1 // SPDX-License-Identifier: GPL-2.0-only
3 * Stand-alone page-table allocator for hyp stage-1 and guest stage-2.
4 * No bombay mix was harmed in the writing of this file.
6 * Copyright (C) 2020 Google LLC
7 * Author: Will Deacon <will@kernel.org>
10 #include <linux/bitfield.h>
11 #include <asm/kvm_pgtable.h>
12 #include <asm/stage2_pgtable.h>
15 #define KVM_PTE_TYPE BIT(1)
16 #define KVM_PTE_TYPE_BLOCK 0
17 #define KVM_PTE_TYPE_PAGE 1
18 #define KVM_PTE_TYPE_TABLE 1
20 struct kvm_pgtable_walk_data
{
21 struct kvm_pgtable_walker
*walker
;
28 static bool kvm_pgtable_walk_skip_bbm_tlbi(const struct kvm_pgtable_visit_ctx
*ctx
)
30 return unlikely(ctx
->flags
& KVM_PGTABLE_WALK_SKIP_BBM_TLBI
);
33 static bool kvm_pgtable_walk_skip_cmo(const struct kvm_pgtable_visit_ctx
*ctx
)
35 return unlikely(ctx
->flags
& KVM_PGTABLE_WALK_SKIP_CMO
);
38 static bool kvm_phys_is_valid(u64 phys
)
40 u64 parange_max
= kvm_get_parange_max();
41 u8 shift
= id_aa64mmfr0_parange_to_phys_shift(parange_max
);
43 return phys
< BIT(shift
);
46 static bool kvm_block_mapping_supported(const struct kvm_pgtable_visit_ctx
*ctx
, u64 phys
)
48 u64 granule
= kvm_granule_size(ctx
->level
);
50 if (!kvm_level_supports_block_mapping(ctx
->level
))
53 if (granule
> (ctx
->end
- ctx
->addr
))
56 if (kvm_phys_is_valid(phys
) && !IS_ALIGNED(phys
, granule
))
59 return IS_ALIGNED(ctx
->addr
, granule
);
62 static u32
kvm_pgtable_idx(struct kvm_pgtable_walk_data
*data
, s8 level
)
64 u64 shift
= kvm_granule_shift(level
);
65 u64 mask
= BIT(PAGE_SHIFT
- 3) - 1;
67 return (data
->addr
>> shift
) & mask
;
70 static u32
kvm_pgd_page_idx(struct kvm_pgtable
*pgt
, u64 addr
)
72 u64 shift
= kvm_granule_shift(pgt
->start_level
- 1); /* May underflow */
73 u64 mask
= BIT(pgt
->ia_bits
) - 1;
75 return (addr
& mask
) >> shift
;
78 static u32
kvm_pgd_pages(u32 ia_bits
, s8 start_level
)
80 struct kvm_pgtable pgt
= {
82 .start_level
= start_level
,
85 return kvm_pgd_page_idx(&pgt
, -1ULL) + 1;
88 static bool kvm_pte_table(kvm_pte_t pte
, s8 level
)
90 if (level
== KVM_PGTABLE_LAST_LEVEL
)
93 if (!kvm_pte_valid(pte
))
96 return FIELD_GET(KVM_PTE_TYPE
, pte
) == KVM_PTE_TYPE_TABLE
;
99 static kvm_pte_t
*kvm_pte_follow(kvm_pte_t pte
, struct kvm_pgtable_mm_ops
*mm_ops
)
101 return mm_ops
->phys_to_virt(kvm_pte_to_phys(pte
));
104 static void kvm_clear_pte(kvm_pte_t
*ptep
)
106 WRITE_ONCE(*ptep
, 0);
109 static kvm_pte_t
kvm_init_table_pte(kvm_pte_t
*childp
, struct kvm_pgtable_mm_ops
*mm_ops
)
111 kvm_pte_t pte
= kvm_phys_to_pte(mm_ops
->virt_to_phys(childp
));
113 pte
|= FIELD_PREP(KVM_PTE_TYPE
, KVM_PTE_TYPE_TABLE
);
114 pte
|= KVM_PTE_VALID
;
118 static kvm_pte_t
kvm_init_valid_leaf_pte(u64 pa
, kvm_pte_t attr
, s8 level
)
120 kvm_pte_t pte
= kvm_phys_to_pte(pa
);
121 u64 type
= (level
== KVM_PGTABLE_LAST_LEVEL
) ? KVM_PTE_TYPE_PAGE
:
124 pte
|= attr
& (KVM_PTE_LEAF_ATTR_LO
| KVM_PTE_LEAF_ATTR_HI
);
125 pte
|= FIELD_PREP(KVM_PTE_TYPE
, type
);
126 pte
|= KVM_PTE_VALID
;
131 static kvm_pte_t
kvm_init_invalid_leaf_owner(u8 owner_id
)
133 return FIELD_PREP(KVM_INVALID_PTE_OWNER_MASK
, owner_id
);
136 static int kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data
*data
,
137 const struct kvm_pgtable_visit_ctx
*ctx
,
138 enum kvm_pgtable_walk_flags visit
)
140 struct kvm_pgtable_walker
*walker
= data
->walker
;
142 /* Ensure the appropriate lock is held (e.g. RCU lock for stage-2 MMU) */
143 WARN_ON_ONCE(kvm_pgtable_walk_shared(ctx
) && !kvm_pgtable_walk_lock_held());
144 return walker
->cb(ctx
, visit
);
147 static bool kvm_pgtable_walk_continue(const struct kvm_pgtable_walker
*walker
,
151 * Visitor callbacks return EAGAIN when the conditions that led to a
152 * fault are no longer reflected in the page tables due to a race to
153 * update a PTE. In the context of a fault handler this is interpreted
154 * as a signal to retry guest execution.
156 * Ignore the return code altogether for walkers outside a fault handler
157 * (e.g. write protecting a range of memory) and chug along with the
161 return !(walker
->flags
& KVM_PGTABLE_WALK_HANDLE_FAULT
);
166 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data
*data
,
167 struct kvm_pgtable_mm_ops
*mm_ops
, kvm_pteref_t pgtable
, s8 level
);
169 static inline int __kvm_pgtable_visit(struct kvm_pgtable_walk_data
*data
,
170 struct kvm_pgtable_mm_ops
*mm_ops
,
171 kvm_pteref_t pteref
, s8 level
)
173 enum kvm_pgtable_walk_flags flags
= data
->walker
->flags
;
174 kvm_pte_t
*ptep
= kvm_dereference_pteref(data
->walker
, pteref
);
175 struct kvm_pgtable_visit_ctx ctx
= {
177 .old
= READ_ONCE(*ptep
),
178 .arg
= data
->walker
->arg
,
180 .start
= data
->start
,
189 bool table
= kvm_pte_table(ctx
.old
, level
);
191 if (table
&& (ctx
.flags
& KVM_PGTABLE_WALK_TABLE_PRE
)) {
192 ret
= kvm_pgtable_visitor_cb(data
, &ctx
, KVM_PGTABLE_WALK_TABLE_PRE
);
196 if (!table
&& (ctx
.flags
& KVM_PGTABLE_WALK_LEAF
)) {
197 ret
= kvm_pgtable_visitor_cb(data
, &ctx
, KVM_PGTABLE_WALK_LEAF
);
202 * Reload the page table after invoking the walker callback for leaf
203 * entries or after pre-order traversal, to allow the walker to descend
204 * into a newly installed or replaced table.
