1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/arch/arm/kernel/setup.c
5 * Copyright (C) 1995-2001 Russell King
8 #include <linux/export.h>
9 #include <linux/kernel.h>
10 #include <linux/stddef.h>
11 #include <linux/ioport.h>
12 #include <linux/delay.h>
13 #include <linux/utsname.h>
14 #include <linux/initrd.h>
15 #include <linux/console.h>
16 #include <linux/seq_file.h>
17 #include <linux/screen_info.h>
18 #include <linux/init.h>
19 #include <linux/kexec.h>
20 #include <linux/libfdt.h>
22 #include <linux/of_fdt.h>
23 #include <linux/cpu.h>
24 #include <linux/interrupt.h>
25 #include <linux/smp.h>
26 #include <linux/proc_fs.h>
27 #include <linux/memblock.h>
28 #include <linux/bug.h>
29 #include <linux/compiler.h>
30 #include <linux/sort.h>
31 #include <linux/psci.h>
33 #include <asm/unified.h>
36 #include <asm/cputype.h>
39 #include <asm/early_ioremap.h>
40 #include <asm/fixmap.h>
41 #include <asm/procinfo.h>
43 #include <asm/sections.h>
44 #include <asm/setup.h>
45 #include <asm/smp_plat.h>
46 #include <asm/mach-types.h>
47 #include <asm/cacheflush.h>
48 #include <asm/cachetype.h>
49 #include <asm/tlbflush.h>
50 #include <asm/xen/hypervisor.h>
53 #include <asm/mach/arch.h>
54 #include <asm/mach/irq.h>
55 #include <asm/mach/time.h>
56 #include <asm/system_info.h>
57 #include <asm/system_misc.h>
58 #include <asm/traps.h>
59 #include <asm/unwind.h>
60 #include <asm/memblock.h>
62 #include <asm/kasan.h>
67 #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
70 static int __init
fpe_setup(char *line
)
72 memcpy(fpe_type
, line
, 8);
76 __setup("fpe=", fpe_setup
);
79 unsigned int processor_id
;
80 EXPORT_SYMBOL(processor_id
);
81 unsigned int __machine_arch_type __read_mostly
;
82 EXPORT_SYMBOL(__machine_arch_type
);
83 unsigned int cacheid __read_mostly
;
84 EXPORT_SYMBOL(cacheid
);
86 unsigned int __atags_pointer __initdata
;
88 unsigned int system_rev
;
89 EXPORT_SYMBOL(system_rev
);
91 const char *system_serial
;
92 EXPORT_SYMBOL(system_serial
);
94 unsigned int system_serial_low
;
95 EXPORT_SYMBOL(system_serial_low
);
97 unsigned int system_serial_high
;
98 EXPORT_SYMBOL(system_serial_high
);
100 unsigned int elf_hwcap __read_mostly
;
101 EXPORT_SYMBOL(elf_hwcap
);
103 unsigned int elf_hwcap2 __read_mostly
;
104 EXPORT_SYMBOL(elf_hwcap2
);
108 struct processor processor __ro_after_init
;
109 #if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
110 struct processor
*cpu_vtable
[NR_CPUS
] = {
116 struct cpu_tlb_fns cpu_tlb __ro_after_init
;
119 struct cpu_user_fns cpu_user __ro_after_init
;
122 struct cpu_cache_fns cpu_cache __ro_after_init
;
124 #ifdef CONFIG_OUTER_CACHE
125 struct outer_cache_fns outer_cache __ro_after_init
;
126 EXPORT_SYMBOL(outer_cache
);
130 * Cached cpu_architecture() result for use by assembler code.
