1 // SPDX-License-Identifier: GPL-2.0-only
3 * TLB Management (flush/create/diagnostics) for MMUv3 and MMUv4
5 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
9 #include <linux/module.h>
10 #include <linux/bug.h>
11 #include <linux/mm_types.h>
13 #include <asm/arcregs.h>
14 #include <asm/setup.h>
15 #include <asm/mmu_context.h>
18 /* A copy of the ASID from the PID reg is kept in asid_cache */
19 DEFINE_PER_CPU(unsigned int, asid_cache
) = MM_CTXT_FIRST_CYCLE
;
21 static struct cpuinfo_arc_mmu
{
22 unsigned int ver
, pg_sz_k
, s_pg_sz_m
, pae
, sets
, ways
;
26 * Utility Routine to erase a J-TLB entry
27 * Caller needs to setup Index Reg (manually or via getIndex)
29 static inline void __tlb_entry_erase(void)
31 write_aux_reg(ARC_REG_TLBPD1
, 0);
33 if (is_pae40_enabled())
34 write_aux_reg(ARC_REG_TLBPD1HI
, 0);
36 write_aux_reg(ARC_REG_TLBPD0
, 0);
37 write_aux_reg(ARC_REG_TLBCOMMAND
, TLBWrite
);
40 static void utlb_invalidate(void)
42 write_aux_reg(ARC_REG_TLBCOMMAND
, TLBIVUTLB
);
45 #ifdef CONFIG_ARC_MMU_V3
47 static inline unsigned int tlb_entry_lkup(unsigned long vaddr_n_asid
)
51 write_aux_reg(ARC_REG_TLBPD0
, vaddr_n_asid
);
53 write_aux_reg(ARC_REG_TLBCOMMAND
, TLBProbe
);
54 idx
= read_aux_reg(ARC_REG_TLBINDEX
);
59 static void tlb_entry_erase(unsigned int vaddr_n_asid
)
63 /* Locate the TLB entry for this vaddr + ASID */
64 idx
= tlb_entry_lkup(vaddr_n_asid
);
66 /* No error means entry found, zero it out */
67 if (likely(!(idx
& TLB_LKUP_ERR
))) {
70 /* Duplicate entry error */
71 WARN(idx
== TLB_DUP_ERR
, "Probe returned Dup PD for %x\n",
76 static void tlb_entry_insert(unsigned int pd0
, phys_addr_t pd1
)
81 * First verify if entry for this vaddr+ASID already exists
82 * This also sets up PD0 (vaddr, ASID..) for final commit
84 idx
= tlb_entry_lkup(pd0
);
87 * If Not already present get a free slot from MMU.
88 * Otherwise, Probe would have located the entry and set INDEX Reg
89 * with existing location. This will cause Write CMD to over-write
90 * existing entry with new PD0 and PD1
92 if (likely(idx
& TLB_LKUP_ERR
))
93 write_aux_reg(ARC_REG_TLBCOMMAND
, TLBGetIndex
);
95 /* setup the other half of TLB entry (pfn, rwx..) */
96 write_aux_reg(ARC_REG_TLBPD1
, pd1
);
99 * Commit the Entry to MMU
100 * It doesn't sound safe to use the TLBWriteNI cmd here
101 * which doesn't flush uTLBs. I'd rather be safe than sorry.
