Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / arch / arm64 / kvm / hyp / pgtable.c
blob40bd559665404d0b971314888dd0842179813d1c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Stand-alone page-table allocator for hyp stage-1 and guest stage-2.
4 * No bombay mix was harmed in the writing of this file.
6 * Copyright (C) 2020 Google LLC
7 * Author: Will Deacon <will@kernel.org>
8 */
10 #include <linux/bitfield.h>
11 #include <asm/kvm_pgtable.h>
12 #include <asm/stage2_pgtable.h>
15 #define KVM_PTE_TYPE BIT(1)
16 #define KVM_PTE_TYPE_BLOCK 0
17 #define KVM_PTE_TYPE_PAGE 1
18 #define KVM_PTE_TYPE_TABLE 1
20 struct kvm_pgtable_walk_data {
21 struct kvm_pgtable_walker *walker;
23 const u64 start;
24 u64 addr;
25 const u64 end;
28 static bool kvm_pgtable_walk_skip_bbm_tlbi(const struct kvm_pgtable_visit_ctx *ctx)
30 return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_BBM_TLBI);
33 static bool kvm_pgtable_walk_skip_cmo(const struct kvm_pgtable_visit_ctx *ctx)
35 return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_CMO);
38 static bool kvm_phys_is_valid(u64 phys)
40 u64 parange_max = kvm_get_parange_max();
41 u8 shift = id_aa64mmfr0_parange_to_phys_shift(parange_max);
43 return phys < BIT(shift);
46 static bool kvm_block_mapping_supported(const struct kvm_pgtable_visit_ctx *ctx, u64 phys)
48 u64 granule = kvm_granule_size(ctx->level);
50 if (!kvm_level_supports_block_mapping(ctx->level))
51 return false;
53 if (granule > (ctx->end - ctx->addr))
54 return false;
56 if (kvm_phys_is_valid(phys) && !IS_ALIGNED(phys, granule))
57 return false;
59 return IS_ALIGNED(ctx->addr, granule);
62 static u32 kvm_pgtable_idx(struct kvm_pgtable_walk_data *data, s8 level)
64 u64 shift = kvm_granule_shift(level);
65 u64 mask = BIT(PAGE_SHIFT - 3) - 1;
67 return (data->addr >> shift) & mask;
70 static u32 kvm_pgd_page_idx(struct kvm_pgtable *pgt, u64 addr)
72 u64 shift = kvm_granule_shift(pgt->start_level - 1); /* May underflow */
73 u64 mask = BIT(pgt->ia_bits) - 1;
75 return (addr & mask) >> shift;
78 static u32 kvm_pgd_pages(u32 ia_bits, s8 start_level)
80 struct kvm_pgtable pgt = {
81 .ia_bits = ia_bits,
82 .start_level = start_level,
85 return kvm_pgd_page_idx(&pgt, -1ULL) + 1;
88 static bool kvm_pte_table(kvm_pte_t pte, s8 level)
90 if (level == KVM_PGTABLE_LAST_LEVEL)
91 return false;
93 if (!kvm_pte_valid(pte))
94 return false;
96 return FIELD_GET(KVM_PTE_TYPE, pte) == KVM_PTE_TYPE_TABLE;
99 static kvm_pte_t *kvm_pte_follow(kvm_pte_t pte, struct kvm_pgtable_mm_ops *mm_ops)
101 return mm_ops->phys_to_virt(kvm_pte_to_phys(pte));
104 static void kvm_clear_pte(kvm_pte_t *ptep)
106 WRITE_ONCE(*ptep, 0);
109 static kvm_pte_t kvm_init_table_pte(kvm_pte_t *childp, struct kvm_pgtable_mm_ops *mm_ops)
111 kvm_pte_t pte = kvm_phys_to_pte(mm_ops->virt_to_phys(childp));
113 pte |= FIELD_PREP(KVM_PTE_TYPE, KVM_PTE_TYPE_TABLE);
114 pte |= KVM_PTE_VALID;
115 return pte;
118 static kvm_pte_t kvm_init_valid_leaf_pte(u64 pa, kvm_pte_t attr, s8 level)
120 kvm_pte_t pte = kvm_phys_to_pte(pa);
121 u64 type = (level == KVM_PGTABLE_LAST_LEVEL) ? KVM_PTE_TYPE_PAGE :
122 KVM_PTE_TYPE_BLOCK;
124 pte |= attr & (KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI);
125 pte |= FIELD_PREP(KVM_PTE_TYPE, type);
126 pte |= KVM_PTE_VALID;
128 return pte;
131 static kvm_pte_t kvm_init_invalid_leaf_owner(u8 owner_id)
133 return FIELD_PREP(KVM_INVALID_PTE_OWNER_MASK, owner_id);
136 static int kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data *data,
137 const struct kvm_pgtable_visit_ctx *ctx,
138 enum kvm_pgtable_walk_flags visit)
140 struct kvm_pgtable_walker *walker = data->walker;
142 /* Ensure the appropriate lock is held (e.g. RCU lock for stage-2 MMU) */
143 WARN_ON_ONCE(kvm_pgtable_walk_shared(ctx) && !kvm_pgtable_walk_lock_held());
144 return walker->cb(ctx, visit);
147 static bool kvm_pgtable_walk_continue(const struct kvm_pgtable_walker *walker,
148 int r)
151 * Visitor callbacks return EAGAIN when the conditions that led to a
152 * fault are no longer reflected in the page tables due to a race to
153 * update a PTE. In the context of a fault handler this is interpreted
154 * as a signal to retry guest execution.
156 * Ignore the return code altogether for walkers outside a fault handler
157 * (e.g. write protecting a range of memory) and chug along with the
158 * page table walk.
160 if (r == -EAGAIN)
161 return !(walker->flags & KVM_PGTABLE_WALK_HANDLE_FAULT);
163 return !r;
166 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
167 struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, s8 level);
169 static inline int __kvm_pgtable_visit(struct kvm_pgtable_walk_data *data,
170 struct kvm_pgtable_mm_ops *mm_ops,
171 kvm_pteref_t pteref, s8 level)
173 enum kvm_pgtable_walk_flags flags = data->walker->flags;
174 kvm_pte_t *ptep = kvm_dereference_pteref(data->walker, pteref);
175 struct kvm_pgtable_visit_ctx ctx = {
176 .ptep = ptep,
177 .old = READ_ONCE(*ptep),
178 .arg = data->walker->arg,
179 .mm_ops = mm_ops,
180 .start = data->start,
181 .addr = data->addr,
182 .end = data->end,
183 .level = level,
184 .flags = flags,
186 int ret = 0;
187 bool reload = false;
188 kvm_pteref_t childp;
189 bool table = kvm_pte_table(ctx.old, level);
191 if (table && (ctx.flags & KVM_PGTABLE_WALK_TABLE_PRE)) {
192 ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_PRE);
193 reload = true;
196 if (!table && (ctx.flags & KVM_PGTABLE_WALK_LEAF)) {
197 ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_LEAF);
198 reload = true;
202 * Reload the page table after invoking the walker callback for leaf
203 * entries or after pre-order traversal, to allow the walker to descend
204 * into a newly installed or replaced table.