131 * C code should use the cpu_architecture() function instead of accessing this
134 int __cpu_architecture __read_mostly
= CPU_ARCH_UNKNOWN
;
141 } ____cacheline_aligned
;
143 #ifndef CONFIG_CPU_V7M
144 static struct stack stacks
[NR_CPUS
];
147 char elf_platform
[ELF_PLATFORM_SIZE
];
148 EXPORT_SYMBOL(elf_platform
);
150 static const char *cpu_name
;
151 static const char *machine_name
;
152 static char __initdata cmd_line
[COMMAND_LINE_SIZE
];
153 const struct machine_desc
*machine_desc __initdata
;
155 static union { char c
[4]; unsigned long l
; } endian_test __initdata
= { { 'l', '?', '?', 'b' } };
156 #define ENDIANNESS ((char)endian_test.l)
158 DEFINE_PER_CPU(struct cpuinfo_arm
, cpu_data
);
161 * Standard memory resources
163 static struct resource mem_res
[] = {
168 .flags
= IORESOURCE_MEM
171 .name
= "Kernel code",
174 .flags
= IORESOURCE_SYSTEM_RAM
177 .name
= "Kernel data",
180 .flags
= IORESOURCE_SYSTEM_RAM
184 #define video_ram mem_res[0]
185 #define kernel_code mem_res[1]
186 #define kernel_data mem_res[2]
188 static struct resource io_res
[] = {
193 .flags
= IORESOURCE_IO
| IORESOURCE_BUSY
199 .flags
= IORESOURCE_IO
| IORESOURCE_BUSY
205 .flags
= IORESOURCE_IO
| IORESOURCE_BUSY
209 #define lp0 io_res[0]
210 #define lp1 io_res[1]
211 #define lp2 io_res[2]
213 static const char *proc_arch
[] = {
233 #ifdef CONFIG_CPU_V7M
234 static int __get_cpu_architecture(void)
236 return CPU_ARCH_ARMv7M
;
239 static int __get_cpu_architecture(void)
243 if ((read_cpuid_id() & 0x0008f000) == 0) {
244 cpu_arch
= CPU_ARCH_UNKNOWN
;
245 } else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
246 cpu_arch
= (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T
: CPU_ARCH_ARMv3
;
247 } else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
248 cpu_arch
= (read_cpuid_id() >> 16) & 7;
250 cpu_arch
+= CPU_ARCH_ARMv3
;
251 } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
252 /* Revised CPUID format. Read the Memory Model Feature
253 * Register 0 and check for VMSAv7 or PMSAv7 */
254 unsigned int mmfr0
= read_cpuid_ext(CPUID_EXT_MMFR0
);
255 if ((mmfr0
& 0x0000000f) >= 0x00000003 ||
256 (mmfr0
& 0x000000f0) >= 0x00000030)
257 cpu_arch
= CPU_ARCH_ARMv7
;
258 else if ((mmfr0
& 0x0000000f) == 0x00000002 ||
259 (mmfr0
& 0x000000f0) == 0x00000020)
260 cpu_arch
= CPU_ARCH_ARMv6
;
262 cpu_arch
= CPU_ARCH_UNKNOWN
;
264 cpu_arch
= CPU_ARCH_UNKNOWN
;
270 int __pure
cpu_architecture(void)
272 BUG_ON(__cpu_architecture
== CPU_ARCH_UNKNOWN
);
274 return __cpu_architecture
;
277 static int cpu_has_aliasing_icache(unsigned int arch
)
280 unsigned int id_reg
, num_sets
, line_size
;
282 /* PIPT caches never alias. */
283 if (icache_is_pipt())
286 /* arch specifies the register format */
289 set_csselr(CSSELR_ICACHE
| CSSELR_L1
);
291 id_reg
= read_ccsidr();
292 line_size
= 4 << ((id_reg
& 0x7) + 2);
293 num_sets
= ((id_reg
>> 13) & 0x7fff) + 1;
294 aliasing_icache
= (line_size
* num_sets
) > PAGE_SIZE
;
297 aliasing_icache
= read_cpuid_cachetype() & (1 << 11);
300 /* I-cache aliases will be handled by D-cache aliasing code */
304 return aliasing_icache
;
307 static void __init
cacheid_init(void)
309 unsigned int arch
= cpu_architecture();
311 if (arch
>= CPU_ARCH_ARMv6
) {
312 unsigned int cachetype
= read_cpuid_cachetype();
314 if ((arch
== CPU_ARCH_ARMv7M
) && !(cachetype
& 0xf000f)) {
316 } else if ((cachetype
& (7 << 29)) == 4 << 29) {
317 /* ARMv7 register format */
318 arch
= CPU_ARCH_ARMv7
;
319 cacheid
= CACHEID_VIPT_NONALIASING
;
320 switch (cachetype
& (3 << 14)) {
322 cacheid
|= CACHEID_ASID_TAGGED
;
325 cacheid
|= CACHEID_PIPT
;
329 arch
= CPU_ARCH_ARMv6
;
330 if (cachetype
& (1 << 23))
331 cacheid
= CACHEID_VIPT_ALIASING
;
333 cacheid
= CACHEID_VIPT_NONALIASING
;
335 if (cpu_has_aliasing_icache(arch
))
336 cacheid
|= CACHEID_VIPT_I_ALIASING
;
338 cacheid
= CACHEID_VIVT
;
341 pr_info("CPU: %s data cache, %s instruction cache\n",
342 cache_is_vivt() ? "VIVT" :
343 cache_is_vipt_aliasing() ? "VIPT aliasing" :
344 cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
345 cache_is_vivt() ? "VIVT" :
346 icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
347 icache_is_vipt_aliasing() ? "VIPT aliasing" :
348 icache_is_pipt() ? "PIPT" :
349 cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
353 * These functions re-use the assembly code in head.S, which
354 * already provide the required functionality.
356 extern struct proc_info_list
*lookup_processor_type(unsigned int);
358 void __init
early_print(const char *str
, ...)
