Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / arch / arm64 / mm / mmu.c
blobe2739b69e11bd8a9fd40ecbf856aef3b49c0f328
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Based on arch/arm/mm/mmu.c
5 * Copyright (C) 1995-2005 Russell King
6 * Copyright (C) 2012 ARM Ltd.
7 */
9 #include <linux/cache.h>
10 #include <linux/export.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/kexec.h>
16 #include <linux/libfdt.h>
17 #include <linux/mman.h>
18 #include <linux/nodemask.h>
19 #include <linux/memblock.h>
20 #include <linux/memremap.h>
21 #include <linux/memory.h>
22 #include <linux/fs.h>
23 #include <linux/io.h>
24 #include <linux/mm.h>
25 #include <linux/vmalloc.h>
26 #include <linux/set_memory.h>
27 #include <linux/kfence.h>
28 #include <linux/pkeys.h>
30 #include <asm/barrier.h>
31 #include <asm/cputype.h>
32 #include <asm/fixmap.h>
33 #include <asm/kasan.h>
34 #include <asm/kernel-pgtable.h>
35 #include <asm/sections.h>
36 #include <asm/setup.h>
37 #include <linux/sizes.h>
38 #include <asm/tlb.h>
39 #include <asm/mmu_context.h>
40 #include <asm/ptdump.h>
41 #include <asm/tlbflush.h>
42 #include <asm/pgalloc.h>
43 #include <asm/kfence.h>
45 #define NO_BLOCK_MAPPINGS BIT(0)
46 #define NO_CONT_MAPPINGS BIT(1)
47 #define NO_EXEC_MAPPINGS BIT(2) /* assumes FEAT_HPDS is not used */
49 u64 kimage_voffset __ro_after_init;
50 EXPORT_SYMBOL(kimage_voffset);
52 u32 __boot_cpu_mode[] = { BOOT_CPU_MODE_EL2, BOOT_CPU_MODE_EL1 };
54 static bool rodata_is_rw __ro_after_init = true;
57 * The booting CPU updates the failed status @__early_cpu_boot_status,
58 * with MMU turned off.
60 long __section(".mmuoff.data.write") __early_cpu_boot_status;
63 * Empty_zero_page is a special page that is used for zero-initialized data
64 * and COW.
66 unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] __page_aligned_bss;
67 EXPORT_SYMBOL(empty_zero_page);
69 static DEFINE_SPINLOCK(swapper_pgdir_lock);
70 static DEFINE_MUTEX(fixmap_lock);
72 void noinstr set_swapper_pgd(pgd_t *pgdp, pgd_t pgd)
74 pgd_t *fixmap_pgdp;
77 * Don't bother with the fixmap if swapper_pg_dir is still mapped
78 * writable in the kernel mapping.
80 if (rodata_is_rw) {
81 WRITE_ONCE(*pgdp, pgd);
82 dsb(ishst);
83 isb();
84 return;
87 spin_lock(&swapper_pgdir_lock);
88 fixmap_pgdp = pgd_set_fixmap(__pa_symbol(pgdp));
89 WRITE_ONCE(*fixmap_pgdp, pgd);
91 * We need dsb(ishst) here to ensure the page-table-walker sees
92 * our new entry before set_p?d() returns. The fixmap's
93 * flush_tlb_kernel_range() via clear_fixmap() does this for us.
95 pgd_clear_fixmap();
96 spin_unlock(&swapper_pgdir_lock);
99 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
100 unsigned long size, pgprot_t vma_prot)
102 if (!pfn_is_map_memory(pfn))
103 return pgprot_noncached(vma_prot);
104 else if (file->f_flags & O_SYNC)
105 return pgprot_writecombine(vma_prot);
106 return vma_prot;
108 EXPORT_SYMBOL(phys_mem_access_prot);
110 static phys_addr_t __init early_pgtable_alloc(int shift)
112 phys_addr_t phys;
114 phys = memblock_phys_alloc_range(PAGE_SIZE, PAGE_SIZE, 0,
115 MEMBLOCK_ALLOC_NOLEAKTRACE);
116 if (!phys)
117 panic("Failed to allocate page table page\n");
119 return phys;
122 bool pgattr_change_is_safe(pteval_t old, pteval_t new)
125 * The following mapping attributes may be updated in live
126 * kernel mappings without the need for break-before-make.
128 pteval_t mask = PTE_PXN | PTE_RDONLY | PTE_WRITE | PTE_NG |
129 PTE_SWBITS_MASK;
131 /* creating or taking down mappings is always safe */
132 if (!pte_valid(__pte(old)) || !pte_valid(__pte(new)))
133 return true;
135 /* A live entry's pfn should not change */
136 if (pte_pfn(__pte(old)) != pte_pfn(__pte(new)))
137 return false;
139 /* live contiguous mappings may not be manipulated at all */
140 if ((old | new) & PTE_CONT)
141 return false;
143 /* Transitioning from Non-Global to Global is unsafe */
144 if (old & ~new & PTE_NG)
145 return false;
148 * Changing the memory type between Normal and Normal-Tagged is safe
149 * since Tagged is considered a permission attribute from the
150 * mismatched attribute aliases perspective.
152 if (((old & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL) ||
153 (old & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL_TAGGED)) &&
154 ((new & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL) ||
155 (new & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL_TAGGED)))
156 mask |= PTE_ATTRINDX_MASK;
158 return ((old ^ new) & ~mask) == 0;
161 static void init_clear_pgtable(void *table)
163 clear_page(table);
165 /* Ensure the zeroing is observed by page table walks. */
166 dsb(ishst);
169 static void init_pte(pte_t *ptep, unsigned long addr, unsigned long end,
170 phys_addr_t phys, pgprot_t prot)
172 do {
173 pte_t old_pte = __ptep_get(ptep);
176 * Required barriers to make this visible to the table walker
177 * are deferred to the end of alloc_init_cont_pte().
179 __set_pte_nosync(ptep, pfn_pte(__phys_to_pfn(phys), prot));
182 * After the PTE entry has been populated once, we
183 * only allow updates to the permission attributes.