206 if (reload) {
207 ctx.old = READ_ONCE(*ptep);
208 table = kvm_pte_table(ctx.old, level);
211 if (!kvm_pgtable_walk_continue(data->walker, ret))
212 goto out;
214 if (!table) {
215 data->addr = ALIGN_DOWN(data->addr, kvm_granule_size(level));
216 data->addr += kvm_granule_size(level);
217 goto out;
220 childp = (kvm_pteref_t)kvm_pte_follow(ctx.old, mm_ops);
221 ret = __kvm_pgtable_walk(data, mm_ops, childp, level + 1);
222 if (!kvm_pgtable_walk_continue(data->walker, ret))
223 goto out;
225 if (ctx.flags & KVM_PGTABLE_WALK_TABLE_POST)
226 ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_POST);
228 out:
229 if (kvm_pgtable_walk_continue(data->walker, ret))
230 return 0;
232 return ret;
235 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
236 struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, s8 level)
238 u32 idx;
239 int ret = 0;
241 if (WARN_ON_ONCE(level < KVM_PGTABLE_FIRST_LEVEL ||
242 level > KVM_PGTABLE_LAST_LEVEL))
243 return -EINVAL;
245 for (idx = kvm_pgtable_idx(data, level); idx < PTRS_PER_PTE; ++idx) {
246 kvm_pteref_t pteref = &pgtable[idx];
248 if (data->addr >= data->end)
249 break;
251 ret = __kvm_pgtable_visit(data, mm_ops, pteref, level);
252 if (ret)
253 break;
256 return ret;
259 static int _kvm_pgtable_walk(struct kvm_pgtable *pgt, struct kvm_pgtable_walk_data *data)
261 u32 idx;
262 int ret = 0;
263 u64 limit = BIT(pgt->ia_bits);
265 if (data->addr > limit || data->end > limit)
266 return -ERANGE;
268 if (!pgt->pgd)
269 return -EINVAL;
271 for (idx = kvm_pgd_page_idx(pgt, data->addr); data->addr < data->end; ++idx) {
272 kvm_pteref_t pteref = &pgt->pgd[idx * PTRS_PER_PTE];
274 ret = __kvm_pgtable_walk(data, pgt->mm_ops, pteref, pgt->start_level);
275 if (ret)
276 break;
279 return ret;
282 int kvm_pgtable_walk(struct kvm_pgtable *pgt, u64 addr, u64 size,
283 struct kvm_pgtable_walker *walker)
285 struct kvm_pgtable_walk_data walk_data = {
286 .start = ALIGN_DOWN(addr, PAGE_SIZE),
287 .addr = ALIGN_DOWN(addr, PAGE_SIZE),
288 .end = PAGE_ALIGN(walk_data.addr + size),
289 .walker = walker,
291 int r;
293 r = kvm_pgtable_walk_begin(walker);
294 if (r)
295 return r;
297 r = _kvm_pgtable_walk(pgt, &walk_data);
298 kvm_pgtable_walk_end(walker);
300 return r;
303 struct leaf_walk_data {
304 kvm_pte_t pte;
305 s8 level;
308 static int leaf_walker(const struct kvm_pgtable_visit_ctx *ctx,
309 enum kvm_pgtable_walk_flags visit)
311 struct leaf_walk_data *data = ctx->arg;
313 data->pte = ctx->old;
314 data->level = ctx->level;
316 return 0;
319 int kvm_pgtable_get_leaf(struct kvm_pgtable *pgt, u64 addr,
320 kvm_pte_t *ptep, s8 *level)
322 struct leaf_walk_data data;
323 struct kvm_pgtable_walker walker = {
324 .cb = leaf_walker,
325 .flags = KVM_PGTABLE_WALK_LEAF,
326 .arg = &data,
328 int ret;
330 ret = kvm_pgtable_walk(pgt, ALIGN_DOWN(addr, PAGE_SIZE),
331 PAGE_SIZE, &walker);
332 if (!ret) {
333 if (ptep)
334 *ptep = data.pte;
335 if (level)
336 *level = data.level;
339 return ret;
342 struct hyp_map_data {
343 const u64 phys;
344 kvm_pte_t attr;
347 static int hyp_set_prot_attr(enum kvm_pgtable_prot prot, kvm_pte_t *ptep)
349 bool device = prot & KVM_PGTABLE_PROT_DEVICE;
350 u32 mtype = device ? MT_DEVICE_nGnRE : MT_NORMAL;
351 kvm_pte_t attr = FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX, mtype);
352 u32 sh = KVM_PTE_LEAF_ATTR_LO_S1_SH_IS;
353 u32 ap = (prot & KVM_PGTABLE_PROT_W) ? KVM_PTE_LEAF_ATTR_LO_S1_AP_RW :
354 KVM_PTE_LEAF_ATTR_LO_S1_AP_RO;
356 if (!(prot & KVM_PGTABLE_PROT_R))
357 return -EINVAL;
359 if (prot & KVM_PGTABLE_PROT_X) {
360 if (prot & KVM_PGTABLE_PROT_W)
361 return -EINVAL;
363 if (device)
364 return -EINVAL;
366 if (system_supports_bti_kernel())
367 attr |= KVM_PTE_LEAF_ATTR_HI_S1_GP;
368 } else {
369 attr |= KVM_PTE_LEAF_ATTR_HI_S1_XN;
372 attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_AP, ap);
373 if (!kvm_lpa2_is_enabled())
374 attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_SH, sh);
375 attr |= KVM_PTE_LEAF_ATTR_LO_S1_AF;
376 attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
377 *ptep = attr;
379 return 0;
382 enum kvm_pgtable_prot kvm_pgtable_hyp_pte_prot(kvm_pte_t pte)
384 enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
385 u32 ap;
387 if (!kvm_pte_valid(pte))
388 return prot;
390 if (!(pte & KVM_PTE_LEAF_ATTR_HI_S1_XN))
391 prot |= KVM_PGTABLE_PROT_X;
393 ap = FIELD_GET(KVM_PTE_LEAF_ATTR_LO_S1_AP, pte);
394 if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RO)
395 prot |= KVM_PGTABLE_PROT_R;
396 else if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RW)
397 prot |= KVM_PGTABLE_PROT_RW;
399 return prot;
402 static bool hyp_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx,
403 struct hyp_map_data *data)
405 u64 phys = data->phys + (ctx->addr - ctx->start);
406 kvm_pte_t new;
408 if (!kvm_block_mapping_supported(ctx, phys))
409 return false;
411 new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level);
412 if (ctx->old == new)