360 extern void printascii(const char *);
365 vsnprintf(buf
, sizeof(buf
), str
, ap
);
368 #ifdef CONFIG_DEBUG_LL
374 #ifdef CONFIG_ARM_PATCH_IDIV
376 static inline u32 __attribute_const__
sdiv_instruction(void)
378 if (IS_ENABLED(CONFIG_THUMB2_KERNEL
)) {
379 /* "sdiv r0, r0, r1" */
380 u32 insn
= __opcode_thumb32_compose(0xfb90, 0xf0f1);
381 return __opcode_to_mem_thumb32(insn
);
384 /* "sdiv r0, r0, r1" */
385 return __opcode_to_mem_arm(0xe710f110);
388 static inline u32 __attribute_const__
udiv_instruction(void)
390 if (IS_ENABLED(CONFIG_THUMB2_KERNEL
)) {
391 /* "udiv r0, r0, r1" */
392 u32 insn
= __opcode_thumb32_compose(0xfbb0, 0xf0f1);
393 return __opcode_to_mem_thumb32(insn
);
396 /* "udiv r0, r0, r1" */
397 return __opcode_to_mem_arm(0xe730f110);
400 static inline u32 __attribute_const__
bx_lr_instruction(void)
402 if (IS_ENABLED(CONFIG_THUMB2_KERNEL
)) {
404 u32 insn
= __opcode_thumb32_compose(0x4770, 0x46c0);
405 return __opcode_to_mem_thumb32(insn
);
409 return __opcode_to_mem_arm(0xe12fff1e);
412 static void __init
patch_aeabi_idiv(void)
414 extern void __aeabi_uidiv(void);
415 extern void __aeabi_idiv(void);
419 mask
= IS_ENABLED(CONFIG_THUMB2_KERNEL
) ? HWCAP_IDIVT
: HWCAP_IDIVA
;
420 if (!(elf_hwcap
& mask
))
423 pr_info("CPU: div instructions available: patching division code\n");
425 fn_addr
= ((uintptr_t)&__aeabi_uidiv
) & ~1;
426 asm ("" : "+g" (fn_addr
));
427 ((u32
*)fn_addr
)[0] = udiv_instruction();
428 ((u32
*)fn_addr
)[1] = bx_lr_instruction();
429 flush_icache_range(fn_addr
, fn_addr
+ 8);
431 fn_addr
= ((uintptr_t)&__aeabi_idiv
) & ~1;
432 asm ("" : "+g" (fn_addr
));
433 ((u32
*)fn_addr
)[0] = sdiv_instruction();
434 ((u32
*)fn_addr
)[1] = bx_lr_instruction();
435 flush_icache_range(fn_addr
, fn_addr
+ 8);
439 static inline void patch_aeabi_idiv(void) { }
442 static void __init
cpuid_init_hwcaps(void)
449 if (cpu_architecture() < CPU_ARCH_ARMv7
)
452 block
= cpuid_feature_extract(CPUID_EXT_ISAR0
, 24);
454 elf_hwcap
|= HWCAP_IDIVA
;
456 elf_hwcap
|= HWCAP_IDIVT
;
458 /* LPAE implies atomic ldrd/strd instructions */
459 block
= cpuid_feature_extract(CPUID_EXT_MMFR0
, 0);
461 elf_hwcap
|= HWCAP_LPAE
;
463 /* check for supported v8 Crypto instructions */
464 isar5
= read_cpuid_ext(CPUID_EXT_ISAR5
);
466 block
= cpuid_feature_extract_field(isar5
, 4);
468 elf_hwcap2
|= HWCAP2_PMULL
;
470 elf_hwcap2
|= HWCAP2_AES
;
472 block
= cpuid_feature_extract_field(isar5
, 8);
474 elf_hwcap2
|= HWCAP2_SHA1
;
476 block
= cpuid_feature_extract_field(isar5
, 12);
478 elf_hwcap2
|= HWCAP2_SHA2
;
480 block
= cpuid_feature_extract_field(isar5
, 16);
482 elf_hwcap2
|= HWCAP2_CRC32
;
484 /* Check for Speculation barrier instruction */
485 isar6
= read_cpuid_ext(CPUID_EXT_ISAR6
);
486 block
= cpuid_feature_extract_field(isar6
, 12);
488 elf_hwcap2
|= HWCAP2_SB
;
490 /* Check for Speculative Store Bypassing control */
491 pfr2
= read_cpuid_ext(CPUID_EXT_PFR2
);
492 block
= cpuid_feature_extract_field(pfr2
, 4);
494 elf_hwcap2
|= HWCAP2_SSBS
;
497 static void __init
elf_hwcap_fixup(void)
499 unsigned id
= read_cpuid_id();
502 * HWCAP_TLS is available only on 1136 r1p0 and later,
503 * see also kuser_get_tls_init.
