1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/arch/arm/vfp/vfpmodule.c
5 * Copyright (C) 2004 ARM Limited.
6 * Written by Deep Blue Solutions Limited.
8 #include <linux/types.h>
10 #include <linux/cpu_pm.h>
11 #include <linux/hardirq.h>
12 #include <linux/kernel.h>
13 #include <linux/notifier.h>
14 #include <linux/signal.h>
15 #include <linux/sched/signal.h>
16 #include <linux/smp.h>
17 #include <linux/init.h>
18 #include <linux/uaccess.h>
19 #include <linux/user.h>
20 #include <linux/export.h>
21 #include <linux/perf_event.h>
24 #include <asm/cputype.h>
25 #include <asm/system_info.h>
26 #include <asm/thread_notify.h>
27 #include <asm/traps.h>
34 static bool have_vfp __ro_after_init
;
38 * Used in startup: set to non-zero if VFP checks fail
39 * After startup, holds VFP architecture
41 static unsigned int VFP_arch
;
43 #ifdef CONFIG_CPU_FEROCEON
44 extern unsigned int VFP_arch_feroceon
__alias(VFP_arch
);
48 * The pointer to the vfpstate structure of the thread which currently
49 * owns the context held in the VFP hardware, or NULL if the hardware
52 * For UP, this is sufficient to tell which thread owns the VFP context.
53 * However, for SMP, we also need to check the CPU number stored in the
54 * saved state too to catch migrations.
56 union vfp_state
*vfp_current_hw_state
[NR_CPUS
];
59 * Claim ownership of the VFP unit.
61 * The caller may change VFP registers until vfp_state_release() is called.
63 * local_bh_disable() is used to disable preemption and to disable VFP
64 * processing in softirq context. On PREEMPT_RT kernels local_bh_disable() is
65 * not sufficient because it only serializes soft interrupt related sections
66 * via a local lock, but stays preemptible. Disabling preemption is the right
67 * choice here as bottom half processing is always in thread context on RT
68 * kernels so it implicitly prevents bottom half processing as well.
70 static void vfp_state_hold(void)
72 if (!IS_ENABLED(CONFIG_PREEMPT_RT
))
78 static void vfp_state_release(void)
80 if (!IS_ENABLED(CONFIG_PREEMPT_RT
))
87 * Is 'thread's most up to date state stored in this CPUs hardware?
88 * Must be called from non-preemptible context.
90 static bool vfp_state_in_hw(unsigned int cpu
, struct thread_info
*thread
)
93 if (thread
->vfpstate
.hard
.cpu
!= cpu
)
96 return vfp_current_hw_state
[cpu
] == &thread
->vfpstate
;
100 * Force a reload of the VFP context from the thread structure. We do
101 * this by ensuring that access to the VFP hardware is disabled, and
102 * clear vfp_current_hw_state. Must be called from non-preemptible context.
104 static void vfp_force_reload(unsigned int cpu
, struct thread_info
*thread
)
106 if (vfp_state_in_hw(cpu
, thread
)) {
107 fmxr(FPEXC
, fmrx(FPEXC
) & ~FPEXC_EN
);
108 vfp_current_hw_state
[cpu
] = NULL
;
111 thread
->vfpstate
.hard
.cpu
= NR_CPUS
;
116 * Per-thread VFP initialization.
118 static void vfp_thread_flush(struct thread_info
*thread
)
120 union vfp_state
*vfp
= &thread
->vfpstate
;
124 * Disable VFP to ensure we initialize it first. We must ensure
125 * that the modification of vfp_current_hw_state[] and hardware
126 * disable are done for the same CPU and without preemption.
128 * Do this first to ensure that preemption won't overwrite our
129 * state saving should access to the VFP be enabled at this point.
