1 // SPDX-License-Identifier: GPL-2.0-only
3 * Just-In-Time compiler for eBPF filters on 32bit ARM
5 * Copyright (c) 2023 Puranjay Mohan <puranjay12@gmail.com>
6 * Copyright (c) 2017 Shubham Bansal <illusionist.neo@gmail.com>
7 * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com>
10 #include <linux/bpf.h>
11 #include <linux/bitops.h>
12 #include <linux/compiler.h>
13 #include <linux/errno.h>
14 #include <linux/filter.h>
15 #include <linux/netdevice.h>
16 #include <linux/string.h>
17 #include <linux/slab.h>
18 #include <linux/if_vlan.h>
19 #include <linux/math64.h>
21 #include <asm/cacheflush.h>
22 #include <asm/hwcap.h>
23 #include <asm/opcodes.h>
24 #include <asm/system_info.h>
26 #include "bpf_jit_32.h"
29 * eBPF prog stack layout:
32 * original ARM_SP => +-----+
33 * | | callee saved registers
34 * +-----+ <= (BPF_FP + SCRATCH_SIZE)
35 * | ... | eBPF JIT scratch space
36 * eBPF fp register => +-----+
37 * (BPF_FP) | ... | eBPF prog stack
39 * |RSVD | JIT scratchpad
40 * current ARM_SP => +-----+ <= (BPF_FP - STACK_SIZE + SCRATCH_SIZE)
41 * | ... | caller-saved registers
43 * | ... | arguments passed on stack
44 * ARM_SP during call => +-----|
46 * | ... | Function call stack
51 * The callee saved registers depends on whether frame pointers are enabled.
52 * With frame pointers (to be compliant with the ABI):
55 * original ARM_SP => +--------------+ \
57 * current ARM_FP => +--------------+ } callee saved registers
62 * Without frame pointers:
65 * original ARM_SP => +--------------+
66 * | r4-r9,fp,lr | callee saved registers
67 * current ARM_FP => +--------------+
70 * When popping registers off the stack at the end of a BPF function, we
71 * reference them via the current ARM_FP register.
73 * Some eBPF operations are implemented via a call to a helper function.
74 * Such calls are "invisible" in the eBPF code, so it is up to the calling
75 * program to preserve any caller-saved ARM registers during the call. The
76 * JIT emits code to push and pop those registers onto the stack, immediately
77 * above the callee stack frame.
79 #define CALLEE_MASK (1 << ARM_R4 | 1 << ARM_R5 | 1 << ARM_R6 | \
80 1 << ARM_R7 | 1 << ARM_R8 | 1 << ARM_R9 | \
82 #define CALLEE_PUSH_MASK (CALLEE_MASK | 1 << ARM_LR)
83 #define CALLEE_POP_MASK (CALLEE_MASK | 1 << ARM_PC)
85 #define CALLER_MASK (1 << ARM_R0 | 1 << ARM_R1 | 1 << ARM_R2 | 1 << ARM_R3)
88 /* Stack layout - these are offsets from (top of stack - 4) */
109 /* Stack space for BPF_REG_2, BPF_REG_3, BPF_REG_4,
110 * BPF_REG_5, BPF_REG_7, BPF_REG_8, BPF_REG_9,
111 * BPF_REG_FP and Tail call counts.
113 BPF_JIT_SCRATCH_REGS
,
117 * Negative "register" values indicate the register is stored on the stack
118 * and are the offset from the top of the eBPF JIT scratch space.
120 #define STACK_OFFSET(k) (-4 - (k) * 4)
121 #define SCRATCH_SIZE (BPF_JIT_SCRATCH_REGS * 4)
123 #ifdef CONFIG_FRAME_POINTER
124 #define EBPF_SCRATCH_TO_ARM_FP(x) ((x) - 4 * hweight16(CALLEE_PUSH_MASK) - 4)
126 #define EBPF_SCRATCH_TO_ARM_FP(x) (x)
129 #define TMP_REG_1 (MAX_BPF_JIT_REG + 0) /* TEMP Register 1 */
130 #define TMP_REG_2 (MAX_BPF_JIT_REG + 1) /* TEMP Register 2 */
131 #define TCALL_CNT (MAX_BPF_JIT_REG + 2) /* Tail Call Count */
133 #define FLAG_IMM_OVERFLOW (1 << 0)
136 * Map eBPF registers to ARM 32bit registers or stack scratch space.
138 * 1. First argument is passed using the arm 32bit registers and rest of the
139 * arguments are passed on stack scratch space.
140 * 2. First callee-saved argument is mapped to arm 32 bit registers and rest
141 * arguments are mapped to scratch space on stack.
142 * 3. We need two 64 bit temp registers to do complex operations on eBPF
145 * As the eBPF registers are all 64 bit registers and arm has only 32 bit
146 * registers, we have to map each eBPF registers with two arm 32 bit regs or
147 * scratch memory space and we have to build eBPF 64 bit register from those.
150 static const s8 bpf2a32
[][2] = {
151 /* return value from in-kernel function, and exit value from eBPF */
152 [BPF_REG_0
] = {ARM_R1
, ARM_R0
},
153 /* arguments from eBPF program to in-kernel function */
154 [BPF_REG_1
] = {ARM_R3
, ARM_R2
},
155 /* Stored on stack scratch space */
156 [BPF_REG_2
] = {STACK_OFFSET(BPF_R2_HI
), STACK_OFFSET(BPF_R2_LO
)},
157 [BPF_REG_3
] = {STACK_OFFSET(BPF_R3_HI
), STACK_OFFSET(BPF_R3_LO
)},
158 [BPF_REG_4
] = {STACK_OFFSET(BPF_R4_HI
), STACK_OFFSET(BPF_R4_LO
)},
159 [BPF_REG_5
] = {STACK_OFFSET(BPF_R5_HI
), STACK_OFFSET(BPF_R5_LO
)},
160 /* callee saved registers that in-kernel function will preserve */
161 [BPF_REG_6
] = {ARM_R5
, ARM_R4
},
162 /* Stored on stack scratch space */
163 [BPF_REG_7
] = {STACK_OFFSET(BPF_R7_HI
), STACK_OFFSET(BPF_R7_LO
)},
164 [BPF_REG_8
] = {STACK_OFFSET(BPF_R8_HI
), STACK_OFFSET(BPF_R8_LO
)},
165 [BPF_REG_9
] = {STACK_OFFSET(BPF_R9_HI
), STACK_OFFSET(BPF_R9_LO
)},
166 /* Read only Frame Pointer to access Stack */
167 [BPF_REG_FP
] = {STACK_OFFSET(BPF_FP_HI
), STACK_OFFSET(BPF_FP_LO
)},
168 /* Temporary Register for BPF JIT, can be used
169 * for constant blindings and others.
171 [TMP_REG_1
] = {ARM_R7
, ARM_R6
},
172 [TMP_REG_2
] = {ARM_R9
, ARM_R8
},
173 /* Tail call count. Stored on stack scratch space. */
174 [TCALL_CNT
] = {STACK_OFFSET(BPF_TC_HI
), STACK_OFFSET(BPF_TC_LO
)},
175 /* temporary register for blinding constants.
176 * Stored on stack scratch space.
178 [BPF_REG_AX
] = {STACK_OFFSET(BPF_AX_HI
), STACK_OFFSET(BPF_AX_LO
)},
181 #define dst_lo dst[1]
182 #define dst_hi dst[0]
183 #define src_lo src[1]
184 #define src_hi src[0]
190 * idx : index of current last JITed instruction.
191 * prologue_bytes : bytes used in prologue.
192 * epilogue_offset : offset of epilogue starting.
193 * offsets : array of eBPF instruction offsets in
195 * target : final JITed code.
196 * epilogue_bytes : no of bytes used in epilogue.
197 * imm_count : no of immediate counts used for global
199 * imms : array of global variable addresses.
203 const struct bpf_prog
*prog
;
205 unsigned int prologue_bytes
;
206 unsigned int epilogue_offset
;
207 unsigned int cpu_architecture
;
212 #if __LINUX_ARM_ARCH__ < 7
220 * Wrappers which handle both OABI and EABI and assures Thumb2 interworking
221 * (where the assembly routines like __aeabi_uidiv could cause problems).
223 static u32
jit_udiv32(u32 dividend
, u32 divisor
)
225 return dividend
/ divisor
;
228 static u32
jit_mod32(u32 dividend
, u32 divisor
)
230 return dividend
% divisor
;
233 static s32
jit_sdiv32(s32 dividend
, s32 divisor
)
235 return dividend
/ divisor
;
238 static s32
jit_smod32(s32 dividend
, s32 divisor
)
240 return dividend
% divisor
;
243 /* Wrappers for 64-bit div/mod */
244 static u64
jit_udiv64(u64 dividend
, u64 divisor
)
246 return div64_u64(dividend
, divisor
);
249 static u64
jit_mod64(u64 dividend
, u64 divisor
)
253 div64_u64_rem(dividend
, divisor
, &rem
);
257 static s64
jit_sdiv64(s64 dividend
, s64 divisor
)
259 return div64_s64(dividend
, divisor
);
262 static s64
jit_smod64(s64 dividend
, s64 divisor
)
266 q
= div64_s64(dividend
, divisor
);
268 return dividend
- q
* divisor
;
271 static inline void _emit(int cond
, u32 inst
, struct jit_ctx
*ctx
)
273 inst
|= (cond
<< 28);
274 inst
= __opcode_to_mem_arm(inst
);
276 if (ctx
->target
!= NULL
)
277 ctx
->target
[ctx
->idx
] = inst
;
283 * Emit an instruction that will be executed unconditionally.
285 static inline void emit(u32 inst
, struct jit_ctx
*ctx
)
287 _emit(ARM_COND_AL
, inst
, ctx
);
291 * This is rather horrid, but necessary to convert an integer constant
292 * to an immediate operand for the opcodes, and be able to detect at
293 * build time whether the constant can't be converted (iow, usable in
296 #define imm12val(v, s) (rol32(v, (s)) | (s) << 7)
297 #define const_imm8m(x) \
300 if (!(v & ~0x000000ff)) \
301 r = imm12val(v, 0); \
302 else if (!(v & ~0xc000003f)) \
303 r = imm12val(v, 2); \
304 else if (!(v & ~0xf000000f)) \
305 r = imm12val(v, 4); \
306 else if (!(v & ~0xfc000003)) \
307 r = imm12val(v, 6); \
308 else if (!(v & ~0xff000000)) \
309 r = imm12val(v, 8); \
310 else if (!(v & ~0x3fc00000)) \
311 r = imm12val(v, 10); \
312 else if (!(v & ~0x0ff00000)) \
313 r = imm12val(v, 12); \
314 else if (!(v & ~0x03fc0000)) \
315 r = imm12val(v, 14); \
316 else if (!(v & ~0x00ff0000)) \
317 r = imm12val(v, 16); \
318 else if (!(v & ~0x003fc000)) \
319 r = imm12val(v, 18); \
320 else if (!(v & ~0x000ff000)) \
321 r = imm12val(v, 20); \
322 else if (!(v & ~0x0003fc00)) \
323 r = imm12val(v, 22); \
324 else if (!(v & ~0x0000ff00)) \
325 r = imm12val(v, 24); \
326 else if (!(v & ~0x00003fc0)) \
327 r = imm12val(v, 26); \
328 else if (!(v & ~0x00000ff0)) \
329 r = imm12val(v, 28); \
330 else if (!(v & ~0x000003fc)) \
331 r = imm12val(v, 30); \
337 * Checks if immediate value can be converted to imm12(12 bits) value.
