Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / arch / parisc / kernel / perf.c
blob5e8e37a722ef0fb3a22a8e0e57cb0fd48886901d
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Parisc performance counters
4 * Copyright (C) 2001 Randolph Chung <tausq@debian.org>
6 * This code is derived, with permission, from HP/UX sources.
7 */
9 /*
10 * Edited comment from original sources:
12 * This driver programs the PCX-U/PCX-W performance counters
13 * on the PA-RISC 2.0 chips. The driver keeps all images now
14 * internally to the kernel to hopefully eliminate the possibility
15 * of a bad image halting the CPU. Also, there are different
16 * images for the PCX-W and later chips vs the PCX-U chips.
18 * Only 1 process is allowed to access the driver at any time,
19 * so the only protection that is needed is at open and close.
20 * A variable "perf_enabled" is used to hold the state of the
21 * driver. The spinlock "perf_lock" is used to protect the
22 * modification of the state during open/close operations so
23 * multiple processes don't get into the driver simultaneously.
25 * This driver accesses the processor directly vs going through
26 * the PDC INTRIGUE calls. This is done to eliminate bugs introduced
27 * in various PDC revisions. The code is much more maintainable
28 * and reliable this way vs having to debug on every version of PDC
29 * on every box.
32 #include <linux/capability.h>
33 #include <linux/init.h>
34 #include <linux/proc_fs.h>
35 #include <linux/miscdevice.h>
36 #include <linux/spinlock.h>
38 #include <linux/uaccess.h>
39 #include <asm/perf.h>
40 #include <asm/parisc-device.h>
41 #include <asm/processor.h>
42 #include <asm/runway.h>
43 #include <asm/io.h> /* for __raw_read() */
45 #include "perf_images.h"
47 #define MAX_RDR_WORDS 24
48 #define PERF_VERSION 2 /* derived from hpux's PI v2 interface */
50 /* definition of RDR regs */
51 struct rdr_tbl_ent {
52 uint16_t width;
53 uint8_t num_words;
54 uint8_t write_control;
57 static int perf_processor_interface __read_mostly = UNKNOWN_INTF;
58 static int perf_enabled __read_mostly;
59 static DEFINE_SPINLOCK(perf_lock);
60 static struct parisc_device *cpu_device __read_mostly;
62 /* RDRs to write for PCX-W */
63 static const int perf_rdrs_W[] =
64 { 0, 1, 4, 5, 6, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, -1 };
66 /* RDRs to write for PCX-U */
67 static const int perf_rdrs_U[] =
68 { 0, 1, 4, 5, 6, 7, 16, 17, 18, 20, 21, 22, 23, 24, 25, -1 };
70 /* RDR register descriptions for PCX-W */
71 static const struct rdr_tbl_ent perf_rdr_tbl_W[] = {
72 { 19, 1, 8 }, /* RDR 0 */
73 { 16, 1, 16 }, /* RDR 1 */
74 { 72, 2, 0 }, /* RDR 2 */
75 { 81, 2, 0 }, /* RDR 3 */
76 { 328, 6, 0 }, /* RDR 4 */
77 { 160, 3, 0 }, /* RDR 5 */
78 { 336, 6, 0 }, /* RDR 6 */
79 { 164, 3, 0 }, /* RDR 7 */
80 { 0, 0, 0 }, /* RDR 8 */
81 { 35, 1, 0 }, /* RDR 9 */
82 { 6, 1, 0 }, /* RDR 10 */
83 { 18, 1, 0 }, /* RDR 11 */
84 { 13, 1, 0 }, /* RDR 12 */
85 { 8, 1, 0 }, /* RDR 13 */
86 { 8, 1, 0 }, /* RDR 14 */
87 { 8, 1, 0 }, /* RDR 15 */
88 { 1530, 24, 0 }, /* RDR 16 */
89 { 16, 1, 0 }, /* RDR 17 */
90 { 4, 1, 0 }, /* RDR 18 */
91 { 0, 0, 0 }, /* RDR 19 */
92 { 152, 3, 24 }, /* RDR 20 */
93 { 152, 3, 24 }, /* RDR 21 */
94 { 233, 4, 48 }, /* RDR 22 */
95 { 233, 4, 48 }, /* RDR 23 */
96 { 71, 2, 0 }, /* RDR 24 */
97 { 71, 2, 0 }, /* RDR 25 */
98 { 11, 1, 0 }, /* RDR 26 */
99 { 18, 1, 0 }, /* RDR 27 */
100 { 128, 2, 0 }, /* RDR 28 */
101 { 0, 0, 0 }, /* RDR 29 */
102 { 16, 1, 0 }, /* RDR 30 */
103 { 16, 1, 0 }, /* RDR 31 */
106 /* RDR register descriptions for PCX-U */
107 static const struct rdr_tbl_ent perf_rdr_tbl_U[] = {
108 { 19, 1, 8 }, /* RDR 0 */
109 { 32, 1, 16 }, /* RDR 1 */
110 { 20, 1, 0 }, /* RDR 2 */
111 { 0, 0, 0 }, /* RDR 3 */
112 { 344, 6, 0 }, /* RDR 4 */
113 { 176, 3, 0 }, /* RDR 5 */
114 { 336, 6, 0 }, /* RDR 6 */
115 { 0, 0, 0 }, /* RDR 7 */
116 { 0, 0, 0 }, /* RDR 8 */
117 { 0, 0, 0 }, /* RDR 9 */
118 { 28, 1, 0 }, /* RDR 10 */
119 { 33, 1, 0 }, /* RDR 11 */
120 { 0, 0, 0 }, /* RDR 12 */
121 { 230, 4, 0 }, /* RDR 13 */
122 { 32, 1, 0 }, /* RDR 14 */
123 { 128, 2, 0 }, /* RDR 15 */
124 { 1494, 24, 0 }, /* RDR 16 */
125 { 18, 1, 0 }, /* RDR 17 */
126 { 4, 1, 0 }, /* RDR 18 */
127 { 0, 0, 0 }, /* RDR 19 */
128 { 158, 3, 24 }, /* RDR 20 */
129 { 158, 3, 24 }, /* RDR 21 */
130 { 194, 4, 48 }, /* RDR 22 */
131 { 194, 4, 48 }, /* RDR 23 */
132 { 71, 2, 0 }, /* RDR 24 */
133 { 71, 2, 0 }, /* RDR 25 */
134 { 28, 1, 0 }, /* RDR 26 */
135 { 33, 1, 0 }, /* RDR 27 */
136 { 88, 2, 0 }, /* RDR 28 */
137 { 32, 1, 0 }, /* RDR 29 */
138 { 24, 1, 0 }, /* RDR 30 */
139 { 16, 1, 0 }, /* RDR 31 */
143 * A non-zero write_control in the above tables is a byte offset into
144 * this array.
