invoked
2107 Hist trigger handlers and actions are paired together in the general
2112 To specify a handler.action pair for a given event, simply specify
2113 that handler.action pair between colons in the hist trigger
2116 In theory, any handler can be combined with any action, but in
2117 practice, not every handler.action combination is currently supported;
2118 if a given handler.action combination isn't supported, the hist
2119 trigger will fail with -EINVAL;
2121 The default 'handler.action' if none is explicitly specified is as it
2122 always has been, to simply update the set of values associated with an
2123 entry. Some applications, however, may want to perform additional
2124 actions at that point, such as generate another event, or compare and
2127 The supported handlers and actions are listed below, and each is
2128 described in more detail in the following paragraphs, in the context
2129 of descriptions of some common and useful handler.action combinations.
2131 The available handlers are:
2133 - onmatch(matching.event) - invoke action on any addition or update
2134 - onmax(var) - invoke action if var exceeds current max
2135 - onchange(var) - invoke action if var changes
2137 The available actions are:
2139 - trace(<synthetic_event_name>,param list) - generate synthetic event
2140 - save(field,...) - save current event fields
2141 - snapshot() - snapshot the trace buffer
2143 The following commonly-used handler.action pairs are available:
2145 - onmatch(matching.event).trace(<synthetic_event_name>,param list)
2147 The 'onmatch(matching.event).trace(<synthetic_event_name>,param
2148 list)' hist trigger action is invoked whenever an event matches
2149 and the histogram entry would be added or updated. It causes the
2150 named synthetic event to be generated with the values given in the
2151 'param list'. The result is the generation of a synthetic event
2152 that consists of the values contained in those variables at the
2153 time the invoking event was hit. For example, if the synthetic
2154 event name is 'wakeup_latency', a wakeup_latency event is
2155 generated using onmatch(event).trace(wakeup_latency,arg1,arg2).
2157 There is also an equivalent alternative form available for
2158 generating synthetic events. In this form, the synthetic event
2159 name is used as if it were a function name. For example, using
2160 the 'wakeup_latency' synthetic event name again, the
2161 wakeup_latency event would be generated by invoking it as if it
2162 were a function call, with the event field values passed in as
2163 arguments: onmatch(event).wakeup_latency(arg1,arg2). The syntax
2166 onmatch(matching.event).<synthetic_event_name>(param list)
2168 In either case, the 'param list' consists of one or more
2169 parameters which may be either variables or fields defined on
2170 either the 'matching.event' or the target event. The variables or
2171 fields specified in the param list may be either fully-qualified
2172 or unqualified. If a variable is specified as unqualified, it
2173 must be unique between the two events. A field name used as a
2174 param can be unqualified if it refers to the target event, but
2175 must be fully qualified if it refers to the matching event. A
2176 fully-qualified name is of the form 'system.event_name.$var_name'
2177 or 'system.event_name.field'.
2179 The 'matching.event' specification is simply the fully qualified
2180 event name of the event that matches the target event for the
2181 onmatch() functionality, in the form 'system.event_name'. Histogram
2182 keys of both events are compared to find if events match. In case
2183 multiple histogram keys are used, they all must match in the specified
2186 Finally, the number and type of variables/fields in the 'param
2187 list' must match the number and types of the fields in the
2188 synthetic event being generated.
2190 As an example the below defines a simple synthetic event and uses
2191 a variable defined on the sched_wakeup_new event as a parameter
2192 when invoking the synthetic event. Here we define the synthetic
2195 # echo 'wakeup_new_test pid_t pid' >> \
2196 /sys/kernel/tracing/synthetic_events
2198 # cat /sys/kernel/tracing/synthetic_events
2199 wakeup_new_test pid_t pid
2201 The following hist trigger both defines the missing testpid
2202 variable and specifies an onmatch() action that generates a
2203 wakeup_new_test synthetic event whenever a sched_wakeup_new event
2204 occurs, which because of the 'if comm == "cyclictest"' filter only
2205 happens when the executable is cyclictest::
2207 # echo 'hist:keys=$testpid:testpid=pid:onmatch(sched.sched_wakeup_new).\
2208 wakeup_new_test($testpid) if comm=="cyclictest"' >> \
2209 /sys/kernel/tracing/events/sched/sched_wakeup_new/trigger
2211 Or, equivalently, using the 'trace' keyword syntax::
2213 # echo 'hist:keys=$testpid:testpid=pid:onmatch(sched.sched_wakeup_new).\
2214 trace(wakeup_new_test,$testpid) if comm=="cyclictest"' >> \
2215 /sys/kernel/tracing/events/sched/sched_wakeup_new/trigger
2217 Creating and displaying a histogram based on those events is now
2218 just a matter of using the fields and new synthetic event in the
2219 tracing/events/synthetic directory, as usual::
2221 # echo 'hist:keys=pid:sort=pid' >> \
2222 /sys/kernel/tracing/events/synthetic/wakeup_new_test/trigger
2224 Running 'cyclictest' should cause wakeup_new events to generate
2225 wakeup_new_test synthetic events which should result in histogram
2226 output in the wakeup_new_test event's hist file::
2228 # cat /sys/kernel/tracing/events/synthetic/wakeup_new_test/hist
2230 A more typical usage would be to use two events to calculate a
2231 latency. The following example uses a set of hist triggers to
2232 produce a 'wakeup_latency' histogram.
2234 First, we define a 'wakeup_latency' synthetic event::
2236 # echo 'wakeup_latency u64 lat; pid_t pid; int prio' >> \
2237 /sys/kernel/tracing/synthetic_events
2239 Next, we specify that whenever we see a sched_waking event for a
2240 cyclictest thread, save the timestamp in a 'ts0' variable::
2242 # echo 'hist:keys=$saved_pid:saved_pid=pid:ts0=common_timestamp.usecs \
2243 if comm=="cyclictest"' >> \
2244 /sys/kernel/tracing/events/sched/sched_waking/trigger
2246 Then, when the corresponding thread is actually scheduled onto the
2247 CPU by a sched_switch event (saved_pid matches next_pid), calculate
2248 the latency and use that along with another variable and an event field
2249 to generate a wakeup_latency synthetic event::
2251 # echo 'hist:keys=next_pid:wakeup_lat=common_timestamp.usecs-$ts0:\
2252 onmatch(sched.sched_waking).wakeup_latency($wakeup_lat,\
2253 $saved_pid,next_prio) if next_comm=="cyclictest"' >> \
2254 /sys/kernel/tracing/events/sched/sched_switch/trigger
2256 We also need to create a histogram on the wakeup_latency synthetic
2257 event in order to aggregate the generated synthetic event data::
2259 # echo 'hist:keys=pid,prio,lat:sort=pid,lat' >> \
2260 /sys/kernel/tracing/events/synthetic/wakeup_latency/trigger
2262 Finally, once we've run cyclictest to actually generate some
2263 events, we can see the output by looking at the wakeup_latency
2264 synthetic event's hist file::
2266 # cat /sys/kernel/tracing/events/synthetic/wakeup_latency/hist
2268 - onmax(var).save(field,.. .)