207 ctx
.old
= READ_ONCE(*ptep
);
208 table
= kvm_pte_table(ctx
.old
, level
);
211 if (!kvm_pgtable_walk_continue(data
->walker
, ret
))
215 data
->addr
= ALIGN_DOWN(data
->addr
, kvm_granule_size(level
));
216 data
->addr
+= kvm_granule_size(level
);
220 childp
= (kvm_pteref_t
)kvm_pte_follow(ctx
.old
, mm_ops
);
221 ret
= __kvm_pgtable_walk(data
, mm_ops
, childp
, level
+ 1);
222 if (!kvm_pgtable_walk_continue(data
->walker
, ret
))
225 if (ctx
.flags
& KVM_PGTABLE_WALK_TABLE_POST
)
226 ret
= kvm_pgtable_visitor_cb(data
, &ctx
, KVM_PGTABLE_WALK_TABLE_POST
);
229 if (kvm_pgtable_walk_continue(data
->walker
, ret
))
235 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data
*data
,
236 struct kvm_pgtable_mm_ops
*mm_ops
, kvm_pteref_t pgtable
, s8 level
)
241 if (WARN_ON_ONCE(level
< KVM_PGTABLE_FIRST_LEVEL
||
242 level
> KVM_PGTABLE_LAST_LEVEL
))
245 for (idx
= kvm_pgtable_idx(data
, level
); idx
< PTRS_PER_PTE
; ++idx
) {
246 kvm_pteref_t pteref
= &pgtable
[idx
];
248 if (data
->addr
>= data
->end
)
251 ret
= __kvm_pgtable_visit(data
, mm_ops
, pteref
, level
);
259 static int _kvm_pgtable_walk(struct kvm_pgtable
*pgt
, struct kvm_pgtable_walk_data
*data
)
263 u64 limit
= BIT(pgt
->ia_bits
);
265 if (data
->addr
> limit
|| data
->end
> limit
)
271 for (idx
= kvm_pgd_page_idx(pgt
, data
->addr
); data
->addr
< data
->end
; ++idx
) {
272 kvm_pteref_t pteref
= &pgt
->pgd
[idx
* PTRS_PER_PTE
];
274 ret
= __kvm_pgtable_walk(data
, pgt
->mm_ops
, pteref
, pgt
->start_level
);
282 int kvm_pgtable_walk(struct kvm_pgtable
*pgt
, u64 addr
, u64 size
,
283 struct kvm_pgtable_walker
*walker
)
285 struct kvm_pgtable_walk_data walk_data
= {
286 .start
= ALIGN_DOWN(addr
, PAGE_SIZE
),
287 .addr
= ALIGN_DOWN(addr
, PAGE_SIZE
),
288 .end
= PAGE_ALIGN(walk_data
.addr
+ size
),
293 r
= kvm_pgtable_walk_begin(walker
);
297 r
= _kvm_pgtable_walk(pgt
, &walk_data
);
298 kvm_pgtable_walk_end(walker
);
303 struct leaf_walk_data
{
308 static int leaf_walker(const struct kvm_pgtable_visit_ctx
*ctx
,
309 enum kvm_pgtable_walk_flags visit
)
311 struct leaf_walk_data
*data
= ctx
->arg
;
313 data
->pte
= ctx
->old
;
314 data
->level
= ctx
->level
;
319 int kvm_pgtable_get_leaf(struct kvm_pgtable
*pgt
, u64 addr
,
320 kvm_pte_t
*ptep
, s8
*level
)
322 struct leaf_walk_data data
;
323 struct kvm_pgtable_walker walker
= {
325 .flags
= KVM_PGTABLE_WALK_LEAF
,
330 ret
= kvm_pgtable_walk(pgt
, ALIGN_DOWN(addr
, PAGE_SIZE
),
342 struct hyp_map_data
{
347 static int hyp_set_prot_attr(enum kvm_pgtable_prot prot
, kvm_pte_t
*ptep
)
349 bool device
= prot
& KVM_PGTABLE_PROT_DEVICE
;
350 u32 mtype
= device
? MT_DEVICE_nGnRE
: MT_NORMAL
;
351 kvm_pte_t attr
= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX
, mtype
);
352 u32 sh
= KVM_PTE_LEAF_ATTR_LO_S1_SH_IS
;
353 u32 ap
= (prot
& KVM_PGTABLE_PROT_W
) ? KVM_PTE_LEAF_ATTR_LO_S1_AP_RW
:
354 KVM_PTE_LEAF_ATTR_LO_S1_AP_RO
;
356 if (!(prot
& KVM_PGTABLE_PROT_R
))
359 if (prot
& KVM_PGTABLE_PROT_X
) {
360 if (prot
& KVM_PGTABLE_PROT_W
)
366 if (system_supports_bti_kernel())
367 attr
|= KVM_PTE_LEAF_ATTR_HI_S1_GP
;
369 attr
|= KVM_PTE_LEAF_ATTR_HI_S1_XN
;
372 attr
|= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_AP
, ap
);
373 if (!kvm_lpa2_is_enabled())
374 attr
|= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_SH
, sh
);
375 attr
|= KVM_PTE_LEAF_ATTR_LO_S1_AF
;
376 attr
|= prot
& KVM_PTE_LEAF_ATTR_HI_SW
;
382 enum kvm_pgtable_prot
kvm_pgtable_hyp_pte_prot(kvm_pte_t pte
)
384 enum kvm_pgtable_prot prot
= pte
& KVM_PTE_LEAF_ATTR_HI_SW
;
387 if (!kvm_pte_valid(pte
))
390 if (!(pte
& KVM_PTE_LEAF_ATTR_HI_S1_XN
))
391 prot
|= KVM_PGTABLE_PROT_X
;
393 ap
= FIELD_GET(KVM_PTE_LEAF_ATTR_LO_S1_AP
, pte
);
394 if (ap
== KVM_PTE_LEAF_ATTR_LO_S1_AP_RO
)
395 prot
|= KVM_PGTABLE_PROT_R
;
396 else if (ap
== KVM_PTE_LEAF_ATTR_LO_S1_AP_RW
)
397 prot
|= KVM_PGTABLE_PROT_RW
;
402 static bool hyp_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx
*ctx
,
403 struct hyp_map_data
*data
)
405 u64 phys
= data
->phys
+ (ctx
->addr
- ctx
->start
);
408 if (!kvm_block_mapping_supported(ctx
, phys
))
411 new = kvm_init_valid_leaf_pte(phys
, data
->attr
, ctx
->level
);
414 if (!kvm_pte_valid(ctx
->old
))
415 ctx
->mm_ops
->get_page(ctx
->ptep
);
416 else if (WARN_ON((ctx
->old
^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW
))
419 smp_store_release(ctx
->ptep
, new);