339 static int imm8m(u32 x
)
343 for (rot
= 0; rot
< 16; rot
++)
344 if ((x
& ~ror32(0xff, 2 * rot
)) == 0)
345 return rol32(x
, 2 * rot
) | (rot
<< 8);
349 #define imm8m(x) (__builtin_constant_p(x) ? const_imm8m(x) : imm8m(x))
351 static u32
arm_bpf_ldst_imm12(u32 op
, u8 rt
, u8 rn
, s16 imm12
)
353 op
|= rt
<< 12 | rn
<< 16;
355 op
|= ARM_INST_LDST__U
;
358 return op
| (imm12
& ARM_INST_LDST__IMM12
);
361 static u32
arm_bpf_ldst_imm8(u32 op
, u8 rt
, u8 rn
, s16 imm8
)
363 op
|= rt
<< 12 | rn
<< 16;
365 op
|= ARM_INST_LDST__U
;
368 return op
| (imm8
& 0xf0) << 4 | (imm8
& 0x0f);
371 #define ARM_LDR_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_LDR_I, rt, rn, off)
372 #define ARM_LDRB_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_LDRB_I, rt, rn, off)
373 #define ARM_LDRD_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRD_I, rt, rn, off)
374 #define ARM_LDRH_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRH_I, rt, rn, off)
376 #define ARM_LDRSH_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRSH_I, rt, rn, off)
377 #define ARM_LDRSB_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRSB_I, rt, rn, off)
379 #define ARM_STR_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_STR_I, rt, rn, off)
380 #define ARM_STRB_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_STRB_I, rt, rn, off)
381 #define ARM_STRD_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_STRD_I, rt, rn, off)
382 #define ARM_STRH_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_STRH_I, rt, rn, off)
385 * Initializes the JIT space with undefined instructions.
387 static void jit_fill_hole(void *area
, unsigned int size
)
390 /* We are guaranteed to have aligned memory. */
391 for (ptr
= area
; size
>= sizeof(u32
); size
-= sizeof(u32
))
392 *ptr
++ = __opcode_to_mem_arm(ARM_INST_UDF
);
395 #if defined(CONFIG_AEABI) && (__LINUX_ARM_ARCH__ >= 5)
396 /* EABI requires the stack to be aligned to 64-bit boundaries */
397 #define STACK_ALIGNMENT 8
399 /* Stack must be aligned to 32-bit boundaries */
400 #define STACK_ALIGNMENT 4
403 /* total stack size used in JITed code */
404 #define _STACK_SIZE (ctx->prog->aux->stack_depth + SCRATCH_SIZE)
405 #define STACK_SIZE ALIGN(_STACK_SIZE, STACK_ALIGNMENT)
407 #if __LINUX_ARM_ARCH__ < 7
409 static u16
imm_offset(u32 k
, struct jit_ctx
*ctx
)
411 unsigned int i
= 0, offset
;
414 /* on the "fake" run we just count them (duplicates included) */
415 if (ctx
->target
== NULL
) {
420 while ((i
< ctx
->imm_count
) && ctx
->imms
[i
]) {
421 if (ctx
->imms
[i
] == k
)
426 if (ctx
->imms
[i
] == 0)
429 /* constants go just after the epilogue */
430 offset
= ctx
->offsets
[ctx
->prog
->len
- 1] * 4;
431 offset
+= ctx
->prologue_bytes
;
432 offset
+= ctx
->epilogue_bytes
;
435 ctx
->target
[offset
/ 4] = k
;
437 /* PC in ARM mode == address of the instruction + 8 */
438 imm
= offset
- (8 + ctx
->idx
* 4);
442 * literal pool is too far, signal it into flags. we
443 * can only detect it on the second pass unfortunately.
445 ctx
->flags
|= FLAG_IMM_OVERFLOW
;
452 #endif /* __LINUX_ARM_ARCH__ */
454 static inline int bpf2a32_offset(int bpf_to
, int bpf_from
,
455 const struct jit_ctx
*ctx
) {
458 if (ctx
->target
== NULL
)
460 to
= ctx
->offsets
[bpf_to
];
461 from
= ctx
->offsets
[bpf_from
];
463 return to
- from
- 1;
467 * Move an immediate that's not an imm8m to a core register.
469 static inline void emit_mov_i_no8m(const u8 rd
, u32 val
, struct jit_ctx
*ctx
)
471 #if __LINUX_ARM_ARCH__ < 7
472 emit(ARM_LDR_I(rd
, ARM_PC
, imm_offset(val
, ctx
)), ctx
);
474 emit(ARM_MOVW(rd
, val
& 0xffff), ctx
);
476 emit(ARM_MOVT(rd
, val
>> 16), ctx
);
480 static inline void emit_mov_i(const u8 rd
, u32 val
, struct jit_ctx
*ctx
)
482 int imm12
= imm8m(val
);
485 emit(ARM_MOV_I(rd
, imm12
), ctx
);
487 emit_mov_i_no8m(rd
, val
, ctx
);
490 static void emit_bx_r(u8 tgt_reg
, struct jit_ctx
*ctx
)
492 if (elf_hwcap
& HWCAP_THUMB
)
493 emit(ARM_BX(tgt_reg
), ctx
);
495 emit(ARM_MOV_R(ARM_PC
, tgt_reg
), ctx
);
498 static inline void emit_blx_r(u8 tgt_reg
, struct jit_ctx
*ctx
)
500 #if __LINUX_ARM_ARCH__ < 5
501 emit(ARM_MOV_R(ARM_LR
, ARM_PC
), ctx
);
502 emit_bx_r(tgt_reg
, ctx
);
504 emit(ARM_BLX_R(tgt_reg
), ctx
);
508 static inline int epilogue_offset(const struct jit_ctx
*ctx
)
511 /* No need for 1st dummy run */
512 if (ctx
->target
== NULL
)
514 to
= ctx
->epilogue_offset
;
517 return to
- from
- 2;
520 static inline void emit_udivmod(u8 rd
, u8 rm
, u8 rn
, struct jit_ctx
*ctx
, u8 op
, u8 sign
)
522 const int exclude_mask
= BIT(ARM_R0
) | BIT(ARM_R1
);
523 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
526 #if __LINUX_ARM_ARCH__ == 7
527 if (elf_hwcap
& HWCAP_IDIVA
) {
529 emit(sign
? ARM_SDIV(rd
, rm
, rn
) : ARM_UDIV(rd
, rm
, rn
), ctx
);
531 emit(sign
? ARM_SDIV(ARM_IP
, rm
, rn
) : ARM_UDIV(ARM_IP
, rm
, rn
), ctx
);
532 emit(ARM_MLS(rd
, rn
, ARM_IP
, rm
), ctx
);
539 * For BPF_ALU | BPF_DIV | BPF_K instructions
540 * As ARM_R1 and ARM_R0 contains 1st argument of bpf
541 * function, we need to save it on caller side to save
542 * it from getting destroyed within callee.
543 * After the return from the callee, we restore ARM_R0
547 emit(ARM_MOV_R(tmp
[0], ARM_R1
), ctx
);
548 emit(ARM_MOV_R(ARM_R1
, rn
), ctx
);
551 emit(ARM_MOV_R(tmp
[1], ARM_R0
), ctx
);
552 emit(ARM_MOV_R(ARM_R0
, rm
), ctx
);
555 /* Push caller-saved registers on stack */
556 emit(ARM_PUSH(CALLER_MASK
& ~exclude_mask
), ctx
);
558 /* Call appropriate function */
561 dst
= (u32
)jit_sdiv32
;
563 dst
= (u32
)jit_smod32
;
566 dst
= (u32
)jit_udiv32
;
568 dst
= (u32
)jit_mod32
;
571 emit_mov_i(ARM_IP
, dst
, ctx
);
572 emit_blx_r(ARM_IP
, ctx
);
574 /* Restore caller-saved registers from stack */
575 emit(ARM_POP(CALLER_MASK
& ~exclude_mask
), ctx
);
577 /* Save return value */
579 emit(ARM_MOV_R(rd
, ARM_R0
), ctx
);
581 /* Restore ARM_R0 and ARM_R1 */
583 emit(ARM_MOV_R(ARM_R1
, tmp
[0]), ctx
);
585 emit(ARM_MOV_R(ARM_R0
, tmp
[1]), ctx
);
588 static inline void emit_udivmod64(const s8
*rd
, const s8
*rm
, const s8
*rn
, struct jit_ctx
*ctx
,
593 /* Push caller-saved registers on stack */
594 emit(ARM_PUSH(CALLER_MASK
), ctx
);
597 * As we are implementing 64-bit div/mod as function calls, We need to put the dividend in
598 * R0-R1 and the divisor in R2-R3. As we have already pushed these registers on the stack,
599 * we can recover them later after returning from the function call.
601 if (rm
[1] != ARM_R0
|| rn
[1] != ARM_R2
) {
603 * Move Rm to {R1, R0} if it is not already there.
605 if (rm
[1] != ARM_R0
) {
607 emit(ARM_PUSH(BIT(ARM_R0
) | BIT(ARM_R1
)), ctx
);
608 emit(ARM_MOV_R(ARM_R1
, rm
[0]), ctx
);
609 emit(ARM_MOV_R(ARM_R0
, rm
[1]), ctx
);
610 if (rn
[1] == ARM_R0
) {
611 emit(ARM_POP(BIT(ARM_R2
) | BIT(ARM_R3
)), ctx
);
616 * Move Rn to {R3, R2} if it is not already there.
618 if (rn
[1] != ARM_R2
) {
619 emit(ARM_MOV_R(ARM_R3
, rn
[0]), ctx
);
620 emit(ARM_MOV_R(ARM_R2
, rn
[1]), ctx
);
626 /* Call appropriate function */
629 dst
= (u32
)jit_sdiv64
;
631 dst
= (u32
)jit_smod64
;
634 dst
= (u32
)jit_udiv64
;
636 dst
= (u32
)jit_mod64
;
639 emit_mov_i(ARM_IP
, dst
, ctx
);
640 emit_blx_r(ARM_IP
, ctx
);
642 /* Save return value */
643 if (rd
[1] != ARM_R0
) {
644 emit(ARM_MOV_R(rd
[0], ARM_R1
), ctx
);
645 emit(ARM_MOV_R(rd
[1], ARM_R0
), ctx
);
648 /* Recover {R3, R2} and {R1, R0} from stack if they are not Rd */
649 if (rd
[1] != ARM_R0
&& rd
[1] != ARM_R2
) {
650 emit(ARM_POP(CALLER_MASK
), ctx
);
651 } else if (rd
[1] != ARM_R0
) {
652 emit(ARM_POP(BIT(ARM_R0
) | BIT(ARM_R1
)), ctx
);
653 emit(ARM_ADD_I(ARM_SP
, ARM_SP
, 8), ctx
);
655 emit(ARM_ADD_I(ARM_SP
, ARM_SP
, 8), ctx
);
656 emit(ARM_POP(BIT(ARM_R2
) | BIT(ARM_R3
)), ctx
);
660 /* Is the translated BPF register on stack? */
661 static bool is_stacked(s8 reg
)
666 /* If a BPF register is on the stack (stk is true), load it to the
667 * supplied temporary register and return the temporary register
668 * for subsequent operations, otherwise just use the CPU register.