2270 The 'onmax(var).save(field,...)' hist trigger action is invoked
2271 whenever the value of 'var' associated with a histogram entry
2272 exceeds the current maximum contained in that variable.
2274 The end result is that the trace event fields specified as the
2275 onmax.save() params will be saved if 'var' exceeds the current
2276 maximum for that hist trigger entry. This allows context from the
2277 event that exhibited the new maximum to be saved for later
2278 reference. When the histogram is displayed, additional fields
2279 displaying the saved values will be printed.
2281 As an example the below defines a couple of hist triggers, one for
2282 sched_waking and another for sched_switch, keyed on pid. Whenever
2283 a sched_waking occurs, the timestamp is saved in the entry
2284 corresponding to the current pid, and when the scheduler switches
2285 back to that pid, the timestamp difference is calculated. If the
2286 resulting latency, stored in wakeup_lat, exceeds the current
2287 maximum latency, the values specified in the save() fields are
2290 # echo 'hist:keys=pid:ts0=common_timestamp.usecs \
2291 if comm=="cyclictest"' >> \
2292 /sys/kernel/tracing/events/sched/sched_waking/trigger
2294 # echo 'hist:keys=next_pid:\
2295 wakeup_lat=common_timestamp.usecs-$ts0:\
2296 onmax($wakeup_lat).save(next_comm,prev_pid,prev_prio,prev_comm) \
2297 if next_comm=="cyclictest"' >> \
2298 /sys/kernel/tracing/events/sched/sched_switch/trigger
2300 When the histogram is displayed, the max value and the saved
2301 values corresponding to the max are displayed following the rest
2304 # cat /sys/kernel/tracing/events/sched/sched_switch/hist
2305 { next_pid: 2255 } hitcount: 239
2306 common_timestamp-ts0: 0
2308 next_comm: cyclictest
2309 prev_pid: 0 prev_prio: 120 prev_comm: swapper/1
2311 { next_pid: 2256 } hitcount: 2355
2312 common_timestamp-ts0: 0
2313 max: 49 next_comm: cyclictest
2314 prev_pid: 0 prev_prio: 120 prev_comm: swapper/0
2321 - onmax(var).snapshot()
2323 The 'onmax(var).snapshot()' hist trigger action is invoked
2324 whenever the value of 'var' associated with a histogram entry
2325 exceeds the current maximum contained in that variable.
2327 The end result is that a global snapshot of the trace buffer will
2328 be saved in the tracing/snapshot file if 'var' exceeds the current
2329 maximum for any hist trigger entry.
2331 Note that in this case the maximum is a global maximum for the
2332 current trace instance, which is the maximum across all buckets of
2333 the histogram. The key of the specific trace event that caused
2334 the global maximum and the global maximum itself are displayed,
2335 along with a message stating that a snapshot has been taken and
2336 where to find it. The user can use the key information displayed
2337 to locate the corresponding bucket in the histogram for even more
2340 As an example the below defines a couple of hist triggers, one for
2341 sched_waking and another for sched_switch, keyed on pid. Whenever
2342 a sched_waking event occurs, the timestamp is saved in the entry
2343 corresponding to the current pid, and when the scheduler switches
2344 back to that pid, the timestamp difference is calculated. If the
2345 resulting latency, stored in wakeup_lat, exceeds the current
2346 maximum latency, a snapshot is taken. As part of the setup, all
2347 the scheduler events are also enabled, which are the events that
2348 will show up in the snapshot when it is taken at some point::
2350 # echo 1 > /sys/kernel/tracing/events/sched/enable
2352 # echo 'hist:keys=pid:ts0=common_timestamp.usecs \
2353 if comm=="cyclictest"' >> \
2354 /sys/kernel/tracing/events/sched/sched_waking/trigger
2356 # echo 'hist:keys=next_pid:wakeup_lat=common_timestamp.usecs-$ts0: \
2357 onmax($wakeup_lat).save(next_prio,next_comm,prev_pid,prev_prio, \
2358 prev_comm):onmax($wakeup_lat).snapshot() \
2359 if next_comm=="cyclictest"' >> \
2360 /sys/kernel/tracing/events/sched/sched_switch/trigger
2362 When the histogram is displayed, for each bucket the max value
2363 and the saved values corresponding to the max are displayed
2364 following the rest of the fields.
2366 If a snapshot was taken, there is also a message indicating that,
2367 along with the value and event that triggered the global maximum::
2369 # cat /sys/kernel/tracing/events/sched/sched_switch/hist
2370 { next_pid: 2101 } hitcount: 200
2371 max: 52 next_prio: 120 next_comm: cyclictest \
2372 prev_pid: 0 prev_prio: 120 prev_comm: swapper/6
2374 { next_pid: 2103 } hitcount: 1326
2375 max: 572 next_prio: 19 next_comm: cyclictest \
2376 prev_pid: 0 prev_prio: 120 prev_comm: swapper/1
2378 { next_pid: 2102 } hitcount: 1982 \
2379 max: 74 next_prio: 19 next_comm: cyclictest \
2380 prev_pid: 0 prev_prio: 120 prev_comm: swapper/5
2382 Snapshot taken (see tracing/snapshot). Details:
2383 triggering value { onmax($wakeup_lat) }: 572 \
2384 triggered by event with key: { next_pid: 2103 }
2391 In the above case, the event that triggered the global maximum has
2392 the key with next_pid == 2103. If you look at the bucket that has
2393 2103 as the key, you'll find the additional values save()'d along
2394 with the local maximum for that bucket, which should be the same
2395 as the global maximum (since that was the same value that
2396 triggered the global snapshot).