132 if (vfp_current_hw_state
[cpu
] == vfp
)
133 vfp_current_hw_state
[cpu
] = NULL
;
134 fmxr(FPEXC
, fmrx(FPEXC
) & ~FPEXC_EN
);
137 memset(vfp
, 0, sizeof(union vfp_state
));
139 vfp
->hard
.fpexc
= FPEXC_EN
;
140 vfp
->hard
.fpscr
= FPSCR_ROUND_NEAREST
;
142 vfp
->hard
.cpu
= NR_CPUS
;
146 static void vfp_thread_exit(struct thread_info
*thread
)
148 /* release case: Per-thread VFP cleanup. */
149 union vfp_state
*vfp
= &thread
->vfpstate
;
150 unsigned int cpu
= get_cpu();
152 if (vfp_current_hw_state
[cpu
] == vfp
)
153 vfp_current_hw_state
[cpu
] = NULL
;
157 static void vfp_thread_copy(struct thread_info
*thread
)
159 struct thread_info
*parent
= current_thread_info();
161 vfp_sync_hwstate(parent
);
162 thread
->vfpstate
= parent
->vfpstate
;
164 thread
->vfpstate
.hard
.cpu
= NR_CPUS
;
169 * When this function is called with the following 'cmd's, the following
170 * is true while this function is being run:
171 * THREAD_NOFTIFY_SWTICH:
172 * - the previously running thread will not be scheduled onto another CPU.
173 * - the next thread to be run (v) will not be running on another CPU.
174 * - thread->cpu is the local CPU number
175 * - not preemptible as we're called in the middle of a thread switch
176 * THREAD_NOTIFY_FLUSH:
177 * - the thread (v) will be running on the local CPU, so
178 * v === current_thread_info()
179 * - thread->cpu is the local CPU number at the time it is accessed,
180 * but may change at any time.
181 * - we could be preempted if tree preempt rcu is enabled, so
182 * it is unsafe to use thread->cpu.
184 * - we could be preempted if tree preempt rcu is enabled, so
185 * it is unsafe to use thread->cpu.
187 static int vfp_notifier(struct notifier_block
*self
, unsigned long cmd
, void *v
)
189 struct thread_info
*thread
= v
;
196 case THREAD_NOTIFY_SWITCH
:
203 * On SMP, if VFP is enabled, save the old state in
204 * case the thread migrates to a different CPU. The
205 * restoring is done lazily.
207 if ((fpexc
& FPEXC_EN
) && vfp_current_hw_state
[cpu
])
208 vfp_save_state(vfp_current_hw_state
[cpu
], fpexc
);
212 * Always disable VFP so we can lazily save/restore the
215 fmxr(FPEXC
, fpexc
& ~FPEXC_EN
);
218 case THREAD_NOTIFY_FLUSH
:
219 vfp_thread_flush(thread
);
222 case THREAD_NOTIFY_EXIT
:
223 vfp_thread_exit(thread
);
226 case THREAD_NOTIFY_COPY
:
227 vfp_thread_copy(thread
);
234 static struct notifier_block vfp_notifier_block
= {
235 .notifier_call
= vfp_notifier
,
239 * Raise a SIGFPE for the current process.
240 * sicode describes the signal being raised.
242 static void vfp_raise_sigfpe(unsigned int sicode
, struct pt_regs
*regs
)
245 * This is the same as NWFPE, because it's not clear what
248 current
->thread
.error_code
= 0;
249 current
->thread
.trap_no
= 6;
251 send_sig_fault(SIGFPE
, sicode
,
252 (void __user
*)(instruction_pointer(regs
) - 4),
256 static void vfp_panic(char *reason
, u32 inst
)
260 pr_err("VFP: Error: %s\n", reason
);
261 pr_err("VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
262 fmrx(FPEXC
), fmrx(FPSCR
), inst
);
263 for (i
= 0; i
< 32; i
+= 2)
264 pr_err("VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
265 i
, vfp_get_float(i
), i
+1, vfp_get_float(i
+1));
269 * Process bitmask of exception conditions.
271 static int vfp_raise_exceptions(u32 exceptions
, u32 inst
, u32 fpscr
)
275 pr_debug("VFP: raising exceptions %08x\n", exceptions
);
277 if (exceptions
== VFP_EXCEPTION_ERROR
) {
278 vfp_panic("unhandled bounce", inst
);
283 * If any of the status flags are set, update the FPSCR.