103 write_aux_reg(ARC_REG_TLBCOMMAND
, TLBWrite
);
108 static void tlb_entry_erase(unsigned int vaddr_n_asid
)
110 write_aux_reg(ARC_REG_TLBPD0
, vaddr_n_asid
| _PAGE_PRESENT
);
111 write_aux_reg(ARC_REG_TLBCOMMAND
, TLBDeleteEntry
);
114 static void tlb_entry_insert(unsigned int pd0
, phys_addr_t pd1
)
116 write_aux_reg(ARC_REG_TLBPD0
, pd0
);
118 if (!is_pae40_enabled()) {
119 write_aux_reg(ARC_REG_TLBPD1
, pd1
);
121 write_aux_reg(ARC_REG_TLBPD1
, pd1
& 0xFFFFFFFF);
122 write_aux_reg(ARC_REG_TLBPD1HI
, (u64
)pd1
>> 32);
125 write_aux_reg(ARC_REG_TLBCOMMAND
, TLBInsertEntry
);
131 * Un-conditionally (without lookup) erase the entire MMU contents
134 noinline
void local_flush_tlb_all(void)
136 struct cpuinfo_arc_mmu
*mmu
= &mmuinfo
;
139 int num_tlb
= mmu
->sets
* mmu
->ways
;
141 local_irq_save(flags
);
143 /* Load PD0 and PD1 with template for a Blank Entry */
144 write_aux_reg(ARC_REG_TLBPD1
, 0);
146 if (is_pae40_enabled())
147 write_aux_reg(ARC_REG_TLBPD1HI
, 0);
149 write_aux_reg(ARC_REG_TLBPD0
, 0);
151 for (entry
= 0; entry
< num_tlb
; entry
++) {
152 /* write this entry to the TLB */
153 write_aux_reg(ARC_REG_TLBINDEX
, entry
);
154 write_aux_reg(ARC_REG_TLBCOMMAND
, TLBWriteNI
);
157 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE
)) {
158 const int stlb_idx
= 0x800;
160 /* Blank sTLB entry */
161 write_aux_reg(ARC_REG_TLBPD0
, _PAGE_HW_SZ
);
163 for (entry
= stlb_idx
; entry
< stlb_idx
+ 16; entry
++) {
164 write_aux_reg(ARC_REG_TLBINDEX
, entry
);
165 write_aux_reg(ARC_REG_TLBCOMMAND
, TLBWriteNI
);
171 local_irq_restore(flags
);
175 * Flush the entire MM for userland. The fastest way is to move to Next ASID
177 noinline
void local_flush_tlb_mm(struct mm_struct
*mm
)
180 * Small optimisation courtesy IA64
181 * flush_mm called during fork,exit,munmap etc, multiple times as well.
182 * Only for fork( ) do we need to move parent to a new MMU ctxt,
183 * all other cases are NOPs, hence this check.
185 if (atomic_read(&mm
->mm_users
) == 0)
189 * - Move to a new ASID, but only if the mm is still wired in
190 * (Android Binder ended up calling this for vma->mm != tsk->mm,
191 * causing h/w - s/w ASID to get out of sync)
192 * - Also get_new_mmu_context() new implementation allocates a new
193 * ASID only if it is not allocated already - so unallocate first
196 if (current
->mm
== mm
)
197 get_new_mmu_context(mm
);
201 * Flush a Range of TLB entries for userland.
202 * @start is inclusive, while @end is exclusive
203 * Difference between this and Kernel Range Flush is
204 * -Here the fastest way (if range is too large) is to move to next ASID
205 * without doing any explicit Shootdown
206 * -In case of kernel Flush, entry has to be shot down explicitly
208 void local_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
,
211 const unsigned int cpu
= smp_processor_id();
214 /* If range @start to @end is more than 32 TLB entries deep,
215 * it's better to move to a new ASID rather than searching for
216 * individual entries and then shooting them down
218 * The calc above is rough, doesn't account for unaligned parts,
219 * since this is heuristics based anyways
221 if (unlikely((end
- start
) >= PAGE_SIZE
* 32)) {
222 local_flush_tlb_mm(vma
->vm_mm
);
227 * @start moved to page start: this alone suffices for checking
228 * loop end condition below, w/o need for aligning @end to end
229 * e.g. 2000 to 4001 will anyhow loop twice
233 local_irq_save(flags
);
235 if (asid_mm(vma
->vm_mm
, cpu
) != MM_CTXT_NO_ASID
) {
236 while (start
< end
) {
237 tlb_entry_erase(start
| hw_pid(vma
->vm_mm
, cpu
));
242 local_irq_restore(flags
);
245 /* Flush the kernel TLB entries - vmalloc/modules (Global from MMU perspective)
246 * @start, @end interpreted as kvaddr
247 * Interestingly, shared TLB entries can also be flushed using just
248 * @start,@end alone (interpreted as user vaddr), although technically SASID
249 * is also needed. However our smart TLbProbe lookup takes care of that.