185 BUG_ON(!pgattr_change_is_safe(pte_val(old_pte),
186 pte_val(__ptep_get(ptep))));
188 phys += PAGE_SIZE;
189 } while (ptep++, addr += PAGE_SIZE, addr != end);
192 static void alloc_init_cont_pte(pmd_t *pmdp, unsigned long addr,
193 unsigned long end, phys_addr_t phys,
194 pgprot_t prot,
195 phys_addr_t (*pgtable_alloc)(int),
196 int flags)
198 unsigned long next;
199 pmd_t pmd = READ_ONCE(*pmdp);
200 pte_t *ptep;
202 BUG_ON(pmd_sect(pmd));
203 if (pmd_none(pmd)) {
204 pmdval_t pmdval = PMD_TYPE_TABLE | PMD_TABLE_UXN | PMD_TABLE_AF;
205 phys_addr_t pte_phys;
207 if (flags & NO_EXEC_MAPPINGS)
208 pmdval |= PMD_TABLE_PXN;
209 BUG_ON(!pgtable_alloc);
210 pte_phys = pgtable_alloc(PAGE_SHIFT);
211 ptep = pte_set_fixmap(pte_phys);
212 init_clear_pgtable(ptep);
213 ptep += pte_index(addr);
214 __pmd_populate(pmdp, pte_phys, pmdval);
215 } else {
216 BUG_ON(pmd_bad(pmd));
217 ptep = pte_set_fixmap_offset(pmdp, addr);
220 do {
221 pgprot_t __prot = prot;
223 next = pte_cont_addr_end(addr, end);
225 /* use a contiguous mapping if the range is suitably aligned */
226 if ((((addr | next | phys) & ~CONT_PTE_MASK) == 0) &&
227 (flags & NO_CONT_MAPPINGS) == 0)
228 __prot = __pgprot(pgprot_val(prot) | PTE_CONT);
230 init_pte(ptep, addr, next, phys, __prot);
232 ptep += pte_index(next) - pte_index(addr);
233 phys += next - addr;
234 } while (addr = next, addr != end);
237 * Note: barriers and maintenance necessary to clear the fixmap slot
238 * ensure that all previous pgtable writes are visible to the table
239 * walker.
241 pte_clear_fixmap();
244 static void init_pmd(pmd_t *pmdp, unsigned long addr, unsigned long end,
245 phys_addr_t phys, pgprot_t prot,
246 phys_addr_t (*pgtable_alloc)(int), int flags)
248 unsigned long next;
250 do {
251 pmd_t old_pmd = READ_ONCE(*pmdp);
253 next = pmd_addr_end(addr, end);
255 /* try section mapping first */
256 if (((addr | next | phys) & ~PMD_MASK) == 0 &&
257 (flags & NO_BLOCK_MAPPINGS) == 0) {
258 pmd_set_huge(pmdp, phys, prot);
261 * After the PMD entry has been populated once, we
262 * only allow updates to the permission attributes.
264 BUG_ON(!pgattr_change_is_safe(pmd_val(old_pmd),
265 READ_ONCE(pmd_val(*pmdp))));
266 } else {
267 alloc_init_cont_pte(pmdp, addr, next, phys, prot,
268 pgtable_alloc, flags);
270 BUG_ON(pmd_val(old_pmd) != 0 &&
271 pmd_val(old_pmd) != READ_ONCE(pmd_val(*pmdp)));
273 phys += next - addr;
274 } while (pmdp++, addr = next, addr != end);
277 static void alloc_init_cont_pmd(pud_t *pudp, unsigned long addr,
278 unsigned long end, phys_addr_t phys,
279 pgprot_t prot,
280 phys_addr_t (*pgtable_alloc)(int), int flags)
282 unsigned long next;
283 pud_t pud = READ_ONCE(*pudp);
284 pmd_t *pmdp;
287 * Check for initial section mappings in the pgd/pud.
289 BUG_ON(pud_sect(pud));
290 if (pud_none(pud)) {
291 pudval_t pudval = PUD_TYPE_TABLE | PUD_TABLE_UXN | PUD_TABLE_AF;
292 phys_addr_t pmd_phys;
294 if (flags & NO_EXEC_MAPPINGS)
295 pudval |= PUD_TABLE_PXN;
296 BUG_ON(!pgtable_alloc);
297 pmd_phys = pgtable_alloc(PMD_SHIFT);
298 pmdp = pmd_set_fixmap(pmd_phys);
299 init_clear_pgtable(pmdp);
300 pmdp += pmd_index(addr);
301 __pud_populate(pudp, pmd_phys, pudval);
302 } else {
303 BUG_ON(pud_bad(pud));
304 pmdp = pmd_set_fixmap_offset(pudp, addr);
307 do {
308 pgprot_t __prot = prot;
310 next = pmd_cont_addr_end(addr, end);
312 /* use a contiguous mapping if the range is suitably aligned */
313 if ((((addr | next | phys) & ~CONT_PMD_MASK) == 0) &&
314 (flags & NO_CONT_MAPPINGS) == 0)
315 __prot = __pgprot(pgprot_val(prot) | PTE_CONT);
317 init_pmd(pmdp, addr, next, phys, __prot, pgtable_alloc, flags);
319 pmdp += pmd_index(next) - pmd_index(addr);
320 phys += next - addr;
321 } while (addr = next, addr != end);
323 pmd_clear_fixmap();
326 static void alloc_init_pud(p4d_t *p4dp, unsigned long addr, unsigned long end,
327 phys_addr_t phys, pgprot_t prot,
328 phys_addr_t (*pgtable_alloc)(int),
329 int flags)
331 unsigned long next;
332 p4d_t p4d = READ_ONCE(*p4dp);
333 pud_t *pudp;
335 if (p4d_none(p4d)) {
336 p4dval_t p4dval = P4D_TYPE_TABLE | P4D_TABLE_UXN | P4D_TABLE_AF;
337 phys_addr_t pud_phys;
339 if (flags & NO_EXEC_MAPPINGS)
340 p4dval |= P4D_TABLE_PXN;
341 BUG_ON(!pgtable_alloc);
342 pud_phys = pgtable_alloc(PUD_SHIFT);
343 pudp = pud_set_fixmap(pud_phys);
344 init_clear_pgtable(pudp);
345 pudp += pud_index(addr);
346 __p4d_populate(p4dp, pud_phys, p4dval);
347 } else {
348 BUG_ON(p4d_bad(p4d));
349 pudp = pud_set_fixmap_offset(p4dp, addr);
352 do {
353 pud_t old_pud = READ_ONCE(*pudp);
355 next = pud_addr_end(addr, end);
358 * For 4K granule only, attempt to put down a 1GB block
360 if (pud_sect_supported() &&
361 ((addr | next | phys) & ~PUD_MASK) == 0 &&
362 (flags & NO_BLOCK_MAPPINGS) == 0) {
363 pud_set_huge(pudp, phys, prot);
366 * After the PUD entry has been populated once, we
367 * only allow updates to the permission attributes.