284 * Comparison instructions always return at least one of
287 if (exceptions
& (FPSCR_N
|FPSCR_Z
|FPSCR_C
|FPSCR_V
))
288 fpscr
&= ~(FPSCR_N
|FPSCR_Z
|FPSCR_C
|FPSCR_V
);
294 #define RAISE(stat,en,sig) \
295 if (exceptions & stat && fpscr & en) \
299 * These are arranged in priority order, least to highest.
301 RAISE(FPSCR_DZC
, FPSCR_DZE
, FPE_FLTDIV
);
302 RAISE(FPSCR_IXC
, FPSCR_IXE
, FPE_FLTRES
);
303 RAISE(FPSCR_UFC
, FPSCR_UFE
, FPE_FLTUND
);
304 RAISE(FPSCR_OFC
, FPSCR_OFE
, FPE_FLTOVF
);
305 RAISE(FPSCR_IOC
, FPSCR_IOE
, FPE_FLTINV
);
311 * Emulate a VFP instruction.
313 static u32
vfp_emulate_instruction(u32 inst
, u32 fpscr
, struct pt_regs
*regs
)
315 u32 exceptions
= VFP_EXCEPTION_ERROR
;
317 pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst
, fpscr
);
319 if (INST_CPRTDO(inst
)) {
320 if (!INST_CPRT(inst
)) {
324 if (vfp_single(inst
)) {
325 exceptions
= vfp_single_cpdo(inst
, fpscr
);
327 exceptions
= vfp_double_cpdo(inst
, fpscr
);
331 * A CPRT instruction can not appear in FPINST2, nor
332 * can it cause an exception. Therefore, we do not
333 * have to emulate it.
338 * A CPDT instruction can not appear in FPINST2, nor can
339 * it cause an exception. Therefore, we do not have to
343 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
, 1, regs
, regs
->ARM_pc
);
344 return exceptions
& ~VFP_NAN_FLAG
;
348 * Package up a bounce condition.
350 static void VFP_bounce(u32 trigger
, u32 fpexc
, struct pt_regs
*regs
)
352 u32 fpscr
, orig_fpscr
, fpsid
, exceptions
;
356 pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger
, fpexc
);
359 * At this point, FPEXC can have the following configuration:
362 * 0 1 x - synchronous exception
363 * 1 x 0 - asynchronous exception
364 * 1 x 1 - sychronous on VFP subarch 1 and asynchronous on later
365 * 0 0 1 - synchronous on VFP9 (non-standard subarch 1
366 * implementation), undefined otherwise
368 * Clear various bits and enable access to the VFP so we can
371 fmxr(FPEXC
, fpexc
& ~(FPEXC_EX
|FPEXC_DEX
|FPEXC_FP2V
|FPEXC_VV
|FPEXC_TRAP_MASK
));
374 orig_fpscr
= fpscr
= fmrx(FPSCR
);
377 * Check for the special VFP subarch 1 and FPSCR.IXE bit case
379 if ((fpsid
& FPSID_ARCH_MASK
) == (1 << FPSID_ARCH_BIT
)
380 && (fpscr
& FPSCR_IXE
)) {
382 * Synchronous exception, emulate the trigger instruction
387 if (fpexc
& FPEXC_EX
) {
389 * Asynchronous exception. The instruction is read from FPINST
390 * and the interrupted instruction has to be restarted.
392 trigger
= fmrx(FPINST
);
394 } else if (!(fpexc
& FPEXC_DEX
)) {
396 * Illegal combination of bits. It can be caused by an
397 * unallocated VFP instruction but with FPSCR.IXE set and not
400 si_code
= vfp_raise_exceptions(VFP_EXCEPTION_ERROR
, trigger
, fpscr
);
405 * Modify fpscr to indicate the number of iterations remaining.
406 * If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates
407 * whether FPEXC.VECITR or FPSCR.LEN is used.
409 if (fpexc
& (FPEXC_EX
| FPEXC_VV
)) {
412 len
= fpexc
+ (1 << FPEXC_LENGTH_BIT
);
414 fpscr
&= ~FPSCR_LENGTH_MASK
;
415 fpscr
|= (len
& FPEXC_LENGTH_MASK
) << (FPSCR_LENGTH_BIT
- FPEXC_LENGTH_BIT
);
419 * Handle the first FP instruction. We used to take note of the
420 * FPEXC bounce reason, but this appears to be unreliable.