423 static int hyp_map_walker(const struct kvm_pgtable_visit_ctx
*ctx
,
424 enum kvm_pgtable_walk_flags visit
)
426 kvm_pte_t
*childp
, new;
427 struct hyp_map_data
*data
= ctx
->arg
;
428 struct kvm_pgtable_mm_ops
*mm_ops
= ctx
->mm_ops
;
430 if (hyp_map_walker_try_leaf(ctx
, data
))
433 if (WARN_ON(ctx
->level
== KVM_PGTABLE_LAST_LEVEL
))
436 childp
= (kvm_pte_t
*)mm_ops
->zalloc_page(NULL
);
440 new = kvm_init_table_pte(childp
, mm_ops
);
441 mm_ops
->get_page(ctx
->ptep
);
442 smp_store_release(ctx
->ptep
, new);
447 int kvm_pgtable_hyp_map(struct kvm_pgtable
*pgt
, u64 addr
, u64 size
, u64 phys
,
448 enum kvm_pgtable_prot prot
)
451 struct hyp_map_data map_data
= {
452 .phys
= ALIGN_DOWN(phys
, PAGE_SIZE
),
454 struct kvm_pgtable_walker walker
= {
455 .cb
= hyp_map_walker
,
456 .flags
= KVM_PGTABLE_WALK_LEAF
,
460 ret
= hyp_set_prot_attr(prot
, &map_data
.attr
);
464 ret
= kvm_pgtable_walk(pgt
, addr
, size
, &walker
);
470 static int hyp_unmap_walker(const struct kvm_pgtable_visit_ctx
*ctx
,
471 enum kvm_pgtable_walk_flags visit
)
473 kvm_pte_t
*childp
= NULL
;
474 u64 granule
= kvm_granule_size(ctx
->level
);
475 u64
*unmapped
= ctx
->arg
;
476 struct kvm_pgtable_mm_ops
*mm_ops
= ctx
->mm_ops
;
478 if (!kvm_pte_valid(ctx
->old
))
481 if (kvm_pte_table(ctx
->old
, ctx
->level
)) {
482 childp
= kvm_pte_follow(ctx
->old
, mm_ops
);
484 if (mm_ops
->page_count(childp
) != 1)
487 kvm_clear_pte(ctx
->ptep
);
489 __tlbi_level(vae2is
, __TLBI_VADDR(ctx
->addr
, 0), TLBI_TTL_UNKNOWN
);
491 if (ctx
->end
- ctx
->addr
< granule
)
494 kvm_clear_pte(ctx
->ptep
);
496 __tlbi_level(vale2is
, __TLBI_VADDR(ctx
->addr
, 0), ctx
->level
);
497 *unmapped
+= granule
;
502 mm_ops
->put_page(ctx
->ptep
);
505 mm_ops
->put_page(childp
);
510 u64
kvm_pgtable_hyp_unmap(struct kvm_pgtable
*pgt
, u64 addr
, u64 size
)
513 struct kvm_pgtable_walker walker
= {
514 .cb
= hyp_unmap_walker
,
516 .flags
= KVM_PGTABLE_WALK_LEAF
| KVM_PGTABLE_WALK_TABLE_POST
,
519 if (!pgt
->mm_ops
->page_count
)
522 kvm_pgtable_walk(pgt
, addr
, size
, &walker
);
526 int kvm_pgtable_hyp_init(struct kvm_pgtable
*pgt
, u32 va_bits
,
527 struct kvm_pgtable_mm_ops
*mm_ops
)
529 s8 start_level
= KVM_PGTABLE_LAST_LEVEL
+ 1 -
530 ARM64_HW_PGTABLE_LEVELS(va_bits
);
532 if (start_level
< KVM_PGTABLE_FIRST_LEVEL
||
533 start_level
> KVM_PGTABLE_LAST_LEVEL
)
536 pgt
->pgd
= (kvm_pteref_t
)mm_ops
->zalloc_page(NULL
);
540 pgt
->ia_bits
= va_bits
;
541 pgt
->start_level
= start_level
;
542 pgt
->mm_ops
= mm_ops
;
544 pgt
->force_pte_cb
= NULL
;
549 static int hyp_free_walker(const struct kvm_pgtable_visit_ctx
*ctx
,
550 enum kvm_pgtable_walk_flags visit
)
552 struct kvm_pgtable_mm_ops
*mm_ops
= ctx
->mm_ops
;
554 if (!kvm_pte_valid(ctx
->old
))
557 mm_ops
->put_page(ctx
->ptep
);
559 if (kvm_pte_table(ctx
->old
, ctx
->level
))
560 mm_ops
->put_page(kvm_pte_follow(ctx
->old
, mm_ops
));
565 void kvm_pgtable_hyp_destroy(struct kvm_pgtable
*pgt
)
567 struct kvm_pgtable_walker walker
= {
568 .cb
= hyp_free_walker
,
569 .flags
= KVM_PGTABLE_WALK_LEAF
| KVM_PGTABLE_WALK_TABLE_POST
,
572 WARN_ON(kvm_pgtable_walk(pgt
, 0, BIT(pgt
->ia_bits
), &walker
));
573 pgt
->mm_ops
->put_page(kvm_dereference_pteref(&walker
, pgt
->pgd
));
577 struct stage2_map_data
{
585 struct kvm_s2_mmu
*mmu
;
588 /* Force mappings to page granularity */
592 u64
kvm_get_vtcr(u64 mmfr0
, u64 mmfr1
, u32 phys_shift
)
594 u64 vtcr
= VTCR_EL2_FLAGS
;
597 vtcr
|= kvm_get_parange(mmfr0
) << VTCR_EL2_PS_SHIFT
;
598 vtcr
|= VTCR_EL2_T0SZ(phys_shift
);
600 * Use a minimum 2 level page table to prevent splitting
601 * host PMD huge pages at stage2.
603 lvls
= stage2_pgtable_levels(phys_shift
);
608 * When LPA2 is enabled, the HW supports an extra level of translation
609 * (for 5 in total) when using 4K pages. It also introduces VTCR_EL2.SL2
610 * to as an addition to SL0 to enable encoding this extra start level.
611 * However, since we always use concatenated pages for the first level
612 * lookup, we will never need this extra level and therefore do not need
615 vtcr
|= VTCR_EL2_LVLS_TO_SL0(lvls
);
617 #ifdef CONFIG_ARM64_HW_AFDBM
619 * Enable the Hardware Access Flag management, unconditionally
620 * on all CPUs. In systems that have asymmetric support for the feature
621 * this allows KVM to leverage hardware support on the subset of cores
622 * that implement the feature.