369 BUG_ON(!pgattr_change_is_safe(pud_val(old_pud),
370 READ_ONCE(pud_val(*pudp))));
371 } else {
372 alloc_init_cont_pmd(pudp, addr, next, phys, prot,
373 pgtable_alloc, flags);
375 BUG_ON(pud_val(old_pud) != 0 &&
376 pud_val(old_pud) != READ_ONCE(pud_val(*pudp)));
378 phys += next - addr;
379 } while (pudp++, addr = next, addr != end);
381 pud_clear_fixmap();
384 static void alloc_init_p4d(pgd_t *pgdp, unsigned long addr, unsigned long end,
385 phys_addr_t phys, pgprot_t prot,
386 phys_addr_t (*pgtable_alloc)(int),
387 int flags)
389 unsigned long next;
390 pgd_t pgd = READ_ONCE(*pgdp);
391 p4d_t *p4dp;
393 if (pgd_none(pgd)) {
394 pgdval_t pgdval = PGD_TYPE_TABLE | PGD_TABLE_UXN | PGD_TABLE_AF;
395 phys_addr_t p4d_phys;
397 if (flags & NO_EXEC_MAPPINGS)
398 pgdval |= PGD_TABLE_PXN;
399 BUG_ON(!pgtable_alloc);
400 p4d_phys = pgtable_alloc(P4D_SHIFT);
401 p4dp = p4d_set_fixmap(p4d_phys);
402 init_clear_pgtable(p4dp);
403 p4dp += p4d_index(addr);
404 __pgd_populate(pgdp, p4d_phys, pgdval);
405 } else {
406 BUG_ON(pgd_bad(pgd));
407 p4dp = p4d_set_fixmap_offset(pgdp, addr);
410 do {
411 p4d_t old_p4d = READ_ONCE(*p4dp);
413 next = p4d_addr_end(addr, end);
415 alloc_init_pud(p4dp, addr, next, phys, prot,
416 pgtable_alloc, flags);
418 BUG_ON(p4d_val(old_p4d) != 0 &&
419 p4d_val(old_p4d) != READ_ONCE(p4d_val(*p4dp)));
421 phys += next - addr;
422 } while (p4dp++, addr = next, addr != end);
424 p4d_clear_fixmap();
427 static void __create_pgd_mapping_locked(pgd_t *pgdir, phys_addr_t phys,
428 unsigned long virt, phys_addr_t size,
429 pgprot_t prot,
430 phys_addr_t (*pgtable_alloc)(int),
431 int flags)
433 unsigned long addr, end, next;
434 pgd_t *pgdp = pgd_offset_pgd(pgdir, virt);
437 * If the virtual and physical address don't have the same offset
438 * within a page, we cannot map the region as the caller expects.
440 if (WARN_ON((phys ^ virt) & ~PAGE_MASK))
441 return;
443 phys &= PAGE_MASK;
444 addr = virt & PAGE_MASK;
445 end = PAGE_ALIGN(virt + size);
447 do {
448 next = pgd_addr_end(addr, end);
449 alloc_init_p4d(pgdp, addr, next, phys, prot, pgtable_alloc,
450 flags);
451 phys += next - addr;
452 } while (pgdp++, addr = next, addr != end);
455 static void __create_pgd_mapping(pgd_t *pgdir, phys_addr_t phys,
456 unsigned long virt, phys_addr_t size,
457 pgprot_t prot,
458 phys_addr_t (*pgtable_alloc)(int),
459 int flags)
461 mutex_lock(&fixmap_lock);
462 __create_pgd_mapping_locked(pgdir, phys, virt, size, prot,
463 pgtable_alloc, flags);
464 mutex_unlock(&fixmap_lock);
467 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
468 extern __alias(__create_pgd_mapping_locked)
469 void create_kpti_ng_temp_pgd(pgd_t *pgdir, phys_addr_t phys, unsigned long virt,
470 phys_addr_t size, pgprot_t prot,
471 phys_addr_t (*pgtable_alloc)(int), int flags);
472 #endif
474 static phys_addr_t __pgd_pgtable_alloc(int shift)
476 /* Page is zeroed by init_clear_pgtable() so don't duplicate effort. */
477 void *ptr = (void *)__get_free_page(GFP_PGTABLE_KERNEL & ~__GFP_ZERO);
479 BUG_ON(!ptr);
480 return __pa(ptr);
483 static phys_addr_t pgd_pgtable_alloc(int shift)
485 phys_addr_t pa = __pgd_pgtable_alloc(shift);
486 struct ptdesc *ptdesc = page_ptdesc(phys_to_page(pa));
489 * Call proper page table ctor in case later we need to
490 * call core mm functions like apply_to_page_range() on
491 * this pre-allocated page table.
493 * We don't select ARCH_ENABLE_SPLIT_PMD_PTLOCK if pmd is
494 * folded, and if so pagetable_pte_ctor() becomes nop.
496 if (shift == PAGE_SHIFT)
497 BUG_ON(!pagetable_pte_ctor(ptdesc));
498 else if (shift == PMD_SHIFT)
499 BUG_ON(!pagetable_pmd_ctor(ptdesc));
501 return pa;
505 * This function can only be used to modify existing table entries,
506 * without allocating new levels of table. Note that this permits the
507 * creation of new section or page entries.
509 void __init create_mapping_noalloc(phys_addr_t phys, unsigned long virt,
510 phys_addr_t size, pgprot_t prot)
512 if (virt < PAGE_OFFSET) {
513 pr_warn("BUG: not creating mapping for %pa at 0x%016lx - outside kernel range\n",
514 &phys, virt);
515 return;
517 __create_pgd_mapping(init_mm.pgd, phys, virt, size, prot, NULL,
518 NO_CONT_MAPPINGS);
521 void __init create_pgd_mapping(struct mm_struct *mm, phys_addr_t phys,
522 unsigned long virt, phys_addr_t size,
523 pgprot_t prot, bool page_mappings_only)
525 int flags = 0;
527 BUG_ON(mm == &init_mm);
529 if (page_mappings_only)
530 flags = NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
532 __create_pgd_mapping(mm->pgd, phys, virt, size, prot,
533 pgd_pgtable_alloc, flags);
536 static void update_mapping_prot(phys_addr_t phys, unsigned long virt,
537 phys_addr_t size, pgprot_t prot)
539 if (virt < PAGE_OFFSET) {
540 pr_warn("BUG: not updating mapping for %pa at 0x%016lx - outside kernel range\n",
541 &phys, virt);
542 return;
545 __create_pgd_mapping(init_mm.pgd, phys, virt, size, prot, NULL,
546 NO_CONT_MAPPINGS);
548 /* flush the TLBs after updating live kernel mappings */
549 flush_tlb_kernel_range(virt, virt + size);
552 static void __init __map_memblock(pgd_t *pgdp, phys_addr_t start,
553 phys_addr_t end, pgprot_t prot, int flags)
555 __create_pgd_mapping(pgdp, start, __phys_to_virt(start), end - start,
556 prot, early_pgtable_alloc, flags);
559 void __init mark_linear_text_alias_ro(void)
562 * Remove the write permissions from the linear alias of .text/.rodata
564 update_mapping_prot(__pa_symbol(_stext), (unsigned long)lm_alias(_stext),
565 (unsigned long)__init_begin - (unsigned long)_stext,
566 PAGE_KERNEL_RO);
569 #ifdef CONFIG_KFENCE
571 bool __ro_after_init kfence_early_init = !!CONFIG_KFENCE_SAMPLE_INTERVAL;
573 /* early_param() will be parsed before map_mem() below. */
574 static int __init parse_kfence_early_init(char *arg)
576 int val;
578 if (get_option(&arg, &val))
579 kfence_early_init = !!val;
580 return 0;
582 early_param("kfence.sample_interval", parse_kfence_early_init);
584 static phys_addr_t __init arm64_kfence_alloc_pool(void)
586 phys_addr_t kfence_pool;
588 if (!kfence_early_init)
589 return 0;
591 kfence_pool = memblock_phys_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
592 if (!kfence_pool) {
593 pr_err("failed to allocate kfence pool\n");
594 kfence_early_init = false;
595 return 0;
598 /* Temporarily mark as NOMAP. */
599 memblock_mark_nomap(kfence_pool, KFENCE_POOL_SIZE);
601 return kfence_pool;
604 static void __init arm64_kfence_map_pool(phys_addr_t kfence_pool, pgd_t *pgdp)
606 if (!kfence_pool)
607 return;
609 /* KFENCE pool needs page-level mapping. */
610 __map_memblock(pgdp, kfence_pool, kfence_pool + KFENCE_POOL_SIZE,
611 pgprot_tagged(PAGE_KERNEL),
612 NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS);
613 memblock_clear_nomap(kfence_pool, KFENCE_POOL_SIZE);
614 __kfence_pool = phys_to_virt(kfence_pool);
616 #else /* CONFIG_KFENCE */
618 static inline phys_addr_t arm64_kfence_alloc_pool(void) { return 0; }
619 static inline void arm64_kfence_map_pool(phys_addr_t kfence_pool, pgd_t *pgdp) { }
621 #endif /* CONFIG_KFENCE */
623 static void __init map_mem(pgd_t *pgdp)
625 static const u64 direct_map_end = _PAGE_END(VA_BITS_MIN);
626 phys_addr_t kernel_start = __pa_symbol(_stext);
627 phys_addr_t kernel_end = __pa_symbol(__init_begin);
628 phys_addr_t start, end;
629 phys_addr_t early_kfence_pool;
630 int flags = NO_EXEC_MAPPINGS;
631 u64 i;
634 * Setting hierarchical PXNTable attributes on table entries covering
635 * the linear region is only possible if it is guaranteed that no table
636 * entries at any level are being shared between the linear region and
637 * the vmalloc region. Check whether this is true for the PGD level, in
638 * which case it is guaranteed to be true for all other levels as well.