413 return true;
414 if (!kvm_pte_valid(ctx->old))
415 ctx->mm_ops->get_page(ctx->ptep);
416 else if (WARN_ON((ctx->old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW))
417 return false;
419 smp_store_release(ctx->ptep, new);
420 return true;
423 static int hyp_map_walker(const struct kvm_pgtable_visit_ctx *ctx,
424 enum kvm_pgtable_walk_flags visit)
426 kvm_pte_t *childp, new;
427 struct hyp_map_data *data = ctx->arg;
428 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
430 if (hyp_map_walker_try_leaf(ctx, data))
431 return 0;
433 if (WARN_ON(ctx->level == KVM_PGTABLE_LAST_LEVEL))
434 return -EINVAL;
436 childp = (kvm_pte_t *)mm_ops->zalloc_page(NULL);
437 if (!childp)
438 return -ENOMEM;
440 new = kvm_init_table_pte(childp, mm_ops);
441 mm_ops->get_page(ctx->ptep);
442 smp_store_release(ctx->ptep, new);
444 return 0;
447 int kvm_pgtable_hyp_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys,
448 enum kvm_pgtable_prot prot)
450 int ret;
451 struct hyp_map_data map_data = {
452 .phys = ALIGN_DOWN(phys, PAGE_SIZE),
454 struct kvm_pgtable_walker walker = {
455 .cb = hyp_map_walker,
456 .flags = KVM_PGTABLE_WALK_LEAF,
457 .arg = &map_data,
460 ret = hyp_set_prot_attr(prot, &map_data.attr);
461 if (ret)
462 return ret;
464 ret = kvm_pgtable_walk(pgt, addr, size, &walker);
465 dsb(ishst);
466 isb();
467 return ret;
470 static int hyp_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx,
471 enum kvm_pgtable_walk_flags visit)
473 kvm_pte_t *childp = NULL;
474 u64 granule = kvm_granule_size(ctx->level);
475 u64 *unmapped = ctx->arg;
476 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
478 if (!kvm_pte_valid(ctx->old))
479 return -EINVAL;
481 if (kvm_pte_table(ctx->old, ctx->level)) {
482 childp = kvm_pte_follow(ctx->old, mm_ops);
484 if (mm_ops->page_count(childp) != 1)
485 return 0;
487 kvm_clear_pte(ctx->ptep);
488 dsb(ishst);
489 __tlbi_level(vae2is, __TLBI_VADDR(ctx->addr, 0), TLBI_TTL_UNKNOWN);
490 } else {
491 if (ctx->end - ctx->addr < granule)
492 return -EINVAL;
494 kvm_clear_pte(ctx->ptep);
495 dsb(ishst);
496 __tlbi_level(vale2is, __TLBI_VADDR(ctx->addr, 0), ctx->level);
497 *unmapped += granule;
500 dsb(ish);
501 isb();
502 mm_ops->put_page(ctx->ptep);
504 if (childp)
505 mm_ops->put_page(childp);
507 return 0;
510 u64 kvm_pgtable_hyp_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
512 u64 unmapped = 0;
513 struct kvm_pgtable_walker walker = {
514 .cb = hyp_unmap_walker,
515 .arg = &unmapped,
516 .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
519 if (!pgt->mm_ops->page_count)
520 return 0;
522 kvm_pgtable_walk(pgt, addr, size, &walker);
523 return unmapped;
526 int kvm_pgtable_hyp_init(struct kvm_pgtable *pgt, u32 va_bits,
527 struct kvm_pgtable_mm_ops *mm_ops)
529 s8 start_level = KVM_PGTABLE_LAST_LEVEL + 1 -
530 ARM64_HW_PGTABLE_LEVELS(va_bits);
532 if (start_level < KVM_PGTABLE_FIRST_LEVEL ||
533 start_level > KVM_PGTABLE_LAST_LEVEL)
534 return -EINVAL;
536 pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_page(NULL);
537 if (!pgt->pgd)
538 return -ENOMEM;
540 pgt->ia_bits = va_bits;
541 pgt->start_level = start_level;
542 pgt->mm_ops = mm_ops;
543 pgt->mmu = NULL;
544 pgt->force_pte_cb = NULL;
546 return 0;
549 static int hyp_free_walker(const struct kvm_pgtable_visit_ctx *ctx,
550 enum kvm_pgtable_walk_flags visit)
552 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
554 if (!kvm_pte_valid(ctx->old))
555 return 0;
557 mm_ops->put_page(ctx->ptep);
559 if (kvm_pte_table(ctx->old, ctx->level))
560 mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops));
562 return 0;
565 void kvm_pgtable_hyp_destroy(struct kvm_pgtable *pgt)
567 struct kvm_pgtable_walker walker = {
568 .cb = hyp_free_walker,
569 .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
572 WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
573 pgt->mm_ops->put_page(kvm_dereference_pteref(&walker, pgt->pgd));
574 pgt->pgd = NULL;
577 struct stage2_map_data {
578 const u64 phys;
579 kvm_pte_t attr;
580 u8 owner_id;
582 kvm_pte_t *anchor;
583 kvm_pte_t *childp;
585 struct kvm_s2_mmu *mmu;
586 void *memcache;
588 /* Force mappings to page granularity */
589 bool force_pte;
592 u64 kvm_get_vtcr(u64 mmfr0, u64 mmfr1, u32 phys_shift)
594 u64 vtcr = VTCR_EL2_FLAGS;
595 s8 lvls;
597 vtcr |= kvm_get_parange(mmfr0) << VTCR_EL2_PS_SHIFT;
598 vtcr |= VTCR_EL2_T0SZ(phys_shift);
600 * Use a minimum 2 level page table to prevent splitting
601 * host PMD huge pages at stage2.
603 lvls = stage2_pgtable_levels(phys_shift);
604 if (lvls < 2)
605 lvls = 2;
608 * When LPA2 is enabled, the HW supports an extra level of translation
609 * (for 5 in total) when using 4K pages. It also introduces VTCR_EL2.SL2
610 * to as an addition to SL0 to enable encoding this extra start level.
611 * However, since we always use concatenated pages for the first level
612 * lookup, we will never need this extra level and therefore do not need
613 * to touch SL2.