624 * The architecture requires VTCR_EL2.HA to be RES0 (thus ignored by
625 * hardware) on implementations that do not advertise support for the
626 * feature. As such, setting HA unconditionally is safe, unless you
627 * happen to be running on a design that has unadvertised support for
628 * HAFDBS. Here be dragons.
630 if (!cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38
))
632 #endif /* CONFIG_ARM64_HW_AFDBM */
634 if (kvm_lpa2_is_enabled())
637 /* Set the vmid bits */
638 vtcr
|= (get_vmid_bits(mmfr1
) == 16) ?
645 static bool stage2_has_fwb(struct kvm_pgtable
*pgt
)
647 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB
))
650 return !(pgt
->flags
& KVM_PGTABLE_S2_NOFWB
);
653 void kvm_tlb_flush_vmid_range(struct kvm_s2_mmu
*mmu
,
654 phys_addr_t addr
, size_t size
)
656 unsigned long pages
, inval_pages
;
658 if (!system_supports_tlb_range()) {
659 kvm_call_hyp(__kvm_tlb_flush_vmid
, mmu
);
663 pages
= size
>> PAGE_SHIFT
;
665 inval_pages
= min(pages
, MAX_TLBI_RANGE_PAGES
);
666 kvm_call_hyp(__kvm_tlb_flush_vmid_range
, mmu
, addr
, inval_pages
);
668 addr
+= inval_pages
<< PAGE_SHIFT
;
669 pages
-= inval_pages
;
673 #define KVM_S2_MEMATTR(pgt, attr) PAGE_S2_MEMATTR(attr, stage2_has_fwb(pgt))
675 static int stage2_set_prot_attr(struct kvm_pgtable
*pgt
, enum kvm_pgtable_prot prot
,
679 u32 sh
= KVM_PTE_LEAF_ATTR_LO_S2_SH_IS
;
681 switch (prot
& (KVM_PGTABLE_PROT_DEVICE
|
682 KVM_PGTABLE_PROT_NORMAL_NC
)) {
683 case KVM_PGTABLE_PROT_DEVICE
| KVM_PGTABLE_PROT_NORMAL_NC
:
685 case KVM_PGTABLE_PROT_DEVICE
:
686 if (prot
& KVM_PGTABLE_PROT_X
)
688 attr
= KVM_S2_MEMATTR(pgt
, DEVICE_nGnRE
);
690 case KVM_PGTABLE_PROT_NORMAL_NC
:
691 if (prot
& KVM_PGTABLE_PROT_X
)
693 attr
= KVM_S2_MEMATTR(pgt
, NORMAL_NC
);
696 attr
= KVM_S2_MEMATTR(pgt
, NORMAL
);
699 if (!(prot
& KVM_PGTABLE_PROT_X
))
700 attr
|= KVM_PTE_LEAF_ATTR_HI_S2_XN
;
702 if (prot
& KVM_PGTABLE_PROT_R
)
703 attr
|= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R
;
705 if (prot
& KVM_PGTABLE_PROT_W
)
706 attr
|= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W
;
708 if (!kvm_lpa2_is_enabled())
709 attr
|= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S2_SH
, sh
);
711 attr
|= KVM_PTE_LEAF_ATTR_LO_S2_AF
;
712 attr
|= prot
& KVM_PTE_LEAF_ATTR_HI_SW
;
718 enum kvm_pgtable_prot
kvm_pgtable_stage2_pte_prot(kvm_pte_t pte
)
720 enum kvm_pgtable_prot prot
= pte
& KVM_PTE_LEAF_ATTR_HI_SW
;
722 if (!kvm_pte_valid(pte
))
725 if (pte
& KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R
)
726 prot
|= KVM_PGTABLE_PROT_R
;
727 if (pte
& KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W
)
728 prot
|= KVM_PGTABLE_PROT_W
;
729 if (!(pte
& KVM_PTE_LEAF_ATTR_HI_S2_XN
))
730 prot
|= KVM_PGTABLE_PROT_X
;
735 static bool stage2_pte_needs_update(kvm_pte_t old
, kvm_pte_t
new)
737 if (!kvm_pte_valid(old
) || !kvm_pte_valid(new))
740 return ((old
^ new) & (~KVM_PTE_LEAF_ATTR_S2_PERMS
));
743 static bool stage2_pte_is_counted(kvm_pte_t pte
)
746 * The refcount tracks valid entries as well as invalid entries if they
747 * encode ownership of a page to another entity than the page-table
748 * owner, whose id is 0.
753 static bool stage2_pte_is_locked(kvm_pte_t pte
)
755 return !kvm_pte_valid(pte
) && (pte
& KVM_INVALID_PTE_LOCKED
);
758 static bool stage2_try_set_pte(const struct kvm_pgtable_visit_ctx
*ctx
, kvm_pte_t
new)
760 if (!kvm_pgtable_walk_shared(ctx
)) {
761 WRITE_ONCE(*ctx
->ptep
, new);
765 return cmpxchg(ctx
->ptep
, ctx
->old
, new) == ctx
->old
;
769 * stage2_try_break_pte() - Invalidates a pte according to the
770 * 'break-before-make' requirements of the
773 * @ctx: context of the visited pte.
776 * Returns: true if the pte was successfully broken.
778 * If the removed pte was valid, performs the necessary serialization and TLB
779 * invalidation for the old value. For counted ptes, drops the reference count
780 * on the containing table page.
782 static bool stage2_try_break_pte(const struct kvm_pgtable_visit_ctx
*ctx
,
783 struct kvm_s2_mmu
*mmu
)
785 struct kvm_pgtable_mm_ops
*mm_ops
= ctx
->mm_ops
;
787 if (stage2_pte_is_locked(ctx
->old
)) {
789 * Should never occur if this walker has exclusive access to the
792 WARN_ON(!kvm_pgtable_walk_shared(ctx
));
796 if (!stage2_try_set_pte(ctx
, KVM_INVALID_PTE_LOCKED
))
799 if (!kvm_pgtable_walk_skip_bbm_tlbi(ctx
)) {
801 * Perform the appropriate TLB invalidation based on the
802 * evicted pte value (if any).
804 if (kvm_pte_table(ctx
->old
, ctx
->level
)) {
805 u64 size
= kvm_granule_size(ctx
->level
);
806 u64 addr
= ALIGN_DOWN(ctx
->addr
, size
);
808 kvm_tlb_flush_vmid_range(mmu
, addr
, size
);
809 } else if (kvm_pte_valid(ctx
->old
)) {
810 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa
, mmu
,
811 ctx
->addr
, ctx
->level
);
815 if (stage2_pte_is_counted(ctx
->old
))
816 mm_ops
->put_page(ctx
->ptep
);
821 static void stage2_make_pte(const struct kvm_pgtable_visit_ctx
*ctx
, kvm_pte_t
new)
823 struct kvm_pgtable_mm_ops
*mm_ops
= ctx
->mm_ops
;
825 WARN_ON(!stage2_pte_is_locked(*ctx
->ptep
));
827 if (stage2_pte_is_counted(new))
828 mm_ops
->get_page(ctx
->ptep
);
830 smp_store_release(ctx
->ptep
, new);
833 static bool stage2_unmap_defer_tlb_flush(struct kvm_pgtable
*pgt
)
836 * If FEAT_TLBIRANGE is implemented, defer the individual
837 * TLB invalidations until the entire walk is finished, and
838 * then use the range-based TLBI instructions to do the
839 * invalidations. Condition deferred TLB invalidation on the
840 * system supporting FWB as the optimization is entirely
841 * pointless when the unmap walker needs to perform CMOs.