421 * Emulate the bounced instruction instead.
423 exceptions
= vfp_emulate_instruction(trigger
, fpscr
, regs
);
425 si_code2
= vfp_raise_exceptions(exceptions
, trigger
, orig_fpscr
);
428 * If there isn't a second FP instruction, exit now. Note that
429 * the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.
431 if ((fpexc
& (FPEXC_EX
| FPEXC_FP2V
)) != (FPEXC_EX
| FPEXC_FP2V
))
435 * The barrier() here prevents fpinst2 being read
436 * before the condition above.
439 trigger
= fmrx(FPINST2
);
442 exceptions
= vfp_emulate_instruction(trigger
, orig_fpscr
, regs
);
444 si_code
= vfp_raise_exceptions(exceptions
, trigger
, orig_fpscr
);
448 vfp_raise_sigfpe(si_code2
, regs
);
450 vfp_raise_sigfpe(si_code
, regs
);
453 static void vfp_enable(void *unused
)
457 BUG_ON(preemptible());
458 access
= get_copro_access();
461 * Enable full access to VFP (cp10 and cp11)
463 set_copro_access(access
| CPACC_FULL(10) | CPACC_FULL(11));
466 /* Called by platforms on which we want to disable VFP because it may not be
467 * present on all CPUs within a SMP complex. Needs to be called prior to
470 void __init
vfp_disable(void)
473 pr_debug("%s: should be called prior to vfp_init\n", __func__
);
480 static int vfp_pm_suspend(void)
482 struct thread_info
*ti
= current_thread_info();
483 u32 fpexc
= fmrx(FPEXC
);
485 /* if vfp is on, then save state for resumption */
486 if (fpexc
& FPEXC_EN
) {
487 pr_debug("%s: saving vfp state\n", __func__
);
488 vfp_save_state(&ti
->vfpstate
, fpexc
);
490 /* disable, just in case */
491 fmxr(FPEXC
, fmrx(FPEXC
) & ~FPEXC_EN
);
492 } else if (vfp_current_hw_state
[ti
->cpu
]) {
494 fmxr(FPEXC
, fpexc
| FPEXC_EN
);
495 vfp_save_state(vfp_current_hw_state
[ti
->cpu
], fpexc
);
500 /* clear any information we had about last context state */
501 vfp_current_hw_state
[ti
->cpu
] = NULL
;
506 static void vfp_pm_resume(void)
508 /* ensure we have access to the vfp */
511 /* and disable it to ensure the next usage restores the state */
512 fmxr(FPEXC
, fmrx(FPEXC
) & ~FPEXC_EN
);
515 static int vfp_cpu_pm_notifier(struct notifier_block
*self
, unsigned long cmd
,
522 case CPU_PM_ENTER_FAILED
:
530 static struct notifier_block vfp_cpu_pm_notifier_block
= {
531 .notifier_call
= vfp_cpu_pm_notifier
,
534 static void vfp_pm_init(void)
536 cpu_pm_register_notifier(&vfp_cpu_pm_notifier_block
);
540 static inline void vfp_pm_init(void) { }
541 #endif /* CONFIG_CPU_PM */
544 * Ensure that the VFP state stored in 'thread->vfpstate' is up to date
545 * with the hardware state.
547 void vfp_sync_hwstate(struct thread_info
*thread
)
551 if (vfp_state_in_hw(raw_smp_processor_id(), thread
)) {
552 u32 fpexc
= fmrx(FPEXC
);
555 * Save the last VFP state on this CPU.
557 fmxr(FPEXC
, fpexc
| FPEXC_EN
);
558 vfp_save_state(&thread
->vfpstate
, fpexc
| FPEXC_EN
);
565 /* Ensure that the thread reloads the hardware VFP state on the next use. */
566 void vfp_flush_hwstate(struct thread_info
*thread
)
568 unsigned int cpu
= get_cpu();
570 vfp_force_reload(cpu
, thread
);
576 * Save the current VFP state into the provided structures and prepare
577 * for entry into a new function (signal handler).