2398 And finally, looking at the snapshot data should show at or near
2399 the end the event that triggered the snapshot (in this case you
2400 can verify the timestamps between the sched_waking and
2401 sched_switch events, which should match the time displayed in the
2404 # cat /sys/kernel/tracing/snapshot
2406 <...>-2103 [005] d..3 309.873125: sched_switch: prev_comm=cyclictest prev_pid=2103 prev_prio=19 prev_state=D ==> next_comm=swapper/5 next_pid=0 next_prio=120
2407 <idle>-0 [005] d.h3 309.873611: sched_waking: comm=cyclictest pid=2102 prio=19 target_cpu=005
2408 <idle>-0 [005] dNh4 309.873613: sched_wakeup: comm=cyclictest pid=2102 prio=19 target_cpu=005
2409 <idle>-0 [005] d..3 309.873616: sched_switch: prev_comm=swapper/5 prev_pid=0 prev_prio=120 prev_state=S ==> next_comm=cyclictest next_pid=2102 next_prio=19
2410 <...>-2102 [005] d..3 309.873625: sched_switch: prev_comm=cyclictest prev_pid=2102 prev_prio=19 prev_state=D ==> next_comm=swapper/5 next_pid=0 next_prio=120
2411 <idle>-0 [005] d.h3 309.874624: sched_waking: comm=cyclictest pid=2102 prio=19 target_cpu=005
2412 <idle>-0 [005] dNh4 309.874626: sched_wakeup: comm=cyclictest pid=2102 prio=19 target_cpu=005
2413 <idle>-0 [005] dNh3 309.874628: sched_waking: comm=cyclictest pid=2103 prio=19 target_cpu=005
2414 <idle>-0 [005] dNh4 309.874630: sched_wakeup: comm=cyclictest pid=2103 prio=19 target_cpu=005
2415 <idle>-0 [005] d..3 309.874633: sched_switch: prev_comm=swapper/5 prev_pid=0 prev_prio=120 prev_state=S ==> next_comm=cyclictest next_pid=2102 next_prio=19
2416 <idle>-0 [004] d.h3 309.874757: sched_waking: comm=gnome-terminal- pid=1699 prio=120 target_cpu=004
2417 <idle>-0 [004] dNh4 309.874762: sched_wakeup: comm=gnome-terminal- pid=1699 prio=120 target_cpu=004
2418 <idle>-0 [004] d..3 309.874766: sched_switch: prev_comm=swapper/4 prev_pid=0 prev_prio=120 prev_state=S ==> next_comm=gnome-terminal- next_pid=1699 next_prio=120
2419 gnome-terminal--1699 [004] d.h2 309.874941: sched_stat_runtime: comm=gnome-terminal- pid=1699 runtime=180706 [ns] vruntime=1126870572 [ns]
2420 <idle>-0 [003] d.s4 309.874956: sched_waking: comm=rcu_sched pid=9 prio=120 target_cpu=007
2421 <idle>-0 [003] d.s5 309.874960: sched_wake_idle_without_ipi: cpu=7
2422 <idle>-0 [003] d.s5 309.874961: sched_wakeup: comm=rcu_sched pid=9 prio=120 target_cpu=007
2423 <idle>-0 [007] d..3 309.874963: sched_switch: prev_comm=swapper/7 prev_pid=0 prev_prio=120 prev_state=S ==> next_comm=rcu_sched next_pid=9 next_prio=120
2424 rcu_sched-9 [007] d..3 309.874973: sched_stat_runtime: comm=rcu_sched pid=9 runtime=13646 [ns] vruntime=22531430286 [ns]
2425 rcu_sched-9 [007] d..3 309.874978: sched_switch: prev_comm=rcu_sched prev_pid=9 prev_prio=120 prev_state=R+ ==> next_comm=swapper/7 next_pid=0 next_prio=120
2426 <...>-2102 [005] d..4 309.874994: sched_migrate_task: comm=cyclictest pid=2103 prio=19 orig_cpu=5 dest_cpu=1
2427 <...>-2102 [005] d..4 309.875185: sched_wake_idle_without_ipi: cpu=1
2428 <idle>-0 [001] d..3 309.875200: sched_switch: prev_comm=swapper/1 prev_pid=0 prev_prio=120 prev_state=S ==> next_comm=cyclictest next_pid=2103 next_prio=19
2430 - onchange(var).save(field,.. .)
2432 The 'onchange(var).save(field,...)' hist trigger action is invoked
2433 whenever the value of 'var' associated with a histogram entry
2436 The end result is that the trace event fields specified as the
2437 onchange.save() params will be saved if 'var' changes for that
2438 hist trigger entry. This allows context from the event that
2439 changed the value to be saved for later reference. When the
2440 histogram is displayed, additional fields displaying the saved
2441 values will be printed.
2443 - onchange(var).snapshot()
2445 The 'onchange(var).snapshot()' hist trigger action is invoked
2446 whenever the value of 'var' associated with a histogram entry
2449 The end result is that a global snapshot of the trace buffer will
2450 be saved in the tracing/snapshot file if 'var' changes for any
2453 Note that in this case the changed value is a global variable
2454 associated with current trace instance. The key of the specific
2455 trace event that caused the value to change and the global value
2456 itself are displayed, along with a message stating that a snapshot
2457 has been taken and where to find it. The user can use the key
2458 information displayed to locate the corresponding bucket in the
2459 histogram for even more detail.
2461 As an example the below defines a hist trigger on the tcp_probe
2462 event, keyed on dport. Whenever a tcp_probe event occurs, the
2463 cwnd field is checked against the current value stored in the
2464 $cwnd variable. If the value has changed, a snapshot is taken.
2465 As part of the setup, all the scheduler and tcp events are also
2466 enabled, which are the events that will show up in the snapshot
2467 when it is taken at some point::
2469 # echo 1 > /sys/kernel/tracing/events/sched/enable
2470 # echo 1 > /sys/kernel/tracing/events/tcp/enable
2472 # echo 'hist:keys=dport:cwnd=snd_cwnd: \
2473 onchange($cwnd).save(snd_wnd,srtt,rcv_wnd): \
2474 onchange($cwnd).snapshot()' >> \
2475 /sys/kernel/tracing/events/tcp/tcp_probe/trigger
2477 When the histogram is displayed, for each bucket the tracked value
2478 and the saved values corresponding to that value are displayed
2479 following the rest of the fields.
2481 If a snapshot was taken, there is also a message indicating that,
2482 along with the value and event that triggered the snapshot::
2484 # cat /sys/kernel/tracing/events/tcp/tcp_probe/hist
2486 { dport: 1521 } hitcount: 8
2487 changed: 10 snd_wnd: 35456 srtt: 154262 rcv_wnd: 42112
2489 { dport: 80 } hitcount: 23
2490 changed: 10 snd_wnd: 28960 srtt: 19604 rcv_wnd: 29312
2492 { dport: 9001 } hitcount: 172
2493 changed: 10 snd_wnd: 48384 srtt: 260444 rcv_wnd: 55168
2495 { dport: 443 } hitcount: 211
2496 changed: 10 snd_wnd: 26960 srtt: 17379 rcv_wnd: 28800
2498 Snapshot taken (see tracing/snapshot). Details:
2500 triggering value { onchange($cwnd) }: 10
2501 triggered by event with key: { dport: 80 }
2508 In the above case, the event that triggered the snapshot has the
2509 key with dport == 80. If you look at the bucket that has 80 as
2510 the key, you'll find the additional values save()'d along with the
2511 changed value for that bucket, which should be the same as the
2512 global changed value (since that was the same value that triggered
2513 the global snapshot).