505 if (read_cpuid_part() == ARM_CPU_PART_ARM1136
&&
506 ((id
>> 20) & 3) == 0) {
507 elf_hwcap
&= ~HWCAP_TLS
;
511 /* Verify if CPUID scheme is implemented */
512 if ((id
& 0x000f0000) != 0x000f0000)
516 * If the CPU supports LDREX/STREX and LDREXB/STREXB,
517 * avoid advertising SWP; it may not be atomic with
518 * multiprocessing cores.
520 if (cpuid_feature_extract(CPUID_EXT_ISAR3
, 12) > 1 ||
521 (cpuid_feature_extract(CPUID_EXT_ISAR3
, 12) == 1 &&
522 cpuid_feature_extract(CPUID_EXT_ISAR4
, 20) >= 3))
523 elf_hwcap
&= ~HWCAP_SWP
;
527 * cpu_init - initialise one CPU.
529 * cpu_init sets up the per-CPU stacks.
531 void notrace
cpu_init(void)
533 #ifndef CONFIG_CPU_V7M
534 unsigned int cpu
= smp_processor_id();
535 struct stack
*stk
= &stacks
[cpu
];
537 if (cpu
>= NR_CPUS
) {
538 pr_crit("CPU%u: bad primary CPU number\n", cpu
);
543 * This only works on resume and secondary cores. For booting on the
544 * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
546 set_my_cpu_offset(per_cpu_offset(cpu
));
551 * Define the placement constraint for the inline asm directive below.
552 * In Thumb-2, msr with an immediate value is not allowed.
554 #ifdef CONFIG_THUMB2_KERNEL
563 * setup stacks for re-entrant exception handlers
567 "add r14, %0, %2\n\t"
570 "add r14, %0, %4\n\t"
573 "add r14, %0, %6\n\t"
576 "add r14, %0, %8\n\t"
581 PLC_r (PSR_F_BIT
| PSR_I_BIT
| IRQ_MODE
),
582 "I" (offsetof(struct stack
, irq
[0])),
583 PLC_r (PSR_F_BIT
| PSR_I_BIT
| ABT_MODE
),
584 "I" (offsetof(struct stack
, abt
[0])),
585 PLC_r (PSR_F_BIT
| PSR_I_BIT
| UND_MODE
),
586 "I" (offsetof(struct stack
, und
[0])),
587 PLC_r (PSR_F_BIT
| PSR_I_BIT
| FIQ_MODE
),
588 "I" (offsetof(struct stack
, fiq
[0])),
589 PLC_l (PSR_F_BIT
| PSR_I_BIT
| SVC_MODE
)
594 u32 __cpu_logical_map
[NR_CPUS
] = { [0 ... NR_CPUS
-1] = MPIDR_INVALID
};
596 void __init
smp_setup_processor_id(void)
599 u32 mpidr
= is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK
: 0;
600 u32 cpu
= MPIDR_AFFINITY_LEVEL(mpidr
, 0);
602 cpu_logical_map(0) = cpu
;
603 for (i
= 1; i
< nr_cpu_ids
; ++i
)
604 cpu_logical_map(i
) = i
== cpu
? 0 : i
;
607 * clear __my_cpu_offset on boot CPU to avoid hang caused by
608 * using percpu variable early, for example, lockdep will
609 * access percpu variable inside lock_release
611 set_my_cpu_offset(0);
613 pr_info("Booting Linux on physical CPU 0x%x\n", mpidr
);
616 struct mpidr_hash mpidr_hash
;
619 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
620 * level in order to build a linear index from an
621 * MPIDR value. Resulting algorithm is a collision
622 * free hash carried out through shifting and ORing
624 static void __init
smp_build_mpidr_hash(void)
627 u32 fs
[3], bits
[3], ls
, mask
= 0;
629 * Pre-scan the list of MPIDRS and filter out bits that do
630 * not contribute to affinity levels, ie they never toggle.
632 for_each_possible_cpu(i
)
633 mask
|= (cpu_logical_map(i
) ^ cpu_logical_map(0));
634 pr_debug("mask of set bits 0x%x\n", mask
);
636 * Find and stash the last and first bit set at all affinity levels to
637 * check how many bits are required to represent them.
639 for (i
= 0; i
< 3; i
++) {
640 affinity
= MPIDR_AFFINITY_LEVEL(mask
, i
);
642 * Find the MSB bit and LSB bits position
643 * to determine how many bits are required
644 * to express the affinity level.
