1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* multi_arith.h: multi-precision integer arithmetic functions, needed
3 to do extended-precision floating point.
5 (c) 1998 David Huggins-Daines.
7 Somewhat based on arch/alpha/math-emu/ieee-math.c, which is (c)
14 These are not general multi-precision math routines. Rather, they
15 implement the subset of integer arithmetic that we need in order to
16 multiply, divide, and normalize 128-bit unsigned mantissae. */
18 #ifndef _MULTI_ARITH_H
19 #define _MULTI_ARITH_H
23 static inline void fp_denormalize(struct fp_ext
*reg
, unsigned int cnt
)
29 reg
->lowmant
= reg
->mant
.m32
[1] << (8 - cnt
);
30 reg
->mant
.m32
[1] = (reg
->mant
.m32
[1] >> cnt
) |
31 (reg
->mant
.m32
[0] << (32 - cnt
));
32 reg
->mant
.m32
[0] = reg
->mant
.m32
[0] >> cnt
;
35 reg
->lowmant
= reg
->mant
.m32
[1] >> (cnt
- 8);
36 if (reg
->mant
.m32
[1] << (40 - cnt
))
38 reg
->mant
.m32
[1] = (reg
->mant
.m32
[1] >> cnt
) |
39 (reg
->mant
.m32
[0] << (32 - cnt
));
40 reg
->mant
.m32
[0] = reg
->mant
.m32
[0] >> cnt
;
43 asm volatile ("bfextu %1{%2,#8},%0" : "=d" (reg
->lowmant
)
44 : "m" (reg
->mant
.m32
[0]), "d" (64 - cnt
));
45 if (reg
->mant
.m32
[1] << (40 - cnt
))
47 reg
->mant
.m32
[1] = reg
->mant
.m32
[0] >> (cnt
- 32);
51 reg
->lowmant
= reg
->mant
.m32
[0] >> (cnt
- 40);
52 if ((reg
->mant
.m32
[0] << (72 - cnt
)) || reg
->mant
.m32
[1])
54 reg
->mant
.m32
[1] = reg
->mant
.m32
[0] >> (cnt
- 32);
58 reg
->lowmant
= reg
->mant
.m32
[0] || reg
->mant
.m32
[1];
65 static inline int fp_overnormalize(struct fp_ext
*reg
)
69 if (reg
->mant
.m32
[0]) {
70 asm ("bfffo %1{#0,#32},%0" : "=d" (shift
) : "dm" (reg
->mant
.m32
[0]));
71 reg
->mant
.m32
[0] = (reg
->mant
.m32
[0] << shift
) | (reg
->mant
.m32
[1] >> (32 - shift
));
72 reg
->mant
.m32
[1] = (reg
->mant
.m32
[1] << shift
);
74 asm ("bfffo %1{#0,#32},%0" : "=d" (shift
) : "dm" (reg
->mant
.m32
[1]));
75 reg
->mant
.m32
[0] = (reg
->mant
.m32
[1] << shift
);
83 static inline int fp_addmant(struct fp_ext
*dest
, struct fp_ext
*src
)
87 /* we assume here, gcc only insert move and a clr instr */
88 asm volatile ("add.b %1,%0" : "=d,g" (dest
->lowmant
)
89 : "g,d" (src
->lowmant
), "0,0" (dest
->lowmant
));
90 asm volatile ("addx.l %1,%0" : "=d" (dest
->mant
.m32
[1])
91 : "d" (src
->mant
.m32
[1]), "0" (dest
->mant
.m32
[1]));
92 asm volatile ("addx.l %1,%0" : "=d" (dest
->mant
.m32
[0])
93 : "d" (src
->mant
.m32
[0]), "0" (dest
->mant
.m32
[0]));
94 asm volatile ("addx.l %0,%0" : "=d" (carry
) : "0" (0));
99 static inline int fp_addcarry(struct fp_ext
*reg
)
101 if (++reg
->exp
== 0x7fff) {
103 fp_set_sr(FPSR_EXC_INEX2
);
105 fp_set_sr(FPSR_EXC_OVFL
);
108 reg
->lowmant
= (reg
->mant
.m32
[1] << 7) | (reg
->lowmant
? 1 : 0);
109 reg
->mant
.m32
[1] = (reg
->mant
.m32
[1] >> 1) |
110 (reg