2515 And finally, looking at the snapshot data should show at or near
2516 the end the event that triggered the snapshot::
2518 # cat /sys/kernel/tracing/snapshot
2520 gnome-shell-1261 [006] dN.3 49.823113: sched_stat_runtime: comm=gnome-shell pid=1261 runtime=49347 [ns] vruntime=1835730389 [ns]
2521 kworker/u16:4-773 [003] d..3 49.823114: sched_switch: prev_comm=kworker/u16:4 prev_pid=773 prev_prio=120 prev_state=R+ ==> next_comm=kworker/3:2 next_pid=135 next_prio=120
2522 gnome-shell-1261 [006] d..3 49.823114: sched_switch: prev_comm=gnome-shell prev_pid=1261 prev_prio=120 prev_state=R+ ==> next_comm=kworker/6:2 next_pid=387 next_prio=120
2523 kworker/3:2-135 [003] d..3 49.823118: sched_stat_runtime: comm=kworker/3:2 pid=135 runtime=5339 [ns] vruntime=17815800388 [ns]
2524 kworker/6:2-387 [006] d..3 49.823120: sched_stat_runtime: comm=kworker/6:2 pid=387 runtime=9594 [ns] vruntime=14589605367 [ns]
2525 kworker/6:2-387 [006] d..3 49.823122: sched_switch: prev_comm=kworker/6:2 prev_pid=387 prev_prio=120 prev_state=R+ ==> next_comm=gnome-shell next_pid=1261 next_prio=120
2526 kworker/3:2-135 [003] d..3 49.823123: sched_switch: prev_comm=kworker/3:2 prev_pid=135 prev_prio=120 prev_state=T ==> next_comm=swapper/3 next_pid=0 next_prio=120
2527 <idle>-0 [004] ..s7 49.823798: tcp_probe: src=10.0.0.10:54326 dest=23.215.104.193:80 mark=0x0 length=32 snd_nxt=0xe3ae2ff5 snd_una=0xe3ae2ecd snd_cwnd=10 ssthresh=2147483647 snd_wnd=28960 srtt=19604 rcv_wnd=29312
2529 3. User space creating a trigger
2530 --------------------------------
2532 Writing into /sys/kernel/tracing/trace_marker writes into the ftrace
2533 ring buffer. This can also act like an event, by writing into the trigger
2534 file located in /sys/kernel/tracing/events/ftrace/print/
2536 Modifying cyclictest to write into the trace_marker file before it sleeps
2537 and after it wakes up, something like this::
2539 static void traceputs(char *str)
2541 /* tracemark_fd is the trace_marker file descriptor */
2542 if (tracemark_fd < 0)
2544 /* write the tracemark message */
2545 write(tracemark_fd, str, strlen(str));
2548 And later add something like::
2551 clock_nanosleep(...);
2554 We can make a histogram from this::
2556 # cd /sys/kernel/tracing
2557 # echo 'latency u64 lat' > synthetic_events
2558 # echo 'hist:keys=common_pid:ts0=common_timestamp.usecs if buf == "start"' > events/ftrace/print/trigger
2559 # echo 'hist:keys=common_pid:lat=common_timestamp.usecs-$ts0:onmatch(ftrace.print).latency($lat) if buf == "end"' >> events/ftrace/print/trigger
2560 # echo 'hist:keys=lat,common_pid:sort=lat' > events/synthetic/latency/trigger
2562 The above created a synthetic event called "latency" and two histograms
2563 against the trace_marker, one gets triggered when "start" is written into the
2564 trace_marker file and the other when "end" is written. If the pids match, then
2565 it will call the "latency" synthetic event with the calculated latency as its
2566 parameter. Finally, a histogram is added to the latency synthetic event to
2567 record the calculated latency along with the pid.
2569 Now running cyclictest with::
2571 # ./cyclictest -p80 -d0 -i250 -n -a -t --tracemark -b 1000
2573 -p80 : run threads at priority 80
2574 -d0 : have all threads run at the same interval
2575 -i250 : start the interval at 250 microseconds (all threads will do this)
2576 -n : sleep with nanosleep
2577 -a : affine all threads to a separate CPU
2578 -t : one thread per available CPU
2579 --tracemark : enable trace mark writing
2580 -b 1000 : stop if any latency is greater than 1000 microseconds
2582 Note, the -b 1000 is used just to make --tracemark available.
2584 Then we can see the histogram created by this with::
2586 # cat events/synthetic/latency/hist
2589 # trigger info: hist:keys=lat,common_pid:vals=hitcount:sort=lat:size=2048 [active]
2592 { lat: 107, common_pid: 2039 } hitcount: 1
2593 { lat: 122, common_pid: 2041 } hitcount: 1
2594 { lat: 166, common_pid: 2039 } hitcount: 1
2595 { lat: 174, common_pid: 2039 } hitcount: 1
2596 { lat: 194, common_pid: 2041 } hitcount: 1
2597 { lat: 196, common_pid: 2036 } hitcount: 1
2598 { lat: 197, common_pid: 2038 } hitcount: 1
2599 { lat: 198, common_pid: 2039 } hitcount: 1
2600 { lat: 199, common_pid: 2039 } hitcount: 1
2601 { lat: 200, common_pid: 2041 } hitcount: 1
2602 { lat: 201, common_pid: 2039 } hitcount: 2
2603 { lat: 202, common_pid: 2038 } hitcount: 1
2604 { lat: 202, common_pid: 2043 } hitcount: 1
2605 { lat: 203, common_pid: 2039 } hitcount: 1
2606 { lat: 203, common_pid: 2036 } hitcount: 1
2607 { lat: 203, common_pid: 2041 } hitcount: 1
2608 { lat: 206, common_pid: 2038 } hitcount: 2
2609 { lat: 207, common_pid: 2039 } hitcount: 1
2610 { lat: 207, common_pid: 2036 } hitcount: 1
2611 { lat: 208, common_pid: 2040 } hitcount: 1
2612 { lat: 209, common_pid: 2043 } hitcount: 1
2613 { lat: 210, common_pid: 2039 } hitcount: 1
2614 { lat: 211, common_pid: 2039 } hitcount: 4
2615 { lat: 212, common_pid: 2043 } hitcount: 1
2616 { lat: 212, common_pid: 2039 } hitcount: 2
2617 { lat: 213, common_pid: 2039 } hitcount: 1
2618 { lat: 214, common_pid: 2038 } hitcount: 1
2619 { lat: 214, common_pid: 2039 } hitcount: 2
2620 { lat: 214, common_pid: 2042 } hitcount: 1
2621 { lat: 215, common_pid: 2039 } hitcount: 1
2622 { lat: 217, common_pid: 2036 } hitcount: 1
2623 { lat: 217, common_pid: 2040 } hitcount: 1
2624 { lat: 217, common_pid: 2039 } hitcount: 1
2625 { lat: 218, common_pid: 2039 } hitcount: 6
2626 { lat: 219, common_pid: 2039 } hitcount: 9
2627 { lat: 220, common_pid: 2039 } hitcount: 11
2628 { lat: 221, common_pid: 2039 } hitcount: 5
2629 { lat: 221, common_pid: 2042 } hitcount: 1
2630 { lat: 222, common_pid: 2039 } hitcount: 7
2631 { lat: 223, common_pid: 2036 } hitcount: 1
2632 { lat: 223, common_pid: 2039 } hitcount: 3
2633 { lat: 224, common_pid: 2039 } hitcount: 4
2634 { lat: 224, common_pid: 2037 } hitcount: 1