670 static s8
arm_bpf_get_reg32(s8 reg
, s8 tmp
, struct jit_ctx
*ctx
)
672 if (is_stacked(reg
)) {
673 emit(ARM_LDR_I(tmp
, ARM_FP
, EBPF_SCRATCH_TO_ARM_FP(reg
)), ctx
);
679 static const s8
*arm_bpf_get_reg64(const s8
*reg
, const s8
*tmp
,
682 if (is_stacked(reg
[1])) {
683 if (__LINUX_ARM_ARCH__
>= 6 ||
684 ctx
->cpu_architecture
>= CPU_ARCH_ARMv5TE
) {
685 emit(ARM_LDRD_I(tmp
[1], ARM_FP
,
686 EBPF_SCRATCH_TO_ARM_FP(reg
[1])), ctx
);
688 emit(ARM_LDR_I(tmp
[1], ARM_FP
,
689 EBPF_SCRATCH_TO_ARM_FP(reg
[1])), ctx
);
690 emit(ARM_LDR_I(tmp
[0], ARM_FP
,
691 EBPF_SCRATCH_TO_ARM_FP(reg
[0])), ctx
);
698 /* If a BPF register is on the stack (stk is true), save the register
699 * back to the stack. If the source register is not the same, then
700 * move it into the correct register.
702 static void arm_bpf_put_reg32(s8 reg
, s8 src
, struct jit_ctx
*ctx
)
705 emit(ARM_STR_I(src
, ARM_FP
, EBPF_SCRATCH_TO_ARM_FP(reg
)), ctx
);
707 emit(ARM_MOV_R(reg
, src
), ctx
);
710 static void arm_bpf_put_reg64(const s8
*reg
, const s8
*src
,
713 if (is_stacked(reg
[1])) {
714 if (__LINUX_ARM_ARCH__
>= 6 ||
715 ctx
->cpu_architecture
>= CPU_ARCH_ARMv5TE
) {
716 emit(ARM_STRD_I(src
[1], ARM_FP
,
717 EBPF_SCRATCH_TO_ARM_FP(reg
[1])), ctx
);
719 emit(ARM_STR_I(src
[1], ARM_FP
,
720 EBPF_SCRATCH_TO_ARM_FP(reg
[1])), ctx
);
721 emit(ARM_STR_I(src
[0], ARM_FP
,
722 EBPF_SCRATCH_TO_ARM_FP(reg
[0])), ctx
);
725 if (reg
[1] != src
[1])
726 emit(ARM_MOV_R(reg
[1], src
[1]), ctx
);
727 if (reg
[0] != src
[0])
728 emit(ARM_MOV_R(reg
[0], src
[0]), ctx
);
732 static inline void emit_a32_mov_i(const s8 dst
, const u32 val
,
735 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
737 if (is_stacked(dst
)) {
738 emit_mov_i(tmp
[1], val
, ctx
);
739 arm_bpf_put_reg32(dst
, tmp
[1], ctx
);
741 emit_mov_i(dst
, val
, ctx
);
745 static void emit_a32_mov_i64(const s8 dst
[], u64 val
, struct jit_ctx
*ctx
)
747 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
748 const s8
*rd
= is_stacked(dst_lo
) ? tmp
: dst
;
750 emit_mov_i(rd
[1], (u32
)val
, ctx
);
751 emit_mov_i(rd
[0], val
>> 32, ctx
);
753 arm_bpf_put_reg64(dst
, rd
, ctx
);
756 /* Sign extended move */
757 static inline void emit_a32_mov_se_i64(const bool is64
, const s8 dst
[],
758 const u32 val
, struct jit_ctx
*ctx
) {
761 if (is64
&& (val
& (1<<31)))
762 val64
|= 0xffffffff00000000ULL
;
763 emit_a32_mov_i64(dst
, val64
, ctx
);
766 static inline void emit_a32_add_r(const u8 dst
, const u8 src
,
767 const bool is64
, const bool hi
,
768 struct jit_ctx
*ctx
) {
770 * adds dst_lo, dst_lo, src_lo
771 * adc dst_hi, dst_hi, src_hi
773 * add dst_lo, dst_lo, src_lo
776 emit(ARM_ADDS_R(dst
, dst
, src
), ctx
);
778 emit(ARM_ADC_R(dst
, dst
, src
), ctx
);
780 emit(ARM_ADD_R(dst
, dst
, src
), ctx
);
783 static inline void emit_a32_sub_r(const u8 dst
, const u8 src
,
784 const bool is64
, const bool hi
,
785 struct jit_ctx
*ctx
) {
787 * subs dst_lo, dst_lo, src_lo
788 * sbc dst_hi, dst_hi, src_hi
790 * sub dst_lo, dst_lo, src_lo
793 emit(ARM_SUBS_R(dst
, dst
, src
), ctx
);
795 emit(ARM_SBC_R(dst
, dst
, src
), ctx
);
797 emit(ARM_SUB_R(dst
, dst
, src
), ctx
);
800 static inline void emit_alu_r(const u8 dst
, const u8 src
, const bool is64
,
801 const bool hi
, const u8 op
, struct jit_ctx
*ctx
){
802 switch (BPF_OP(op
)) {
803 /* dst = dst + src */
805 emit_a32_add_r(dst
, src
, is64
, hi
, ctx
);
807 /* dst = dst - src */
809 emit_a32_sub_r(dst
, src
, is64
, hi
, ctx
);
811 /* dst = dst | src */
813 emit(ARM_ORR_R(dst
, dst
, src
), ctx
);
815 /* dst = dst & src */
817 emit(ARM_AND_R(dst
, dst
, src
), ctx
);
819 /* dst = dst ^ src */
821 emit(ARM_EOR_R(dst
, dst
, src
), ctx
);
823 /* dst = dst * src */
825 emit(ARM_MUL(dst
, dst
, src
), ctx
);
827 /* dst = dst << src */
829 emit(ARM_LSL_R(dst
, dst
, src
), ctx
);
831 /* dst = dst >> src */
833 emit(ARM_LSR_R(dst
, dst
, src
), ctx
);
835 /* dst = dst >> src (signed)*/
837 emit(ARM_MOV_SR(dst
, dst
, SRTYPE_ASR
, src
), ctx
);
842 /* ALU operation (64 bit) */
843 static inline void emit_a32_alu_r64(const bool is64
, const s8 dst
[],
844 const s8 src
[], struct jit_ctx
*ctx
,
846 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
847 const s8
*tmp2
= bpf2a32
[TMP_REG_2
];
850 rd
= arm_bpf_get_reg64(dst
, tmp
, ctx
);
854 rs
= arm_bpf_get_reg64(src
, tmp2
, ctx
);
857 emit_alu_r(rd
[1], rs
[1], true, false, op
, ctx
);
858 emit_alu_r(rd
[0], rs
[0], true, true, op
, ctx
);
862 rs
= arm_bpf_get_reg32(src_lo
, tmp2
[1], ctx
);
865 emit_alu_r(rd
[1], rs
, true, false, op
, ctx
);
866 if (!ctx
->prog
->aux
->verifier_zext
)
867 emit_a32_mov_i(rd
[0], 0, ctx
);
870 arm_bpf_put_reg64(dst
, rd
, ctx
);
873 /* dst = src (4 bytes)*/
874 static inline void emit_a32_mov_r(const s8 dst
, const s8 src
, struct jit_ctx
*ctx
) {
875 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
878 rt
= arm_bpf_get_reg32(src
, tmp
[0], ctx
);
879 arm_bpf_put_reg32(dst
, rt
, ctx
);
883 static inline void emit_a32_mov_r64(const bool is64
, const s8 dst
[],
885 struct jit_ctx
*ctx
) {
887 emit_a32_mov_r(dst_lo
, src_lo
, ctx
);
888 if (!ctx
->prog
->aux
->verifier_zext
)
889 /* Zero out high 4 bytes */
890 emit_a32_mov_i(dst_hi
, 0, ctx
);
891 } else if (__LINUX_ARM_ARCH__
< 6 &&
892 ctx
->cpu_architecture
< CPU_ARCH_ARMv5TE
) {
893 /* complete 8 byte move */
894 emit_a32_mov_r(dst_lo
, src_lo
, ctx
);
895 emit_a32_mov_r(dst_hi
, src_hi
, ctx
);
896 } else if (is_stacked(src_lo
) && is_stacked(dst_lo
)) {
897 const u8
*tmp
= bpf2a32
[TMP_REG_1
];
899 emit(ARM_LDRD_I(tmp
[1], ARM_FP
, EBPF_SCRATCH_TO_ARM_FP(src_lo
)), ctx
);
900 emit(ARM_STRD_I(tmp
[1], ARM_FP
, EBPF_SCRATCH_TO_ARM_FP(dst_lo
)), ctx
);
901 } else if (is_stacked(src_lo
)) {
902 emit(ARM_LDRD_I(dst
[1], ARM_FP
, EBPF_SCRATCH_TO_ARM_FP(src_lo
)), ctx
);
903 } else if (is_stacked(dst_lo
)) {
904 emit(ARM_STRD_I(src
[1], ARM_FP
, EBPF_SCRATCH_TO_ARM_FP(dst_lo
)), ctx
);
906 emit(ARM_MOV_R(dst
[0], src
[0]), ctx
);
907 emit(ARM_MOV_R(dst
[1], src
[1]), ctx
);
911 /* dst = (signed)src */
912 static inline void emit_a32_movsx_r64(const bool is64
, const u8 off
, const s8 dst
[], const s8 src
[],
913 struct jit_ctx
*ctx
) {
914 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
918 if (is_stacked(dst_lo
))
922 rs
= arm_bpf_get_reg32(src_lo
, rd
, ctx
);
923 /* rs may be one of src[1], dst[1], or tmp[1] */
925 /* Sign extend rs if needed. If off == 32, lower 32-bits of src are moved to dst and sign
926 * extension only happens in the upper 64 bits.
929 /* Sign extend rs into rd */
930 emit(ARM_LSL_I(rd
, rs
, 32 - off
), ctx
);
931 emit(ARM_ASR_I(rd
, rd
, 32 - off
), ctx
);
936 /* Write rd to dst_lo
940 * 1. dst == src and stacked.
943 * In this case src_lo was loaded into rd(tmp[1]) but rd was not sign extended as off==32.
944 * So, we don't need to write rd back to dst_lo as they have the same value.
945 * This saves us one str instruction.