843 return system_supports_tlb_range() && stage2_has_fwb(pgt
);
846 static void stage2_unmap_put_pte(const struct kvm_pgtable_visit_ctx
*ctx
,
847 struct kvm_s2_mmu
*mmu
,
848 struct kvm_pgtable_mm_ops
*mm_ops
)
850 struct kvm_pgtable
*pgt
= ctx
->arg
;
853 * Clear the existing PTE, and perform break-before-make if it was
854 * valid. Depending on the system support, defer the TLB maintenance
855 * for the same until the entire unmap walk is completed.
857 if (kvm_pte_valid(ctx
->old
)) {
858 kvm_clear_pte(ctx
->ptep
);
860 if (kvm_pte_table(ctx
->old
, ctx
->level
)) {
861 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa
, mmu
, ctx
->addr
,
863 } else if (!stage2_unmap_defer_tlb_flush(pgt
)) {
864 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa
, mmu
, ctx
->addr
,
869 mm_ops
->put_page(ctx
->ptep
);
872 static bool stage2_pte_cacheable(struct kvm_pgtable
*pgt
, kvm_pte_t pte
)
874 u64 memattr
= pte
& KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR
;
875 return kvm_pte_valid(pte
) && memattr
== KVM_S2_MEMATTR(pgt
, NORMAL
);
878 static bool stage2_pte_executable(kvm_pte_t pte
)
880 return kvm_pte_valid(pte
) && !(pte
& KVM_PTE_LEAF_ATTR_HI_S2_XN
);
883 static u64
stage2_map_walker_phys_addr(const struct kvm_pgtable_visit_ctx
*ctx
,
884 const struct stage2_map_data
*data
)
886 u64 phys
= data
->phys
;
889 * Stage-2 walks to update ownership data are communicated to the map
890 * walker using an invalid PA. Avoid offsetting an already invalid PA,
891 * which could overflow and make the address valid again.
893 if (!kvm_phys_is_valid(phys
))
897 * Otherwise, work out the correct PA based on how far the walk has
900 return phys
+ (ctx
->addr
- ctx
->start
);
903 static bool stage2_leaf_mapping_allowed(const struct kvm_pgtable_visit_ctx
*ctx
,
904 struct stage2_map_data
*data
)
906 u64 phys
= stage2_map_walker_phys_addr(ctx
, data
);
908 if (data
->force_pte
&& ctx
->level
< KVM_PGTABLE_LAST_LEVEL
)
911 return kvm_block_mapping_supported(ctx
, phys
);
914 static int stage2_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx
*ctx
,
915 struct stage2_map_data
*data
)
918 u64 phys
= stage2_map_walker_phys_addr(ctx
, data
);
919 u64 granule
= kvm_granule_size(ctx
->level
);
920 struct kvm_pgtable
*pgt
= data
->mmu
->pgt
;
921 struct kvm_pgtable_mm_ops
*mm_ops
= ctx
->mm_ops
;
923 if (!stage2_leaf_mapping_allowed(ctx
, data
))
926 if (kvm_phys_is_valid(phys
))
927 new = kvm_init_valid_leaf_pte(phys
, data
->attr
, ctx
->level
);
929 new = kvm_init_invalid_leaf_owner(data
->owner_id
);
932 * Skip updating the PTE if we are trying to recreate the exact
933 * same mapping or only change the access permissions. Instead,
934 * the vCPU will exit one more time from guest if still needed
935 * and then go through the path of relaxing permissions.
937 if (!stage2_pte_needs_update(ctx
->old
, new))
940 /* If we're only changing software bits, then store them and go! */
941 if (!kvm_pgtable_walk_shared(ctx
) &&
942 !((ctx
->old
^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW
)) {
943 bool old_is_counted
= stage2_pte_is_counted(ctx
->old
);
945 if (old_is_counted
!= stage2_pte_is_counted(new)) {
947 mm_ops
->put_page(ctx
->ptep
);
949 mm_ops
->get_page(ctx
->ptep
);
951 WARN_ON_ONCE(!stage2_try_set_pte(ctx
, new));
955 if (!stage2_try_break_pte(ctx
, data
->mmu
))
958 /* Perform CMOs before installation of the guest stage-2 PTE */
959 if (!kvm_pgtable_walk_skip_cmo(ctx
) && mm_ops
->dcache_clean_inval_poc
&&
960 stage2_pte_cacheable(pgt
, new))
961 mm_ops
->dcache_clean_inval_poc(kvm_pte_follow(new, mm_ops
),
964 if (!kvm_pgtable_walk_skip_cmo(ctx
) && mm_ops
->icache_inval_pou
&&
965 stage2_pte_executable(new))
966 mm_ops
->icache_inval_pou(kvm_pte_follow(new, mm_ops
), granule
);
968 stage2_make_pte(ctx
, new);
973 static int stage2_map_walk_table_pre(const struct kvm_pgtable_visit_ctx
*ctx
,
974 struct stage2_map_data
*data
)
976 struct kvm_pgtable_mm_ops
*mm_ops
= ctx
->mm_ops
;
977 kvm_pte_t
*childp
= kvm_pte_follow(ctx
->old
, mm_ops
);
980 if (!stage2_leaf_mapping_allowed(ctx
, data
))
983 ret
= stage2_map_walker_try_leaf(ctx
, data
);
987 mm_ops
->free_unlinked_table(childp
, ctx
->level
);
991 static int stage2_map_walk_leaf(const struct kvm_pgtable_visit_ctx
*ctx
,
992 struct stage2_map_data
*data
)
994 struct kvm_pgtable_mm_ops
*mm_ops
= ctx
->mm_ops
;
995 kvm_pte_t
*childp
, new;
998 ret
= stage2_map_walker_try_leaf(ctx
, data
);
1002 if (WARN_ON(ctx
->level
== KVM_PGTABLE_LAST_LEVEL
))
1005 if (!data
->memcache
)
1008 childp
= mm_ops
->zalloc_page(data
->memcache
);
1012 if (!stage2_try_break_pte(ctx
, data
->mmu
)) {
1013 mm_ops
->put_page(childp
);
1018 * If we've run into an existing block mapping then replace it with
1019 * a table. Accesses beyond 'end' that fall within the new table
1020 * will be mapped lazily.