579 int vfp_preserve_user_clear_hwstate(struct user_vfp
*ufp
,
580 struct user_vfp_exc
*ufp_exc
)
582 struct thread_info
*thread
= current_thread_info();
583 struct vfp_hard_struct
*hwstate
= &thread
->vfpstate
.hard
;
585 /* Ensure that the saved hwstate is up-to-date. */
586 vfp_sync_hwstate(thread
);
589 * Copy the floating point registers. There can be unused
590 * registers see asm/hwcap.h for details.
592 memcpy(&ufp
->fpregs
, &hwstate
->fpregs
, sizeof(hwstate
->fpregs
));
595 * Copy the status and control register.
597 ufp
->fpscr
= hwstate
->fpscr
;
600 * Copy the exception registers.
602 ufp_exc
->fpexc
= hwstate
->fpexc
;
603 ufp_exc
->fpinst
= hwstate
->fpinst
;
604 ufp_exc
->fpinst2
= hwstate
->fpinst2
;
606 /* Ensure that VFP is disabled. */
607 vfp_flush_hwstate(thread
);
610 * As per the PCS, clear the length and stride bits for function
613 hwstate
->fpscr
&= ~(FPSCR_LENGTH_MASK
| FPSCR_STRIDE_MASK
);
617 /* Sanitise and restore the current VFP state from the provided structures. */
618 int vfp_restore_user_hwstate(struct user_vfp
*ufp
, struct user_vfp_exc
*ufp_exc
)
620 struct thread_info
*thread
= current_thread_info();
621 struct vfp_hard_struct
*hwstate
= &thread
->vfpstate
.hard
;
624 /* Disable VFP to avoid corrupting the new thread state. */
625 vfp_flush_hwstate(thread
);
628 * Copy the floating point registers. There can be unused
629 * registers see asm/hwcap.h for details.
631 memcpy(&hwstate
->fpregs
, &ufp
->fpregs
, sizeof(hwstate
->fpregs
));
633 * Copy the status and control register.
635 hwstate
->fpscr
= ufp
->fpscr
;
638 * Sanitise and restore the exception registers.
640 fpexc
= ufp_exc
->fpexc
;
642 /* Ensure the VFP is enabled. */
645 /* Ensure FPINST2 is invalid and the exception flag is cleared. */
646 fpexc
&= ~(FPEXC_EX
| FPEXC_FP2V
);
647 hwstate
->fpexc
= fpexc
;
649 hwstate
->fpinst
= ufp_exc
->fpinst
;
650 hwstate
->fpinst2
= ufp_exc
->fpinst2
;
656 * VFP hardware can lose all context when a CPU goes offline.
657 * As we will be running in SMP mode with CPU hotplug, we will save the
658 * hardware state at every thread switch. We clear our held state when
659 * a CPU has been killed, indicating that the VFP hardware doesn't contain
660 * a threads VFP state. When a CPU starts up, we re-enable access to the
661 * VFP hardware. The callbacks below are called on the CPU which
662 * is being offlined/onlined.
664 static int vfp_dying_cpu(unsigned int cpu
)
666 vfp_current_hw_state
[cpu
] = NULL
;
670 static int vfp_starting_cpu(unsigned int unused
)
676 static int vfp_kmode_exception(struct pt_regs
*regs
, unsigned int instr
)
679 * If we reach this point, a floating point exception has been raised
680 * while running in kernel mode. If the NEON/VFP unit was enabled at the
681 * time, it means a VFP instruction has been issued that requires
682 * software assistance to complete, something which is not currently
683 * supported in kernel mode.
684 * If the NEON/VFP unit was disabled, and the location pointed to below
685 * is properly preceded by a call to kernel_neon_begin(), something has
686 * caused the task to be scheduled out and back in again. In this case,
687 * rebuilding and running with CONFIG_DEBUG_ATOMIC_SLEEP enabled should
688 * be helpful in localizing the problem.