647 fs
[i
] = affinity
? ffs(affinity
) - 1 : 0;
648 bits
[i
] = ls
- fs
[i
];
651 * An index can be created from the MPIDR by isolating the
652 * significant bits at each affinity level and by shifting
653 * them in order to compress the 24 bits values space to a
654 * compressed set of values. This is equivalent to hashing
655 * the MPIDR through shifting and ORing. It is a collision free
656 * hash though not minimal since some levels might contain a number
657 * of CPUs that is not an exact power of 2 and their bit
658 * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
660 mpidr_hash
.shift_aff
[0] = fs
[0];
661 mpidr_hash
.shift_aff
[1] = MPIDR_LEVEL_BITS
+ fs
[1] - bits
[0];
662 mpidr_hash
.shift_aff
[2] = 2*MPIDR_LEVEL_BITS
+ fs
[2] -
664 mpidr_hash
.mask
= mask
;
665 mpidr_hash
.bits
= bits
[2] + bits
[1] + bits
[0];
666 pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
667 mpidr_hash
.shift_aff
[0],
668 mpidr_hash
.shift_aff
[1],
669 mpidr_hash
.shift_aff
[2],
673 * 4x is an arbitrary value used to warn on a hash table much bigger
674 * than expected on most systems.
676 if (mpidr_hash_size() > 4 * num_possible_cpus())
677 pr_warn("Large number of MPIDR hash buckets detected\n");
678 sync_cache_w(&mpidr_hash
);
683 * locate processor in the list of supported processor types. The linker
684 * builds this table for us from the entries in arch/arm/mm/proc-*.S
686 struct proc_info_list
*lookup_processor(u32 midr
)
688 struct proc_info_list
*list
= lookup_processor_type(midr
);
691 pr_err("CPU%u: configuration botched (ID %08x), CPU halted\n",
692 smp_processor_id(), midr
);
694 /* can't use cpu_relax() here as it may require MMU setup */;
700 static void __init
setup_processor(void)
702 unsigned int midr
= read_cpuid_id();
703 struct proc_info_list
*list
= lookup_processor(midr
);
705 cpu_name
= list
->cpu_name
;
706 __cpu_architecture
= __get_cpu_architecture();
708 init_proc_vtable(list
->proc
);
710 cpu_tlb
= *list
->tlb
;
713 cpu_user
= *list
->user
;
716 cpu_cache
= *list
->cache
;
719 pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
720 list
->cpu_name
, midr
, midr
& 15,
721 proc_arch
[cpu_architecture()], get_cr());
723 snprintf(init_utsname()->machine
, __NEW_UTS_LEN
+ 1, "%s%c",
724 list
->arch_name
, ENDIANNESS
);
725 snprintf(elf_platform
, ELF_PLATFORM_SIZE
, "%s%c",
726 list
->elf_name
, ENDIANNESS
);
727 elf_hwcap
= list
->elf_hwcap
;
732 #ifndef CONFIG_ARM_THUMB
733 elf_hwcap
&= ~(HWCAP_THUMB
| HWCAP_IDIVT
);
736 init_default_cache_policy(list
->__cpu_mm_mmu_flags
);
738 erratum_a15_798181_init();
746 void __init
dump_machine_table(void)
748 const struct machine_desc
*p
;
750 early_print("Available machine support:\n\nID (hex)\tNAME\n");
751 for_each_machine_desc(p
)
752 early_print("%08x\t%s\n", p
->nr
, p
->name
);
754 early_print("\nPlease check your kernel config and/or bootloader.\n");
757 /* can't use cpu_relax() here as it may require MMU setup */;
760 int __init
arm_add_memory(u64 start
, u64 size
)
765 * Ensure that start/size are aligned to a page boundary.
766 * Size is rounded down, start is rounded up.
768 aligned_start
= PAGE_ALIGN(start
);
769 if (aligned_start
> start
+ size
)
772 size
-= aligned_start
- start
;
774 #ifndef CONFIG_PHYS_ADDR_T_64BIT
775 if (aligned_start
> ULONG_MAX
) {
776 pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
781 if (aligned_start
+ size
> ULONG_MAX
) {
782 pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
785 * To ensure bank->start + bank->size is representable in
786 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
787 * This means we lose a page after masking.
789 size
= ULONG_MAX
- aligned_start
;
793 if (aligned_start
< PHYS_OFFSET
) {
794 if (aligned_start
+ size
<= PHYS_OFFSET
) {
795 pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
796 aligned_start
, aligned_start
+ size
);
800 pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
801 aligned_start
, (u64
)PHYS_OFFSET
);
803 size
-= PHYS_OFFSET
- aligned_start
;
804 aligned_start
= PHYS_OFFSET
;
807 start
= aligned_start
;
808 size
= size
& ~(phys_addr_t
)(PAGE_SIZE
- 1);
811 * Check whether this memory region has non-zero size or
812 * invalid node number.