1022 new = kvm_init_table_pte(childp
, mm_ops
);
1023 stage2_make_pte(ctx
, new);
1029 * The TABLE_PRE callback runs for table entries on the way down, looking
1030 * for table entries which we could conceivably replace with a block entry
1031 * for this mapping. If it finds one it replaces the entry and calls
1032 * kvm_pgtable_mm_ops::free_unlinked_table() to tear down the detached table.
1034 * Otherwise, the LEAF callback performs the mapping at the existing leaves
1037 static int stage2_map_walker(const struct kvm_pgtable_visit_ctx
*ctx
,
1038 enum kvm_pgtable_walk_flags visit
)
1040 struct stage2_map_data
*data
= ctx
->arg
;
1043 case KVM_PGTABLE_WALK_TABLE_PRE
:
1044 return stage2_map_walk_table_pre(ctx
, data
);
1045 case KVM_PGTABLE_WALK_LEAF
:
1046 return stage2_map_walk_leaf(ctx
, data
);
1052 int kvm_pgtable_stage2_map(struct kvm_pgtable
*pgt
, u64 addr
, u64 size
,
1053 u64 phys
, enum kvm_pgtable_prot prot
,
1054 void *mc
, enum kvm_pgtable_walk_flags flags
)
1057 struct stage2_map_data map_data
= {
1058 .phys
= ALIGN_DOWN(phys
, PAGE_SIZE
),
1061 .force_pte
= pgt
->force_pte_cb
&& pgt
->force_pte_cb(addr
, addr
+ size
, prot
),
1063 struct kvm_pgtable_walker walker
= {
1064 .cb
= stage2_map_walker
,
1066 KVM_PGTABLE_WALK_TABLE_PRE
|
1067 KVM_PGTABLE_WALK_LEAF
,
1071 if (WARN_ON((pgt
->flags
& KVM_PGTABLE_S2_IDMAP
) && (addr
!= phys
)))
1074 ret
= stage2_set_prot_attr(pgt
, prot
, &map_data
.attr
);
1078 ret
= kvm_pgtable_walk(pgt
, addr
, size
, &walker
);
1083 int kvm_pgtable_stage2_set_owner(struct kvm_pgtable
*pgt
, u64 addr
, u64 size
,
1084 void *mc
, u8 owner_id
)
1087 struct stage2_map_data map_data
= {
1088 .phys
= KVM_PHYS_INVALID
,
1091 .owner_id
= owner_id
,
1094 struct kvm_pgtable_walker walker
= {
1095 .cb
= stage2_map_walker
,
1096 .flags
= KVM_PGTABLE_WALK_TABLE_PRE
|
1097 KVM_PGTABLE_WALK_LEAF
,
1101 if (owner_id
> KVM_MAX_OWNER_ID
)
1104 ret
= kvm_pgtable_walk(pgt
, addr
, size
, &walker
);
1108 static int stage2_unmap_walker(const struct kvm_pgtable_visit_ctx
*ctx
,
1109 enum kvm_pgtable_walk_flags visit
)
1111 struct kvm_pgtable
*pgt
= ctx
->arg
;
1112 struct kvm_s2_mmu
*mmu
= pgt
->mmu
;
1113 struct kvm_pgtable_mm_ops
*mm_ops
= ctx
->mm_ops
;
1114 kvm_pte_t
*childp
= NULL
;
1115 bool need_flush
= false;
1117 if (!kvm_pte_valid(ctx
->old
)) {
1118 if (stage2_pte_is_counted(ctx
->old
)) {
1119 kvm_clear_pte(ctx
->ptep
);
1120 mm_ops
->put_page(ctx
->ptep
);
1125 if (kvm_pte_table(ctx
->old
, ctx
->level
)) {
1126 childp
= kvm_pte_follow(ctx
->old
, mm_ops
);
1128 if (mm_ops
->page_count(childp
) != 1)
1130 } else if (stage2_pte_cacheable(pgt
, ctx
->old
)) {
1131 need_flush
= !stage2_has_fwb(pgt
);
1135 * This is similar to the map() path in that we unmap the entire
1136 * block entry and rely on the remaining portions being faulted
1139 stage2_unmap_put_pte(ctx
, mmu
, mm_ops
);
1141 if (need_flush
&& mm_ops
->dcache_clean_inval_poc
)
1142 mm_ops
->dcache_clean_inval_poc(kvm_pte_follow(ctx
->old
, mm_ops
),
1143 kvm_granule_size(ctx
->level
));
1146 mm_ops
->put_page(childp
);
1151 int kvm_pgtable_stage2_unmap(struct kvm_pgtable
*pgt
, u64 addr
, u64 size
)
1154 struct kvm_pgtable_walker walker
= {
1155 .cb
= stage2_unmap_walker
,
1157 .flags
= KVM_PGTABLE_WALK_LEAF
| KVM_PGTABLE_WALK_TABLE_POST
,
1160 ret
= kvm_pgtable_walk(pgt
, addr
, size
, &walker
);
1161 if (stage2_unmap_defer_tlb_flush(pgt
))
1162 /* Perform the deferred TLB invalidations */
1163 kvm_tlb_flush_vmid_range(pgt
->mmu
, addr
, size
);
1168 struct stage2_attr_data
{
1175 static int stage2_attr_walker(const struct kvm_pgtable_visit_ctx
*ctx
,
1176 enum kvm_pgtable_walk_flags visit
)
1178 kvm_pte_t pte
= ctx
->old
;
1179 struct stage2_attr_data
*data
= ctx
->arg
;
1180 struct kvm_pgtable_mm_ops
*mm_ops
= ctx
->mm_ops
;
1182 if (!kvm_pte_valid(ctx
->old
))
1185 data
->level
= ctx
->level
;
1187 pte
&= ~data
->attr_clr
;
1188 pte
|= data
->attr_set
;
1191 * We may race with the CPU trying to set the access flag here,
1192 * but worst-case the access flag update gets lost and will be
1193 * set on the next access instead.
1195 if (data
->pte
!= pte
) {
1197 * Invalidate instruction cache before updating the guest
1198 * stage-2 PTE if we are going to add executable permission.