2635 { lat: 224, common_pid: 2036 } hitcount: 2
2636 { lat: 225, common_pid: 2039 } hitcount: 5
2637 { lat: 225, common_pid: 2042 } hitcount: 1
2638 { lat: 226, common_pid: 2039 } hitcount: 7
2639 { lat: 226, common_pid: 2036 } hitcount: 4
2640 { lat: 227, common_pid: 2039 } hitcount: 6
2641 { lat: 227, common_pid: 2036 } hitcount: 12
2642 { lat: 227, common_pid: 2043 } hitcount: 1
2643 { lat: 228, common_pid: 2039 } hitcount: 7
2644 { lat: 228, common_pid: 2036 } hitcount: 14
2645 { lat: 229, common_pid: 2039 } hitcount: 9
2646 { lat: 229, common_pid: 2036 } hitcount: 8
2647 { lat: 229, common_pid: 2038 } hitcount: 1
2648 { lat: 230, common_pid: 2039 } hitcount: 11
2649 { lat: 230, common_pid: 2036 } hitcount: 6
2650 { lat: 230, common_pid: 2043 } hitcount: 1
2651 { lat: 230, common_pid: 2042 } hitcount: 2
2652 { lat: 231, common_pid: 2041 } hitcount: 1
2653 { lat: 231, common_pid: 2036 } hitcount: 6
2654 { lat: 231, common_pid: 2043 } hitcount: 1
2655 { lat: 231, common_pid: 2039 } hitcount: 8
2656 { lat: 232, common_pid: 2037 } hitcount: 1
2657 { lat: 232, common_pid: 2039 } hitcount: 6
2658 { lat: 232, common_pid: 2040 } hitcount: 2
2659 { lat: 232, common_pid: 2036 } hitcount: 5
2660 { lat: 232, common_pid: 2043 } hitcount: 1
2661 { lat: 233, common_pid: 2036 } hitcount: 5
2662 { lat: 233, common_pid: 2039 } hitcount: 11
2663 { lat: 234, common_pid: 2039 } hitcount: 4
2664 { lat: 234, common_pid: 2038 } hitcount: 2
2665 { lat: 234, common_pid: 2043 } hitcount: 2
2666 { lat: 234, common_pid: 2036 } hitcount: 11
2667 { lat: 234, common_pid: 2040 } hitcount: 1
2668 { lat: 235, common_pid: 2037 } hitcount: 2
2669 { lat: 235, common_pid: 2036 } hitcount: 8
2670 { lat: 235, common_pid: 2043 } hitcount: 2
2671 { lat: 235, common_pid: 2039 } hitcount: 5
2672 { lat: 235, common_pid: 2042 } hitcount: 2
2673 { lat: 235, common_pid: 2040 } hitcount: 4
2674 { lat: 235, common_pid: 2041 } hitcount: 1
2675 { lat: 236, common_pid: 2036 } hitcount: 7
2676 { lat: 236, common_pid: 2037 } hitcount: 1
2677 { lat: 236, common_pid: 2041 } hitcount: 5
2678 { lat: 236, common_pid: 2039 } hitcount: 3
2679 { lat: 236, common_pid: 2043 } hitcount: 9
2680 { lat: 236, common_pid: 2040 } hitcount: 7
2681 { lat: 237, common_pid: 2037 } hitcount: 1
2682 { lat: 237, common_pid: 2040 } hitcount: 1
2683 { lat: 237, common_pid: 2036 } hitcount: 9
2684 { lat: 237, common_pid: 2039 } hitcount: 3
2685 { lat: 237, common_pid: 2043 } hitcount: 8
2686 { lat: 237, common_pid: 2042 } hitcount: 2
2687 { lat: 237, common_pid: 2041 } hitcount: 2
2688 { lat: 238, common_pid: 2043 } hitcount: 10
2689 { lat: 238, common_pid: 2040 } hitcount: 1
2690 { lat: 238, common_pid: 2037 } hitcount: 9
2691 { lat: 238, common_pid: 2038 } hitcount: 1
2692 { lat: 238, common_pid: 2039 } hitcount: 1
2693 { lat: 238, common_pid: 2042 } hitcount: 3
2694 { lat: 238, common_pid: 2036 } hitcount: 7
2695 { lat: 239, common_pid: 2041 } hitcount: 1
2696 { lat: 239, common_pid: 2043 } hitcount: 11
2697 { lat: 239, common_pid: 2037 } hitcount: 11
2698 { lat: 239, common_pid: 2038 } hitcount: 6
2699 { lat: 239, common_pid: 2036 } hitcount: 7
2700 { lat: 239, common_pid: 2040 } hitcount: 1
2701 { lat: 239, common_pid: 2042 } hitcount: 9
2702 { lat: 240, common_pid: 2037 } hitcount: 29
2703 { lat: 240, common_pid: 2043 } hitcount: 15
2704 { lat: 240, common_pid: 2040 } hitcount: 44
2705 { lat: 240, common_pid: 2039 } hitcount: 1
2706 { lat: 240, common_pid: 2041 } hitcount: 2
2707 { lat: 240, common_pid: 2038 } hitcount: 1
2708 { lat: 240, common_pid: 2036 } hitcount: 10
2709 { lat: 240, common_pid: 2042 } hitcount: 13
2710 { lat: 241, common_pid: 2036 } hitcount: 21
2711 { lat: 241, common_pid: 2041 } hitcount: 36
2712 { lat: 241, common_pid: 2037 } hitcount: 34
2713 { lat: 241, common_pid: 2042 } hitcount: 14
2714 { lat: 241, common_pid: 2040 } hitcount: 94
2715 { lat: 241, common_pid: 2039 } hitcount: 12
2716 { lat: 241, common_pid: 2038 } hitcount: 2
2717 { lat: 241, common_pid: 2043 } hitcount: 28
2718 { lat: 242, common_pid: 2040 } hitcount: 109
2719 { lat: 242, common_pid: 2041 } hitcount: 506
2720 { lat: 242, common_pid: 2039 } hitcount: 155
2721 { lat: 242, common_pid: 2042 } hitcount: 21
2722 { lat: 242, common_pid: 2037 } hitcount: 52
2723 { lat: 242, common_pid: 2043 } hitcount: 21
2724 { lat: 242, common_pid: 2036 } hitcount: 16
2725 { lat: 242, common_pid: 2038 } hitcount: 156
2726 { lat: 243, common_pid: 2037 } hitcount: 46
2727 { lat: 243, common_pid: 2039 } hitcount: 40
2728 { lat: 243, common_pid: 2042 } hitcount: 119
2729 { lat: 243, common_pid: 2041 } hitcount: 611
2730 { lat: 243, common_pid: 2036 } hitcount: 69
2731 { lat: 243, common_pid: 2038 } hitcount: 784
2732 { lat: 243, common_pid: 2040 } hitcount: 323
2733 { lat: 243, common_pid: 2043 } hitcount: 14
2734 { lat: 244, common_pid: 2043 } hitcount: 35
2735 { lat: 244, common_pid: 2042 } hitcount: 305
2736 { lat: 244, common_pid: 2039 } hitcount: 8
2737 { lat: 244, common_pid: 2040 } hitcount: 4515
2738 { lat: 244, common_pid: 2038 } hitcount: 371
2739 { lat: 244, common_pid: 2037 } hitcount: 31
2740 { lat: 244, common_pid: 2036 } hitcount: 114
2741 { lat: 244, common_pid: 2041 } hitcount: 3396
2742 { lat: 245, common_pid: 2036 } hitcount: 700
2743 { lat: 245, common_pid: 2041 } hitcount: 2772
2744 { lat: 245, common_pid: 2037 } hitcount: 268
2745 { lat: 245, common_pid: 2039 } hitcount: 472
2746 { lat: 245, common_pid: 2038 } hitcount: 2758
2747 { lat: 245, common_pid: 2042 } hitcount: 3833
2748 { lat: 245, common_pid: 2040 } hitcount: 3105
2749 { lat: 245, common_pid: 2043 } hitcount: 645
2750 { lat: 246, common_pid: 2038 } hitcount: 3451
2751 { lat: 246, common_pid: 2041 } hitcount: 142
2752 { lat: 246, common_pid: 2037 } hitcount: 5101
2753 { lat: 246, common_pid: 2040 } hitcount: 68
2754 { lat: 246, common_pid: 2043 } hitcount: 5099
2755 { lat: 246, common_pid: 2039 } hitcount: 5608
2756 { lat: 246, common_pid: 2042 } hitcount: 3723