639 * (Unless we are running with support for LPA2, in which case the
640 * entire reduced VA space is covered by a single pgd_t which will have
641 * been populated without the PXNTable attribute by the time we get here.)
643 BUILD_BUG_ON(pgd_index(direct_map_end - 1) == pgd_index(direct_map_end) &&
644 pgd_index(_PAGE_OFFSET(VA_BITS_MIN)) != PTRS_PER_PGD - 1);
646 early_kfence_pool = arm64_kfence_alloc_pool();
648 if (can_set_direct_map())
649 flags |= NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
652 * Take care not to create a writable alias for the
653 * read-only text and rodata sections of the kernel image.
654 * So temporarily mark them as NOMAP to skip mappings in
655 * the following for-loop
657 memblock_mark_nomap(kernel_start, kernel_end - kernel_start);
659 /* map all the memory banks */
660 for_each_mem_range(i, &start, &end) {
661 if (start >= end)
662 break;
664 * The linear map must allow allocation tags reading/writing
665 * if MTE is present. Otherwise, it has the same attributes as
666 * PAGE_KERNEL.
668 __map_memblock(pgdp, start, end, pgprot_tagged(PAGE_KERNEL),
669 flags);
673 * Map the linear alias of the [_stext, __init_begin) interval
674 * as non-executable now, and remove the write permission in
675 * mark_linear_text_alias_ro() below (which will be called after
676 * alternative patching has completed). This makes the contents
677 * of the region accessible to subsystems such as hibernate,
678 * but protects it from inadvertent modification or execution.
679 * Note that contiguous mappings cannot be remapped in this way,
680 * so we should avoid them here.
682 __map_memblock(pgdp, kernel_start, kernel_end,
683 PAGE_KERNEL, NO_CONT_MAPPINGS);
684 memblock_clear_nomap(kernel_start, kernel_end - kernel_start);
685 arm64_kfence_map_pool(early_kfence_pool, pgdp);
688 void mark_rodata_ro(void)
690 unsigned long section_size;
693 * mark .rodata as read only. Use __init_begin rather than __end_rodata
694 * to cover NOTES and EXCEPTION_TABLE.
696 section_size = (unsigned long)__init_begin - (unsigned long)__start_rodata;
697 WRITE_ONCE(rodata_is_rw, false);
698 update_mapping_prot(__pa_symbol(__start_rodata), (unsigned long)__start_rodata,
699 section_size, PAGE_KERNEL_RO);
702 static void __init declare_vma(struct vm_struct *vma,
703 void *va_start, void *va_end,
704 unsigned long vm_flags)
706 phys_addr_t pa_start = __pa_symbol(va_start);
707 unsigned long size = va_end - va_start;
709 BUG_ON(!PAGE_ALIGNED(pa_start));
710 BUG_ON(!PAGE_ALIGNED(size));
712 if (!(vm_flags & VM_NO_GUARD))
713 size += PAGE_SIZE;
715 vma->addr = va_start;
716 vma->phys_addr = pa_start;
717 vma->size = size;
718 vma->flags = VM_MAP | vm_flags;
719 vma->caller = __builtin_return_address(0);
721 vm_area_add_early(vma);
724 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
725 static pgprot_t kernel_exec_prot(void)
727 return rodata_enabled ? PAGE_KERNEL_ROX : PAGE_KERNEL_EXEC;
730 static int __init map_entry_trampoline(void)
732 int i;
734 if (!arm64_kernel_unmapped_at_el0())
735 return 0;
737 pgprot_t prot = kernel_exec_prot();
738 phys_addr_t pa_start = __pa_symbol(__entry_tramp_text_start);
740 /* The trampoline is always mapped and can therefore be global */
741 pgprot_val(prot) &= ~PTE_NG;
743 /* Map only the text into the trampoline page table */
744 memset(tramp_pg_dir, 0, PGD_SIZE);
745 __create_pgd_mapping(tramp_pg_dir, pa_start, TRAMP_VALIAS,
746 entry_tramp_text_size(), prot,
747 __pgd_pgtable_alloc, NO_BLOCK_MAPPINGS);
749 /* Map both the text and data into the kernel page table */
750 for (i = 0; i < DIV_ROUND_UP(entry_tramp_text_size(), PAGE_SIZE); i++)
751 __set_fixmap(FIX_ENTRY_TRAMP_TEXT1 - i,
752 pa_start + i * PAGE_SIZE, prot);
754 if (IS_ENABLED(CONFIG_RELOCATABLE))
755 __set_fixmap(FIX_ENTRY_TRAMP_TEXT1 - i,
756 pa_start + i * PAGE_SIZE, PAGE_KERNEL_RO);
758 return 0;
760 core_initcall(map_entry_trampoline);
761 #endif
764 * Declare the VMA areas for the kernel
766 static void __init declare_kernel_vmas(void)
768 static struct vm_struct vmlinux_seg[KERNEL_SEGMENT_COUNT];
770 declare_vma(&vmlinux_seg[0], _stext, _etext, VM_NO_GUARD);
771 declare_vma(&vmlinux_seg[1], __start_rodata, __inittext_begin, VM_NO_GUARD);
772 declare_vma(&vmlinux_seg[2], __inittext_begin, __inittext_end, VM_NO_GUARD);
773 declare_vma(&vmlinux_seg[3], __initdata_begin, __initdata_end, VM_NO_GUARD);
774 declare_vma(&vmlinux_seg[4], _data, _end, 0);
777 void __pi_map_range(u64 *pgd, u64 start, u64 end, u64 pa, pgprot_t prot,
778 int level, pte_t *tbl, bool may_use_cont, u64 va_offset);
780 static u8 idmap_ptes[IDMAP_LEVELS - 1][PAGE_SIZE] __aligned(PAGE_SIZE) __ro_after_init,
781 kpti_ptes[IDMAP_LEVELS - 1][PAGE_SIZE] __aligned(PAGE_SIZE) __ro_after_init;
783 static void __init create_idmap(void)
785 u64 start = __pa_symbol(__idmap_text_start);
786 u64 end = __pa_symbol(__idmap_text_end);
787 u64 ptep = __pa_symbol(idmap_ptes);
789 __pi_map_range(&ptep, start, end, start, PAGE_KERNEL_ROX,
790 IDMAP_ROOT_LEVEL, (pte_t *)idmap_pg_dir, false,
791 __phys_to_virt(ptep) - ptep);
793 if (IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0) && !arm64_use_ng_mappings) {
794 extern u32 __idmap_kpti_flag;
795 u64 pa = __pa_symbol(&__idmap_kpti_flag);
798 * The KPTI G-to-nG conversion code needs a read-write mapping
799 * of its synchronization flag in the ID map.