->mant
.m32
[0] << 31);
111 reg
->mant
.m32
[0] = (reg
->mant
.m32
[0] >> 1) | 0x80000000;
116 static inline void fp_submant(struct fp_ext
*dest
, struct fp_ext
*src1
,
119 /* we assume here, gcc only insert move and a clr instr */
120 asm volatile ("sub.b %1,%0" : "=d,g" (dest
->lowmant
)
121 : "g,d" (src2
->lowmant
), "0,0" (src1
->lowmant
));
122 asm volatile ("subx.l %1,%0" : "=d" (dest
->mant
.m32
[1])
123 : "d" (src2
->mant
.m32
[1]), "0" (src1
->mant
.m32
[1]));
124 asm volatile ("subx.l %1,%0" : "=d" (dest
->mant
.m32
[0])
125 : "d" (src2
->mant
.m32
[0]), "0" (src1
->mant
.m32
[0]));
128 #define fp_mul64(desth, destl, src1, src2) ({ \
129 asm ("mulu.l %2,%1:%0" : "=d" (destl), "=d" (desth) \
130 : "dm" (src1), "0" (src2)); \
132 #define fp_div64(quot, rem, srch, srcl, div) \
133 asm ("divu.l %2,%1:%0" : "=d" (quot), "=d" (rem) \
134 : "dm" (div), "1" (srch), "0" (srcl))
135 #define fp_add64(dest1, dest2, src1, src2) ({ \
136 asm ("add.l %1,%0" : "=d,dm" (dest2) \
137 : "dm,d" (src2), "0,0" (dest2)); \
138 asm ("addx.l %1,%0" : "=d" (dest1) \
139 : "d" (src1), "0" (dest1)); \
141 #define fp_addx96(dest, src) ({ \
142 /* we assume here, gcc only insert move and a clr instr */ \
143 asm volatile ("add.l %1,%0" : "=d,g" (dest->m32[2]) \
144 : "g,d" (temp.m32[1]), "0,0" (dest->m32[2])); \
145 asm volatile ("addx.l %1,%0" : "=d" (dest->m32[1]) \
146 : "d" (temp.m32[0]), "0" (dest->m32[1])); \
147 asm volatile ("addx.l %1,%0" : "=d" (dest->m32[0]) \
148 : "d" (0), "0" (dest->m32[0])); \
150 #define fp_sub64(dest, src) ({ \
151 asm ("sub.l %1,%0" : "=d,dm" (dest.m32[1]) \
152 : "dm,d" (src.m32[1]), "0,0" (dest.m32[1])); \
153 asm ("subx.l %1,%0" : "=d" (dest.m32[0]) \
154 : "d" (src.m32[0]), "0" (dest.m32[0])); \
156 #define fp_sub96c(dest, srch, srcm, srcl) ({ \
158 asm ("sub.l %1,%0" : "=d,dm" (dest.m32[2]) \
159 : "dm,d" (srcl), "0,0" (dest.m32[2])); \
160 asm ("subx.l %1,%0" : "=d" (dest.m32[1]) \
161 : "d" (srcm), "0" (dest.m32[1])); \
162 asm ("subx.l %2,%1; scs %0" : "=d" (carry), "=d" (dest.m32[0]) \
163 : "d" (srch), "1" (dest.m32[0])); \
167 static inline void fp_multiplymant(union fp_mant128
*dest
, struct fp_ext
*src1
,
170 union fp_mant64 temp
;
172 fp_mul64(dest
->m32
[0], dest
->m32
[1], src1
->mant
.m32
[0], src2
->mant
.m32
[0]);
173 fp_mul64(dest
->m32
[2], dest
->m32
[3], src1
->mant
.m32
[1], src2
->mant
.m32
[1]);
175 fp_mul64(temp
.m32
[0], temp
.m32
[1], src1
->mant
.m32
[0], src2
->mant
.m32
[1]);
176 fp_addx96(dest
, temp
);
178 fp_mul64(temp
.m32
[0], temp
.m32
[1], src1
->mant
.m32
[1], src2
->mant
.m32
[0]);
179 fp_addx96(dest
, temp
);
182 static inline void fp_dividemant(union fp_mant128
*dest
, struct fp_ext
*src
,
185 union fp_mant128 tmp
;
186 union fp_mant64 tmp64
;
187 unsigned long *mantp
= dest
->m32
;
188 unsigned long fix