251 void local_flush_tlb_kernel_range(unsigned long start
, unsigned long end
)
255 /* exactly same as above, except for TLB entry not taking ASID */
257 if (unlikely((end
- start
) >= PAGE_SIZE
* 32)) {
258 local_flush_tlb_all();
264 local_irq_save(flags
);
265 while (start
< end
) {
266 tlb_entry_erase(start
);
270 local_irq_restore(flags
);
274 * Delete TLB entry in MMU for a given page (??? address)
275 * NOTE One TLB entry contains translation for single PAGE
278 void local_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
)
280 const unsigned int cpu
= smp_processor_id();
283 /* Note that it is critical that interrupts are DISABLED between
284 * checking the ASID and using it flush the TLB entry
286 local_irq_save(flags
);
288 if (asid_mm(vma
->vm_mm
, cpu
) != MM_CTXT_NO_ASID
) {
289 tlb_entry_erase((page
& PAGE_MASK
) | hw_pid(vma
->vm_mm
, cpu
));
292 local_irq_restore(flags
);
298 struct vm_area_struct
*ta_vma
;
299 unsigned long ta_start
;
300 unsigned long ta_end
;
303 static inline void ipi_flush_tlb_page(void *arg
)
305 struct tlb_args
*ta
= arg
;
307 local_flush_tlb_page(ta
->ta_vma
, ta
->ta_start
);
310 static inline void ipi_flush_tlb_range(void *arg
)
312 struct tlb_args
*ta
= arg
;
314 local_flush_tlb_range(ta
->ta_vma
, ta
->ta_start
, ta
->ta_end
);
317 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
318 static inline void ipi_flush_pmd_tlb_range(void *arg
)
320 struct tlb_args
*ta
= arg
;
322 local_flush_pmd_tlb_range(ta
->ta_vma
, ta
->ta_start
, ta
->ta_end
);
326 static inline void ipi_flush_tlb_kernel_range(void *arg
)
328 struct tlb_args
*ta
= (struct tlb_args
*)arg
;
330 local_flush_tlb_kernel_range(ta
->ta_start
, ta
->ta_end
);
333 void flush_tlb_all(void)
335 on_each_cpu((smp_call_func_t
)local_flush_tlb_all
, NULL
, 1);
338 void flush_tlb_mm(struct mm_struct
*mm
)
340 on_each_cpu_mask(mm_cpumask(mm
), (smp_call_func_t
)local_flush_tlb_mm
,
344 void flush_tlb_page(struct vm_area_struct
*vma
, unsigned long uaddr
)
346 struct tlb_args ta
= {
351 on_each_cpu_mask(mm_cpumask(vma
->vm_mm
), ipi_flush_tlb_page
, &ta
, 1);
354 void flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
,
357 struct tlb_args ta
= {
363 on_each_cpu_mask(mm_cpumask(vma
->vm_mm
), ipi_flush_tlb_range
, &ta
, 1);
366 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
367 void flush_pmd_tlb_range(struct vm_area_struct
*vma
, unsigned long start
,
370 struct tlb_args ta
= {
376 on_each_cpu_mask(mm_cpumask(vma
->vm_mm
), ipi_flush_pmd_tlb_range
, &ta
, 1);
380 void flush_tlb_kernel_range(unsigned long start
, unsigned long end
)
382 struct tlb_args ta
= {
387 on_each_cpu(ipi_flush_tlb_kernel_range
, &ta
, 1);
392 * Routine to create a TLB entry
394 static void create_tlb(struct vm_area_struct
*vma
, unsigned long vaddr
, pte_t
*ptep
)
397 unsigned int asid_or_sasid
, rwx
;
402 * create_tlb() assumes that current->mm == vma->mm, since
403 * -it ASID for TLB entry is fetched from MMU ASID reg (valid for curr)
404 * -completes the lazy write to SASID reg (again valid for curr tsk)
406 * Removing the assumption involves
407 * -Using vma->mm->context{ASID,SASID}, as opposed to MMU reg.
408 * -More importantly it makes this handler inconsistent with fast-path
409 * TLB Refill handler which always deals with "current"
411 * Let's see the use cases when current->mm != vma->mm and we land here
412 * 1. execve->copy_strings()->__get_user_pages->handle_mm_fault
413 * Here VM wants to pre-install a TLB entry for user stack while
414 * current->mm still points to pre-execve mm (hence the condition).
415 * However the stack vaddr is soon relocated (randomization) and
416 * move_page_tables() tries to undo that TLB entry.
417 * Thus not creating TLB entry is not any worse.
419 * 2. ptrace(POKETEXT) causes a CoW - debugger(current) inserting a
420 * breakpoint in debugged task. Not creating a TLB now is not
421 * performance critical.