615 vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls);
617 #ifdef CONFIG_ARM64_HW_AFDBM
619 * Enable the Hardware Access Flag management, unconditionally
620 * on all CPUs. In systems that have asymmetric support for the feature
621 * this allows KVM to leverage hardware support on the subset of cores
622 * that implement the feature.
624 * The architecture requires VTCR_EL2.HA to be RES0 (thus ignored by
625 * hardware) on implementations that do not advertise support for the
626 * feature. As such, setting HA unconditionally is safe, unless you
627 * happen to be running on a design that has unadvertised support for
628 * HAFDBS. Here be dragons.
630 if (!cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38))
631 vtcr |= VTCR_EL2_HA;
632 #endif /* CONFIG_ARM64_HW_AFDBM */
634 if (kvm_lpa2_is_enabled())
635 vtcr |= VTCR_EL2_DS;
637 /* Set the vmid bits */
638 vtcr |= (get_vmid_bits(mmfr1) == 16) ?
639 VTCR_EL2_VS_16BIT :
640 VTCR_EL2_VS_8BIT;
642 return vtcr;
645 static bool stage2_has_fwb(struct kvm_pgtable *pgt)
647 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
648 return false;
650 return !(pgt->flags & KVM_PGTABLE_S2_NOFWB);
653 void kvm_tlb_flush_vmid_range(struct kvm_s2_mmu *mmu,
654 phys_addr_t addr, size_t size)
656 unsigned long pages, inval_pages;
658 if (!system_supports_tlb_range()) {
659 kvm_call_hyp(__kvm_tlb_flush_vmid, mmu);
660 return;
663 pages = size >> PAGE_SHIFT;
664 while (pages > 0) {
665 inval_pages = min(pages, MAX_TLBI_RANGE_PAGES);
666 kvm_call_hyp(__kvm_tlb_flush_vmid_range, mmu, addr, inval_pages);
668 addr += inval_pages << PAGE_SHIFT;
669 pages -= inval_pages;
673 #define KVM_S2_MEMATTR(pgt, attr) PAGE_S2_MEMATTR(attr, stage2_has_fwb(pgt))
675 static int stage2_set_prot_attr(struct kvm_pgtable *pgt, enum kvm_pgtable_prot prot,
676 kvm_pte_t *ptep)
678 kvm_pte_t attr;
679 u32 sh = KVM_PTE_LEAF_ATTR_LO_S2_SH_IS;
681 switch (prot & (KVM_PGTABLE_PROT_DEVICE |
682 KVM_PGTABLE_PROT_NORMAL_NC)) {
683 case KVM_PGTABLE_PROT_DEVICE | KVM_PGTABLE_PROT_NORMAL_NC:
684 return -EINVAL;
685 case KVM_PGTABLE_PROT_DEVICE:
686 if (prot & KVM_PGTABLE_PROT_X)
687 return -EINVAL;
688 attr = KVM_S2_MEMATTR(pgt, DEVICE_nGnRE);
689 break;
690 case KVM_PGTABLE_PROT_NORMAL_NC:
691 if (prot & KVM_PGTABLE_PROT_X)
692 return -EINVAL;
693 attr = KVM_S2_MEMATTR(pgt, NORMAL_NC);
694 break;
695 default:
696 attr = KVM_S2_MEMATTR(pgt, NORMAL);
699 if (!(prot & KVM_PGTABLE_PROT_X))
700 attr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
702 if (prot & KVM_PGTABLE_PROT_R)
703 attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
705 if (prot & KVM_PGTABLE_PROT_W)
706 attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
708 if (!kvm_lpa2_is_enabled())
709 attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S2_SH, sh);
711 attr |= KVM_PTE_LEAF_ATTR_LO_S2_AF;
712 attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
713 *ptep = attr;
715 return 0;
718 enum kvm_pgtable_prot kvm_pgtable_stage2_pte_prot(kvm_pte_t pte)
720 enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
722 if (!kvm_pte_valid(pte))
723 return prot;
725 if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R)
726 prot |= KVM_PGTABLE_PROT_R;
727 if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W)
728 prot |= KVM_PGTABLE_PROT_W;
729 if (!(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN))
730 prot |= KVM_PGTABLE_PROT_X;
732 return prot;
735 static bool stage2_pte_needs_update(kvm_pte_t old, kvm_pte_t new)
737 if (!kvm_pte_valid(old) || !kvm_pte_valid(new))
738 return true;
740 return ((old ^ new) & (~KVM_PTE_LEAF_ATTR_S2_PERMS));
743 static bool stage2_pte_is_counted(kvm_pte_t pte)
746 * The refcount tracks valid entries as well as invalid entries if they
747 * encode ownership of a page to another entity than the page-table
748 * owner, whose id is 0.
750 return !!pte;
753 static bool stage2_pte_is_locked(kvm_pte_t pte)
755 return !kvm_pte_valid(pte) && (pte & KVM_INVALID_PTE_LOCKED);
758 static bool stage2_try_set_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new)
760 if (!kvm_pgtable_walk_shared(ctx)) {
761 WRITE_ONCE(*ctx->ptep, new);
762 return true;
765 return cmpxchg(ctx->ptep, ctx->old, new) == ctx->old;
769 * stage2_try_break_pte() - Invalidates a pte according to the
770 * 'break-before-make' requirements of the
771 * architecture.
773 * @ctx: context of the visited pte.
774 * @mmu: stage-2 mmu
776 * Returns: true if the pte was successfully broken.
778 * If the removed pte was valid, performs the necessary serialization and TLB
779 * invalidation for the old value. For counted ptes, drops the reference count
780 * on the containing table page.
782 static bool stage2_try_break_pte(const struct kvm_pgtable_visit_ctx *ctx,
783 struct kvm_s2_mmu *mmu)
785 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
787 if (stage2_pte_is_locked(ctx->old)) {
789 * Should never occur if this walker has exclusive access to the
790 * page tables.
792 WARN_ON(!kvm_pgtable_walk_shared(ctx));
793 return false;
796 if (!stage2_try_set_pte(ctx, KVM_INVALID_PTE_LOCKED))
797 return false;
799 if (!kvm_pgtable_walk_skip_bbm_tlbi(ctx)) {
801 * Perform the appropriate TLB invalidation based on the
802 * evicted pte value (if any).