947 if (dst_lo
!= src_lo
|| off
!= 32)
948 arm_bpf_put_reg32(dst_lo
, rd
, ctx
);
951 if (!ctx
->prog
->aux
->verifier_zext
)
952 /* Zero out high 4 bytes */
953 emit_a32_mov_i(dst_hi
, 0, ctx
);
955 if (is_stacked(dst_hi
)) {
956 emit(ARM_ASR_I(tmp
[0], rd
, 31), ctx
);
957 arm_bpf_put_reg32(dst_hi
, tmp
[0], ctx
);
959 emit(ARM_ASR_I(dst_hi
, rd
, 31), ctx
);
964 /* Shift operations */
965 static inline void emit_a32_alu_i(const s8 dst
, const u32 val
,
966 struct jit_ctx
*ctx
, const u8 op
) {
967 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
970 rd
= arm_bpf_get_reg32(dst
, tmp
[0], ctx
);
972 /* Do shift operation */
975 emit(ARM_LSL_I(rd
, rd
, val
), ctx
);
978 emit(ARM_LSR_I(rd
, rd
, val
), ctx
);
981 emit(ARM_ASR_I(rd
, rd
, val
), ctx
);
984 emit(ARM_RSB_I(rd
, rd
, val
), ctx
);
988 arm_bpf_put_reg32(dst
, rd
, ctx
);
991 /* dst = ~dst (64 bit) */
992 static inline void emit_a32_neg64(const s8 dst
[],
993 struct jit_ctx
*ctx
){
994 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
998 rd
= arm_bpf_get_reg64(dst
, tmp
, ctx
);
1000 /* Do Negate Operation */
1001 emit(ARM_RSBS_I(rd
[1], rd
[1], 0), ctx
);
1002 emit(ARM_RSC_I(rd
[0], rd
[0], 0), ctx
);
1004 arm_bpf_put_reg64(dst
, rd
, ctx
);
1007 /* dst = dst << src */
1008 static inline void emit_a32_lsh_r64(const s8 dst
[], const s8 src
[],
1009 struct jit_ctx
*ctx
) {
1010 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
1011 const s8
*tmp2
= bpf2a32
[TMP_REG_2
];
1015 /* Setup Operands */
1016 rt
= arm_bpf_get_reg32(src_lo
, tmp2
[1], ctx
);
1017 rd
= arm_bpf_get_reg64(dst
, tmp
, ctx
);
1019 /* Do LSH operation */
1020 emit(ARM_SUB_I(ARM_IP
, rt
, 32), ctx
);
1021 emit(ARM_RSB_I(tmp2
[0], rt
, 32), ctx
);
1022 emit(ARM_MOV_SR(ARM_LR
, rd
[0], SRTYPE_ASL
, rt
), ctx
);
1023 emit(ARM_ORR_SR(ARM_LR
, ARM_LR
, rd
[1], SRTYPE_ASL
, ARM_IP
), ctx
);
1024 emit(ARM_ORR_SR(ARM_IP
, ARM_LR
, rd
[1], SRTYPE_LSR
, tmp2
[0]), ctx
);
1025 emit(ARM_MOV_SR(ARM_LR
, rd
[1], SRTYPE_ASL
, rt
), ctx
);
1027 arm_bpf_put_reg32(dst_lo
, ARM_LR
, ctx
);
1028 arm_bpf_put_reg32(dst_hi
, ARM_IP
, ctx
);
1031 /* dst = dst >> src (signed)*/
1032 static inline void emit_a32_arsh_r64(const s8 dst
[], const s8 src
[],
1033 struct jit_ctx
*ctx
) {
1034 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
1035 const s8
*tmp2
= bpf2a32
[TMP_REG_2
];
1039 /* Setup Operands */
1040 rt
= arm_bpf_get_reg32(src_lo
, tmp2
[1], ctx
);
1041 rd
= arm_bpf_get_reg64(dst
, tmp
, ctx
);
1043 /* Do the ARSH operation */
1044 emit(ARM_RSB_I(ARM_IP
, rt
, 32), ctx
);
1045 emit(ARM_SUBS_I(tmp2
[0], rt
, 32), ctx
);
1046 emit(ARM_MOV_SR(ARM_LR
, rd
[1], SRTYPE_LSR
, rt
), ctx
);
1047 emit(ARM_ORR_SR(ARM_LR
, ARM_LR
, rd
[0], SRTYPE_ASL
, ARM_IP
), ctx
);
1049 ARM_ORR_SR(ARM_LR
, ARM_LR
, rd
[0], SRTYPE_ASR
, tmp2
[0]), ctx
);
1050 emit(ARM_MOV_SR(ARM_IP
, rd
[0], SRTYPE_ASR
, rt
), ctx
);
1052 arm_bpf_put_reg32(dst_lo
, ARM_LR
, ctx
);
1053 arm_bpf_put_reg32(dst_hi
, ARM_IP
, ctx
);
1056 /* dst = dst >> src */
1057 static inline void emit_a32_rsh_r64(const s8 dst
[], const s8 src
[],
1058 struct jit_ctx
*ctx
) {
1059 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
1060 const s8
*tmp2
= bpf2a32
[TMP_REG_2
];
1064 /* Setup Operands */
1065 rt
= arm_bpf_get_reg32(src_lo
, tmp2
[1], ctx
);
1066 rd
= arm_bpf_get_reg64(dst
, tmp
, ctx
);
1068 /* Do RSH operation */
1069 emit(ARM_RSB_I(ARM_IP
, rt
, 32), ctx
);
1070 emit(ARM_SUBS_I(tmp2
[0], rt
, 32), ctx
);
1071 emit(ARM_MOV_SR(ARM_LR
, rd
[1], SRTYPE_LSR
, rt
), ctx
);
1072 emit(ARM_ORR_SR(ARM_LR
, ARM_LR
, rd
[0], SRTYPE_ASL
, ARM_IP
), ctx
);
1073 emit(ARM_ORR_SR(ARM_LR
, ARM_LR
, rd
[0], SRTYPE_LSR
, tmp2
[0]), ctx
);
1074 emit(ARM_MOV_SR(ARM_IP
, rd
[0], SRTYPE_LSR
, rt
), ctx
);
1076 arm_bpf_put_reg32(dst_lo
, ARM_LR
, ctx
);
1077 arm_bpf_put_reg32(dst_hi
, ARM_IP
, ctx
);
1080 /* dst = dst << val */
1081 static inline void emit_a32_lsh_i64(const s8 dst
[],
1082 const u32 val
, struct jit_ctx
*ctx
){
1083 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
1084 const s8
*tmp2
= bpf2a32
[TMP_REG_2
];
1087 /* Setup operands */
1088 rd
= arm_bpf_get_reg64(dst
, tmp
, ctx
);
1090 /* Do LSH operation */
1092 emit(ARM_MOV_SI(tmp2
[0], rd
[0], SRTYPE_ASL
, val
), ctx
);
1093 emit(ARM_ORR_SI(rd
[0], tmp2
[0], rd
[1], SRTYPE_LSR
, 32 - val
), ctx
);
1094 emit(ARM_MOV_SI(rd
[1], rd
[1], SRTYPE_ASL
, val
), ctx
);
1097 emit(ARM_MOV_R(rd
[0], rd
[1]), ctx
);
1099 emit(ARM_MOV_SI(rd
[0], rd
[1], SRTYPE_ASL
, val
- 32), ctx
);
1100 emit(ARM_EOR_R(rd
[1], rd
[1], rd
[1]), ctx
);
1103 arm_bpf_put_reg64(dst
, rd
, ctx
);
1106 /* dst = dst >> val */
1107 static inline void emit_a32_rsh_i64(const s8 dst
[],
1108 const u32 val
, struct jit_ctx
*ctx
) {
1109 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
1110 const s8
*tmp2
= bpf2a32
[TMP_REG_2
];
1113 /* Setup operands */
1114 rd
= arm_bpf_get_reg64(dst
, tmp
, ctx
);
1116 /* Do LSR operation */
1118 /* An immediate value of 0 encodes a shift amount of 32
1119 * for LSR. To shift by 0, don't do anything.
1121 } else if (val
< 32) {
1122 emit(ARM_MOV_SI(tmp2
[1], rd
[1], SRTYPE_LSR
, val
), ctx
);
1123 emit(ARM_ORR_SI(rd
[1], tmp2
[1], rd
[0], SRTYPE_ASL
, 32 - val
), ctx
);
1124 emit(ARM_MOV_SI(rd
[0], rd
[0], SRTYPE_LSR
, val
), ctx
);
1125 } else if (val
== 32) {
1126 emit(ARM_MOV_R(rd
[1], rd
[0]), ctx
);
1127 emit(ARM_MOV_I(rd
[0], 0), ctx
);
1129 emit(ARM_MOV_SI(rd
[1], rd
[0], SRTYPE_LSR
, val
- 32), ctx
);
1130 emit(ARM_MOV_I(rd
[0], 0), ctx
);
1133 arm_bpf_put_reg64(dst
, rd
, ctx
);
1136 /* dst = dst >> val (signed) */
1137 static inline void emit_a32_arsh_i64(const s8 dst
[],
1138 const u32 val
, struct jit_ctx
*ctx
){
1139 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
1140 const s8
*tmp2
= bpf2a32
[TMP_REG_2
];
1143 /* Setup operands */
1144 rd
= arm_bpf_get_reg64(dst
, tmp
, ctx
);
1146 /* Do ARSH operation */
1148 /* An immediate value of 0 encodes a shift amount of 32
1149 * for ASR. To shift by 0, don't do anything.