801 ptep = __pa_symbol(kpti_ptes);
802 __pi_map_range(&ptep, pa, pa + sizeof(u32), pa, PAGE_KERNEL,
803 IDMAP_ROOT_LEVEL, (pte_t *)idmap_pg_dir, false,
804 __phys_to_virt(ptep) - ptep);
808 void __init paging_init(void)
810 map_mem(swapper_pg_dir);
812 memblock_allow_resize();
814 create_idmap();
815 declare_kernel_vmas();
818 #ifdef CONFIG_MEMORY_HOTPLUG
819 static void free_hotplug_page_range(struct page *page, size_t size,
820 struct vmem_altmap *altmap)
822 if (altmap) {
823 vmem_altmap_free(altmap, size >> PAGE_SHIFT);
824 } else {
825 WARN_ON(PageReserved(page));
826 free_pages((unsigned long)page_address(page), get_order(size));
830 static void free_hotplug_pgtable_page(struct page *page)
832 free_hotplug_page_range(page, PAGE_SIZE, NULL);
835 static bool pgtable_range_aligned(unsigned long start, unsigned long end,
836 unsigned long floor, unsigned long ceiling,
837 unsigned long mask)
839 start &= mask;
840 if (start < floor)
841 return false;
843 if (ceiling) {
844 ceiling &= mask;
845 if (!ceiling)
846 return false;
849 if (end - 1 > ceiling - 1)
850 return false;
851 return true;
854 static void unmap_hotplug_pte_range(pmd_t *pmdp, unsigned long addr,
855 unsigned long end, bool free_mapped,
856 struct vmem_altmap *altmap)
858 pte_t *ptep, pte;
860 do {
861 ptep = pte_offset_kernel(pmdp, addr);
862 pte = __ptep_get(ptep);
863 if (pte_none(pte))
864 continue;
866 WARN_ON(!pte_present(pte));
867 __pte_clear(&init_mm, addr, ptep);
868 flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
869 if (free_mapped)
870 free_hotplug_page_range(pte_page(pte),
871 PAGE_SIZE, altmap);
872 } while (addr += PAGE_SIZE, addr < end);
875 static void unmap_hotplug_pmd_range(pud_t *pudp, unsigned long addr,
876 unsigned long end, bool free_mapped,
877 struct vmem_altmap *altmap)
879 unsigned long next;
880 pmd_t *pmdp, pmd;
882 do {
883 next = pmd_addr_end(addr, end);
884 pmdp = pmd_offset(pudp, addr);
885 pmd = READ_ONCE(*pmdp);
886 if (pmd_none(pmd))
887 continue;
889 WARN_ON(!pmd_present(pmd));
890 if (pmd_sect(pmd)) {
891 pmd_clear(pmdp);
894 * One TLBI should be sufficient here as the PMD_SIZE
895 * range is mapped with a single block entry.
897 flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
898 if (free_mapped)
899 free_hotplug_page_range(pmd_page(pmd),
900 PMD_SIZE, altmap);
901 continue;
903 WARN_ON(!pmd_table(pmd));
904 unmap_hotplug_pte_range(pmdp, addr, next, free_mapped, altmap);
905 } while (addr = next, addr < end);
908 static void unmap_hotplug_pud_range(p4d_t *p4dp, unsigned long addr,
909 unsigned long end, bool free_mapped,
910 struct vmem_altmap *altmap)
912 unsigned long next;
913 pud_t *pudp, pud;
915 do {
916 next = pud_addr_end(addr, end);
917 pudp = pud_offset(p4dp, addr);
918 pud = READ_ONCE(*pudp);
919 if (pud_none(pud))
920 continue;
922 WARN_ON(!pud_present(pud));
923 if (pud_sect(pud)) {
924 pud_clear(pudp);
927 * One TLBI should be sufficient here as the PUD_SIZE
928 * range is mapped with a single block entry.
930 flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
931 if (free_mapped)
932 free_hotplug_page_range(pud_page(pud),
933 PUD_SIZE, altmap);
934 continue;
936 WARN_ON(!pud_table(pud));
937 unmap_hotplug_pmd_range(pudp, addr, next, free_mapped, altmap);
938 } while (addr = next, addr < end);
941 static void unmap_hotplug_p4d_range(pgd_t *pgdp, unsigned long addr,
942 unsigned long end, bool free_mapped,
943 struct vmem_altmap *altmap)
945 unsigned long next;
946 p4d_t *p4dp, p4d;
948 do {
949 next = p4d_addr_end(addr, end);
950 p4dp = p4d_offset(pgdp, addr);
951 p4d = READ_ONCE(*p4dp);
952 if (p4d_none(p4d))
953 continue;
955 WARN_ON(!p4d_present(p4d));
956 unmap_hotplug_pud_range(p4dp, addr, next, free_mapped, altmap);
957 } while (addr = next, addr < end);
960 static void unmap_hotplug_range(unsigned long addr, unsigned long end,
961 bool free_mapped, struct vmem_altmap *altmap)
963 unsigned long next;
964 pgd_t *pgdp, pgd;
967 * altmap can only be used as vmemmap mapping backing memory.
968 * In case the backing memory itself is not being freed, then
969 * altmap is irrelevant. Warn about this inconsistency when
970 * encountered.