804 if (kvm_pte_table(ctx->old, ctx->level)) {
805 u64 size = kvm_granule_size(ctx->level);
806 u64 addr = ALIGN_DOWN(ctx->addr, size);
808 kvm_tlb_flush_vmid_range(mmu, addr, size);
809 } else if (kvm_pte_valid(ctx->old)) {
810 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu,
811 ctx->addr, ctx->level);
815 if (stage2_pte_is_counted(ctx->old))
816 mm_ops->put_page(ctx->ptep);
818 return true;
821 static void stage2_make_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new)
823 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
825 WARN_ON(!stage2_pte_is_locked(*ctx->ptep));
827 if (stage2_pte_is_counted(new))
828 mm_ops->get_page(ctx->ptep);
830 smp_store_release(ctx->ptep, new);
833 static bool stage2_unmap_defer_tlb_flush(struct kvm_pgtable *pgt)
836 * If FEAT_TLBIRANGE is implemented, defer the individual
837 * TLB invalidations until the entire walk is finished, and
838 * then use the range-based TLBI instructions to do the
839 * invalidations. Condition deferred TLB invalidation on the
840 * system supporting FWB as the optimization is entirely
841 * pointless when the unmap walker needs to perform CMOs.
843 return system_supports_tlb_range() && stage2_has_fwb(pgt);
846 static void stage2_unmap_put_pte(const struct kvm_pgtable_visit_ctx *ctx,
847 struct kvm_s2_mmu *mmu,
848 struct kvm_pgtable_mm_ops *mm_ops)
850 struct kvm_pgtable *pgt = ctx->arg;
853 * Clear the existing PTE, and perform break-before-make if it was
854 * valid. Depending on the system support, defer the TLB maintenance
855 * for the same until the entire unmap walk is completed.
857 if (kvm_pte_valid(ctx->old)) {
858 kvm_clear_pte(ctx->ptep);
860 if (kvm_pte_table(ctx->old, ctx->level)) {
861 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ctx->addr,
862 TLBI_TTL_UNKNOWN);
863 } else if (!stage2_unmap_defer_tlb_flush(pgt)) {
864 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ctx->addr,
865 ctx->level);
869 mm_ops->put_page(ctx->ptep);
872 static bool stage2_pte_cacheable(struct kvm_pgtable *pgt, kvm_pte_t pte)
874 u64 memattr = pte & KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR;
875 return kvm_pte_valid(pte) && memattr == KVM_S2_MEMATTR(pgt, NORMAL);
878 static bool stage2_pte_executable(kvm_pte_t pte)
880 return kvm_pte_valid(pte) && !(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN);
883 static u64 stage2_map_walker_phys_addr(const struct kvm_pgtable_visit_ctx *ctx,
884 const struct stage2_map_data *data)
886 u64 phys = data->phys;
889 * Stage-2 walks to update ownership data are communicated to the map
890 * walker using an invalid PA. Avoid offsetting an already invalid PA,
891 * which could overflow and make the address valid again.
893 if (!kvm_phys_is_valid(phys))
894 return phys;
897 * Otherwise, work out the correct PA based on how far the walk has
898 * gotten.
900 return phys + (ctx->addr - ctx->start);
903 static bool stage2_leaf_mapping_allowed(const struct kvm_pgtable_visit_ctx *ctx,
904 struct stage2_map_data *data)
906 u64 phys = stage2_map_walker_phys_addr(ctx, data);
908 if (data->force_pte && ctx->level < KVM_PGTABLE_LAST_LEVEL)
909 return false;
911 return kvm_block_mapping_supported(ctx, phys);
914 static int stage2_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx,
915 struct stage2_map_data *data)
917 kvm_pte_t new;
918 u64 phys = stage2_map_walker_phys_addr(ctx, data);
919 u64 granule = kvm_granule_size(ctx->level);
920 struct kvm_pgtable *pgt = data->mmu->pgt;
921 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
923 if (!stage2_leaf_mapping_allowed(ctx, data))
924 return -E2BIG;
926 if (kvm_phys_is_valid(phys))
927 new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level);
928 else
929 new = kvm_init_invalid_leaf_owner(data->owner_id);
932 * Skip updating the PTE if we are trying to recreate the exact
933 * same mapping or only change the access permissions. Instead,
934 * the vCPU will exit one more time from guest if still needed
935 * and then go through the path of relaxing permissions.
937 if (!stage2_pte_needs_update(ctx->old, new))
938 return -EAGAIN;
940 /* If we're only changing software bits, then store them and go! */
941 if (!kvm_pgtable_walk_shared(ctx) &&
942 !((ctx->old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW)) {
943 bool old_is_counted = stage2_pte_is_counted(ctx->old);
945 if (old_is_counted != stage2_pte_is_counted(new)) {
946 if (old_is_counted)
947 mm_ops->put_page(ctx->ptep);
948 else
949 mm_ops->get_page(ctx->ptep);
951 WARN_ON_ONCE(!stage2_try_set_pte(ctx, new));
952 return 0;
955 if (!stage2_try_break_pte(ctx, data->mmu))
956 return -EAGAIN;
958 /* Perform CMOs before installation of the guest stage-2 PTE */
959 if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->dcache_clean_inval_poc &&
960 stage2_pte_cacheable(pgt, new))
961 mm_ops->dcache_clean_inval_poc(kvm_pte_follow(new, mm_ops),
962 granule);
964 if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->icache_inval_pou &&
965 stage2_pte_executable(new))
966 mm_ops->icache_inval_pou(kvm_pte_follow(new, mm_ops), granule);
968 stage2_make_pte(ctx, new);
970 return 0;
973 static int stage2_map_walk_table_pre(const struct kvm_pgtable_visit_ctx *ctx,
974 struct stage2_map_data *data)
976 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
977 kvm_pte_t *childp = kvm_pte_follow(ctx->old, mm_ops);
978 int ret;
980 if (!stage2_leaf_mapping_allowed(ctx, data))
981 return 0;
983 ret = stage2_map_walker_try_leaf(ctx, data);
984 if (ret)
985 return ret;
987 mm_ops->free_unlinked_table(childp, ctx->level);
988 return 0;
991 static int stage2_map_walk_leaf(const struct kvm_pgtable_visit_ctx *ctx,
992 struct stage2_map_data *data)
994 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
995 kvm_pte_t *childp, new;
996 int ret;
998 ret = stage2_map_walker_try_leaf(ctx, data);
999 if (ret != -E2BIG)
1000 return ret;
1002 if (WARN_ON(ctx->level == KVM_PGTABLE_LAST_LEVEL))
1003 return -EINVAL;
1005 if (!data->memcache)
1006 return -ENOMEM;
1008 childp = mm_ops->zalloc_page(data->memcache);
1009 if (!childp)
1010 return -ENOMEM;
1012 if (!stage2_try_break_pte(ctx, data->mmu)) {
1013 mm_ops->put_page(childp);
1014 return -EAGAIN;
1018 * If we've run into an existing block mapping then replace it with
1019 * a table. Accesses beyond 'end' that fall within the new table
1020 * will be mapped lazily.