2757 { lat: 246, common_pid: 2036 } hitcount: 4738
2758 { lat: 247, common_pid: 2042 } hitcount: 312
2759 { lat: 247, common_pid: 2043 } hitcount: 2385
2760 { lat: 247, common_pid: 2041 } hitcount: 452
2761 { lat: 247, common_pid: 2038 } hitcount: 792
2762 { lat: 247, common_pid: 2040 } hitcount: 78
2763 { lat: 247, common_pid: 2036 } hitcount: 2375
2764 { lat: 247, common_pid: 2039 } hitcount: 1834
2765 { lat: 247, common_pid: 2037 } hitcount: 2655
2766 { lat: 248, common_pid: 2037 } hitcount: 36
2767 { lat: 248, common_pid: 2042 } hitcount: 11
2768 { lat: 248, common_pid: 2038 } hitcount: 122
2769 { lat: 248, common_pid: 2036 } hitcount: 135
2770 { lat: 248, common_pid: 2039 } hitcount: 26
2771 { lat: 248, common_pid: 2041 } hitcount: 503
2772 { lat: 248, common_pid: 2043 } hitcount: 66
2773 { lat: 248, common_pid: 2040 } hitcount: 46
2774 { lat: 249, common_pid: 2037 } hitcount: 29
2775 { lat: 249, common_pid: 2038 } hitcount: 1
2776 { lat: 249, common_pid: 2043 } hitcount: 29
2777 { lat: 249, common_pid: 2039 } hitcount: 8
2778 { lat: 249, common_pid: 2042 } hitcount: 56
2779 { lat: 249, common_pid: 2040 } hitcount: 27
2780 { lat: 249, common_pid: 2041 } hitcount: 11
2781 { lat: 249, common_pid: 2036 } hitcount: 27
2782 { lat: 250, common_pid: 2038 } hitcount: 1
2783 { lat: 250, common_pid: 2036 } hitcount: 30
2784 { lat: 250, common_pid: 2040 } hitcount: 19
2785 { lat: 250, common_pid: 2043 } hitcount: 22
2786 { lat: 250, common_pid: 2042 } hitcount: 20
2787 { lat: 250, common_pid: 2041 } hitcount: 1
2788 { lat: 250, common_pid: 2039 } hitcount: 6
2789 { lat: 250, common_pid: 2037 } hitcount: 48
2790 { lat: 251, common_pid: 2037 } hitcount: 43
2791 { lat: 251, common_pid: 2039 } hitcount: 1
2792 { lat: 251, common_pid: 2036 } hitcount: 12
2793 { lat: 251, common_pid: 2042 } hitcount: 2
2794 { lat: 251, common_pid: 2041 } hitcount: 1
2795 { lat: 251, common_pid: 2043 } hitcount: 15
2796 { lat: 251, common_pid: 2040 } hitcount: 3
2797 { lat: 252, common_pid: 2040 } hitcount: 1
2798 { lat: 252, common_pid: 2036 } hitcount: 12
2799 { lat: 252, common_pid: 2037 } hitcount: 21
2800 { lat: 252, common_pid: 2043 } hitcount: 14
2801 { lat: 253, common_pid: 2037 } hitcount: 21
2802 { lat: 253, common_pid: 2039 } hitcount: 2
2803 { lat: 253, common_pid: 2036 } hitcount: 9
2804 { lat: 253, common_pid: 2043 } hitcount: 6
2805 { lat: 253, common_pid: 2040 } hitcount: 1
2806 { lat: 254, common_pid: 2036 } hitcount: 8
2807 { lat: 254, common_pid: 2043 } hitcount: 3
2808 { lat: 254, common_pid: 2041 } hitcount: 1
2809 { lat: 254, common_pid: 2042 } hitcount: 1
2810 { lat: 254, common_pid: 2039 } hitcount: 1
2811 { lat: 254, common_pid: 2037 } hitcount: 12
2812 { lat: 255, common_pid: 2043 } hitcount: 1
2813 { lat: 255, common_pid: 2037 } hitcount: 2
2814 { lat: 255, common_pid: 2036 } hitcount: 2
2815 { lat: 255, common_pid: 2039 } hitcount: 8
2816 { lat: 256, common_pid: 2043 } hitcount: 1
2817 { lat: 256, common_pid: 2036 } hitcount: 4
2818 { lat: 256, common_pid: 2039 } hitcount: 6
2819 { lat: 257, common_pid: 2039 } hitcount: 5
2820 { lat: 257, common_pid: 2036 } hitcount: 4
2821 { lat: 258, common_pid: 2039 } hitcount: 5
2822 { lat: 258, common_pid: 2036 } hitcount: 2
2823 { lat: 259, common_pid: 2036 } hitcount: 7
2824 { lat: 259, common_pid: 2039 } hitcount: 7
2825 { lat: 260, common_pid: 2036 } hitcount: 8
2826 { lat: 260, common_pid: 2039 } hitcount: 6
2827 { lat: 261, common_pid: 2036 } hitcount: 5
2828 { lat: 261, common_pid: 2039 } hitcount: 7
2829 { lat: 262, common_pid: 2039 } hitcount: 5
2830 { lat: 262, common_pid: 2036 } hitcount: 5
2831 { lat: 263, common_pid: 2039 } hitcount: 7
2832 { lat: 263, common_pid: 2036 } hitcount: 7
2833 { lat: 264, common_pid: 2039 } hitcount: 9
2834 { lat: 264, common_pid: 2036 } hitcount: 9
2835 { lat: 265, common_pid: 2036 } hitcount: 5
2836 { lat: 265, common_pid: 2039 } hitcount: 1
2837 { lat: 266, common_pid: 2036 } hitcount: 1
2838 { lat: 266, common_pid: 2039 } hitcount: 3
2839 { lat: 267, common_pid: 2036 } hitcount: 1
2840 { lat: 267, common_pid: 2039 } hitcount: 3
2841 { lat: 268, common_pid: 2036 } hitcount: 1
2842 { lat: 268, common_pid: 2039 } hitcount: 6
2843 { lat: 269, common_pid: 2036 } hitcount: 1
2844 { lat: 269, common_pid: 2043 } hitcount: 1
2845 { lat: 269, common_pid: 2039 } hitcount: 2
2846 { lat: 270, common_pid: 2040 } hitcount: 1
2847 { lat: 270, common_pid: 2039 } hitcount: 6
2848 { lat: 271, common_pid: 2041 } hitcount: 1
2849 { lat: 271, common_pid: 2039 } hitcount: 5
2850 { lat: 272, common_pid: 2039 } hitcount: 10
2851 { lat: 273, common_pid: 2039 } hitcount: 8
2852 { lat: 274, common_pid: 2039 } hitcount: 2
2853 { lat: 275, common_pid: 2039 } hitcount: 1
2854 { lat: 276, common_pid: 2039 } hitcount: 2
2855 { lat: 276, common_pid: 2037 } hitcount: 1
2856 { lat: 276, common_pid: 2038 } hitcount: 1
2857 { lat: 277, common_pid: 2039 } hitcount: 1
2858 { lat: 277, common_pid: 2042 } hitcount: 1
2859 { lat: 278, common_pid: 2039 } hitcount: 1
2860 { lat: 279, common_pid: 2039 } hitcount: 4
2861 { lat: 279, common_pid: 2043 } hitcount: 1
2862 { lat: 280, common_pid: 2039 } hitcount: 3
2863 { lat: 283, common_pid: 2036 } hitcount: 2
2864 { lat: 284, common_pid: 2039 } hitcount: 1
2865 { lat: 284, common_pid: 2043 } hitcount: 1
2866 { lat: 288, common_pid: 2039 } hitcount: 1
2867 { lat: 289, common_pid: 2039 } hitcount: 1
2868 { lat: 300, common_pid: 2039 } hitcount: 1
2869 { lat: 384, common_pid: 2039 } hitcount: 1
2876 Note, the writes are around the sleep, so ideally they will all be of 250
2877 microseconds. If you are wondering how there are several that are under
2878 250 microseconds, that is because the way cyclictest works, is if one
2879 iteration comes in late, the next one will set the timer to wake up less that
2880 250. That is, if an iteration came in 50 microseconds late, the next wake up
2881 will be at 200 microseconds.