, rem
, first
, dummy
;
191 /* the algorithm below requires dest to be smaller than div,
192 but both have the high bit set */
193 if (src
->mant
.m64
>= div
->mant
.m64
) {
194 fp_sub64(src
->mant
, div
->mant
);
200 /* basic idea behind this algorithm: we can't divide two 64bit numbers
201 (AB/CD) directly, but we can calculate AB/C0, but this means this
202 quotient is off by C0/CD, so we have to multiply the first result
203 to fix the result, after that we have nearly the correct result
204 and only a few corrections are needed. */
206 /* C0/CD can be precalculated, but it's an 64bit division again, but
207 we can make it a bit easier, by dividing first through C so we get
208 10/1D and now only a single shift and the value fits into 32bit. */
210 dummy
= div
->mant
.m32
[1] / div
->mant
.m32
[0] + 1;
211 dummy
= (dummy
>> 1) | fix
;
212 fp_div64(fix
, dummy
, fix
, 0, dummy
);
215 for (i
= 0; i
< 3; i
++, mantp
++) {
216 if (src
->mant
.m32
[0] == div
->mant
.m32
[0]) {
217 fp_div64(first
, rem
, 0, src
->mant
.m32
[1], div
->mant
.m32
[0]);
219 fp_mul64(*mantp
, dummy
, first
, fix
);
222 fp_div64(first
, rem
, src
->mant
.m32
[0], src
->mant
.m32
[1], div
->mant
.m32
[0]);
224 fp_mul64(*mantp
, dummy
, first
, fix
);
227 fp_mul64(tmp
.m32
[0], tmp
.m32
[1], div
->mant
.m32
[0], first
- *mantp
);
228 fp_add64(tmp
.m32
[0], tmp
.m32
[1], 0, rem
);
231 fp_mul64(tmp64
.m32
[0], tmp64
.m32
[1], *mantp
, div
->mant
.m32
[1]);
232 fp_sub96c(tmp
, 0, tmp64
.m32
[0], tmp64
.m32
[1]);
234 src
->mant
.m32
[0] = tmp
.m32
[1];
235 src
->mant
.m32
[1] = tmp
.m32
[2];
237 while (!fp_sub96c(tmp
, 0, div
->mant
.m32
[0], div
->mant
.m32
[1])) {
238 src
->mant
.m32
[0] = tmp
.m32
[1];
239 src
->mant
.m32
[1] = tmp
.m32
[2];
245 static inline void fp_putmant128(struct fp_ext
*dest
, union fp_mant128
*src
,
252 dest
->mant
.m64
= src
->m64
[0];
253 dest
->lowmant
= src
->m32
[2] >> 24;
254 if (src
->m32
[3] || (src
->m32
[2] << 8))
258 asm volatile ("lsl.l #1,%0"
259 : "=d" (tmp
) : "0" (src
->m32
[2]));
260 asm volatile ("roxl.l #1,%0"
261 : "=d" (dest
->mant
.m32
[1]) : "0" (src
->m32
[1]));
262 asm volatile ("roxl.l #1,%0"
263 : "=d" (dest
->mant
.m32
[0]) : "0" (src
->m32
[0]));
264 dest
->lowmant
= tmp
>> 24;
265 if (src
->m32
[3] || (tmp
<< 8))
269 asm volatile ("lsr.l #1,%1; roxr.l #1,%0"
270 : "=d" (dest
->mant
.m32
[0])
271 : "d" (src
->m32
[0]), "0" (src
->m32
[1]));
272 asm volatile ("roxr.l #1,%0"
273 : "=d" (dest
->mant
.m32
[1]) : "0" (src
->m32
[2]));
274 asm volatile ("roxr.l #1,%0"
275 : "=d" (tmp
) : "0" (src
->m32
[3]));
276 dest
->lowmant
= tmp
>> 24;
277 if (src
->m32
[3] << 7)
281 dest
->mant
.m32
[0] = src
->m32
[1];
282 dest
->mant
.m32
[1] = src
->m32
[2];
283 dest
->lowmant
= src
->m32
[3] >> 24;
284 if (src
->m32
[3] << 8)
290 #endif /* _MULTI_ARITH_H */