972 WARN_ON(!free_mapped && altmap);
974 do {
975 next = pgd_addr_end(addr, end);
976 pgdp = pgd_offset_k(addr);
977 pgd = READ_ONCE(*pgdp);
978 if (pgd_none(pgd))
979 continue;
981 WARN_ON(!pgd_present(pgd));
982 unmap_hotplug_p4d_range(pgdp, addr, next, free_mapped, altmap);
983 } while (addr = next, addr < end);
986 static void free_empty_pte_table(pmd_t *pmdp, unsigned long addr,
987 unsigned long end, unsigned long floor,
988 unsigned long ceiling)
990 pte_t *ptep, pte;
991 unsigned long i, start = addr;
993 do {
994 ptep = pte_offset_kernel(pmdp, addr);
995 pte = __ptep_get(ptep);
998 * This is just a sanity check here which verifies that
999 * pte clearing has been done by earlier unmap loops.
1001 WARN_ON(!pte_none(pte));
1002 } while (addr += PAGE_SIZE, addr < end);
1004 if (!pgtable_range_aligned(start, end, floor, ceiling, PMD_MASK))
1005 return;
1008 * Check whether we can free the pte page if the rest of the
1009 * entries are empty. Overlap with other regions have been
1010 * handled by the floor/ceiling check.
1012 ptep = pte_offset_kernel(pmdp, 0UL);
1013 for (i = 0; i < PTRS_PER_PTE; i++) {
1014 if (!pte_none(__ptep_get(&ptep[i])))
1015 return;
1018 pmd_clear(pmdp);
1019 __flush_tlb_kernel_pgtable(start);
1020 free_hotplug_pgtable_page(virt_to_page(ptep));
1023 static void free_empty_pmd_table(pud_t *pudp, unsigned long addr,
1024 unsigned long end, unsigned long floor,
1025 unsigned long ceiling)
1027 pmd_t *pmdp, pmd;
1028 unsigned long i, next, start = addr;
1030 do {
1031 next = pmd_addr_end(addr, end);
1032 pmdp = pmd_offset(pudp, addr);
1033 pmd = READ_ONCE(*pmdp);
1034 if (pmd_none(pmd))
1035 continue;
1037 WARN_ON(!pmd_present(pmd) || !pmd_table(pmd) || pmd_sect(pmd));
1038 free_empty_pte_table(pmdp, addr, next, floor, ceiling);
1039 } while (addr = next, addr < end);
1041 if (CONFIG_PGTABLE_LEVELS <= 2)
1042 return;
1044 if (!pgtable_range_aligned(start, end, floor, ceiling, PUD_MASK))
1045 return;
1048 * Check whether we can free the pmd page if the rest of the
1049 * entries are empty. Overlap with other regions have been
1050 * handled by the floor/ceiling check.
1052 pmdp = pmd_offset(pudp, 0UL);
1053 for (i = 0; i < PTRS_PER_PMD; i++) {
1054 if (!pmd_none(READ_ONCE(pmdp[i])))
1055 return;
1058 pud_clear(pudp);
1059 __flush_tlb_kernel_pgtable(start);
1060 free_hotplug_pgtable_page(virt_to_page(pmdp));
1063 static void free_empty_pud_table(p4d_t *p4dp, unsigned long addr,
1064 unsigned long end, unsigned long floor,
1065 unsigned long ceiling)
1067 pud_t *pudp, pud;
1068 unsigned long i, next, start = addr;
1070 do {
1071 next = pud_addr_end(addr, end);
1072 pudp = pud_offset(p4dp, addr);
1073 pud = READ_ONCE(*pudp);
1074 if (pud_none(pud))
1075 continue;
1077 WARN_ON(!pud_present(pud) || !pud_table(pud) || pud_sect(pud));
1078 free_empty_pmd_table(pudp, addr, next, floor, ceiling);
1079 } while (addr = next, addr < end);
1081 if (!pgtable_l4_enabled())
1082 return;
1084 if (!pgtable_range_aligned(start, end, floor, ceiling, P4D_MASK))
1085 return;
1088 * Check whether we can free the pud page if the rest of the
1089 * entries are empty. Overlap with other regions have been
1090 * handled by the floor/ceiling check.
1092 pudp = pud_offset(p4dp, 0UL);
1093 for (i = 0; i < PTRS_PER_PUD; i++) {
1094 if (!pud_none(READ_ONCE(pudp[i])))
1095 return;
1098 p4d_clear(p4dp);
1099 __flush_tlb_kernel_pgtable(start);
1100 free_hotplug_pgtable_page(virt_to_page(pudp));
1103 static void free_empty_p4d_table(pgd_t *pgdp, unsigned long addr,
1104 unsigned long end, unsigned long floor,
1105 unsigned long ceiling)
1107 p4d_t *p4dp, p4d;
1108 unsigned long i, next, start = addr;
1110 do {
1111 next = p4d_addr_end(addr, end);
1112 p4dp = p4d_offset(pgdp, addr);
1113 p4d = READ_ONCE(*p4dp);
1114 if (p4d_none(p4d))
1115 continue;
1117 WARN_ON(!p4d_present(p4d));
1118 free_empty_pud_table(p4dp, addr, next, floor, ceiling);
1119 } while (addr = next, addr < end);
1121 if (!pgtable_l5_enabled())
1122 return;
1124 if (!pgtable_range_aligned(start, end, floor, ceiling, PGDIR_MASK))
1125 return;
1128 * Check whether we can free the p4d page if the rest of the
1129 * entries are empty. Overlap with other regions have been
1130 * handled by the floor/ceiling check.