1200 if (mm_ops
->icache_inval_pou
&&
1201 stage2_pte_executable(pte
) && !stage2_pte_executable(ctx
->old
))
1202 mm_ops
->icache_inval_pou(kvm_pte_follow(pte
, mm_ops
),
1203 kvm_granule_size(ctx
->level
));
1205 if (!stage2_try_set_pte(ctx
, pte
))
1212 static int stage2_update_leaf_attrs(struct kvm_pgtable
*pgt
, u64 addr
,
1213 u64 size
, kvm_pte_t attr_set
,
1214 kvm_pte_t attr_clr
, kvm_pte_t
*orig_pte
,
1215 s8
*level
, enum kvm_pgtable_walk_flags flags
)
1218 kvm_pte_t attr_mask
= KVM_PTE_LEAF_ATTR_LO
| KVM_PTE_LEAF_ATTR_HI
;
1219 struct stage2_attr_data data
= {
1220 .attr_set
= attr_set
& attr_mask
,
1221 .attr_clr
= attr_clr
& attr_mask
,
1223 struct kvm_pgtable_walker walker
= {
1224 .cb
= stage2_attr_walker
,
1226 .flags
= flags
| KVM_PGTABLE_WALK_LEAF
,
1229 ret
= kvm_pgtable_walk(pgt
, addr
, size
, &walker
);
1234 *orig_pte
= data
.pte
;
1237 *level
= data
.level
;
1241 int kvm_pgtable_stage2_wrprotect(struct kvm_pgtable
*pgt
, u64 addr
, u64 size
)
1243 return stage2_update_leaf_attrs(pgt
, addr
, size
, 0,
1244 KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W
,
1248 void kvm_pgtable_stage2_mkyoung(struct kvm_pgtable
*pgt
, u64 addr
)
1252 ret
= stage2_update_leaf_attrs(pgt
, addr
, 1, KVM_PTE_LEAF_ATTR_LO_S2_AF
, 0,
1254 KVM_PGTABLE_WALK_HANDLE_FAULT
|
1255 KVM_PGTABLE_WALK_SHARED
);
1260 struct stage2_age_data
{
1265 static int stage2_age_walker(const struct kvm_pgtable_visit_ctx
*ctx
,
1266 enum kvm_pgtable_walk_flags visit
)
1268 kvm_pte_t
new = ctx
->old
& ~KVM_PTE_LEAF_ATTR_LO_S2_AF
;
1269 struct stage2_age_data
*data
= ctx
->arg
;
1271 if (!kvm_pte_valid(ctx
->old
) || new == ctx
->old
)
1277 * stage2_age_walker() is always called while holding the MMU lock for
1278 * write, so this will always succeed. Nonetheless, this deliberately
1279 * follows the race detection pattern of the other stage-2 walkers in
1280 * case the locking mechanics of the MMU notifiers is ever changed.
1282 if (data
->mkold
&& !stage2_try_set_pte(ctx
, new))
1286 * "But where's the TLBI?!", you scream.
1287 * "Over in the core code", I sigh.
1289 * See the '->clear_flush_young()' callback on the KVM mmu notifier.
1294 bool kvm_pgtable_stage2_test_clear_young(struct kvm_pgtable
*pgt
, u64 addr
,
1295 u64 size
, bool mkold
)
1297 struct stage2_age_data data
= {
1300 struct kvm_pgtable_walker walker
= {
1301 .cb
= stage2_age_walker
,
1303 .flags
= KVM_PGTABLE_WALK_LEAF
,
1306 WARN_ON(kvm_pgtable_walk(pgt
, addr
, size
, &walker
));
1310 int kvm_pgtable_stage2_relax_perms(struct kvm_pgtable
*pgt
, u64 addr
,
1311 enum kvm_pgtable_prot prot
)
1315 kvm_pte_t set
= 0, clr
= 0;
1317 if (prot
& KVM_PTE_LEAF_ATTR_HI_SW
)
1320 if (prot
& KVM_PGTABLE_PROT_R
)
1321 set
|= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R
;
1323 if (prot
& KVM_PGTABLE_PROT_W
)
1324 set
|= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W
;
1326 if (prot
& KVM_PGTABLE_PROT_X
)
1327 clr
|= KVM_PTE_LEAF_ATTR_HI_S2_XN
;
1329 ret
= stage2_update_leaf_attrs(pgt
, addr
, 1, set
, clr
, NULL
, &level
,
1330 KVM_PGTABLE_WALK_HANDLE_FAULT
|
1331 KVM_PGTABLE_WALK_SHARED
);
1332 if (!ret
|| ret
== -EAGAIN
)
1333 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa_nsh
, pgt
->mmu
, addr
, level
);
1337 static int stage2_flush_walker(const struct kvm_pgtable_visit_ctx
*ctx
,
1338 enum kvm_pgtable_walk_flags visit
)
1340 struct kvm_pgtable
*pgt
= ctx
->arg
;
1341 struct kvm_pgtable_mm_ops
*mm_ops
= pgt
->mm_ops
;
1343 if (!stage2_pte_cacheable(pgt
, ctx
->old
))
1346 if (mm_ops
->dcache_clean_inval_poc
)
1347 mm_ops
->dcache_clean_inval_poc(kvm_pte_follow(ctx
->old
, mm_ops
),
1348 kvm_granule_size(ctx
->level
));
1352 int kvm_pgtable_stage2_flush(struct kvm_pgtable
*pgt
, u64 addr
, u64 size
)
1354 struct kvm_pgtable_walker walker
= {
1355 .cb
= stage2_flush_walker
,
1356 .flags
= KVM_PGTABLE_WALK_LEAF
,
1360 if (stage2_has_fwb(pgt
))
1363 return kvm_pgtable_walk(pgt
, addr
, size
, &walker
);
1366 kvm_pte_t
*kvm_pgtable_stage2_create_unlinked(struct kvm_pgtable
*pgt
,
1368 enum kvm_pgtable_prot prot
,
1369 void *mc
, bool force_pte
)
1371 struct stage2_map_data map_data
= {
1375 .force_pte
= force_pte
,
1377 struct kvm_pgtable_walker walker
= {
1378 .cb
= stage2_map_walker
,
1379 .flags
= KVM_PGTABLE_WALK_LEAF
|
1380 KVM_PGTABLE_WALK_SKIP_BBM_TLBI
|
1381 KVM_PGTABLE_WALK_SKIP_CMO
,
1385 * The input address (.addr) is irrelevant for walking an
1386 * unlinked table. Construct an ambiguous IA range to map
1387 * kvm_granule_size(level) worth of memory.
1389 struct kvm_pgtable_walk_data data
= {
1392 .end
= kvm_granule_size(level
),
1394 struct kvm_pgtable_mm_ops
*mm_ops
= pgt
->mm_ops
;
1398 if (!IS_ALIGNED(phys
, kvm_granule_size(level
)))
1399 return ERR_PTR(-EINVAL
);
1401 ret
= stage2_set_prot_attr(pgt
, prot
, &map_data
.attr
);
1403 return ERR_PTR(ret
);
1405 pgtable
= mm_ops
->zalloc_page(mc
);
1407 return ERR_PTR(-ENOMEM
);
1409 ret
= __kvm_pgtable_walk(&data
, mm_ops
, (kvm_pteref_t
)pgtable
,
1412 kvm_pgtable_stage2_free_unlinked(mm_ops
, pgtable
, level
);
1413 return ERR_PTR(ret
);
1420 * Get the number of page-tables needed to replace a block with a
1421 * fully populated tree up to the PTE entries. Note that @level is
1422 * interpreted as in "level @level entry".