423 * Both the cases above are not good enough for code churn.
425 if (current
->active_mm
!= vma
->vm_mm
)
428 local_irq_save(flags
);
432 /* update this PTE credentials */
433 pte_val(*ptep
) |= (_PAGE_PRESENT
| _PAGE_ACCESSED
);
435 /* Create HW TLB(PD0,PD1) from PTE */
437 /* ASID for this task */
438 asid_or_sasid
= read_aux_reg(ARC_REG_PID
) & 0xff;
440 pd0
= vaddr
| asid_or_sasid
| (pte_val(*ptep
) & PTE_BITS_IN_PD0
);
443 * ARC MMU provides fully orthogonal access bits for K/U mode,
444 * however Linux only saves 1 set to save PTE real-estate
445 * Here we convert 3 PTE bits into 6 MMU bits:
446 * -Kernel only entries have Kr Kw Kx 0 0 0
447 * -User entries have mirrored K and U bits
449 rwx
= pte_val(*ptep
) & PTE_BITS_RWX
;
451 if (pte_val(*ptep
) & _PAGE_GLOBAL
)
452 rwx
<<= 3; /* r w x => Kr Kw Kx 0 0 0 */
454 rwx
|= (rwx
<< 3); /* r w x => Kr Kw Kx Ur Uw Ux */
456 pd1
= rwx
| (pte_val(*ptep
) & PTE_BITS_NON_RWX_IN_PD1
);
458 tlb_entry_insert(pd0
, pd1
);
460 local_irq_restore(flags
);
464 * Called at the end of pagefault, for a userspace mapped page
465 * -pre-install the corresponding TLB entry into MMU
466 * -Finalize the delayed D-cache flush of kernel mapping of page due to
467 * flush_dcache_page(), copy_user_page()
469 * Note that flush (when done) involves both WBACK - so physical page is
470 * in sync as well as INV - so any non-congruent aliases don't remain
472 void update_mmu_cache_range(struct vm_fault
*vmf
, struct vm_area_struct
*vma
,
473 unsigned long vaddr_unaligned
, pte_t
*ptep
, unsigned int nr
)
475 unsigned long vaddr
= vaddr_unaligned
& PAGE_MASK
;
476 phys_addr_t paddr
= pte_val(*ptep
) & PAGE_MASK_PHYS
;
477 struct page
*page
= pfn_to_page(pte_pfn(*ptep
));
479 create_tlb(vma
, vaddr
, ptep
);
481 if (page
== ZERO_PAGE(0))
485 * For executable pages, since icache doesn't snoop dcache, any
486 * dirty K-mapping of a code page needs to be wback+inv so that
487 * icache fetch by userspace sees code correctly.
489 if (vma
->vm_flags
& VM_EXEC
) {
490 struct folio
*folio
= page_folio(page
);
491 int dirty
= !test_and_set_bit(PG_dc_clean
, &folio
->flags
);
493 unsigned long offset
= offset_in_folio(folio
, paddr
);
494 nr
= folio_nr_pages(folio
);
497 /* wback + inv dcache lines (K-mapping) */
498 __flush_dcache_pages(paddr
, paddr
, nr
);
500 /* invalidate any existing icache lines (U-mapping) */
501 if (vma
->vm_flags
& VM_EXEC
)
502 __inv_icache_pages(paddr
, vaddr
, nr
);
507 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
510 * MMUv4 in HS38x cores supports Super Pages which are basis for Linux THP
513 * Normal and Super pages can co-exist (ofcourse not overlap) in TLB with a
514 * new bit "SZ" in TLB page descriptor to distinguish between them.