1132 p4dp = p4d_offset(pgdp, 0UL);
1133 for (i = 0; i < PTRS_PER_P4D; i++) {
1134 if (!p4d_none(READ_ONCE(p4dp[i])))
1135 return;
1138 pgd_clear(pgdp);
1139 __flush_tlb_kernel_pgtable(start);
1140 free_hotplug_pgtable_page(virt_to_page(p4dp));
1143 static void free_empty_tables(unsigned long addr, unsigned long end,
1144 unsigned long floor, unsigned long ceiling)
1146 unsigned long next;
1147 pgd_t *pgdp, pgd;
1149 do {
1150 next = pgd_addr_end(addr, end);
1151 pgdp = pgd_offset_k(addr);
1152 pgd = READ_ONCE(*pgdp);
1153 if (pgd_none(pgd))
1154 continue;
1156 WARN_ON(!pgd_present(pgd));
1157 free_empty_p4d_table(pgdp, addr, next, floor, ceiling);
1158 } while (addr = next, addr < end);
1160 #endif
1162 void __meminit vmemmap_set_pmd(pmd_t *pmdp, void *p, int node,
1163 unsigned long addr, unsigned long next)
1165 pmd_set_huge(pmdp, __pa(p), __pgprot(PROT_SECT_NORMAL));
1168 int __meminit vmemmap_check_pmd(pmd_t *pmdp, int node,
1169 unsigned long addr, unsigned long next)
1171 vmemmap_verify((pte_t *)pmdp, node, addr, next);
1172 return 1;
1175 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1176 struct vmem_altmap *altmap)
1178 WARN_ON((start < VMEMMAP_START) || (end > VMEMMAP_END));
1180 if (!IS_ENABLED(CONFIG_ARM64_4K_PAGES))
1181 return vmemmap_populate_basepages(start, end, node, altmap);
1182 else
1183 return vmemmap_populate_hugepages(start, end, node, altmap);
1186 #ifdef CONFIG_MEMORY_HOTPLUG
1187 void vmemmap_free(unsigned long start, unsigned long end,
1188 struct vmem_altmap *altmap)
1190 WARN_ON((start < VMEMMAP_START) || (end > VMEMMAP_END));
1192 unmap_hotplug_range(start, end, true, altmap);
1193 free_empty_tables(start, end, VMEMMAP_START, VMEMMAP_END);
1195 #endif /* CONFIG_MEMORY_HOTPLUG */
1197 int pud_set_huge(pud_t *pudp, phys_addr_t phys, pgprot_t prot)
1199 pud_t new_pud = pfn_pud(__phys_to_pfn(phys), mk_pud_sect_prot(prot));
1201 /* Only allow permission changes for now */
1202 if (!pgattr_change_is_safe(READ_ONCE(pud_val(*pudp)),
1203 pud_val(new_pud)))
1204 return 0;
1206 VM_BUG_ON(phys & ~PUD_MASK);
1207 set_pud(pudp, new_pud);
1208 return 1;
1211 int pmd_set_huge(pmd_t *pmdp, phys_addr_t phys, pgprot_t prot)
1213 pmd_t new_pmd = pfn_pmd(__phys_to_pfn(phys), mk_pmd_sect_prot(prot));
1215 /* Only allow permission changes for now */
1216 if (!pgattr_change_is_safe(READ_ONCE(pmd_val(*pmdp)),
1217 pmd_val(new_pmd)))
1218 return 0;
1220 VM_BUG_ON(phys & ~PMD_MASK);
1221 set_pmd(pmdp, new_pmd);
1222 return 1;
1225 #ifndef __PAGETABLE_P4D_FOLDED
1226 void p4d_clear_huge(p4d_t *p4dp)
1229 #endif
1231 int pud_clear_huge(pud_t *pudp)
1233 if (!pud_sect(READ_ONCE(*pudp)))
1234 return 0;
1235 pud_clear(pudp);
1236 return 1;
1239 int pmd_clear_huge(pmd_t *pmdp)
1241 if (!pmd_sect(READ_ONCE(*pmdp)))
1242 return 0;
1243 pmd_clear(pmdp);
1244 return 1;
1247 int pmd_free_pte_page(pmd_t *pmdp, unsigned long addr)
1249 pte_t *table;
1250 pmd_t pmd;
1252 pmd = READ_ONCE(*pmdp);
1254 if (!pmd_table(pmd)) {
1255 VM_WARN_ON(1);
1256 return 1;
1259 table = pte_offset_kernel(pmdp, addr);
1260 pmd_clear(pmdp);
1261 __flush_tlb_kernel_pgtable(addr);
1262 pte_free_kernel(NULL, table);
1263 return 1;
1266 int pud_free_pmd_page(pud_t *pudp, unsigned long addr)
1268 pmd_t *table;
1269 pmd_t *pmdp;
1270 pud_t pud;
1271 unsigned long next, end;
1273 pud = READ_ONCE(*pudp);
1275 if (!pud_table(pud)) {
1276 VM_WARN_ON(1);
1277 return 1;
1280 table = pmd_offset(pudp, addr);
1281 pmdp = table;
1282 next = addr;
1283 end = addr + PUD_SIZE;
1284 do {
1285 pmd_free_pte_page(pmdp, next);
1286 } while (pmdp++, next += PMD_SIZE, next != end);
1288 pud_clear(pudp);
1289 __flush_tlb_kernel_pgtable(addr);
1290 pmd_free(NULL, table);
1291 return 1;
1294 #ifdef CONFIG_MEMORY_HOTPLUG
1295 static void __remove_pgd_mapping(pgd_t *pgdir, unsigned long start, u64 size)
1297 unsigned long end = start + size;
1299 WARN_ON(pgdir != init_mm.pgd);
1300 WARN_ON((start < PAGE_OFFSET) || (end > PAGE_END));
1302 unmap_hotplug_range(start, end, false, NULL);
1303 free_empty_tables(start, end, PAGE_OFFSET, PAGE_END);
1306 struct range arch_get_mappable_range(void)
1308 struct range mhp_range;
1309 u64 start_linear_pa = __pa(_PAGE_OFFSET(vabits_actual));
1310 u64 end_linear_pa = __pa(PAGE_END - 1);
1312 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
1314 * Check for a wrap, it is possible because of randomized linear
1315 * mapping the start physical address is actually bigger than
1316 * the end physical address. In this case set start to zero
1317 * because [0, end_linear_pa] range must still be able to cover
1318 * all addressable physical addresses.
1320 if (start_linear_pa > end_linear_pa)
1321 start_linear_pa = 0;
1324 WARN_ON(start_linear_pa > end_linear_pa);
1327 * Linear mapping region is the range [PAGE_OFFSET..(PAGE_END - 1)]
1328 * accommodating both its ends but excluding PAGE_END. Max physical
1329 * range which can be mapped inside this linear mapping range, must
1330 * also be derived from its end points.
1332 mhp_range.start = start_linear_pa;
1333 mhp_range.end = end_linear_pa;
1335 return mhp_range;
1338 int arch_add_memory(int nid, u64 start, u64 size,
1339 struct mhp_params *params)
1341 int ret, flags = NO_EXEC_MAPPINGS;
1343 VM_BUG_ON(!mhp_range_allowed(start, size, true));
1345 if (can_set_direct_map())
1346 flags |= NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
1348 __create_pgd_mapping(swapper_pg_dir, start, __phys_to_virt(start),
1349 size, params->pgprot, __pgd_pgtable_alloc,
1350 flags);
1352 memblock_clear_nomap(start, size);
1354 ret = __add_pages(nid, start >> PAGE_SHIFT, size >> PAGE_SHIFT,
1355 params);
1356 if (ret)
1357 __remove_pgd_mapping(swapper_pg_dir,
1358 __phys_to_virt(start), size);
1359 else {
1360 max_pfn = PFN_UP(start + size);
1361 max_low_pfn = max_pfn;
1364 return ret;
1367 void arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
1369 unsigned long start_pfn = start >> PAGE_SHIFT;
1370 unsigned long nr_pages = size >> PAGE_SHIFT;
1372 __remove_pages(start_pfn, nr_pages, altmap);
1373 __remove_pgd_mapping(swapper_pg_dir, __phys_to_virt(start), size);
1377 * This memory hotplug notifier helps prevent boot memory from being
1378 * inadvertently removed as it blocks pfn range offlining process in
1379 * __offline_pages(). Hence this prevents both offlining as well as
1380 * removal process for boot memory which is initially always online.
1381 * In future if and when boot memory could be removed, this notifier
1382 * should be dropped and free_hotplug_page_range() should handle any
1383 * reserved pages allocated during boot.