1022 new = kvm_init_table_pte(childp, mm_ops);
1023 stage2_make_pte(ctx, new);
1025 return 0;
1029 * The TABLE_PRE callback runs for table entries on the way down, looking
1030 * for table entries which we could conceivably replace with a block entry
1031 * for this mapping. If it finds one it replaces the entry and calls
1032 * kvm_pgtable_mm_ops::free_unlinked_table() to tear down the detached table.
1034 * Otherwise, the LEAF callback performs the mapping at the existing leaves
1035 * instead.
1037 static int stage2_map_walker(const struct kvm_pgtable_visit_ctx *ctx,
1038 enum kvm_pgtable_walk_flags visit)
1040 struct stage2_map_data *data = ctx->arg;
1042 switch (visit) {
1043 case KVM_PGTABLE_WALK_TABLE_PRE:
1044 return stage2_map_walk_table_pre(ctx, data);
1045 case KVM_PGTABLE_WALK_LEAF:
1046 return stage2_map_walk_leaf(ctx, data);
1047 default:
1048 return -EINVAL;
1052 int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size,
1053 u64 phys, enum kvm_pgtable_prot prot,
1054 void *mc, enum kvm_pgtable_walk_flags flags)
1056 int ret;
1057 struct stage2_map_data map_data = {
1058 .phys = ALIGN_DOWN(phys, PAGE_SIZE),
1059 .mmu = pgt->mmu,
1060 .memcache = mc,
1061 .force_pte = pgt->force_pte_cb && pgt->force_pte_cb(addr, addr + size, prot),
1063 struct kvm_pgtable_walker walker = {
1064 .cb = stage2_map_walker,
1065 .flags = flags |
1066 KVM_PGTABLE_WALK_TABLE_PRE |
1067 KVM_PGTABLE_WALK_LEAF,
1068 .arg = &map_data,
1071 if (WARN_ON((pgt->flags & KVM_PGTABLE_S2_IDMAP) && (addr != phys)))
1072 return -EINVAL;
1074 ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
1075 if (ret)
1076 return ret;
1078 ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1079 dsb(ishst);
1080 return ret;
1083 int kvm_pgtable_stage2_set_owner(struct kvm_pgtable *pgt, u64 addr, u64 size,
1084 void *mc, u8 owner_id)
1086 int ret;
1087 struct stage2_map_data map_data = {
1088 .phys = KVM_PHYS_INVALID,
1089 .mmu = pgt->mmu,
1090 .memcache = mc,
1091 .owner_id = owner_id,
1092 .force_pte = true,
1094 struct kvm_pgtable_walker walker = {
1095 .cb = stage2_map_walker,
1096 .flags = KVM_PGTABLE_WALK_TABLE_PRE |
1097 KVM_PGTABLE_WALK_LEAF,
1098 .arg = &map_data,
1101 if (owner_id > KVM_MAX_OWNER_ID)
1102 return -EINVAL;
1104 ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1105 return ret;
1108 static int stage2_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx,
1109 enum kvm_pgtable_walk_flags visit)
1111 struct kvm_pgtable *pgt = ctx->arg;
1112 struct kvm_s2_mmu *mmu = pgt->mmu;
1113 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1114 kvm_pte_t *childp = NULL;
1115 bool need_flush = false;
1117 if (!kvm_pte_valid(ctx->old)) {
1118 if (stage2_pte_is_counted(ctx->old)) {
1119 kvm_clear_pte(ctx->ptep);
1120 mm_ops->put_page(ctx->ptep);
1122 return 0;
1125 if (kvm_pte_table(ctx->old, ctx->level)) {
1126 childp = kvm_pte_follow(ctx->old, mm_ops);
1128 if (mm_ops->page_count(childp) != 1)
1129 return 0;
1130 } else if (stage2_pte_cacheable(pgt, ctx->old)) {
1131 need_flush = !stage2_has_fwb(pgt);
1135 * This is similar to the map() path in that we unmap the entire
1136 * block entry and rely on the remaining portions being faulted
1137 * back lazily.
1139 stage2_unmap_put_pte(ctx, mmu, mm_ops);
1141 if (need_flush && mm_ops->dcache_clean_inval_poc)
1142 mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops),
1143 kvm_granule_size(ctx->level));
1145 if (childp)
1146 mm_ops->put_page(childp);
1148 return 0;
1151 int kvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
1153 int ret;
1154 struct kvm_pgtable_walker walker = {
1155 .cb = stage2_unmap_walker,
1156 .arg = pgt,
1157 .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
1160 ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1161 if (stage2_unmap_defer_tlb_flush(pgt))
1162 /* Perform the deferred TLB invalidations */
1163 kvm_tlb_flush_vmid_range(pgt->mmu, addr, size);
1165 return ret;
1168 struct stage2_attr_data {
1169 kvm_pte_t attr_set;
1170 kvm_pte_t attr_clr;
1171 kvm_pte_t pte;
1172 s8 level;
1175 static int stage2_attr_walker(const struct kvm_pgtable_visit_ctx *ctx,
1176 enum kvm_pgtable_walk_flags visit)
1178 kvm_pte_t pte = ctx->old;
1179 struct stage2_attr_data *data = ctx->arg;
1180 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1182 if (!kvm_pte_valid(ctx->old))
1183 return -EAGAIN;
1185 data->level = ctx->level;
1186 data->pte = pte;
1187 pte &= ~data->attr_clr;
1188 pte |= data->attr_set;
1191 * We may race with the CPU trying to set the access flag here,
1192 * but worst-case the access flag update gets lost and will be
1193 * set on the next access instead.
1195 if (data->pte != pte) {
1197 * Invalidate instruction cache before updating the guest
1198 * stage-2 PTE if we are going to add executable permission.