2883 But this could easily be done in userspace. To make this even more
2884 interesting, we can mix the histogram between events that happened in the
2885 kernel with trace_marker::
2887 # cd /sys/kernel/tracing
2888 # echo 'latency u64 lat' > synthetic_events
2889 # echo 'hist:keys=pid:ts0=common_timestamp.usecs' > events/sched/sched_waking/trigger
2890 # echo 'hist:keys=common_pid:lat=common_timestamp.usecs-$ts0:onmatch(sched.sched_waking).latency($lat) if buf == "end"' > events/ftrace/print/trigger
2891 # echo 'hist:keys=lat,common_pid:sort=lat' > events/synthetic/latency/trigger
2893 The difference this time is that instead of using the trace_marker to start
2894 the latency, the sched_waking event is used, matching the common_pid for the
2895 trace_marker write with the pid that is being woken by sched_waking.
2897 After running cyclictest again with the same parameters, we now have::
2899 # cat events/synthetic/latency/hist
2902 # trigger info: hist:keys=lat,common_pid:vals=hitcount:sort=lat:size=2048 [active]
2905 { lat: 7, common_pid: 2302 } hitcount: 640
2906 { lat: 7, common_pid: 2299 } hitcount: 42
2907 { lat: 7, common_pid: 2303 } hitcount: 18
2908 { lat: 7, common_pid: 2305 } hitcount: 166
2909 { lat: 7, common_pid: 2306 } hitcount: 1
2910 { lat: 7, common_pid: 2301 } hitcount: 91
2911 { lat: 7, common_pid: 2300 } hitcount: 17
2912 { lat: 8, common_pid: 2303 } hitcount: 8296
2913 { lat: 8, common_pid: 2304 } hitcount: 6864
2914 { lat: 8, common_pid: 2305 } hitcount: 9464
2915 { lat: 8, common_pid: 2301 } hitcount: 9213
2916 { lat: 8, common_pid: 2306 } hitcount: 6246
2917 { lat: 8, common_pid: 2302 } hitcount: 8797
2918 { lat: 8, common_pid: 2299 } hitcount: 8771
2919 { lat: 8, common_pid: 2300 } hitcount: 8119
2920 { lat: 9, common_pid: 2305 } hitcount: 1519
2921 { lat: 9, common_pid: 2299 } hitcount: 2346
2922 { lat: 9, common_pid: 2303 } hitcount: 2841
2923 { lat: 9, common_pid: 2301 } hitcount: 1846
2924 { lat: 9, common_pid: 2304 } hitcount: 3861
2925 { lat: 9, common_pid: 2302 } hitcount: 1210
2926 { lat: 9, common_pid: 2300 } hitcount: 2762
2927 { lat: 9, common_pid: 2306 } hitcount: 4247
2928 { lat: 10, common_pid: 2299 } hitcount: 16
2929 { lat: 10, common_pid: 2306 } hitcount: 333
2930 { lat: 10, common_pid: 2303 } hitcount: 16
2931 { lat: 10, common_pid: 2304 } hitcount: 168
2932 { lat: 10, common_pid: 2302 } hitcount: 240
2933 { lat: 10, common_pid: 2301 } hitcount: 28
2934 { lat: 10, common_pid: 2300 } hitcount: 95
2935 { lat: 10, common_pid: 2305 } hitcount: 18
2936 { lat: 11, common_pid: 2303 } hitcount: 5
2937 { lat: 11, common_pid: 2305 } hitcount: 8
2938 { lat: 11, common_pid: 2306 } hitcount: 221
2939 { lat: 11, common_pid: 2302 } hitcount: 76
2940 { lat: 11, common_pid: 2304 } hitcount: 26
2941 { lat: 11, common_pid: 2300 } hitcount: 125
2942 { lat: 11, common_pid: 2299 } hitcount: 2
2943 { lat: 12, common_pid: 2305 } hitcount: 3
2944 { lat: 12, common_pid: 2300 } hitcount: 6
2945 { lat: 12, common_pid: 2306 } hitcount: 90
2946 { lat: 12, common_pid: 2302 } hitcount: 4
2947 { lat: 12, common_pid: 2303 } hitcount: 1
2948 { lat: 12, common_pid: 2304 } hitcount: 122
2949 { lat: 13, common_pid: 2300 } hitcount: 12
2950 { lat: 13, common_pid: 2301 } hitcount: 1
2951 { lat: 13, common_pid: 2306 } hitcount: 32
2952 { lat: 13, common_pid: 2302 } hitcount: 5
2953 { lat: 13, common_pid: 2305 } hitcount: 1
2954 { lat: 13, common_pid: 2303 } hitcount: 1
2955 { lat: 13, common_pid: 2304 } hitcount: 61
2956 { lat: 14, common_pid: 2303 } hitcount: 4
2957 { lat: 14, common_pid: 2306 } hitcount: 5
2958 { lat: 14, common_pid: 2305 } hitcount: 4
2959 { lat: 14, common_pid: 2304 } hitcount: 62
2960 { lat: 14, common_pid: 2302 } hitcount: 19
2961 { lat: 14, common_pid: 2300 } hitcount: 33
2962 { lat: 14, common_pid: 2299 } hitcount: 1
2963 { lat: 14, common_pid: 2301 } hitcount: 4
2964 { lat: 15, common_pid: 2305 } hitcount: 1
2965 { lat: 15, common_pid: 2302 } hitcount: 25
2966 { lat: 15, common_pid: 2300 } hitcount: 11
2967 { lat: 15, common_pid: 2299 } hitcount: 5
2968 { lat: 15, common_pid: 2301 } hitcount: 1
2969 { lat: 15, common_pid: 2304 } hitcount: 8
2970 { lat: 15, common_pid: 2303 } hitcount: 1
2971 { lat: 15, common_pid: 2306 } hitcount: 6
2972 { lat: 16, common_pid: 2302 } hitcount: 31
2973 { lat: 16, common_pid: 2306 } hitcount: 3
2974 { lat: 16, common_pid: 2300 } hitcount: 5