690 if (fmrx(FPEXC
) & FPEXC_EN
)
691 pr_crit("BUG: unsupported FP instruction in kernel mode\n");
693 pr_crit("BUG: FP instruction issued in kernel mode with FP unit disabled\n");
694 pr_crit("FPEXC == 0x%08x\n", fmrx(FPEXC
));
699 * vfp_support_entry - Handle VFP exception
701 * @regs: pt_regs structure holding the register state at exception entry
702 * @trigger: The opcode of the instruction that triggered the exception
704 * Returns 0 if the exception was handled, or an error code otherwise.
706 static int vfp_support_entry(struct pt_regs
*regs
, u32 trigger
)
708 struct thread_info
*ti
= current_thread_info();
711 if (unlikely(!have_vfp
))
714 if (!user_mode(regs
))
715 return vfp_kmode_exception(regs
, trigger
);
721 * If the VFP unit was not enabled yet, we have to check whether the
722 * VFP state in the CPU's registers is the most recent VFP state
723 * associated with the process. On UP systems, we don't save the VFP
724 * state eagerly on a context switch, so we may need to save the
725 * VFP state to memory first, as it may belong to another process.
727 if (!(fpexc
& FPEXC_EN
)) {
729 * Enable the VFP unit but mask the FP exception flag for the
730 * time being, so we can access all the registers.
733 fmxr(FPEXC
, fpexc
& ~FPEXC_EX
);
736 * Check whether or not the VFP state in the CPU's registers is
737 * the most recent VFP state associated with this task. On SMP,
738 * migration may result in multiple CPUs holding VFP states
739 * that belong to the same task, but only the most recent one
742 if (!vfp_state_in_hw(ti
->cpu
, ti
)) {
743 if (!IS_ENABLED(CONFIG_SMP
) &&
744 vfp_current_hw_state
[ti
->cpu
] != NULL
) {
746 * This CPU is currently holding the most
747 * recent VFP state associated with another
748 * task, and we must save that to memory first.
750 vfp_save_state(vfp_current_hw_state
[ti
->cpu
],
755 * We can now proceed with loading the task's VFP state
756 * from memory into the CPU registers.
758 fpexc
= vfp_load_state(&ti
->vfpstate
);
759 vfp_current_hw_state
[ti
->cpu
] = &ti
->vfpstate
;
762 * Record that this CPU is now the one holding the most
763 * recent VFP state of the task.
765 ti
->vfpstate
.hard
.cpu
= ti
->cpu
;
769 if (fpexc
& FPEXC_EX
)
771 * Might as well handle the pending exception before
772 * retrying branch out before setting an FPEXC that
773 * stops us reading stuff.
778 * No FP exception is pending: just enable the VFP and
779 * replay the instruction that trapped.
784 /* Check for synchronous or asynchronous exceptions */
785 if (!(fpexc
& (FPEXC_EX
| FPEXC_DEX
))) {
786 u32 fpscr
= fmrx(FPSCR
);
789 * On some implementations of the VFP subarch 1,
790 * setting FPSCR.IXE causes all the CDP instructions to
791 * be bounced synchronously without setting the
794 if (!(fpscr
& FPSCR_IXE
)) {
795 if (!(fpscr
& FPSCR_LENGTH_MASK
)) {
796 pr_debug("not VFP\n");
803 bounce
: regs
->ARM_pc
+= 4;
804 /* VFP_bounce() will invoke vfp_state_release() */
805 VFP_bounce(trigger
, fpexc
, regs
);
811 static struct undef_hook neon_support_hook
[] = {{
812 .instr_mask
= 0xfe000000,
813 .instr_val
= 0xf2000000,
814 .cpsr_mask
= PSR_T_BIT
,
816 .fn
= vfp_support_entry
,
818 .instr_mask
= 0xff100000,