1151 } else if (val
< 32) {
1152 emit(ARM_MOV_SI(tmp2
[1], rd
[1], SRTYPE_LSR
, val
), ctx
);
1153 emit(ARM_ORR_SI(rd
[1], tmp2
[1], rd
[0], SRTYPE_ASL
, 32 - val
), ctx
);
1154 emit(ARM_MOV_SI(rd
[0], rd
[0], SRTYPE_ASR
, val
), ctx
);
1155 } else if (val
== 32) {
1156 emit(ARM_MOV_R(rd
[1], rd
[0]), ctx
);
1157 emit(ARM_MOV_SI(rd
[0], rd
[0], SRTYPE_ASR
, 31), ctx
);
1159 emit(ARM_MOV_SI(rd
[1], rd
[0], SRTYPE_ASR
, val
- 32), ctx
);
1160 emit(ARM_MOV_SI(rd
[0], rd
[0], SRTYPE_ASR
, 31), ctx
);
1163 arm_bpf_put_reg64(dst
, rd
, ctx
);
1166 static inline void emit_a32_mul_r64(const s8 dst
[], const s8 src
[],
1167 struct jit_ctx
*ctx
) {
1168 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
1169 const s8
*tmp2
= bpf2a32
[TMP_REG_2
];
1172 /* Setup operands for multiplication */
1173 rd
= arm_bpf_get_reg64(dst
, tmp
, ctx
);
1174 rt
= arm_bpf_get_reg64(src
, tmp2
, ctx
);
1176 /* Do Multiplication */
1177 emit(ARM_MUL(ARM_IP
, rd
[1], rt
[0]), ctx
);
1178 emit(ARM_MUL(ARM_LR
, rd
[0], rt
[1]), ctx
);
1179 emit(ARM_ADD_R(ARM_LR
, ARM_IP
, ARM_LR
), ctx
);
1181 emit(ARM_UMULL(ARM_IP
, rd
[0], rd
[1], rt
[1]), ctx
);
1182 emit(ARM_ADD_R(rd
[0], ARM_LR
, rd
[0]), ctx
);
1184 arm_bpf_put_reg32(dst_lo
, ARM_IP
, ctx
);
1185 arm_bpf_put_reg32(dst_hi
, rd
[0], ctx
);
1188 static bool is_ldst_imm(s16 off
, const u8 size
)
1201 /* Need to make sure off+4 does not overflow. */
1202 off_max
= 0xfff - 4;
1205 return -off_max
<= off
&& off
<= off_max
;
1208 static bool is_ldst_imm8(s16 off
, const u8 size
)
1223 return -off_max
<= off
&& off
<= off_max
;
1226 /* *(size *)(dst + off) = src */
1227 static inline void emit_str_r(const s8 dst
, const s8 src
[],
1228 s16 off
, struct jit_ctx
*ctx
, const u8 sz
){
1229 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
1232 rd
= arm_bpf_get_reg32(dst
, tmp
[1], ctx
);
1234 if (!is_ldst_imm(off
, sz
)) {
1235 emit_a32_mov_i(tmp
[0], off
, ctx
);
1236 emit(ARM_ADD_R(tmp
[0], tmp
[0], rd
), ctx
);
1243 emit(ARM_STRB_I(src_lo
, rd
, off
), ctx
);
1246 /* Store a HalfWord */
1247 emit(ARM_STRH_I(src_lo
, rd
, off
), ctx
);
1251 emit(ARM_STR_I(src_lo
, rd
, off
), ctx
);
1254 /* Store a Double Word */
1255 emit(ARM_STR_I(src_lo
, rd
, off
), ctx
);
1256 emit(ARM_STR_I(src_hi
, rd
, off
+ 4), ctx
);
1261 /* dst = *(size*)(src + off) */
1262 static inline void emit_ldx_r(const s8 dst
[], const s8 src
,
1263 s16 off
, struct jit_ctx
*ctx
, const u8 sz
){
1264 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
1265 const s8
*rd
= is_stacked(dst_lo
) ? tmp
: dst
;
1268 if (!is_ldst_imm(off
, sz
)) {
1269 emit_a32_mov_i(tmp
[0], off
, ctx
);
1270 emit(ARM_ADD_R(tmp
[0], tmp
[0], src
), ctx
);
1273 } else if (rd
[1] == rm
) {
1274 emit(ARM_MOV_R(tmp
[0], rm
), ctx
);
1280 emit(ARM_LDRB_I(rd
[1], rm
, off
), ctx
);
1281 if (!ctx
->prog
->aux
->verifier_zext
)
1282 emit_a32_mov_i(rd
[0], 0, ctx
);
1285 /* Load a HalfWord */
1286 emit(ARM_LDRH_I(rd
[1], rm
, off
), ctx
);
1287 if (!ctx
->prog
->aux
->verifier_zext
)
1288 emit_a32_mov_i(rd
[0], 0, ctx
);
1292 emit(ARM_LDR_I(rd
[1], rm
, off
), ctx
);
1293 if (!ctx
->prog
->aux
->verifier_zext
)
1294 emit_a32_mov_i(rd
[0], 0, ctx
);
1297 /* Load a Double Word */
1298 emit(ARM_LDR_I(rd
[1], rm
, off
), ctx
);
1299 emit(ARM_LDR_I(rd
[0], rm
, off
+ 4), ctx
);
1302 arm_bpf_put_reg64(dst
, rd
, ctx
);
1305 /* dst = *(signed size*)(src + off) */
1306 static inline void emit_ldsx_r(const s8 dst
[], const s8 src
,
1307 s16 off
, struct jit_ctx
*ctx
, const u8 sz
){
1308 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
1309 const s8
*rd
= is_stacked(dst_lo
) ? tmp
: dst
;
1313 if (!is_ldst_imm8(off
, sz
)) {
1315 * offset does not fit in the load/store immediate,
1316 * construct an ADD instruction to apply the offset.
1318 add_off
= imm8m(off
);
1320 emit(ARM_ADD_I(tmp
[0], src
, add_off
), ctx
);
1323 emit_a32_mov_i(tmp
[0], off
, ctx
);
1324 emit(ARM_ADD_R(tmp
[0], tmp
[0], src
), ctx
);
1332 /* Load a Byte with sign extension*/
1333 emit(ARM_LDRSB_I(rd
[1], rm
, off
), ctx
);
1336 /* Load a HalfWord with sign extension*/
1337 emit(ARM_LDRSH_I(rd
[1], rm
, off
), ctx
);
1341 emit(ARM_LDR_I(rd
[1], rm
, off
), ctx
);
1344 /* Carry the sign extension to upper 32 bits */
1345 emit(ARM_ASR_I(rd
[0], rd
[1], 31), ctx
);
1346 arm_bpf_put_reg64(dst
, rd
, ctx
);
1349 /* Arithmatic Operation */
1350 static inline void emit_ar_r(const u8 rd
, const u8 rt
, const u8 rm
,
1351 const u8 rn
, struct jit_ctx
*ctx
, u8 op
,
1356 emit(ARM_AND_R(ARM_IP
, rt
, rn
), ctx
);
1357 emit(ARM_AND_R(ARM_LR
, rd
, rm
), ctx
);
1358 emit(ARM_ORRS_R(ARM_IP
, ARM_LR
, ARM_IP
), ctx
);
1360 emit(ARM_ANDS_R(ARM_IP
, rt
, rn
), ctx
);
1370 emit(ARM_CMP_R(rd
, rm
), ctx
);
1371 /* Only compare low halve if high halve are equal. */
1372 _emit(ARM_COND_EQ
, ARM_CMP_R(rt
, rn
), ctx
);
1374 emit(ARM_CMP_R(rt
, rn
), ctx
);
1379 emit(ARM_CMP_R(rn
, rt
), ctx
);
1381 emit(ARM_SBCS_R(ARM_IP
, rm
, rd
), ctx
);
1385 emit(ARM_CMP_R(rt
, rn
), ctx
);
1387 emit(ARM_SBCS_R(ARM_IP
, rd
, rm
), ctx
);
1392 static int out_offset
= -1; /* initialized on the first pass of build_body() */
1393 static int emit_bpf_tail_call(struct jit_ctx
*ctx
)
1396 /* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */
1397 const s8
*r2
= bpf2a32
[BPF_REG_2
];
1398 const s8
*r3
= bpf2a32
[BPF_REG_3
];
1399 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
1400 const s8
*tmp2
= bpf2a32
[TMP_REG_2
];
1401 const s8
*tcc
= bpf2a32
[TCALL_CNT
];
1403 const int idx0
= ctx
->idx
;
1404 #define cur_offset (ctx->idx - idx0)
1405 #define jmp_offset (out_offset - (cur_offset) - 2)
1407 s8 r_array
, r_index
;
1410 /* if (index >= array->map.max_entries)
1413 BUILD_BUG_ON(offsetof(struct bpf_array
, map
.max_entries
) >
1414 ARM_INST_LDST__IMM12
);
1415 off
= offsetof(struct bpf_array
, map
.max_entries
);
1416 r_array
= arm_bpf_get_reg32(r2
[1], tmp2
[0], ctx
);
1417 /* index is 32-bit for arrays */
1418 r_index
= arm_bpf_get_reg32(r3
[1], tmp2
[1], ctx
);
1419 /* array->map.max_entries */
1420 emit(ARM_LDR_I(tmp
[1], r_array
, off
), ctx
);
1421 /* index >= array->map.max_entries */
1422 emit(ARM_CMP_R(r_index
, tmp
[1]), ctx
);
1423 _emit(ARM_COND_CS
, ARM_B(jmp_offset
), ctx
);
1425 /* tmp2[0] = array, tmp2[1] = index */
1428 * if (tail_call_cnt >= MAX_TAIL_CALL_CNT)
1432 lo
= (u32
)MAX_TAIL_CALL_CNT
;
1433 hi
= (u32
)((u64
)MAX_TAIL_CALL_CNT
>> 32);
1434 tc
= arm_bpf_get_reg64(tcc
, tmp
, ctx
);
1435 emit(ARM_CMP_I(tc
[0], hi
), ctx
);
1436 _emit(ARM_COND_EQ
, ARM_CMP_I(tc
[1], lo
), ctx
);
1437 _emit(ARM_COND_CS
, ARM_B(jmp_offset
), ctx
);
1438 emit(ARM_ADDS_I(tc
[1], tc
[1], 1), ctx
);
1439 emit(ARM_ADC_I(tc
[0], tc
[0], 0), ctx
);
1440 arm_bpf_put_reg64(tcc
, tmp
, ctx
);
1442 /* prog = array->ptrs[index]
1446 BUILD_BUG_ON(imm8m(offsetof(struct bpf_array
, ptrs
)) < 0);
1447 off
= imm8m(offsetof(struct bpf_array
, ptrs
));
1448 emit(ARM_ADD_I(tmp
[1], r_array
, off
), ctx
);
1449 emit(ARM_LDR_R_SI(tmp
[1], tmp
[1], r_index
, SRTYPE_ASL
, 2), ctx
