Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / arch / arm64 / kernel / module.c
blob06bb680bfe975cf84a09da80bc2b293340191217
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * AArch64 loadable module support.
5 * Copyright (C) 2012 ARM Limited
7 * Author: Will Deacon <will.deacon@arm.com>
8 */
10 #define pr_fmt(fmt) "Modules: " fmt
12 #include <linux/bitops.h>
13 #include <linux/elf.h>
14 #include <linux/ftrace.h>
15 #include <linux/kasan.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/moduleloader.h>
19 #include <linux/random.h>
20 #include <linux/scs.h>
22 #include <asm/alternative.h>
23 #include <asm/insn.h>
24 #include <asm/scs.h>
25 #include <asm/sections.h>
27 enum aarch64_reloc_op {
28 RELOC_OP_NONE,
29 RELOC_OP_ABS,
30 RELOC_OP_PREL,
31 RELOC_OP_PAGE,
34 static u64 do_reloc(enum aarch64_reloc_op reloc_op, __le32 *place, u64 val)
36 switch (reloc_op) {
37 case RELOC_OP_ABS:
38 return val;
39 case RELOC_OP_PREL:
40 return val - (u64)place;
41 case RELOC_OP_PAGE:
42 return (val & ~0xfff) - ((u64)place & ~0xfff);
43 case RELOC_OP_NONE:
44 return 0;
47 pr_err("do_reloc: unknown relocation operation %d\n", reloc_op);
48 return 0;
51 static int reloc_data(enum aarch64_reloc_op op, void *place, u64 val, int len)
53 s64 sval = do_reloc(op, place, val);
56 * The ELF psABI for AArch64 documents the 16-bit and 32-bit place
57 * relative and absolute relocations as having a range of [-2^15, 2^16)
58 * or [-2^31, 2^32), respectively. However, in order to be able to
59 * detect overflows reliably, we have to choose whether we interpret
60 * such quantities as signed or as unsigned, and stick with it.
61 * The way we organize our address space requires a signed
62 * interpretation of 32-bit relative references, so let's use that
63 * for all R_AARCH64_PRELxx relocations. This means our upper
64 * bound for overflow detection should be Sxx_MAX rather than Uxx_MAX.
67 switch (len) {
68 case 16:
69 *(s16 *)place = sval;
70 switch (op) {
71 case RELOC_OP_ABS:
72 if (sval < 0 || sval > U16_MAX)
73 return -ERANGE;
74 break;
75 case RELOC_OP_PREL:
76 if (sval < S16_MIN || sval > S16_MAX)
77 return -ERANGE;
78 break;
79 default:
80 pr_err("Invalid 16-bit data relocation (%d)\n", op);
81 return 0;
83 break;
84 case 32:
85 *(s32 *)place = sval;
86 switch (op) {
87 case RELOC_OP_ABS:
88 if (sval < 0 || sval > U32_MAX)
89 return -ERANGE;
90 break;
91 case RELOC_OP_PREL:
92 if (sval < S32_MIN || sval > S32_MAX)
93 return -ERANGE;
94 break;
95 default:
96 pr_err("Invalid 32-bit data relocation (%d)\n", op);
97 return 0;
99 break;
100 case 64:
101 *(s64 *)place = sval;
102 break;
103 default:
104 pr_err("Invalid length (%d) for data relocation\n", len);
105 return 0;
107 return 0;
110 enum aarch64_insn_movw_imm_type {
111 AARCH64_INSN_IMM_MOVNZ,
112 AARCH64_INSN_IMM_MOVKZ,
115 static int reloc_insn_movw(enum aarch64_reloc_op op, __le32 *place, u64 val,
116 int lsb, enum aarch64_insn_movw_imm_type imm_type)
118 u64 imm;
119 s64 sval;
120 u32 insn = le32_to_cpu(*place);
122 sval = do_reloc(op, place, val);
123 imm = sval >> lsb;
125 if (imm_type == AARCH64_INSN_IMM_MOVNZ) {
127 * For signed MOVW relocations, we have to manipulate the
128 * instruction encoding depending on whether or not the
129 * immediate is less than zero.