1424 static int stage2_block_get_nr_page_tables(s8 level
)
1428 return PTRS_PER_PTE
+ 1;
1434 WARN_ON_ONCE(level
< KVM_PGTABLE_MIN_BLOCK_LEVEL
||
1435 level
> KVM_PGTABLE_LAST_LEVEL
);
1440 static int stage2_split_walker(const struct kvm_pgtable_visit_ctx
*ctx
,
1441 enum kvm_pgtable_walk_flags visit
)
1443 struct kvm_pgtable_mm_ops
*mm_ops
= ctx
->mm_ops
;
1444 struct kvm_mmu_memory_cache
*mc
= ctx
->arg
;
1445 struct kvm_s2_mmu
*mmu
;
1446 kvm_pte_t pte
= ctx
->old
, new, *childp
;
1447 enum kvm_pgtable_prot prot
;
1448 s8 level
= ctx
->level
;
1453 /* No huge-pages exist at the last level */
1454 if (level
== KVM_PGTABLE_LAST_LEVEL
)
1457 /* We only split valid block mappings */
1458 if (!kvm_pte_valid(pte
))
1461 nr_pages
= stage2_block_get_nr_page_tables(level
);
1465 if (mc
->nobjs
>= nr_pages
) {
1466 /* Build a tree mapped down to the PTE granularity. */
1470 * Don't force PTEs, so create_unlinked() below does
1471 * not populate the tree up to the PTE level. The
1472 * consequence is that the call will require a single
1473 * page of level 2 entries at level 1, or a single
1474 * page of PTEs at level 2. If we are at level 1, the
1475 * PTEs will be created recursively.
1481 if (mc
->nobjs
< nr_pages
)
1484 mmu
= container_of(mc
, struct kvm_s2_mmu
, split_page_cache
);
1485 phys
= kvm_pte_to_phys(pte
);
1486 prot
= kvm_pgtable_stage2_pte_prot(pte
);
1488 childp
= kvm_pgtable_stage2_create_unlinked(mmu
->pgt
, phys
,
1489 level
, prot
, mc
, force_pte
);
1491 return PTR_ERR(childp
);
1493 if (!stage2_try_break_pte(ctx
, mmu
)) {
1494 kvm_pgtable_stage2_free_unlinked(mm_ops
, childp
, level
);
1499 * Note, the contents of the page table are guaranteed to be made
1500 * visible before the new PTE is assigned because stage2_make_pte()
1501 * writes the PTE using smp_store_release().
1503 new = kvm_init_table_pte(childp
, mm_ops
);
1504 stage2_make_pte(ctx
, new);
1508 int kvm_pgtable_stage2_split(struct kvm_pgtable
*pgt
, u64 addr
, u64 size
,
1509 struct kvm_mmu_memory_cache
*mc
)
1511 struct kvm_pgtable_walker walker
= {
1512 .cb
= stage2_split_walker
,
1513 .flags
= KVM_PGTABLE_WALK_LEAF
,
1518 ret
= kvm_pgtable_walk(pgt
, addr
, size
, &walker
);
1523 int __kvm_pgtable_stage2_init(struct kvm_pgtable
*pgt
, struct kvm_s2_mmu
*mmu
,
1524 struct kvm_pgtable_mm_ops
*mm_ops
,
1525 enum kvm_pgtable_stage2_flags flags
,
1526 kvm_pgtable_force_pte_cb_t force_pte_cb
)
1529 u64 vtcr
= mmu
->vtcr
;
1530 u32 ia_bits
= VTCR_EL2_IPA(vtcr
);
1531 u32 sl0
= FIELD_GET(VTCR_EL2_SL0_MASK
, vtcr
);
1532 s8 start_level
= VTCR_EL2_TGRAN_SL0_BASE
- sl0
;
1534 pgd_sz
= kvm_pgd_pages(ia_bits
, start_level
) * PAGE_SIZE
;
1535 pgt
->pgd
= (kvm_pteref_t
)mm_ops
->zalloc_pages_exact(pgd_sz
);
1539 pgt
->ia_bits
= ia_bits
;
1540 pgt
->start_level
= start_level
;
1541 pgt
->mm_ops
= mm_ops
;
1544 pgt
->force_pte_cb
= force_pte_cb
;
1546 /* Ensure zeroed PGD pages are visible to the hardware walker */
1551 size_t kvm_pgtable_stage2_pgd_size(u64 vtcr
)
1553 u32 ia_bits
= VTCR_EL2_IPA(vtcr
);
1554 u32 sl0
= FIELD_GET(VTCR_EL2_SL0_MASK
, vtcr
);
1555 s8 start_level
= VTCR_EL2_TGRAN_SL0_BASE
- sl0
;
1557 return kvm_pgd_pages(ia_bits
, start_level
) * PAGE_SIZE
;
1560 static int stage2_free_walker(const struct kvm_pgtable_visit_ctx
*ctx
,
1561 enum kvm_pgtable_walk_flags visit
)
1563 struct kvm_pgtable_mm_ops
*mm_ops
= ctx
->mm_ops
;
1565 if (!stage2_pte_is_counted(ctx
->old
))
1568 mm_ops
->put_page(ctx
->ptep
);
1570 if (kvm_pte_table(ctx
->old
, ctx
->level
))
1571 mm_ops
->put_page(kvm_pte_follow(ctx
->old
, mm_ops
));
1576 void kvm_pgtable_stage2_destroy(struct kvm_pgtable
*pgt
)
1579 struct kvm_pgtable_walker walker
= {
1580 .cb
= stage2_free_walker
,
1581 .flags
= KVM_PGTABLE_WALK_LEAF
|
1582 KVM_PGTABLE_WALK_TABLE_POST
,
1585 WARN_ON(kvm_pgtable_walk(pgt
, 0, BIT(pgt
->ia_bits
), &walker
));
1586 pgd_sz
= kvm_pgd_pages(pgt
->ia_bits
, pgt
->start_level
) * PAGE_SIZE
;
1587 pgt
->mm_ops
->free_pages_exact(kvm_dereference_pteref(&walker
, pgt
->pgd
), pgd_sz
);
1591 void kvm_pgtable_stage2_free_unlinked(struct kvm_pgtable_mm_ops
*mm_ops
, void *pgtable
, s8 level
)
1593 kvm_pteref_t ptep
= (kvm_pteref_t
)pgtable
;
1594 struct kvm_pgtable_walker walker
= {
1595 .cb
= stage2_free_walker
,
1596 .flags
= KVM_PGTABLE_WALK_LEAF
|
1597 KVM_PGTABLE_WALK_TABLE_POST
,
1599 struct kvm_pgtable_walk_data data
= {
1603 * At this point the IPA really doesn't matter, as the page
1604 * table being traversed has already been removed from the stage
1605 * 2. Set an appropriate range to cover the entire page table.
1608 .end
= kvm_granule_size(level
),
1611 WARN_ON(__kvm_pgtable_walk(&data
, mm_ops
, ptep
, level
+ 1));
1613 WARN_ON(mm_ops
->page_count(pgtable
) != 1);
1614 mm_ops
->put_page(pgtable
);