);
1450 emit(ARM_CMP_I(tmp
[1], 0), ctx
);
1451 _emit(ARM_COND_EQ
, ARM_B(jmp_offset
), ctx
);
1453 /* goto *(prog->bpf_func + prologue_size); */
1454 BUILD_BUG_ON(offsetof(struct bpf_prog
, bpf_func
) >
1455 ARM_INST_LDST__IMM12
);
1456 off
= offsetof(struct bpf_prog
, bpf_func
);
1457 emit(ARM_LDR_I(tmp
[1], tmp
[1], off
), ctx
);
1458 emit(ARM_ADD_I(tmp
[1], tmp
[1], ctx
->prologue_bytes
), ctx
);
1459 emit_bx_r(tmp
[1], ctx
);
1462 if (out_offset
== -1)
1463 out_offset
= cur_offset
;
1464 if (cur_offset
!= out_offset
) {
1465 pr_err_once("tail_call out_offset = %d, expected %d!\n",
1466 cur_offset
, out_offset
);
1474 /* 0xabcd => 0xcdab */
1475 static inline void emit_rev16(const u8 rd
, const u8 rn
, struct jit_ctx
*ctx
)
1477 #if __LINUX_ARM_ARCH__ < 6
1478 const s8
*tmp2
= bpf2a32
[TMP_REG_2
];
1480 emit(ARM_AND_I(tmp2
[1], rn
, 0xff), ctx
);
1481 emit(ARM_MOV_SI(tmp2
[0], rn
, SRTYPE_LSR
, 8), ctx
);
1482 emit(ARM_AND_I(tmp2
[0], tmp2
[0], 0xff), ctx
);
1483 emit(ARM_ORR_SI(rd
, tmp2
[0], tmp2
[1], SRTYPE_LSL
, 8), ctx
);
1485 emit(ARM_REV16(rd
, rn
), ctx
);
1489 /* 0xabcdefgh => 0xghefcdab */
1490 static inline void emit_rev32(const u8 rd
, const u8 rn
, struct jit_ctx
*ctx
)
1492 #if __LINUX_ARM_ARCH__ < 6
1493 const s8
*tmp2
= bpf2a32
[TMP_REG_2
];
1495 emit(ARM_AND_I(tmp2
[1], rn
, 0xff), ctx
);
1496 emit(ARM_MOV_SI(tmp2
[0], rn
, SRTYPE_LSR
, 24), ctx
);
1497 emit(ARM_ORR_SI(ARM_IP
, tmp2
[0], tmp2
[1], SRTYPE_LSL
, 24), ctx
);
1499 emit(ARM_MOV_SI(tmp2
[1], rn
, SRTYPE_LSR
, 8), ctx
);
1500 emit(ARM_AND_I(tmp2
[1], tmp2
[1], 0xff), ctx
);
1501 emit(ARM_MOV_SI(tmp2
[0], rn
, SRTYPE_LSR
, 16), ctx
);
1502 emit(ARM_AND_I(tmp2
[0], tmp2
[0], 0xff), ctx
);
1503 emit(ARM_MOV_SI(tmp2
[0], tmp2
[0], SRTYPE_LSL
, 8), ctx
);
1504 emit(ARM_ORR_SI(tmp2
[0], tmp2
[0], tmp2
[1], SRTYPE_LSL
, 16), ctx
);
1505 emit(ARM_ORR_R(rd
, ARM_IP
, tmp2
[0]), ctx
);
1508 emit(ARM_REV(rd
, rn
), ctx
);
1512 // push the scratch stack register on top of the stack
1513 static inline void emit_push_r64(const s8 src
[], struct jit_ctx
*ctx
)
1515 const s8
*tmp2
= bpf2a32
[TMP_REG_2
];
1519 rt
= arm_bpf_get_reg64(src
, tmp2
, ctx
);
1521 reg_set
= (1 << rt
[1]) | (1 << rt
[0]);
1522 emit(ARM_PUSH(reg_set
), ctx
);
1525 static void build_prologue(struct jit_ctx
*ctx
)
1527 const s8 arm_r0
= bpf2a32
[BPF_REG_0
][1];
1528 const s8
*bpf_r1
= bpf2a32
[BPF_REG_1
];
1529 const s8
*bpf_fp
= bpf2a32
[BPF_REG_FP
];
1530 const s8
*tcc
= bpf2a32
[TCALL_CNT
];
1532 /* Save callee saved registers. */
1533 #ifdef CONFIG_FRAME_POINTER
1534 u16 reg_set
= CALLEE_PUSH_MASK
| 1 << ARM_IP
| 1 << ARM_PC
;
1535 emit(ARM_MOV_R(ARM_IP
, ARM_SP
), ctx
);
1536 emit(ARM_PUSH(reg_set
), ctx
);
1537 emit(ARM_SUB_I(ARM_FP
, ARM_IP
, 4), ctx
);
1539 emit(ARM_PUSH(CALLEE_PUSH_MASK
), ctx
);
1540 emit(ARM_MOV_R(ARM_FP
, ARM_SP
), ctx
);
1543 /* sub r2, sp, #SCRATCH_SIZE */
1544 emit(ARM_MOV_I(bpf_r1
[0], 0), ctx
);
1545 emit(ARM_SUB_I(bpf_r1
[1], ARM_SP
, SCRATCH_SIZE
), ctx
);
1547 ctx
->stack_size
= imm8m(STACK_SIZE
);
1549 /* Set up function call stack */
1550 emit(ARM_SUB_I(ARM_SP
, ARM_SP
, ctx
->stack_size
), ctx
);
1552 /* Set up BPF prog stack base register */
1553 emit_a32_mov_r64(true, bpf_fp
, bpf_r1
, ctx
);
1555 /* Initialize Tail Count */
1556 emit(ARM_MOV_I(bpf_r1
[1], 0), ctx
);
1557 emit_a32_mov_r64(true, tcc
, bpf_r1
, ctx
);
1559 /* Move BPF_CTX to BPF_R1 */
1560 emit(ARM_MOV_R(bpf_r1
[1], arm_r0
), ctx
);
1562 /* end of prologue */
1565 /* restore callee saved registers. */
1566 static void build_epilogue(struct jit_ctx
*ctx
)
1568 #ifdef CONFIG_FRAME_POINTER
1569 /* When using frame pointers, some additional registers need to
1571 u16 reg_set
= CALLEE_POP_MASK
| 1 << ARM_SP
;
1572 emit(ARM_SUB_I(ARM_SP
, ARM_FP
, hweight16(reg_set
) * 4), ctx
);
1573 emit(ARM_LDM(ARM_SP
, reg_set
), ctx
);
1575 /* Restore callee saved registers. */
1576 emit(ARM_MOV_R(ARM_SP
, ARM_FP
), ctx
);
1577 emit(ARM_POP(CALLEE_POP_MASK
), ctx
);
1582 * Convert an eBPF instruction to native instruction, i.e
1583 * JITs an eBPF instruction.
1585 * 0 - Successfully JITed an 8-byte eBPF instruction
1586 * >0 - Successfully JITed a 16-byte eBPF instruction
1587 * <0 - Failed to JIT.
1589 static int build_insn(const struct bpf_insn
*insn
, struct jit_ctx
*ctx
)
1591 const u8 code
= insn
->code
;
1592 const s8
*dst
= bpf2a32
[insn
->dst_reg
];
1593 const s8
*src
= bpf2a32
[insn
->src_reg
];
1594 const s8
*tmp
= bpf2a32
[TMP_REG_1
];
1595 const s8
*tmp2
= bpf2a32
[TMP_REG_2
];
1596 const s16 off
= insn
->off
;
1597 const s32 imm
= insn
->imm
;
1598 const int i
= insn
- ctx
->prog
->insnsi
;
1599 const bool is64
= BPF_CLASS(code
) == BPF_ALU64
;
1601 s8 rd_lo
, rt
, rm
, rn
;
1604 #define check_imm(bits, imm) do { \
1605 if ((imm) >= (1 << ((bits) - 1)) || \
1606 (imm) < -(1 << ((bits) - 1))) { \
1607 pr_info("[%2d] imm=%d(0x%x) out of range\n", \
1612 #define check_imm24(imm) check_imm(24, imm)
1615 /* ALU operations */
1618 case BPF_ALU
| BPF_MOV
| BPF_K
:
1619 case BPF_ALU
| BPF_MOV
| BPF_X
:
1620 case BPF_ALU64
| BPF_MOV
| BPF_K
:
1621 case BPF_ALU64
| BPF_MOV
| BPF_X
:
1622 switch (BPF_SRC(code
)) {
1625 /* Special mov32 for zext */
1626 emit_a32_mov_i(dst_hi
, 0, ctx
);
1630 emit_a32_movsx_r64(is64
, insn
->off
, dst
, src
, ctx
);
1632 emit_a32_mov_r64(is64
, dst
, src
, ctx
);
1635 /* Sign-extend immediate value to destination reg */
1636 emit_a32_mov_se_i64(is64
, dst
, imm
, ctx
);
1640 /* dst = dst + src/imm */
1641 /* dst = dst - src/imm */
1642 /* dst = dst | src/imm */
1643 /* dst = dst & src/imm */
1644 /* dst = dst ^ src/imm */
1645 /* dst = dst * src/imm */
1646 /* dst = dst << src */
1647 /* dst = dst >> src */
1648 case BPF_ALU
| BPF_ADD
| BPF_K
:
1649 case BPF_ALU
| BPF_ADD
| BPF_X
:
1650 case BPF_ALU
| BPF_SUB
| BPF_K
:
1651 case BPF_ALU
| BPF_SUB
| BPF_X
:
1652 case BPF_ALU
| BPF_OR
| BPF_K
:
1653 case BPF_ALU
| BPF_OR
| BPF_X
:
1654 case BPF_ALU
| BPF_AND
| BPF_K
:
1655 case BPF_ALU
| BPF_AND
| BPF_X
:
1656 case BPF_ALU
| BPF_XOR
| BPF_K
:
1657 case BPF_ALU
| BPF_XOR
| BPF_X
:
1658 case BPF_ALU
| BPF_MUL
| BPF_K
:
1659 case BPF_ALU
| BPF_MUL
| BPF_X
:
1660 case BPF_ALU
| BPF_LSH
| BPF_X
:
1661 case BPF_ALU
| BPF_RSH
| BPF_X
:
1662 case BPF_ALU
| BPF_ARSH
| BPF_X
:
1663 case BPF_ALU64
| BPF_ADD
| BPF_K
:
1664 case BPF_ALU64
| BPF_ADD
| BPF_X
:
1665 case BPF_ALU64
| BPF_SUB
| BPF_K
:
1666 case BPF_ALU64
| BPF_SUB
| BPF_X
:
1667 case BPF_ALU64
| BPF_OR
| BPF_K
:
1668 case BPF_ALU64
| BPF_OR
| BPF_X
:
1669 case BPF_ALU64
| BPF_AND
| BPF_K
:
1670 case BPF_ALU64
| BPF_AND
| BPF_X
:
1671 case BPF_ALU64
| BPF_XOR
| BPF_K
:
1672 case BPF_ALU64
| BPF_XOR
| BPF_X
:
1673 switch (BPF_SRC(code
)) {
1675 emit_a32_alu_r64(is64
, dst
, src
, ctx
, BPF_OP(code
));
1678 /* Move immediate value to the temporary register
1679 * and then do the ALU operation on the temporary
1680 * register as this will sign-extend the immediate
1681 * value into temporary reg and then it would be
1682 * safe to do the operation on it.