2975 { lat: 17, common_pid: 2302 } hitcount: 6
2976 { lat: 17, common_pid: 2303 } hitcount: 1
2977 { lat: 18, common_pid: 2304 } hitcount: 1
2978 { lat: 18, common_pid: 2302 } hitcount: 8
2979 { lat: 18, common_pid: 2299 } hitcount: 1
2980 { lat: 18, common_pid: 2301 } hitcount: 1
2981 { lat: 19, common_pid: 2303 } hitcount: 4
2982 { lat: 19, common_pid: 2304 } hitcount: 5
2983 { lat: 19, common_pid: 2302 } hitcount: 4
2984 { lat: 19, common_pid: 2299 } hitcount: 3
2985 { lat: 19, common_pid: 2306 } hitcount: 1
2986 { lat: 19, common_pid: 2300 } hitcount: 4
2987 { lat: 19, common_pid: 2305 } hitcount: 5
2988 { lat: 20, common_pid: 2299 } hitcount: 2
2989 { lat: 20, common_pid: 2302 } hitcount: 3
2990 { lat: 20, common_pid: 2305 } hitcount: 1
2991 { lat: 20, common_pid: 2300 } hitcount: 2
2992 { lat: 20, common_pid: 2301 } hitcount: 2
2993 { lat: 20, common_pid: 2303 } hitcount: 3
2994 { lat: 21, common_pid: 2305 } hitcount: 1
2995 { lat: 21, common_pid: 2299 } hitcount: 5
2996 { lat: 21, common_pid: 2303 } hitcount: 4
2997 { lat: 21, common_pid: 2302 } hitcount: 7
2998 { lat: 21, common_pid: 2300 } hitcount: 1
2999 { lat: 21, common_pid: 2301 } hitcount: 5
3000 { lat: 21, common_pid: 2304 } hitcount: 2
3001 { lat: 22, common_pid: 2302 } hitcount: 5
3002 { lat: 22, common_pid: 2303 } hitcount: 1
3003 { lat: 22, common_pid: 2306 } hitcount: 3
3004 { lat: 22, common_pid: 2301 } hitcount: 2
3005 { lat: 22, common_pid: 2300 } hitcount: 1
3006 { lat: 22, common_pid: 2299 } hitcount: 1
3007 { lat: 22, common_pid: 2305 } hitcount: 1
3008 { lat: 22, common_pid: 2304 } hitcount: 1
3009 { lat: 23, common_pid: 2299 } hitcount: 1
3010 { lat: 23, common_pid: 2306 } hitcount: 2
3011 { lat: 23, common_pid: 2302 } hitcount: 6
3012 { lat: 24, common_pid: 2302 } hitcount: 3
3013 { lat: 24, common_pid: 2300 } hitcount: 1
3014 { lat: 24, common_pid: 2306 } hitcount: 2
3015 { lat: 24, common_pid: 2305 } hitcount: 1
3016 { lat: 24, common_pid: 2299 } hitcount: 1
3017 { lat: 25, common_pid: 2300 } hitcount: 1
3018 { lat: 25, common_pid: 2302 } hitcount: 4
3019 { lat: 26, common_pid: 2302 } hitcount: 2
3020 { lat: 27, common_pid: 2305 } hitcount: 1
3021 { lat: 27, common_pid: 2300 } hitcount: 1
3022 { lat: 27, common_pid: 2302 } hitcount: 3
3023 { lat: 28, common_pid: 2306 } hitcount: 1
3024 { lat: 28, common_pid: 2302 } hitcount: 4
3025 { lat: 29, common_pid: 2302 } hitcount: 1
3026 { lat: 29, common_pid: 2300 } hitcount: 2
3027 { lat: 29, common_pid: 2306 } hitcount: 1
3028 { lat: 29, common_pid: 2304 } hitcount: 1
3029 { lat: 30, common_pid: 2302 } hitcount: 4
3030 { lat: 31, common_pid: 2302 } hitcount: 6
3031 { lat: 32, common_pid: 2302 } hitcount: 1
3032 { lat: 33, common_pid: 2299 } hitcount: 1
3033 { lat: 33, common_pid: 2302 } hitcount: 3
3034 { lat: 34, common_pid: 2302 } hitcount: 2
3035 { lat: 35, common_pid: 2302 } hitcount: 1
3036 { lat: 35, common_pid: 2304 } hitcount: 1
3037 { lat: 36, common_pid: 2302 } hitcount: 4
3038 { lat: 37, common_pid: 2302 } hitcount: 6
3039 { lat: 38, common_pid: 2302 } hitcount: 2
3040 { lat: 39, common_pid: 2302 } hitcount: 2
3041 { lat: 39, common_pid: 2304 } hitcount: 1
3042 { lat: 40, common_pid: 2304 } hitcount: 2
3043 { lat: 40, common_pid: 2302 } hitcount: 5
3044 { lat: 41, common_pid: 2304 } hitcount: 1
3045 { lat: 41, common_pid: 2302 } hitcount: 8
3046 { lat: 42, common_pid: 2302 } hitcount: 6
3047 { lat: 42, common_pid: 2304 } hitcount: 1
3048 { lat: 43, common_pid: 2302 } hitcount: 3
3049 { lat: 43, common_pid: 2304 } hitcount: 4
3050 { lat: 44, common_pid: 2302 } hitcount: 6
3051 { lat: 45, common_pid: 2302 } hitcount: 5
3052 { lat: 46, common_pid: 2302 } hitcount: 5
3053 { lat: 47, common_pid: 2302 } hitcount: 7
3054 { lat: 48, common_pid: 2301 } hitcount: 1
3055 { lat: 48, common_pid: 2302 } hitcount: 9
3056 { lat: 49, common_pid: 2302 } hitcount: 3
3057 { lat: 50, common_pid: 2302 } hitcount: 1
3058 { lat: 50, common_pid: 2301 } hitcount: 1
3059 { lat: 51, common_pid: 2302 } hitcount: 2
3060 { lat: 51, common_pid: 2301 } hitcount: 1
3061 { lat: 61, common_pid: 2302 } hitcount: 1
3062 { lat: 110, common_pid: 2302 } hitcount: 1
3069 This doesn't tell us any information about how late cyclictest may have
3070 woken up, but it does show us a nice histogram of how long it took from
3071 the time that cyclictest was woken to the time it made it into user space.