131 insn &= ~(3 << 29);
132 if (sval >= 0) {
133 /* >=0: Set the instruction to MOVZ (opcode 10b). */
134 insn |= 2 << 29;
135 } else {
137 * <0: Set the instruction to MOVN (opcode 00b).
138 * Since we've masked the opcode already, we
139 * don't need to do anything other than
140 * inverting the new immediate field.
142 imm = ~imm;
146 /* Update the instruction with the new encoding. */
147 insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_16, insn, imm);
148 *place = cpu_to_le32(insn);
150 if (imm > U16_MAX)
151 return -ERANGE;
153 return 0;
156 static int reloc_insn_imm(enum aarch64_reloc_op op, __le32 *place, u64 val,
157 int lsb, int len, enum aarch64_insn_imm_type imm_type)
159 u64 imm, imm_mask;
160 s64 sval;
161 u32 insn = le32_to_cpu(*place);
163 /* Calculate the relocation value. */
164 sval = do_reloc(op, place, val);
165 sval >>= lsb;
167 /* Extract the value bits and shift them to bit 0. */
168 imm_mask = (BIT(lsb + len) - 1) >> lsb;
169 imm = sval & imm_mask;
171 /* Update the instruction's immediate field. */
172 insn = aarch64_insn_encode_immediate(imm_type, insn, imm);
173 *place = cpu_to_le32(insn);
176 * Extract the upper value bits (including the sign bit) and
177 * shift them to bit 0.
179 sval = (s64)(sval & ~(imm_mask >> 1)) >> (len - 1);
182 * Overflow has occurred if the upper bits are not all equal to
183 * the sign bit of the value.
185 if ((u64)(sval + 1) >= 2)
186 return -ERANGE;
188 return 0;
191 static int reloc_insn_adrp(struct module *mod, Elf64_Shdr *sechdrs,
192 __le32 *place, u64 val)
194 u32 insn;
196 if (!is_forbidden_offset_for_adrp(place))
197 return reloc_insn_imm(RELOC_OP_PAGE, place, val, 12, 21,
198 AARCH64_INSN_IMM_ADR);
200 /* patch ADRP to ADR if it is in range */
201 if (!reloc_insn_imm(RELOC_OP_PREL, place, val & ~0xfff, 0, 21,
202 AARCH64_INSN_IMM_ADR)) {
203 insn = le32_to_cpu(*place);
204 insn &= ~BIT(31);
205 } else {
206 /* out of range for ADR -> emit a veneer */
207 val = module_emit_veneer_for_adrp(mod, sechdrs, place, val & ~0xfff);
208 if (!val)
209 return -ENOEXEC;
210 insn = aarch64_insn_gen_branch_imm((u64)place, val,
211 AARCH64_INSN_BRANCH_NOLINK);
214 *place = cpu_to_le32(insn);
215 return 0;
218 int apply_relocate_add(Elf64_Shdr *sechdrs,
219 const char *strtab,
220 unsigned int symindex,
221 unsigned int relsec,
222 struct module *me)
224 unsigned int i;
225 int ovf;
226 bool overflow_check;
227 Elf64_Sym *sym;
228 void *loc;
229 u64 val;
230 Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
232 for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
233 /* loc corresponds to P in the AArch64 ELF document. */
234 loc = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
235 + rel[i].r_offset;
237 /* sym is the ELF symbol we're referring to. */
238 sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
239 + ELF64_R_SYM(rel[i].r_info);
241 /* val corresponds to (S + A) in the AArch64 ELF document. */
242 val = sym->st_value + rel[i].r_addend;
244 /* Check for overflow by default. */
245 overflow_check = true;
247 /* Perform the static relocation. */
248 switch (ELF64_R_TYPE(rel[i].r_info)) {
249 /* Null relocations. */
250 case R_ARM_NONE:
251 case R_AARCH64_NONE:
252 ovf = 0;
253 break;
255 /* Data relocations. */