817 memblock_add(start
, size
);
822 * Pick out the memory size. We look for mem=size@start,
823 * where start and size are "size[KkMm]"
826 static int __init
early_mem(char *p
)
828 static int usermem __initdata
= 0;
834 * If the user specifies memory size, we
835 * blow away any automatically generated
840 memblock_remove(memblock_start_of_DRAM(),
841 memblock_end_of_DRAM() - memblock_start_of_DRAM());
845 size
= memparse(p
, &endp
);
847 start
= memparse(endp
+ 1, NULL
);
849 arm_add_memory(start
, size
);
853 early_param("mem", early_mem
);
855 static void __init
request_standard_resources(const struct machine_desc
*mdesc
)
857 phys_addr_t start
, end
, res_end
;
858 struct resource
*res
;
861 kernel_code
.start
= virt_to_phys(_text
);
862 kernel_code
.end
= virt_to_phys(__init_begin
- 1);
863 kernel_data
.start
= virt_to_phys(_sdata
);
864 kernel_data
.end
= virt_to_phys(_end
- 1);
866 for_each_mem_range(i
, &start
, &end
) {
867 unsigned long boot_alias_start
;
870 * In memblock, end points to the first byte after the
871 * range while in resourses, end points to the last byte in
877 * Some systems have a special memory alias which is only
878 * used for booting. We need to advertise this region to
879 * kexec-tools so they know where bootable RAM is located.
881 boot_alias_start
= phys_to_idmap(start
);
882 if (arm_has_idmap_alias() && boot_alias_start
!= IDMAP_INVALID_ADDR
) {
883 res
= memblock_alloc(sizeof(*res
), SMP_CACHE_BYTES
);
885 panic("%s: Failed to allocate %zu bytes\n",
886 __func__
, sizeof(*res
));
887 res
->name
= "System RAM (boot alias)";
888 res
->start
= boot_alias_start
;
889 res
->end
= phys_to_idmap(res_end
);
890 res
->flags
= IORESOURCE_MEM
| IORESOURCE_BUSY
;
891 request_resource(&iomem_resource
, res
);
894 res
= memblock_alloc(sizeof(*res
), SMP_CACHE_BYTES
);
896 panic("%s: Failed to allocate %zu bytes\n", __func__
,
898 res
->name
= "System RAM";
901 res
->flags
= IORESOURCE_SYSTEM_RAM
| IORESOURCE_BUSY
;
903 request_resource(&iomem_resource
, res
);
905 if (kernel_code
.start
>= res
->start
&&
906 kernel_code
.end
<= res
->end
)
907 request_resource(res
, &kernel_code
);
908 if (kernel_data
.start
>= res
->start
&&
909 kernel_data
.end
<= res
->end
)
910 request_resource(res
, &kernel_data
);
913 if (mdesc
->video_start
) {
914 video_ram
.start
= mdesc
->video_start
;
915 video_ram
.end
= mdesc
->video_end
;
916 request_resource(&iomem_resource
, &video_ram
);
920 * Some machines don't have the possibility of ever
921 * possessing lp0, lp1 or lp2
923 if (mdesc
->reserve_lp0
)
924 request_resource(&ioport_resource
, &lp0
);
925 if (mdesc
->reserve_lp1
)
926 request_resource(&ioport_resource
, &lp1
);
927 if (mdesc
->reserve_lp2
)
928 request_resource(&ioport_resource
, &lp2
);
931 #if defined(CONFIG_VGA_CONSOLE)
932 struct screen_info vgacon_screen_info
= {
933 .orig_video_lines
= 30,
934 .orig_video_cols
= 80,
935 .orig_video_mode
= 0,
936 .orig_video_ega_bx
= 0,
937 .orig_video_isVGA
= 1,
938 .orig_video_points
= 8
942 static int __init
customize_machine(void)
945 * customizes platform devices, or adds new ones
946 * On DT based machines, we fall back to populating the
947 * machine from the device tree, if no callback is provided,
948 * otherwise we would always need an init_machine callback.
950 if (machine_desc
->init_machine
)
951 machine_desc
->init_machine();
955 arch_initcall(customize_machine
);
957 static int __init
init_machine_late(void)
959 struct device_node
*root
;
962 if (machine_desc
->init_late
)
963 machine_desc
->init_late();
965 root
= of_find_node_by_path("/");
967 ret
= of_property_read_string(root
, "serial-number",
970 system_serial
= NULL
;
974 system_serial
= kasprintf(GFP_KERNEL
, "%08x%08x",
980 late_initcall(init_machine_late
);
982 #ifdef CONFIG_CRASH_RESERVE
984 * The crash region must be aligned to 128MB to avoid
985 * zImage relocating below the reserved region.
987 #define CRASH_ALIGN (128 << 20)
989 static inline unsigned long long get_total_mem(void)
993 total
= max_low_pfn
- min_low_pfn
;
994 return total
<< PAGE_SHIFT
;
998 * reserve_crashkernel() - reserves memory are for crash kernel
1000 * This function reserves memory area given in "crashkernel=" kernel command
1001 * line parameter. The memory reserved is used by a dump capture kernel when
1002 * primary kernel is crashing.