1200 if (mm_ops->icache_inval_pou &&
1201 stage2_pte_executable(pte) && !stage2_pte_executable(ctx->old))
1202 mm_ops->icache_inval_pou(kvm_pte_follow(pte, mm_ops),
1203 kvm_granule_size(ctx->level));
1205 if (!stage2_try_set_pte(ctx, pte))
1206 return -EAGAIN;
1209 return 0;
1212 static int stage2_update_leaf_attrs(struct kvm_pgtable *pgt, u64 addr,
1213 u64 size, kvm_pte_t attr_set,
1214 kvm_pte_t attr_clr, kvm_pte_t *orig_pte,
1215 s8 *level, enum kvm_pgtable_walk_flags flags)
1217 int ret;
1218 kvm_pte_t attr_mask = KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI;
1219 struct stage2_attr_data data = {
1220 .attr_set = attr_set & attr_mask,
1221 .attr_clr = attr_clr & attr_mask,
1223 struct kvm_pgtable_walker walker = {
1224 .cb = stage2_attr_walker,
1225 .arg = &data,
1226 .flags = flags | KVM_PGTABLE_WALK_LEAF,
1229 ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1230 if (ret)
1231 return ret;
1233 if (orig_pte)
1234 *orig_pte = data.pte;
1236 if (level)
1237 *level = data.level;
1238 return 0;
1241 int kvm_pgtable_stage2_wrprotect(struct kvm_pgtable *pgt, u64 addr, u64 size)
1243 return stage2_update_leaf_attrs(pgt, addr, size, 0,
1244 KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W,
1245 NULL, NULL, 0);
1248 void kvm_pgtable_stage2_mkyoung(struct kvm_pgtable *pgt, u64 addr)
1250 int ret;
1252 ret = stage2_update_leaf_attrs(pgt, addr, 1, KVM_PTE_LEAF_ATTR_LO_S2_AF, 0,
1253 NULL, NULL,
1254 KVM_PGTABLE_WALK_HANDLE_FAULT |
1255 KVM_PGTABLE_WALK_SHARED);
1256 if (!ret)
1257 dsb(ishst);
1260 struct stage2_age_data {
1261 bool mkold;
1262 bool young;
1265 static int stage2_age_walker(const struct kvm_pgtable_visit_ctx *ctx,
1266 enum kvm_pgtable_walk_flags visit)
1268 kvm_pte_t new = ctx->old & ~KVM_PTE_LEAF_ATTR_LO_S2_AF;
1269 struct stage2_age_data *data = ctx->arg;
1271 if (!kvm_pte_valid(ctx->old) || new == ctx->old)
1272 return 0;
1274 data->young = true;
1277 * stage2_age_walker() is always called while holding the MMU lock for
1278 * write, so this will always succeed. Nonetheless, this deliberately
1279 * follows the race detection pattern of the other stage-2 walkers in
1280 * case the locking mechanics of the MMU notifiers is ever changed.
1282 if (data->mkold && !stage2_try_set_pte(ctx, new))
1283 return -EAGAIN;
1286 * "But where's the TLBI?!", you scream.
1287 * "Over in the core code", I sigh.
1289 * See the '->clear_flush_young()' callback on the KVM mmu notifier.
1291 return 0;
1294 bool kvm_pgtable_stage2_test_clear_young(struct kvm_pgtable *pgt, u64 addr,
1295 u64 size, bool mkold)
1297 struct stage2_age_data data = {
1298 .mkold = mkold,
1300 struct kvm_pgtable_walker walker = {
1301 .cb = stage2_age_walker,
1302 .arg = &data,
1303 .flags = KVM_PGTABLE_WALK_LEAF,
1306 WARN_ON(kvm_pgtable_walk(pgt, addr, size, &walker));
1307 return data.young;
1310 int kvm_pgtable_stage2_relax_perms(struct kvm_pgtable *pgt, u64 addr,
1311 enum kvm_pgtable_prot prot)
1313 int ret;
1314 s8 level;
1315 kvm_pte_t set = 0, clr = 0;
1317 if (prot & KVM_PTE_LEAF_ATTR_HI_SW)
1318 return -EINVAL;
1320 if (prot & KVM_PGTABLE_PROT_R)
1321 set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
1323 if (prot & KVM_PGTABLE_PROT_W)
1324 set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
1326 if (prot & KVM_PGTABLE_PROT_X)
1327 clr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
1329 ret = stage2_update_leaf_attrs(pgt, addr, 1, set, clr, NULL, &level,
1330 KVM_PGTABLE_WALK_HANDLE_FAULT |
1331 KVM_PGTABLE_WALK_SHARED);
1332 if (!ret || ret == -EAGAIN)
1333 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa_nsh, pgt->mmu, addr, level);
1334 return ret;
1337 static int stage2_flush_walker(const struct kvm_pgtable_visit_ctx *ctx,
1338 enum kvm_pgtable_walk_flags visit)
1340 struct kvm_pgtable *pgt = ctx->arg;
1341 struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
1343 if (!stage2_pte_cacheable(pgt, ctx->old))
1344 return 0;
1346 if (mm_ops->dcache_clean_inval_poc)
1347 mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops),
1348 kvm_granule_size(ctx->level));
1349 return 0;
1352 int kvm_pgtable_stage2_flush(struct kvm_pgtable *pgt, u64 addr, u64 size)
1354 struct kvm_pgtable_walker walker = {
1355 .cb = stage2_flush_walker,
1356 .flags = KVM_PGTABLE_WALK_LEAF,
1357 .arg = pgt,
1360 if (stage2_has_fwb(pgt))
1361 return 0;
1363 return kvm_pgtable_walk(pgt, addr, size, &walker);
1366 kvm_pte_t *kvm_pgtable_stage2_create_unlinked(struct kvm_pgtable *pgt,
1367 u64 phys, s8 level,
1368 enum kvm_pgtable_prot prot,
1369 void *mc, bool force_pte)
1371 struct stage2_map_data map_data = {
1372 .phys = phys,
1373 .mmu = pgt->mmu,
1374 .memcache = mc,
1375 .force_pte = force_pte,
1377 struct kvm_pgtable_walker walker = {
1378 .cb = stage2_map_walker,
1379 .flags = KVM_PGTABLE_WALK_LEAF |
1380 KVM_PGTABLE_WALK_SKIP_BBM_TLBI |
1381 KVM_PGTABLE_WALK_SKIP_CMO,
1382 .arg = &map_data,
1385 * The input address (.addr) is irrelevant for walking an
1386 * unlinked table. Construct an ambiguous IA range to map
1387 * kvm_granule_size(level) worth of memory.
1389 struct kvm_pgtable_walk_data data = {
1390 .walker = &walker,
1391 .addr = 0,
1392 .end = kvm_granule_size(level),
1394 struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
1395 kvm_pte_t *pgtable;
1396 int ret;
1398 if (!IS_ALIGNED(phys, kvm_granule_size(level)))
1399 return ERR_PTR(-EINVAL);
1401 ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
1402 if (ret)
1403 return ERR_PTR(ret);
1405 pgtable = mm_ops->zalloc_page(mc);
1406 if (!pgtable)
1407 return ERR_PTR(-ENOMEM);
1409 ret = __kvm_pgtable_walk(&data, mm_ops, (kvm_pteref_t)pgtable,
1410 level + 1);
1411 if (ret) {
1412 kvm_pgtable_stage2_free_unlinked(mm_ops, pgtable, level);
1413 return ERR_PTR(ret);
1416 return pgtable;
1420 * Get the number of page-tables needed to replace a block with a
1421 * fully populated tree up to the PTE entries. Note that @level is
1422 * interpreted as in "level @level entry".