819 .instr_val
= 0xf4000000,
820 .cpsr_mask
= PSR_T_BIT
,
822 .fn
= vfp_support_entry
,
824 .instr_mask
= 0xef000000,
825 .instr_val
= 0xef000000,
826 .cpsr_mask
= PSR_T_BIT
,
827 .cpsr_val
= PSR_T_BIT
,
828 .fn
= vfp_support_entry
,
830 .instr_mask
= 0xff100000,
831 .instr_val
= 0xf9000000,
832 .cpsr_mask
= PSR_T_BIT
,
833 .cpsr_val
= PSR_T_BIT
,
834 .fn
= vfp_support_entry
,
836 .instr_mask
= 0xff000800,
837 .instr_val
= 0xfc000800,
840 .fn
= vfp_support_entry
,
842 .instr_mask
= 0xff000800,
843 .instr_val
= 0xfd000800,
846 .fn
= vfp_support_entry
,
848 .instr_mask
= 0xff000800,
849 .instr_val
= 0xfe000800,
852 .fn
= vfp_support_entry
,
855 static struct undef_hook vfp_support_hook
= {
856 .instr_mask
= 0x0c000e00,
857 .instr_val
= 0x0c000a00,
858 .fn
= vfp_support_entry
,
861 #ifdef CONFIG_KERNEL_MODE_NEON
864 * Kernel-side NEON support functions
866 void kernel_neon_begin(void)
868 struct thread_info
*thread
= current_thread_info();
875 * Kernel mode NEON is only allowed outside of hardirq context with
876 * preemption and softirq processing disabled. This will make sure that
877 * the kernel mode NEON register contents never need to be preserved.
879 BUG_ON(in_hardirq());
880 cpu
= __smp_processor_id();
882 fpexc
= fmrx(FPEXC
) | FPEXC_EN
;
886 * Save the userland NEON/VFP state. Under UP,
887 * the owner could be a task other than 'current'
889 if (vfp_state_in_hw(cpu
, thread
))
890 vfp_save_state(&thread
->vfpstate
, fpexc
);
892 else if (vfp_current_hw_state
[cpu
] != NULL
)
893 vfp_save_state(vfp_current_hw_state
[cpu
], fpexc
);
895 vfp_current_hw_state
[cpu
] = NULL
;
897 EXPORT_SYMBOL(kernel_neon_begin
);
899 void kernel_neon_end(void)
901 /* Disable the NEON/VFP unit. */
902 fmxr(FPEXC
, fmrx(FPEXC
) & ~FPEXC_EN
);
905 EXPORT_SYMBOL(kernel_neon_end
);
907 #endif /* CONFIG_KERNEL_MODE_NEON */
909 static int __init
vfp_detect(struct pt_regs
*regs
, unsigned int instr
)
911 VFP_arch
= UINT_MAX
; /* mark as not present */
916 static struct undef_hook vfp_detect_hook __initdata
= {
917 .instr_mask
= 0x0c000e00,
918 .instr_val
= 0x0c000a00,
919 .cpsr_mask
= MODE_MASK
,
920 .cpsr_val
= SVC_MODE
,
925 * VFP support code initialisation.
927 static int __init
vfp_init(void)
930 unsigned int cpu_arch
= cpu_architecture();
934 * Enable the access to the VFP on all online CPUs so the
935 * following test on FPSID will succeed.
937 if (cpu_arch
>= CPU_ARCH_ARMv6
)
938 on_each_cpu(vfp_enable
, NULL
, 1);
941 * First check that there is a VFP that we can use.
942 * The handler is already setup to just log calls, so
943 * we just need to read the VFPSID register.
945 register_undef_hook(&vfp_detect_hook
);
947 vfpsid
= fmrx(FPSID
);
949 unregister_undef_hook(&vfp_detect_hook
);
951 pr_info("VFP support v0.3: ");
953 pr_cont("not present\n");
955 /* Extract the architecture on CPUID scheme */
956 } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
957 VFP_arch
= vfpsid
& FPSID_CPUID_ARCH_MASK
;
958 VFP_arch
>>= FPSID_ARCH_BIT
;
960 * Check for the presence of the Advanced SIMD
961 * load/store instructions, integer and single
962 * precision floating point operations. Only check
963 * for NEON if the hardware has the MVFR registers.