1385 static int prevent_bootmem_remove_notifier(struct notifier_block *nb,
1386 unsigned long action, void *data)
1388 struct mem_section *ms;
1389 struct memory_notify *arg = data;
1390 unsigned long end_pfn = arg->start_pfn + arg->nr_pages;
1391 unsigned long pfn = arg->start_pfn;
1393 if ((action != MEM_GOING_OFFLINE) && (action != MEM_OFFLINE))
1394 return NOTIFY_OK;
1396 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1397 unsigned long start = PFN_PHYS(pfn);
1398 unsigned long end = start + (1UL << PA_SECTION_SHIFT);
1400 ms = __pfn_to_section(pfn);
1401 if (!early_section(ms))
1402 continue;
1404 if (action == MEM_GOING_OFFLINE) {
1406 * Boot memory removal is not supported. Prevent
1407 * it via blocking any attempted offline request
1408 * for the boot memory and just report it.
1410 pr_warn("Boot memory [%lx %lx] offlining attempted\n", start, end);
1411 return NOTIFY_BAD;
1412 } else if (action == MEM_OFFLINE) {
1414 * This should have never happened. Boot memory
1415 * offlining should have been prevented by this
1416 * very notifier. Probably some memory removal
1417 * procedure might have changed which would then
1418 * require further debug.
1420 pr_err("Boot memory [%lx %lx] offlined\n", start, end);
1423 * Core memory hotplug does not process a return
1424 * code from the notifier for MEM_OFFLINE events.
1425 * The error condition has been reported. Return
1426 * from here as if ignored.
1428 return NOTIFY_DONE;
1431 return NOTIFY_OK;
1434 static struct notifier_block prevent_bootmem_remove_nb = {
1435 .notifier_call = prevent_bootmem_remove_notifier,
1439 * This ensures that boot memory sections on the platform are online
1440 * from early boot. Memory sections could not be prevented from being
1441 * offlined, unless for some reason they are not online to begin with.
1442 * This helps validate the basic assumption on which the above memory
1443 * event notifier works to prevent boot memory section offlining and
1444 * its possible removal.
1446 static void validate_bootmem_online(void)
1448 phys_addr_t start, end, addr;
1449 struct mem_section *ms;
1450 u64 i;
1453 * Scanning across all memblock might be expensive
1454 * on some big memory systems. Hence enable this
1455 * validation only with DEBUG_VM.
1457 if (!IS_ENABLED(CONFIG_DEBUG_VM))
1458 return;
1460 for_each_mem_range(i, &start, &end) {
1461 for (addr = start; addr < end; addr += (1UL << PA_SECTION_SHIFT)) {
1462 ms = __pfn_to_section(PHYS_PFN(addr));
1465 * All memory ranges in the system at this point
1466 * should have been marked as early sections.
1468 WARN_ON(!early_section(ms));
1471 * Memory notifier mechanism here to prevent boot
1472 * memory offlining depends on the fact that each
1473 * early section memory on the system is initially
1474 * online. Otherwise a given memory section which
1475 * is already offline will be overlooked and can
1476 * be removed completely. Call out such sections.
1478 if (!online_section(ms))
1479 pr_err("Boot memory [%llx %llx] is offline, can be removed\n",
1480 addr, addr + (1UL << PA_SECTION_SHIFT));
1485 static int __init prevent_bootmem_remove_init(void)
1487 int ret = 0;
1489 if (!IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
1490 return ret;
1492 validate_bootmem_online();
1493 ret = register_memory_notifier(&prevent_bootmem_remove_nb);
1494 if (ret)
1495 pr_err("%s: Notifier registration failed %d\n", __func__, ret);
1497 return ret;
1499 early_initcall(prevent_bootmem_remove_init);
1500 #endif
1502 pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
1504 if (alternative_has_cap_unlikely(ARM64_WORKAROUND_2645198)) {
1506 * Break-before-make (BBM) is required for all user space mappings
1507 * when the permission changes from executable to non-executable
1508 * in cases where cpu is affected with errata #2645198.
1510 if (pte_user_exec(ptep_get(ptep)))
1511 return ptep_clear_flush(vma, addr, ptep);
1513 return ptep_get_and_clear(vma->vm_mm, addr, ptep);
1516 void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep,
1517 pte_t old_pte, pte_t pte)
1519 set_pte_at(vma->vm_mm, addr, ptep, pte);
1523 * Atomically replaces the active TTBR1_EL1 PGD with a new VA-compatible PGD,
1524 * avoiding the possibility of conflicting TLB entries being allocated.
1526 void __cpu_replace_ttbr1(pgd_t *pgdp, bool cnp)
1528 typedef void (ttbr_replace_func)(phys_addr_t);
1529 extern ttbr_replace_func idmap_cpu_replace_ttbr1;
1530 ttbr_replace_func *replace_phys;
1531 unsigned long daif;
1533 /* phys_to_ttbr() zeros lower 2 bits of ttbr with 52-bit PA */
1534 phys_addr_t ttbr1 = phys_to_ttbr(virt_to_phys(pgdp));
1536 if (cnp)
1537 ttbr1 |= TTBR_CNP_BIT;
1539 replace_phys = (void *)__pa_symbol(idmap_cpu_replace_ttbr1);
1541 cpu_install_idmap();
1544 * We really don't want to take *any* exceptions while TTBR1 is
1545 * in the process of being replaced so mask everything.
1547 daif = local_daif_save();
1548 replace_phys(ttbr1);
1549 local_daif_restore(daif);
1551 cpu_uninstall_idmap();
1554 #ifdef CONFIG_ARCH_HAS_PKEYS
1555 int arch_set_user_pkey_access(struct task_struct *tsk, int pkey, unsigned long init_val)
1557 u64 new_por = POE_RXW;
1558 u64 old_por;
1559 u64 pkey_shift;
1561 if (!system_supports_poe())
1562 return -ENOSPC;
1565 * This code should only be called with valid 'pkey'
1566 * values originating from in-kernel users. Complain
1567 * if a bad value is observed.
1569 if (WARN_ON_ONCE(pkey >= arch_max_pkey()))
1570 return -EINVAL;
1572 /* Set the bits we need in POR: */
1573 new_por = POE_RXW;
1574 if (init_val & PKEY_DISABLE_WRITE)
1575 new_por &= ~POE_W;
1576 if (init_val & PKEY_DISABLE_ACCESS)
1577 new_por &= ~POE_RW;
1578 if (init_val & PKEY_DISABLE_READ)
1579 new_por &= ~POE_R;
1580 if (init_val & PKEY_DISABLE_EXECUTE)
1581 new_por &= ~POE_X;
1583 /* Shift the bits in to the correct place in POR for pkey: */
1584 pkey_shift = pkey * POR_BITS_PER_PKEY;
1585 new_por <<= pkey_shift;
1587 /* Get old POR and mask off any old bits in place: */
1588 old_por = read_sysreg_s(SYS_POR_EL0);
1589 old_por &= ~(POE_MASK << pkey_shift);
1591 /* Write old part along with new part: */
1592 write_sysreg_s(old_por | new_por, SYS_POR_EL0);
1594 return 0;
1596 #endif