515 * Super Page size is configurable in hardware (4K to 16M), but fixed once
518 * The exact THP size a Linux configuration will support is a function of:
519 * - MMU page size (typical 8K, RTL fixed)
520 * - software page walker address split between PGD:PTE:PFN (typical
521 * 11:8:13, but can be changed with 1 line)
522 * So for above default, THP size supported is 8K * (2^8) = 2M
524 * Default Page Walker is 2 levels, PGD:PTE:PFN, which in THP regime
525 * reduces to 1 level (as PTE is folded into PGD and canonically referred
527 * Thus THP PMD accessors are implemented in terms of PTE (just like sparc)
530 void update_mmu_cache_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
533 pte_t pte
= __pte(pmd_val(*pmd
));
534 update_mmu_cache_range(NULL
, vma
, addr
, &pte
, HPAGE_PMD_NR
);
537 void local_flush_pmd_tlb_range(struct vm_area_struct
*vma
, unsigned long start
,
543 local_irq_save(flags
);
545 cpu
= smp_processor_id();
547 if (likely(asid_mm(vma
->vm_mm
, cpu
) != MM_CTXT_NO_ASID
)) {
548 unsigned int asid
= hw_pid(vma
->vm_mm
, cpu
);
550 /* No need to loop here: this will always be for 1 Huge Page */
551 tlb_entry_erase(start
| _PAGE_HW_SZ
| asid
);
554 local_irq_restore(flags
);
559 /* Read the Cache Build Configuration Registers, Decode them and save into
560 * the cpuinfo structure for later use.
561 * No Validation is done here, simply read/convert the BCRs
563 int arc_mmu_mumbojumbo(int c
, char *buf
, int len
)
565 struct cpuinfo_arc_mmu
*mmu
= &mmuinfo
;
566 unsigned int bcr
, u_dtlb
, u_itlb
, sasid
;
567 struct bcr_mmu_3
*mmu3
;
568 struct bcr_mmu_4
*mmu4
;
569 char super_pg
[64] = "";
572 bcr
= read_aux_reg(ARC_REG_MMU_BCR
);
573 mmu
->ver
= (bcr
>> 24);
575 if (is_isa_arcompact() && mmu
->ver
== 3) {
576 mmu3
= (struct bcr_mmu_3
*)&bcr
;
577 mmu
->pg_sz_k
= 1 << (mmu3
->pg_sz
- 1);
578 mmu
->sets
= 1 << mmu3
->sets
;
579 mmu
->ways
= 1 << mmu3
->ways
;
580 u_dtlb
= mmu3
->u_dtlb
;
581 u_itlb
= mmu3
->u_itlb
;
584 mmu4
= (struct bcr_mmu_4
*)&bcr
;
585 mmu
->pg_sz_k
= 1 << (mmu4
->sz0
- 1);
586 mmu
->s_pg_sz_m
= 1 << (mmu4
->sz1
- 11);
587 mmu
->sets
= 64 << mmu4
->n_entry
;
588 mmu
->ways
= mmu4
->n_ways
* 2;
589 u_dtlb
= mmu4
->u_dtlb
* 4;
590 u_itlb
= mmu4
->u_itlb
* 4;
592 mmu
->pae
= mmu4
->pae
;
596 scnprintf(super_pg
, 64, "/%dM%s",
598 IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE
) ? " (THP enabled)":"");
600 n
+= scnprintf(buf
+ n
, len
- n
,
601 "MMU [v%x]\t: %dk%s, swalk %d lvl, JTLB %dx%d, uDTLB %d, uITLB %d%s%s%s\n",
602 mmu
->ver
, mmu
->pg_sz_k
, super_pg
, CONFIG_PGTABLE_LEVELS
,
603 mmu
->sets
, mmu
->ways
,
605 IS_AVAIL1(sasid
, ", SASID"),
606 IS_AVAIL2(mmu
->pae
, ", PAE40 ", CONFIG_ARC_HAS_PAE40
));
611 int pae40_exist_but_not_enab(void)
613 return mmuinfo
.pae
&& !is_pae40_enabled();
616 void arc_mmu_init(void)
618 struct cpuinfo_arc_mmu
*mmu
= &mmuinfo
;
622 * Can't be done in processor.h due to header include dependencies
624 BUILD_BUG_ON(!IS_ALIGNED((CONFIG_ARC_KVADDR_SIZE
<< 20), PMD_SIZE
));
627 * stack top size sanity check,
628 * Can't be done in processor.h due to header include dependencies
630 BUILD_BUG_ON(!IS_ALIGNED(STACK_TOP
, PMD_SIZE
));
633 * Ensure that MMU features assumed by kernel exist in hardware.
634 * - For older ARC700 cpus, only v3 supported
635 * - For HS cpus, v4 was baseline and v5 is backwards compatible
636 * (will run older software).