256 case R_AARCH64_ABS64:
257 overflow_check = false;
258 ovf = reloc_data(RELOC_OP_ABS, loc, val, 64);
259 break;
260 case R_AARCH64_ABS32:
261 ovf = reloc_data(RELOC_OP_ABS, loc, val, 32);
262 break;
263 case R_AARCH64_ABS16:
264 ovf = reloc_data(RELOC_OP_ABS, loc, val, 16);
265 break;
266 case R_AARCH64_PREL64:
267 overflow_check = false;
268 ovf = reloc_data(RELOC_OP_PREL, loc, val, 64);
269 break;
270 case R_AARCH64_PREL32:
271 ovf = reloc_data(RELOC_OP_PREL, loc, val, 32);
272 break;
273 case R_AARCH64_PREL16:
274 ovf = reloc_data(RELOC_OP_PREL, loc, val, 16);
275 break;
277 /* MOVW instruction relocations. */
278 case R_AARCH64_MOVW_UABS_G0_NC:
279 overflow_check = false;
280 fallthrough;
281 case R_AARCH64_MOVW_UABS_G0:
282 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
283 AARCH64_INSN_IMM_MOVKZ);
284 break;
285 case R_AARCH64_MOVW_UABS_G1_NC:
286 overflow_check = false;
287 fallthrough;
288 case R_AARCH64_MOVW_UABS_G1:
289 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
290 AARCH64_INSN_IMM_MOVKZ);
291 break;
292 case R_AARCH64_MOVW_UABS_G2_NC:
293 overflow_check = false;
294 fallthrough;
295 case R_AARCH64_MOVW_UABS_G2:
296 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
297 AARCH64_INSN_IMM_MOVKZ);
298 break;
299 case R_AARCH64_MOVW_UABS_G3:
300 /* We're using the top bits so we can't overflow. */
301 overflow_check = false;
302 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 48,
303 AARCH64_INSN_IMM_MOVKZ);
304 break;
305 case R_AARCH64_MOVW_SABS_G0:
306 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
307 AARCH64_INSN_IMM_MOVNZ);
308 break;
309 case R_AARCH64_MOVW_SABS_G1:
310 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
311 AARCH64_INSN_IMM_MOVNZ);
312 break;
313 case R_AARCH64_MOVW_SABS_G2:
314 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
315 AARCH64_INSN_IMM_MOVNZ);
316 break;
317 case R_AARCH64_MOVW_PREL_G0_NC:
318 overflow_check = false;
319 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
320 AARCH64_INSN_IMM_MOVKZ);
321 break;
322 case R_AARCH64_MOVW_PREL_G0:
323 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
324 AARCH64_INSN_IMM_MOVNZ);
325 break;
326 case R_AARCH64_MOVW_PREL_G1_NC:
327 overflow_check = false;
328 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
329 AARCH64_INSN_IMM_MOVKZ);
330 break;
331 case R_AARCH64_MOVW_PREL_G1:
332 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
333 AARCH64_INSN_IMM_MOVNZ);
334 break;
335 case R_AARCH64_MOVW_PREL_G2_NC:
336 overflow_check = false;
337 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
338 AARCH64_INSN_IMM_MOVKZ);
339 break;
340 case R_AARCH64_MOVW_PREL_G2:
341 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
342 AARCH64_INSN_IMM_MOVNZ);
343 break;
344 case R_AARCH64_MOVW_PREL_G3:
345 /* We're using the top bits so we can't overflow. */
346 overflow_check = false;
347 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 48,
348 AARCH64_INSN_IMM_MOVNZ);
349 break;
351 /* Immediate instruction relocations. */
352 case R_AARCH64_LD_PREL_LO19:
353 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
354 AARCH64_INSN_IMM_19);
355 break;
356 case R_AARCH64_ADR_PREL_LO21:
357 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 0, 21,
358 AARCH64_INSN_IMM_ADR);