1424 static int stage2_block_get_nr_page_tables(s8 level)
1426 switch (level) {
1427 case 1:
1428 return PTRS_PER_PTE + 1;
1429 case 2:
1430 return 1;
1431 case 3:
1432 return 0;
1433 default:
1434 WARN_ON_ONCE(level < KVM_PGTABLE_MIN_BLOCK_LEVEL ||
1435 level > KVM_PGTABLE_LAST_LEVEL);
1436 return -EINVAL;
1440 static int stage2_split_walker(const struct kvm_pgtable_visit_ctx *ctx,
1441 enum kvm_pgtable_walk_flags visit)
1443 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1444 struct kvm_mmu_memory_cache *mc = ctx->arg;
1445 struct kvm_s2_mmu *mmu;
1446 kvm_pte_t pte = ctx->old, new, *childp;
1447 enum kvm_pgtable_prot prot;
1448 s8 level = ctx->level;
1449 bool force_pte;
1450 int nr_pages;
1451 u64 phys;
1453 /* No huge-pages exist at the last level */
1454 if (level == KVM_PGTABLE_LAST_LEVEL)
1455 return 0;
1457 /* We only split valid block mappings */
1458 if (!kvm_pte_valid(pte))
1459 return 0;
1461 nr_pages = stage2_block_get_nr_page_tables(level);
1462 if (nr_pages < 0)
1463 return nr_pages;
1465 if (mc->nobjs >= nr_pages) {
1466 /* Build a tree mapped down to the PTE granularity. */
1467 force_pte = true;
1468 } else {
1470 * Don't force PTEs, so create_unlinked() below does
1471 * not populate the tree up to the PTE level. The
1472 * consequence is that the call will require a single
1473 * page of level 2 entries at level 1, or a single
1474 * page of PTEs at level 2. If we are at level 1, the
1475 * PTEs will be created recursively.
1477 force_pte = false;
1478 nr_pages = 1;
1481 if (mc->nobjs < nr_pages)
1482 return -ENOMEM;
1484 mmu = container_of(mc, struct kvm_s2_mmu, split_page_cache);
1485 phys = kvm_pte_to_phys(pte);
1486 prot = kvm_pgtable_stage2_pte_prot(pte);
1488 childp = kvm_pgtable_stage2_create_unlinked(mmu->pgt, phys,
1489 level, prot, mc, force_pte);
1490 if (IS_ERR(childp))
1491 return PTR_ERR(childp);
1493 if (!stage2_try_break_pte(ctx, mmu)) {
1494 kvm_pgtable_stage2_free_unlinked(mm_ops, childp, level);
1495 return -EAGAIN;
1499 * Note, the contents of the page table are guaranteed to be made
1500 * visible before the new PTE is assigned because stage2_make_pte()
1501 * writes the PTE using smp_store_release().
1503 new = kvm_init_table_pte(childp, mm_ops);
1504 stage2_make_pte(ctx, new);
1505 return 0;
1508 int kvm_pgtable_stage2_split(struct kvm_pgtable *pgt, u64 addr, u64 size,
1509 struct kvm_mmu_memory_cache *mc)
1511 struct kvm_pgtable_walker walker = {
1512 .cb = stage2_split_walker,
1513 .flags = KVM_PGTABLE_WALK_LEAF,
1514 .arg = mc,
1516 int ret;
1518 ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1519 dsb(ishst);
1520 return ret;
1523 int __kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm_s2_mmu *mmu,
1524 struct kvm_pgtable_mm_ops *mm_ops,
1525 enum kvm_pgtable_stage2_flags flags,
1526 kvm_pgtable_force_pte_cb_t force_pte_cb)
1528 size_t pgd_sz;
1529 u64 vtcr = mmu->vtcr;
1530 u32 ia_bits = VTCR_EL2_IPA(vtcr);
1531 u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
1532 s8 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
1534 pgd_sz = kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
1535 pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_pages_exact(pgd_sz);
1536 if (!pgt->pgd)
1537 return -ENOMEM;
1539 pgt->ia_bits = ia_bits;
1540 pgt->start_level = start_level;
1541 pgt->mm_ops = mm_ops;
1542 pgt->mmu = mmu;
1543 pgt->flags = flags;
1544 pgt->force_pte_cb = force_pte_cb;
1546 /* Ensure zeroed PGD pages are visible to the hardware walker */
1547 dsb(ishst);
1548 return 0;
1551 size_t kvm_pgtable_stage2_pgd_size(u64 vtcr)
1553 u32 ia_bits = VTCR_EL2_IPA(vtcr);
1554 u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
1555 s8 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
1557 return kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
1560 static int stage2_free_walker(const struct kvm_pgtable_visit_ctx *ctx,
1561 enum kvm_pgtable_walk_flags visit)
1563 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1565 if (!stage2_pte_is_counted(ctx->old))
1566 return 0;
1568 mm_ops->put_page(ctx->ptep);
1570 if (kvm_pte_table(ctx->old, ctx->level))
1571 mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops));
1573 return 0;
1576 void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt)
1578 size_t pgd_sz;
1579 struct kvm_pgtable_walker walker = {
1580 .cb = stage2_free_walker,
1581 .flags = KVM_PGTABLE_WALK_LEAF |
1582 KVM_PGTABLE_WALK_TABLE_POST,
1585 WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
1586 pgd_sz = kvm_pgd_pages(pgt->ia_bits, pgt->start_level) * PAGE_SIZE;
1587 pgt->mm_ops->free_pages_exact(kvm_dereference_pteref(&walker, pgt->pgd), pgd_sz);
1588 pgt->pgd = NULL;
1591 void kvm_pgtable_stage2_free_unlinked(struct kvm_pgtable_mm_ops *mm_ops, void *pgtable, s8 level)
1593 kvm_pteref_t ptep = (kvm_pteref_t)pgtable;
1594 struct kvm_pgtable_walker walker = {
1595 .cb = stage2_free_walker,
1596 .flags = KVM_PGTABLE_WALK_LEAF |
1597 KVM_PGTABLE_WALK_TABLE_POST,
1599 struct kvm_pgtable_walk_data data = {
1600 .walker = &walker,
1603 * At this point the IPA really doesn't matter, as the page
1604 * table being traversed has already been removed from the stage
1605 * 2. Set an appropriate range to cover the entire page table.
1607 .addr = 0,
1608 .end = kvm_granule_size(level),
1611 WARN_ON(__kvm_pgtable_walk(&data, mm_ops, ptep, level + 1));
1613 WARN_ON(mm_ops->page_count(pgtable) != 1);
1614 mm_ops->put_page(pgtable);