1684 emit_a32_mov_se_i64(is64
, tmp2
, imm
, ctx
);
1685 emit_a32_alu_r64(is64
, dst
, tmp2
, ctx
, BPF_OP(code
));
1689 /* dst = dst / src(imm) */
1690 /* dst = dst % src(imm) */
1691 case BPF_ALU
| BPF_DIV
| BPF_K
:
1692 case BPF_ALU
| BPF_DIV
| BPF_X
:
1693 case BPF_ALU
| BPF_MOD
| BPF_K
:
1694 case BPF_ALU
| BPF_MOD
| BPF_X
:
1695 rd_lo
= arm_bpf_get_reg32(dst_lo
, tmp2
[1], ctx
);
1696 switch (BPF_SRC(code
)) {
1698 rt
= arm_bpf_get_reg32(src_lo
, tmp2
[0], ctx
);
1702 emit_a32_mov_i(rt
, imm
, ctx
);
1708 emit_udivmod(rd_lo
, rd_lo
, rt
, ctx
, BPF_OP(code
), off
);
1709 arm_bpf_put_reg32(dst_lo
, rd_lo
, ctx
);
1710 if (!ctx
->prog
->aux
->verifier_zext
)
1711 emit_a32_mov_i(dst_hi
, 0, ctx
);
1713 case BPF_ALU64
| BPF_DIV
| BPF_K
:
1714 case BPF_ALU64
| BPF_DIV
| BPF_X
:
1715 case BPF_ALU64
| BPF_MOD
| BPF_K
:
1716 case BPF_ALU64
| BPF_MOD
| BPF_X
:
1717 rd
= arm_bpf_get_reg64(dst
, tmp2
, ctx
);
1718 switch (BPF_SRC(code
)) {
1720 rs
= arm_bpf_get_reg64(src
, tmp
, ctx
);
1724 emit_a32_mov_se_i64(is64
, rs
, imm
, ctx
);
1727 emit_udivmod64(rd
, rd
, rs
, ctx
, BPF_OP(code
), off
);
1728 arm_bpf_put_reg64(dst
, rd
, ctx
);
1730 /* dst = dst << imm */
1731 /* dst = dst >> imm */
1732 /* dst = dst >> imm (signed) */
1733 case BPF_ALU
| BPF_LSH
| BPF_K
:
1734 case BPF_ALU
| BPF_RSH
| BPF_K
:
1735 case BPF_ALU
| BPF_ARSH
| BPF_K
:
1736 if (unlikely(imm
> 31))
1739 emit_a32_alu_i(dst_lo
, imm
, ctx
, BPF_OP(code
));
1740 if (!ctx
->prog
->aux
->verifier_zext
)
1741 emit_a32_mov_i(dst_hi
, 0, ctx
);
1743 /* dst = dst << imm */
1744 case BPF_ALU64
| BPF_LSH
| BPF_K
:
1745 if (unlikely(imm
> 63))
1747 emit_a32_lsh_i64(dst
, imm
, ctx
);
1749 /* dst = dst >> imm */
1750 case BPF_ALU64
| BPF_RSH
| BPF_K
:
1751 if (unlikely(imm
> 63))
1753 emit_a32_rsh_i64(dst
, imm
, ctx
);
1755 /* dst = dst << src */
1756 case BPF_ALU64
| BPF_LSH
| BPF_X
:
1757 emit_a32_lsh_r64(dst
, src
, ctx
);
1759 /* dst = dst >> src */
1760 case BPF_ALU64
| BPF_RSH
| BPF_X
:
1761 emit_a32_rsh_r64(dst
, src
, ctx
);
1763 /* dst = dst >> src (signed) */
1764 case BPF_ALU64
| BPF_ARSH
| BPF_X
:
1765 emit_a32_arsh_r64(dst
, src
, ctx
);
1767 /* dst = dst >> imm (signed) */
1768 case BPF_ALU64
| BPF_ARSH
| BPF_K
:
1769 if (unlikely(imm
> 63))
1771 emit_a32_arsh_i64(dst
, imm
, ctx
);
1774 case BPF_ALU
| BPF_NEG
:
1775 emit_a32_alu_i(dst_lo
, 0, ctx
, BPF_OP(code
));
1776 if (!ctx
->prog
->aux
->verifier_zext
)
1777 emit_a32_mov_i(dst_hi
, 0, ctx
);
1779 /* dst = ~dst (64 bit) */
1780 case BPF_ALU64
| BPF_NEG
:
1781 emit_a32_neg64(dst
, ctx
);
1783 /* dst = dst * src/imm */
1784 case BPF_ALU64
| BPF_MUL
| BPF_X
:
1785 case BPF_ALU64
| BPF_MUL
| BPF_K
:
1786 switch (BPF_SRC(code
)) {
1788 emit_a32_mul_r64(dst
, src
, ctx
);
1791 /* Move immediate value to the temporary register
1792 * and then do the multiplication on it as this
1793 * will sign-extend the immediate value into temp
1794 * reg then it would be safe to do the operation
1797 emit_a32_mov_se_i64(is64
, tmp2
, imm
, ctx
);
1798 emit_a32_mul_r64(dst
, tmp2
, ctx
);
1802 /* dst = htole(dst) */
1803 /* dst = htobe(dst) */
1804 case BPF_ALU
| BPF_END
| BPF_FROM_LE
: /* also BPF_TO_LE */
1805 case BPF_ALU
| BPF_END
| BPF_FROM_BE
: /* also BPF_TO_BE */
1806 /* dst = bswap(dst) */
1807 case BPF_ALU64
| BPF_END
| BPF_FROM_LE
: /* also BPF_TO_LE */
1808 rd
= arm_bpf_get_reg64(dst
, tmp
, ctx
);
1809 if (BPF_SRC(code
) == BPF_FROM_LE
&& BPF_CLASS(code
) != BPF_ALU64
)
1810 goto emit_bswap_uxt
;
1813 emit_rev16(rd
[1], rd
[1], ctx
);
1814 goto emit_bswap_uxt
;
1816 emit_rev32(rd
[1], rd
[1], ctx
);
1817 goto emit_bswap_uxt
;
1819 emit_rev32(ARM_LR
, rd
[1], ctx
);
1820 emit_rev32(rd
[1], rd
[0], ctx
);
1821 emit(ARM_MOV_R(rd
[0], ARM_LR
), ctx
);
1828 /* zero-extend 16 bits into 64 bits */
1829 #if __LINUX_ARM_ARCH__ < 6
1830 emit_a32_mov_i(tmp2
[1], 0xffff, ctx
);
1831 emit(ARM_AND_R(rd
[1], rd
[1], tmp2
[1]), ctx
);
1833 emit(ARM_UXTH(rd
[1], rd
[1]), ctx
);
1835 if (!ctx
->prog
->aux
->verifier_zext
)
1836 emit(ARM_EOR_R(rd
[0], rd
[0], rd
[0]), ctx
);
1839 /* zero-extend 32 bits into 64 bits */
1840 if (!ctx
->prog
->aux
->verifier_zext
)
1841 emit(ARM_EOR_R(rd
[0], rd
[0], rd
[0]), ctx
);
1848 arm_bpf_put_reg64(dst
, rd
, ctx
);
1851 case BPF_LD
| BPF_IMM
| BPF_DW
:
1853 u64 val
= (u32
)imm
| (u64
)insn
[1].imm
<< 32;
1855 emit_a32_mov_i64(dst
, val
, ctx
);
1859 /* LDX: dst = *(size *)(src + off) */
1860 case BPF_LDX
| BPF_MEM
| BPF_W
:
1861 case BPF_LDX
| BPF_MEM
| BPF_H
:
1862 case BPF_LDX
| BPF_MEM
| BPF_B
:
1863 case BPF_LDX
| BPF_MEM
| BPF_DW
:
1864 /* LDSX: dst = *(signed size *)(src + off) */
1865 case BPF_LDX
| BPF_MEMSX
| BPF_B
:
1866 case BPF_LDX
| BPF_MEMSX
| BPF_H
:
1867 case BPF_LDX
| BPF_MEMSX
| BPF_W
:
1868 rn
= arm_bpf_get_reg32(src_lo
, tmp2
[1], ctx
);
1869 if (BPF_MODE(insn
->code
) == BPF_MEMSX
)
1870 emit_ldsx_r(dst
, rn
, off
, ctx
, BPF_SIZE(code
));
1872 emit_ldx_r(dst
, rn
, off
, ctx
, BPF_SIZE(code
));
1874 /* speculation barrier */
1875 case BPF_ST
| BPF_NOSPEC
:
1877 /* ST: *(size *)(dst + off) = imm */
1878 case BPF_ST
| BPF_MEM
| BPF_W
:
1879 case BPF_ST
| BPF_MEM
| BPF_H
:
1880 case BPF_ST
| BPF_MEM
| BPF_B
:
1881 case BPF_ST
| BPF_MEM
| BPF_DW
:
1882 switch (BPF_SIZE(code
)) {
1884 /* Sign-extend immediate value into temp reg */
1885 emit_a32_mov_se_i64(true, tmp2
, imm
, ctx
);
1890 emit_a32_mov_i(tmp2
[1], imm
, ctx
);
1893 emit_str_r(dst_lo
, tmp2
, off
, ctx
, BPF_SIZE(code
));
1896 case BPF_STX
| BPF_ATOMIC
| BPF_W
:
1897 case BPF_STX
| BPF_ATOMIC
| BPF_DW
:
1899 /* STX: *(size *)(dst + off) = src */
1900 case BPF_STX
| BPF_MEM
| BPF_W
:
1901 case BPF_STX
| BPF_MEM
| BPF_H
:
1902 case BPF_STX
| BPF_MEM
| BPF_B
:
1903 case BPF_STX
| BPF_MEM
| BPF_DW
:
1904 rs
= arm_bpf_get_reg64(src
, tmp2
, ctx
);
1905 emit_str_r(dst_lo
, rs
, off
, ctx
, BPF_SIZE(code
));
1907 /* PC += off if dst == src */
1908 /* PC += off if dst > src */
1909 /* PC += off if dst >= src */
1910 /* PC += off if dst < src */
1911 /* PC += off if dst <= src */
1912 /* PC += off if dst != src */
1913 /* PC += off if dst > src (signed) */
1914 /* PC += off if dst >= src (signed) */
1915 /* PC += off if dst < src (signed) */
1916 /* PC += off if dst <= src (signed) */
1917 /* PC += off if dst & src */
1918 case BPF_JMP
| BPF_JEQ
| BPF_X
:
1919 case BPF_JMP
| BPF_JGT
| BPF_X
:
1920 case BPF_JMP
| BPF_JGE
| BPF_X
:
1921 case BPF_JMP
| BPF_JNE
| BPF_X
:
1922 case BPF_JMP
| BPF_JSGT
| BPF_X
:
1923 case BPF_JMP
| BPF_JSGE
| BPF_X
:
1924 case BPF_JMP
| BPF_JSET
| BPF_X
:
1925 case BPF_JMP
| BPF_JLE
| BPF_X
:
1926 case BPF_JMP
| BPF_JLT
| BPF_X
:
1927 case BPF_JMP
| BPF_JSLT
| BPF_X
:
1928 case BPF_JMP
| BPF_JSLE
| BPF_X
:
1929 case BPF_JMP32
| BPF_JEQ
| BPF_X
:
1930 case BPF_JMP32
| BPF_JGT
| BPF_X
:
1931 case BPF_JMP32
| BPF_JGE
| BPF_X
:
1932 case BPF_JMP32
| BPF_JNE
| BPF_X
:
1933 case BPF_JMP32
| BPF_JSGT
| BPF_X
:
1934 case BPF_JMP32
| BPF_JSGE
| BPF_X
:
1935 case BPF_JMP32
| BPF_JSET
| BPF_X
:
1936 case BPF_JMP32
| BPF_JLE
| BPF_X
:
1937 case BPF_JMP32
| BPF_JLT
| BPF_X
:
1938 case BPF_JMP32
| BPF_JSLT
| BPF_X
:
1939 case BPF_JMP32
| BPF_JSLE
| BPF_X
:
1940 /* Setup source registers */
1941 rm
= arm_bpf_get_reg32(src_hi
, tmp2
[0], ctx
);
1942 rn
= arm_bpf_get_reg32(src_lo
, tmp2
[1], ctx
);
1944 /* PC += off if dst == imm */
1945 /* PC += off if dst > imm */
1946 /* PC += off if dst >= imm */
1947 /* PC += off if dst < imm */
1948 /* PC += off if dst <= imm */
1949 /* PC += off if dst != imm */
1950 /* PC += off if dst > imm (signed) */
1951 /* PC += off if dst >= imm (signed) */