638 if (is_isa_arcompact() && mmu
->ver
== 3)
640 else if (is_isa_arcv2() && mmu
->ver
>= 4)
644 panic("MMU ver %d doesn't match kernel built for\n", mmu
->ver
);
646 if (mmu
->pg_sz_k
!= TO_KB(PAGE_SIZE
))
647 panic("MMU pg size != PAGE_SIZE (%luk)\n", TO_KB(PAGE_SIZE
));
649 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE
) &&
650 mmu
->s_pg_sz_m
!= TO_MB(HPAGE_PMD_SIZE
))
651 panic("MMU Super pg size != Linux HPAGE_PMD_SIZE (%luM)\n",
652 (unsigned long)TO_MB(HPAGE_PMD_SIZE
));
654 if (IS_ENABLED(CONFIG_ARC_HAS_PAE40
) && !mmu
->pae
)
655 panic("Hardware doesn't support PAE40\n");
657 /* Enable the MMU with ASID 0 */
658 mmu_setup_asid(NULL
, 0);
660 /* cache the pgd pointer in MMU SCRATCH reg (ARCv2 only) */
661 mmu_setup_pgd(NULL
, swapper_pg_dir
);
663 if (pae40_exist_but_not_enab())
664 write_aux_reg(ARC_REG_TLBPD1HI
, 0);
668 * TLB Programmer's Model uses Linear Indexes: 0 to {255, 511} for 128 x {2,4}
669 * The mapping is Column-first.
670 * --------------------- -----------
671 * |way0|way1|way2|way3| |way0|way1|
672 * --------------------- -----------
673 * [set0] | 0 | 1 | 2 | 3 | | 0 | 1 |
674 * [set1] | 4 | 5 | 6 | 7 | | 2 | 3 |
676 * [set127] | 508| 509| 510| 511| | 254| 255|
677 * --------------------- -----------
678 * For normal operations we don't(must not) care how above works since
679 * MMU cmd getIndex(vaddr) abstracts that out.
680 * However for walking WAYS of a SET, we need to know this
682 #define SET_WAY_TO_IDX(mmu, set, way) ((set) * mmu->ways + (way))
684 /* Handling of Duplicate PD (TLB entry) in MMU.
685 * -Could be due to buggy customer tapeouts or obscure kernel bugs
686 * -MMU complaints not at the time of duplicate PD installation, but at the
687 * time of lookup matching multiple ways.
688 * -Ideally these should never happen - but if they do - workaround by deleting
690 * -Knob to be verbose abt it.(TODO: hook them up to debugfs)
692 volatile int dup_pd_silent
; /* Be silent abt it or complain (default) */
694 void do_tlb_overlap_fault(unsigned long cause
, unsigned long address
,
695 struct pt_regs
*regs
)
697 struct cpuinfo_arc_mmu
*mmu
= &mmuinfo
;
699 int set
, n_ways
= mmu
->ways
;
701 n_ways
= min(n_ways
, 4);
702 BUG_ON(mmu
->ways
> 4);
704 local_irq_save(flags
);
706 /* loop thru all sets of TLB */
707 for (set
= 0; set
< mmu
->sets
; set
++) {
712 /* read out all the ways of current set */
713 for (way
= 0, is_valid
= 0; way
< n_ways
; way
++) {
714 write_aux_reg(ARC_REG_TLBINDEX
,
715 SET_WAY_TO_IDX(mmu
, set
, way
));
716 write_aux_reg(ARC_REG_TLBCOMMAND
, TLBRead
);
717 pd0
[way
] = read_aux_reg(ARC_REG_TLBPD0
);
718 is_valid
|= pd0
[way
] & _PAGE_PRESENT
;
719 pd0
[way
] &= PAGE_MASK
;
722 /* If all the WAYS in SET are empty, skip to next SET */
726 /* Scan the set for duplicate ways: needs a nested loop */
727 for (way
= 0; way
< n_ways
- 1; way
++) {
734 for (n
= way
+ 1; n
< n_ways
; n
++) {
735 if (pd0
[way
] != pd0
[n
])
739 pr_info("Dup TLB PD0 %08x @ set %d ways %d,%d\n",
740 pd0
[way
], set
, way
, n
);
743 * clear entry @way and not @n.
744 * This is critical to our optimised loop
747 write_aux_reg(ARC_REG_TLBINDEX
,
748 SET_WAY_TO_IDX(mmu
, set
, way
));
754 local_irq_restore(flags
);