965 if (IS_ENABLED(CONFIG_NEON
) &&
966 (fmrx(MVFR1
) & 0x000fff00) == 0x00011100) {
967 elf_hwcap
|= HWCAP_NEON
;
968 for (int i
= 0; i
< ARRAY_SIZE(neon_support_hook
); i
++)
969 register_undef_hook(&neon_support_hook
[i
]);
972 if (IS_ENABLED(CONFIG_VFPv3
)) {
973 u32 mvfr0
= fmrx(MVFR0
);
974 if (((mvfr0
& MVFR0_DP_MASK
) >> MVFR0_DP_BIT
) == 0x2 ||
975 ((mvfr0
& MVFR0_SP_MASK
) >> MVFR0_SP_BIT
) == 0x2) {
976 elf_hwcap
|= HWCAP_VFPv3
;
978 * Check for VFPv3 D16 and VFPv4 D16. CPUs in
979 * this configuration only have 16 x 64bit
982 if ((mvfr0
& MVFR0_A_SIMD_MASK
) == 1)
984 elf_hwcap
|= HWCAP_VFPv3D16
;
986 elf_hwcap
|= HWCAP_VFPD32
;
989 if ((fmrx(MVFR1
) & 0xf0000000) == 0x10000000)
990 elf_hwcap
|= HWCAP_VFPv4
;
991 if (((fmrx(MVFR1
) & MVFR1_ASIMDHP_MASK
) >> MVFR1_ASIMDHP_BIT
) == 0x2)
992 elf_hwcap
|= HWCAP_ASIMDHP
;
993 if (((fmrx(MVFR1
) & MVFR1_FPHP_MASK
) >> MVFR1_FPHP_BIT
) == 0x3)
994 elf_hwcap
|= HWCAP_FPHP
;
998 * Check for the presence of Advanced SIMD Dot Product
1001 isar6
= read_cpuid_ext(CPUID_EXT_ISAR6
);
1002 if (cpuid_feature_extract_field(isar6
, 4) == 0x1)
1003 elf_hwcap
|= HWCAP_ASIMDDP
;
1005 * Check for the presence of Advanced SIMD Floating point
1006 * half-precision multiplication instructions.
1008 if (cpuid_feature_extract_field(isar6
, 8) == 0x1)
1009 elf_hwcap
|= HWCAP_ASIMDFHM
;
1011 * Check for the presence of Advanced SIMD Bfloat16
1012 * floating point instructions.
1014 if (cpuid_feature_extract_field(isar6
, 20) == 0x1)
1015 elf_hwcap
|= HWCAP_ASIMDBF16
;
1017 * Check for the presence of Advanced SIMD and floating point
1018 * Int8 matrix multiplication instructions instructions.
1020 if (cpuid_feature_extract_field(isar6
, 24) == 0x1)
1021 elf_hwcap
|= HWCAP_I8MM
;
1023 /* Extract the architecture version on pre-cpuid scheme */
1025 if (vfpsid
& FPSID_NODOUBLE
) {
1026 pr_cont("no double precision support\n");
1030 VFP_arch
= (vfpsid
& FPSID_ARCH_MASK
) >> FPSID_ARCH_BIT
;
1033 cpuhp_setup_state_nocalls(CPUHP_AP_ARM_VFP_STARTING
,
1034 "arm/vfp:starting", vfp_starting_cpu
,
1039 register_undef_hook(&vfp_support_hook
);
1040 thread_register_notifier(&vfp_notifier_block
);
1044 * We detected VFP, and the support code is
1045 * in place; report VFP support to userspace.
1047 elf_hwcap
|= HWCAP_VFP
;
1049 pr_cont("implementor %02x architecture %d part %02x variant %x rev %x\n",
1050 (vfpsid
& FPSID_IMPLEMENTER_MASK
) >> FPSID_IMPLEMENTER_BIT
,
1052 (vfpsid
& FPSID_PART_MASK
) >> FPSID_PART_BIT
,
1053 (vfpsid
& FPSID_VARIANT_MASK
) >> FPSID_VARIANT_BIT
,
1054 (vfpsid
& FPSID_REV_MASK
) >> FPSID_REV_BIT
);
1059 core_initcall(vfp_init
);