1952 /* PC += off if dst < imm (signed) */
1953 /* PC += off if dst <= imm (signed) */
1954 /* PC += off if dst & imm */
1955 case BPF_JMP
| BPF_JEQ
| BPF_K
:
1956 case BPF_JMP
| BPF_JGT
| BPF_K
:
1957 case BPF_JMP
| BPF_JGE
| BPF_K
:
1958 case BPF_JMP
| BPF_JNE
| BPF_K
:
1959 case BPF_JMP
| BPF_JSGT
| BPF_K
:
1960 case BPF_JMP
| BPF_JSGE
| BPF_K
:
1961 case BPF_JMP
| BPF_JSET
| BPF_K
:
1962 case BPF_JMP
| BPF_JLT
| BPF_K
:
1963 case BPF_JMP
| BPF_JLE
| BPF_K
:
1964 case BPF_JMP
| BPF_JSLT
| BPF_K
:
1965 case BPF_JMP
| BPF_JSLE
| BPF_K
:
1966 case BPF_JMP32
| BPF_JEQ
| BPF_K
:
1967 case BPF_JMP32
| BPF_JGT
| BPF_K
:
1968 case BPF_JMP32
| BPF_JGE
| BPF_K
:
1969 case BPF_JMP32
| BPF_JNE
| BPF_K
:
1970 case BPF_JMP32
| BPF_JSGT
| BPF_K
:
1971 case BPF_JMP32
| BPF_JSGE
| BPF_K
:
1972 case BPF_JMP32
| BPF_JSET
| BPF_K
:
1973 case BPF_JMP32
| BPF_JLT
| BPF_K
:
1974 case BPF_JMP32
| BPF_JLE
| BPF_K
:
1975 case BPF_JMP32
| BPF_JSLT
| BPF_K
:
1976 case BPF_JMP32
| BPF_JSLE
| BPF_K
:
1981 /* Sign-extend immediate value */
1982 emit_a32_mov_se_i64(true, tmp2
, imm
, ctx
);
1984 /* Setup destination register */
1985 rd
= arm_bpf_get_reg64(dst
, tmp
, ctx
);
1987 /* Check for the condition */
1988 emit_ar_r(rd
[0], rd
[1], rm
, rn
, ctx
, BPF_OP(code
),
1989 BPF_CLASS(code
) == BPF_JMP
);
1991 /* Setup JUMP instruction */
1992 jmp_offset
= bpf2a32_offset(i
+off
, i
, ctx
);
1993 switch (BPF_OP(code
)) {
1996 _emit(ARM_COND_NE
, ARM_B(jmp_offset
), ctx
);
1999 _emit(ARM_COND_EQ
, ARM_B(jmp_offset
), ctx
);
2002 _emit(ARM_COND_HI
, ARM_B(jmp_offset
), ctx
);
2005 _emit(ARM_COND_CS
, ARM_B(jmp_offset
), ctx
);
2008 _emit(ARM_COND_LT
, ARM_B(jmp_offset
), ctx
);
2011 _emit(ARM_COND_GE
, ARM_B(jmp_offset
), ctx
);
2014 _emit(ARM_COND_LS
, ARM_B(jmp_offset
), ctx
);
2017 _emit(ARM_COND_CC
, ARM_B(jmp_offset
), ctx
);
2020 _emit(ARM_COND_LT
, ARM_B(jmp_offset
), ctx
);
2023 _emit(ARM_COND_GE
, ARM_B(jmp_offset
), ctx
);
2028 case BPF_JMP
| BPF_JA
:
2029 case BPF_JMP32
| BPF_JA
:
2031 if (BPF_CLASS(code
) == BPF_JMP32
&& imm
!= 0)
2032 jmp_offset
= bpf2a32_offset(i
+ imm
, i
, ctx
);
2033 else if (BPF_CLASS(code
) == BPF_JMP
&& off
!= 0)
2034 jmp_offset
= bpf2a32_offset(i
+ off
, i
, ctx
);
2038 check_imm24(jmp_offset
);
2039 emit(ARM_B(jmp_offset
), ctx
);
2043 case BPF_JMP
| BPF_TAIL_CALL
:
2044 if (emit_bpf_tail_call(ctx
))
2048 case BPF_JMP
| BPF_CALL
:
2050 const s8
*r0
= bpf2a32
[BPF_REG_0
];
2051 const s8
*r1
= bpf2a32
[BPF_REG_1
];
2052 const s8
*r2
= bpf2a32
[BPF_REG_2
];
2053 const s8
*r3
= bpf2a32
[BPF_REG_3
];
2054 const s8
*r4
= bpf2a32
[BPF_REG_4
];
2055 const s8
*r5
= bpf2a32
[BPF_REG_5
];
2056 const u32 func
= (u32
)__bpf_call_base
+ (u32
)imm
;
2058 emit_a32_mov_r64(true, r0
, r1
, ctx
);
2059 emit_a32_mov_r64(true, r1
, r2
, ctx
);
2060 emit_push_r64(r5
, ctx
);
2061 emit_push_r64(r4
, ctx
);
2062 emit_push_r64(r3
, ctx
);
2064 emit_a32_mov_i(tmp
[1], func
, ctx
);
2065 emit_blx_r(tmp
[1], ctx
);
2067 emit(ARM_ADD_I(ARM_SP
, ARM_SP
, imm8m(24)), ctx
); // callee clean
2070 /* function return */
2071 case BPF_JMP
| BPF_EXIT
:
2072 /* Optimization: when last instruction is EXIT
2073 * simply fallthrough to epilogue.
2075 if (i
== ctx
->prog
->len
- 1)
2077 jmp_offset
= epilogue_offset(ctx
);
2078 check_imm24(jmp_offset
);
2079 emit(ARM_B(jmp_offset
), ctx
);
2082 pr_info_once("*** NOT YET: opcode %02x ***\n", code
);
2085 pr_err_once("unknown opcode %02x\n", code
);
2089 if (ctx
->flags
& FLAG_IMM_OVERFLOW
)
2091 * this instruction generated an overflow when
2092 * trying to access the literal pool, so
2093 * delegate this filter to the kernel interpreter.
2099 static int build_body(struct jit_ctx
*ctx
)
2101 const struct bpf_prog
*prog
= ctx
->prog
;
2104 for (i
= 0; i
< prog
->len
; i
++) {
2105 const struct bpf_insn
*insn
= &(prog
->insnsi
[i
]);
2108 ret
= build_insn(insn
, ctx
);
2110 /* It's used with loading the 64 bit immediate value. */
2113 if (ctx
->target
== NULL
)
2114 ctx
->offsets
[i
] = ctx
->idx
;
2118 if (ctx
->target
== NULL
)
2119 ctx
->offsets
[i
] = ctx
->idx
;
2121 /* If unsuccesful, return with error code */
2128 static int validate_code(struct jit_ctx
*ctx
)
2132 for (i
= 0; i
< ctx
->idx
; i
++) {
2133 if (ctx
->target
[i
] == __opcode_to_mem_arm(ARM_INST_UDF
))
2140 bool bpf_jit_needs_zext(void)
2145 struct bpf_prog
*bpf_int_jit_compile(struct bpf_prog
*prog
)
2147 struct bpf_prog
*tmp
, *orig_prog
= prog
;
2148 struct bpf_binary_header
*header
;
2149 bool tmp_blinded
= false;
2151 unsigned int tmp_idx
;
2152 unsigned int image_size
;
2155 /* If BPF JIT was not enabled then we must fall back to
2158 if (!prog
->jit_requested
)
2161 /* If constant blinding was enabled and we failed during blinding
2162 * then we must fall back to the interpreter. Otherwise, we save
2163 * the new JITed code.
2165 tmp
= bpf_jit_blind_constants(prog
);
2174 memset(&ctx
, 0, sizeof(ctx
));
2176 ctx
.cpu_architecture
= cpu_architecture();
2178 /* Not able to allocate memory for offsets[] , then
2179 * we must fall back to the interpreter
2181 ctx
.offsets
= kcalloc(prog
->len
, sizeof(int), GFP_KERNEL
);
2182 if (ctx
.offsets
== NULL
) {
2187 /* 1) fake pass to find in the length of the JITed code,
2188 * to compute ctx->offsets and other context variables
2189 * needed to compute final JITed code.
2190 * Also, calculate random starting pointer/start of JITed code
2191 * which is prefixed by random number of fault instructions.
2193 * If the first pass fails then there is no chance of it
2194 * being successful in the second pass, so just fall back
2195 * to the interpreter.
2197 if (build_body(&ctx
)) {
2203 build_prologue(&ctx
);
2204 ctx
.prologue_bytes
= (ctx
.idx
- tmp_idx
) * 4;
2206 ctx
.epilogue_offset
= ctx
.idx
;
2208 #if __LINUX_ARM_ARCH__ < 7
2210 build_epilogue(&ctx
);
2211 ctx
.epilogue_bytes
= (ctx
.idx
- tmp_idx
) * 4;
2213 ctx
.idx
+= ctx
.imm_count
;
2214 if (ctx
.imm_count
) {
2215 ctx
.imms
= kcalloc(ctx
.imm_count
, sizeof(u32
), GFP_KERNEL
);
2216 if (ctx
.imms
== NULL
) {
2222 /* there's nothing about the epilogue on ARMv7 */
2223 build_epilogue(&ctx
);
2225 /* Now we can get the actual image size of the JITed arm code.
2226 * Currently, we are not considering the THUMB-2 instructions
2227 * for jit, although it can decrease the size of the image.
2229 * As each arm instruction is of length 32bit, we are translating
2230 * number of JITed instructions into the size required to store these
2233 image_size
= sizeof(u32
) * ctx
.idx
;
2235 /* Now we know the size of the structure to make */
2236 header
= bpf_jit_binary_alloc(image_size
, &image_ptr
,
2237 sizeof(u32
), jit_fill_hole
);
2238 /* Not able to allocate memory for the structure then
2239 * we must fall back to the interpretation
2241 if (header
== NULL
) {
2246 /* 2.) Actual pass to generate final JIT code */
2247 ctx
.target
= (u32
*) image_ptr
;
2250 build_prologue(&ctx
);
2252 /* If building the body of the JITed code fails somehow,
2253 * we fall back to the interpretation.
2255 if (build_body(&ctx
) < 0)
2257 build_epilogue(&ctx
);
2259 /* 3.) Extra pass to validate JITed Code */
2260 if (validate_code(&ctx
))
2262 flush_icache_range((u32
)header
, (u32
)(ctx
.target
+ ctx
.idx
));
2264 if (bpf_jit_enable
> 1)
2265 /* there are 2 passes here */
2266 bpf_jit_dump(prog
->len
, image_size
, 2, ctx
.target
);
2268 if (bpf_jit_binary_lock_ro(header
))
2270 prog
->bpf_func
= (void *)ctx
.target
;
2272 prog
->jited_len
= image_size
;
2275 #if __LINUX_ARM_ARCH__ < 7
2283 bpf_jit_prog_release_other(prog
, prog
== orig_prog
?
2289 bpf_jit_binary_free(header
);