359 break;
360 case R_AARCH64_ADR_PREL_PG_HI21_NC:
361 overflow_check = false;
362 fallthrough;
363 case R_AARCH64_ADR_PREL_PG_HI21:
364 ovf = reloc_insn_adrp(me, sechdrs, loc, val);
365 if (ovf && ovf != -ERANGE)
366 return ovf;
367 break;
368 case R_AARCH64_ADD_ABS_LO12_NC:
369 case R_AARCH64_LDST8_ABS_LO12_NC:
370 overflow_check = false;
371 ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 0, 12,
372 AARCH64_INSN_IMM_12);
373 break;
374 case R_AARCH64_LDST16_ABS_LO12_NC:
375 overflow_check = false;
376 ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 1, 11,
377 AARCH64_INSN_IMM_12);
378 break;
379 case R_AARCH64_LDST32_ABS_LO12_NC:
380 overflow_check = false;
381 ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 2, 10,
382 AARCH64_INSN_IMM_12);
383 break;
384 case R_AARCH64_LDST64_ABS_LO12_NC:
385 overflow_check = false;
386 ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 3, 9,
387 AARCH64_INSN_IMM_12);
388 break;
389 case R_AARCH64_LDST128_ABS_LO12_NC:
390 overflow_check = false;
391 ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 4, 8,
392 AARCH64_INSN_IMM_12);
393 break;
394 case R_AARCH64_TSTBR14:
395 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 14,
396 AARCH64_INSN_IMM_14);
397 break;
398 case R_AARCH64_CONDBR19:
399 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
400 AARCH64_INSN_IMM_19);
401 break;
402 case R_AARCH64_JUMP26:
403 case R_AARCH64_CALL26:
404 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 26,
405 AARCH64_INSN_IMM_26);
406 if (ovf == -ERANGE) {
407 val = module_emit_plt_entry(me, sechdrs, loc, &rel[i], sym);
408 if (!val)
409 return -ENOEXEC;
410 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2,
411 26, AARCH64_INSN_IMM_26);
413 break;
415 default:
416 pr_err("module %s: unsupported RELA relocation: %llu\n",
417 me->name, ELF64_R_TYPE(rel[i].r_info));
418 return -ENOEXEC;
421 if (overflow_check && ovf == -ERANGE)
422 goto overflow;
426 return 0;
428 overflow:
429 pr_err("module %s: overflow in relocation type %d val %Lx\n",
430 me->name, (int)ELF64_R_TYPE(rel[i].r_info), val);
431 return -ENOEXEC;
434 static inline void __init_plt(struct plt_entry *plt, unsigned long addr)
436 *plt = get_plt_entry(addr, plt);
439 static int module_init_ftrace_plt(const Elf_Ehdr *hdr,
440 const Elf_Shdr *sechdrs,
441 struct module *mod)
443 #if defined(CONFIG_DYNAMIC_FTRACE)
444 const Elf_Shdr *s;
445 struct plt_entry *plts;
447 s = find_section(hdr, sechdrs, ".text.ftrace_trampoline");
448 if (!s)
449 return -ENOEXEC;
451 plts = (void *)s->sh_addr;
453 __init_plt(&plts[FTRACE_PLT_IDX], FTRACE_ADDR);
455 mod->arch.ftrace_trampolines = plts;
456 #endif
457 return 0;
460 int module_finalize(const Elf_Ehdr *hdr,
461 const Elf_Shdr *sechdrs,
462 struct module *me)
464 const Elf_Shdr *s;
465 int ret;
467 s = find_section(hdr, sechdrs, ".altinstructions");
468 if (s)
469 apply_alternatives_module((void *)s->sh_addr, s->sh_size);
471 if (scs_is_dynamic()) {
472 s = find_section(hdr, sechdrs, ".init.eh_frame");
473 if (s) {
474 ret = __pi_scs_patch((void *)s->sh_addr, s->sh_size);
475 if (ret)
476 pr_err("module %s: error occurred during dynamic SCS patching (%d)\n",
477 me->name, ret);
481 return module_init_ftrace_plt(hdr, sechdrs, me);