1004 static void __init
reserve_crashkernel(void)
1006 unsigned long long crash_size
, crash_base
;
1007 unsigned long long total_mem
;
1010 total_mem
= get_total_mem();
1011 ret
= parse_crashkernel(boot_command_line
, total_mem
,
1012 &crash_size
, &crash_base
,
1014 /* invalid value specified or crashkernel=0 */
1015 if (ret
|| !crash_size
)
1018 if (crash_base
<= 0) {
1019 unsigned long long crash_max
= idmap_to_phys((u32
)~0);
1020 unsigned long long lowmem_max
= __pa(high_memory
- 1) + 1;
1021 if (crash_max
> lowmem_max
)
1022 crash_max
= lowmem_max
;
1024 crash_base
= memblock_phys_alloc_range(crash_size
, CRASH_ALIGN
,
1025 CRASH_ALIGN
, crash_max
);
1027 pr_err("crashkernel reservation failed - No suitable area found.\n");
1031 unsigned long long crash_max
= crash_base
+ crash_size
;
1032 unsigned long long start
;
1034 start
= memblock_phys_alloc_range(crash_size
, SECTION_SIZE
,
1035 crash_base
, crash_max
);
1037 pr_err("crashkernel reservation failed - memory is in use.\n");
1042 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
1043 (unsigned long)(crash_size
>> 20),
1044 (unsigned long)(crash_base
>> 20),
1045 (unsigned long)(total_mem
>> 20));
1047 /* The crashk resource must always be located in normal mem */
1048 crashk_res
.start
= crash_base
;
1049 crashk_res
.end
= crash_base
+ crash_size
- 1;
1050 insert_resource(&iomem_resource
, &crashk_res
);
1052 if (arm_has_idmap_alias()) {
1054 * If we have a special RAM alias for use at boot, we
1055 * need to advertise to kexec tools where the alias is.
1057 static struct resource crashk_boot_res
= {
1058 .name
= "Crash kernel (boot alias)",
1059 .flags
= IORESOURCE_BUSY
| IORESOURCE_MEM
,
1062 crashk_boot_res
.start
= phys_to_idmap(crash_base
);
1063 crashk_boot_res
.end
= crashk_boot_res
.start
+ crash_size
- 1;
1064 insert_resource(&iomem_resource
, &crashk_boot_res
);
1068 static inline void reserve_crashkernel(void) {}
1069 #endif /* CONFIG_CRASH_RESERVE*/
1071 void __init
hyp_mode_check(void)
1073 #ifdef CONFIG_ARM_VIRT_EXT
1076 if (is_hyp_mode_available()) {
1077 pr_info("CPU: All CPU(s) started in HYP mode.\n");
1078 pr_info("CPU: Virtualization extensions available.\n");
1079 } else if (is_hyp_mode_mismatched()) {
1080 pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
1081 __boot_cpu_mode
& MODE_MASK
);
1082 pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
1084 pr_info("CPU: All CPU(s) started in SVC mode.\n");
1088 static void (*__arm_pm_restart
)(enum reboot_mode reboot_mode
, const char *cmd
);
1090 static int arm_restart(struct notifier_block
*nb
, unsigned long action
,
1093 __arm_pm_restart(action
, data
);
1097 static struct notifier_block arm_restart_nb
= {
1098 .notifier_call
= arm_restart
,
1102 void __init
setup_arch(char **cmdline_p
)
1104 const struct machine_desc
*mdesc
= NULL
;
1105 void *atags_vaddr
= NULL
;
1107 if (__atags_pointer
)
1108 atags_vaddr
= FDT_VIRT_BASE(__atags_pointer
);
1112 mdesc
= setup_machine_fdt(atags_vaddr
);
1114 memblock_reserve(__atags_pointer
,
1115 fdt_totalsize(atags_vaddr
));
1118 mdesc
= setup_machine_tags(atags_vaddr
, __machine_arch_type
);
1120 early_print("\nError: invalid dtb and unrecognized/unsupported machine ID\n");
1121 early_print(" r1=0x%08x, r2=0x%08x\n", __machine_arch_type
,
1123 if (__atags_pointer
)
1124 early_print(" r2[]=%*ph\n", 16, atags_vaddr
);
1125 dump_machine_table();
1128 machine_desc
= mdesc
;
1129 machine_name
= mdesc
->name
;
1130 dump_stack_set_arch_desc("%s", mdesc
->name
);
1132 if (mdesc
->reboot_mode
!= REBOOT_HARD
)
1133 reboot_mode
= mdesc
->reboot_mode
;
1135 setup_initial_init_mm(_text
, _etext
, _edata
, _end
);
1137 /* populate cmd_line too for later use, preserving boot_command_line */
1138 strscpy(cmd_line
, boot_command_line
, COMMAND_LINE_SIZE
);
1139 *cmdline_p
= cmd_line
;
1141 early_fixmap_init();
1142 early_ioremap_init();
1144 parse_early_param();
1147 early_mm_init(mdesc
);
1149 setup_dma_zone(mdesc
);
1153 * Make sure the calculation for lowmem/highmem is set appropriately
1154 * before reserving/allocating any memory
1156 adjust_lowmem_bounds();
1157 arm_memblock_init(mdesc
);
1158 /* Memory may have been removed so recalculate the bounds. */
1159 adjust_lowmem_bounds();
1161 early_ioremap_reset();
1165 request_standard_resources(mdesc
);
1167 if (mdesc
->restart
) {
1168 __arm_pm_restart
= mdesc
->restart
;
1169 register_restart_handler(&arm_restart_nb
);
1172 unflatten_device_tree();
1174 arm_dt_init_cpu_maps();
1178 if (!mdesc
->smp_init
|| !mdesc
->smp_init()) {
1179 if (psci_smp_available())
1180 smp_set_ops(&psci_smp_ops
);
1181 else if (mdesc
->smp
)
1182 smp_set_ops(mdesc
->smp
);
1185 smp_build_mpidr_hash();
1192 reserve_crashkernel();
1195 #if defined(CONFIG_VGA_CONSOLE)
1196 vgacon_register_screen(&vgacon_screen_info
);
1200 if (mdesc
->init_early
)
1201 mdesc
->init_early();
1204 bool arch_cpu_is_hotpluggable(int num
)
1206 return platform_can_hotplug_cpu(num
);
1209 #ifdef CONFIG_HAVE_PROC_CPU
1210 static int __init
proc_cpu_init(void)
1212 struct proc_dir_entry
*res
;
1214 res
= proc_mkdir("cpu", NULL
);
1219 fs_initcall(proc_cpu_init
);
1222 static const char *hwcap_str
[] = {
1254 static const char *hwcap2_str
[] = {
1265 static int c_show(struct seq_file
*m
, void *v
)
1270 for_each_online_cpu(i
) {
1272 * glibc reads /proc/cpuinfo to determine the number of
1273 * online processors, looking for lines beginning with
1274 * "processor". Give glibc what it expects.
1276 seq_printf(m
, "processor\t: %d\n", i
);
1277 cpuid
= is_smp() ? per_cpu(cpu_data
, i
).cpuid
: read_cpuid_id();
1278 seq_printf(m
, "model name\t: %s rev %d (%s)\n",
1279 cpu_name
, cpuid
& 15, elf_platform
);
1281 #if defined(CONFIG_SMP)
1282 seq_printf(m
, "BogoMIPS\t: %lu.%02lu\n",
1283 per_cpu(cpu_data
, i
).loops_per_jiffy
/ (500000UL/HZ
),
1284 (per_cpu(cpu_data
, i
).loops_per_jiffy
/ (5000UL/HZ
)) % 100);
1286 seq_printf(m
, "BogoMIPS\t: %lu.%02lu\n",
1287 loops_per_jiffy
/ (500000/HZ
),
1288 (loops_per_jiffy
/ (5000/HZ
)) % 100);
1290 /* dump out the processor features */
1291 seq_puts(m
, "Features\t: ");
1293 for (j
= 0; hwcap_str
[j
]; j
++)
1294 if (elf_hwcap
& (1 << j
))
1295 seq_printf(m
, "%s ", hwcap_str
[j
]);
1297 for (j
= 0; hwcap2_str
[j
]; j
++)
1298 if (elf_hwcap2
& (1 << j
))
1299 seq_printf(m
, "%s ", hwcap2_str
[j
]);
1301 seq_printf(m
, "\nCPU implementer\t: 0x%02x\n", cpuid
>> 24);
1302 seq_printf(m
, "CPU architecture: %s\n",
1303 proc_arch
[cpu_architecture()]);
1305 if ((cpuid
& 0x0008f000) == 0x00000000) {
1307 seq_printf(m
, "CPU part\t: %07x\n", cpuid
>> 4);
1309 if ((cpuid
& 0x0008f000) == 0x00007000) {
1311 seq_printf(m
, "CPU variant\t: 0x%02x\n",
1312 (cpuid
>> 16) & 127);
1315 seq_printf(m
, "CPU variant\t: 0x%x\n",
1316 (cpuid
>> 20) & 15);
1318 seq_printf(m
, "CPU part\t: 0x%03x\n",
1319 (cpuid
>> 4) & 0xfff);
1321 seq_printf(m
, "CPU revision\t: %d\n\n", cpuid
& 15);
1324 seq_printf(m
, "Hardware\t: %s\n", machine_name
);
1325 seq_printf(m
, "Revision\t: %04x\n", system_rev
);
1326 seq_printf(m
, "Serial\t\t: %s\n", system_serial
);
1331 static void *c_start(struct seq_file
*m
, loff_t
*pos
)
1333 return *pos
< 1 ? (void *)1 : NULL
;
1336 static void *c_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
1342 static void c_stop(struct seq_file
*m
, void *v
)
1346 const struct seq_operations cpuinfo_op
= {