146 static const uint64_t perf_bitmasks[] = {
147 0x0000000000000000ul, /* first dbl word must be zero */
148 0xfdffe00000000000ul, /* RDR0 bitmask */
149 0x003f000000000000ul, /* RDR1 bitmask */
150 0x00fffffffffffffful, /* RDR20-RDR21 bitmask (152 bits) */
151 0xfffffffffffffffful,
152 0xfffffffc00000000ul,
153 0xfffffffffffffffful, /* RDR22-RDR23 bitmask (233 bits) */
154 0xfffffffffffffffful,
155 0xfffffffffffffffcul,
156 0xff00000000000000ul
160 * Write control bitmasks for Pa-8700 processor given
161 * some things have changed slightly.
163 static const uint64_t perf_bitmasks_piranha[] = {
164 0x0000000000000000ul, /* first dbl word must be zero */
165 0xfdffe00000000000ul, /* RDR0 bitmask */
166 0x003f000000000000ul, /* RDR1 bitmask */
167 0x00fffffffffffffful, /* RDR20-RDR21 bitmask (158 bits) */
168 0xfffffffffffffffful,
169 0xfffffffc00000000ul,
170 0xfffffffffffffffful, /* RDR22-RDR23 bitmask (210 bits) */
171 0xfffffffffffffffful,
172 0xfffffffffffffffful,
173 0xfffc000000000000ul
176 static const uint64_t *bitmask_array; /* array of bitmasks to use */
178 /******************************************************************************
179 * Function Prototypes
180 *****************************************************************************/
181 static int perf_config(uint32_t *image_ptr);
182 static int perf_release(struct inode *inode, struct file *file);
183 static int perf_open(struct inode *inode, struct file *file);
184 static ssize_t perf_read(struct file *file, char __user *buf, size_t cnt, loff_t *ppos);
185 static ssize_t perf_write(struct file *file, const char __user *buf,
186 size_t count, loff_t *ppos);
187 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
188 static void perf_start_counters(void);
189 static int perf_stop_counters(uint32_t *raddr);
190 static const struct rdr_tbl_ent * perf_rdr_get_entry(uint32_t rdr_num);
191 static int perf_rdr_read_ubuf(uint32_t rdr_num, uint64_t *buffer);
192 static int perf_rdr_clear(uint32_t rdr_num);
193 static int perf_write_image(uint64_t *memaddr);
194 static void perf_rdr_write(uint32_t rdr_num, uint64_t *buffer);
196 /* External Assembly Routines */
197 extern uint64_t perf_rdr_shift_in_W (uint32_t rdr_num, uint16_t width);
198 extern uint64_t perf_rdr_shift_in_U (uint32_t rdr_num, uint16_t width);
199 extern void perf_rdr_shift_out_W (uint32_t rdr_num, uint64_t buffer);
200 extern void perf_rdr_shift_out_U (uint32_t rdr_num, uint64_t buffer);
201 extern void perf_intrigue_enable_perf_counters (void);
202 extern void perf_intrigue_disable_perf_counters (void);
204 /******************************************************************************
205 * Function Definitions
206 *****************************************************************************/
210 * configure:
212 * Configure the cpu with a given data image. First turn off the counters,
213 * then download the image, then turn the counters back on.
215 static int perf_config(uint32_t *image_ptr)
217 long error;
218 uint32_t raddr[4];
220 /* Stop the counters*/
221 error = perf_stop_counters(raddr);
222 if (error != 0) {
223 printk("perf_config: perf_stop_counters = %ld\n", error);
224 return -EINVAL;
227 printk("Preparing to write image\n");
228 /* Write the image to the chip */
229 error = perf_write_image((uint64_t *)image_ptr);
230 if (error != 0) {
231 printk("perf_config: DOWNLOAD = %ld\n", error);
232 return -EINVAL;
235 printk("Preparing to start counters\n");
237 /* Start the counters */
238 perf_start_counters();
240 return sizeof(uint32_t);
244 * Open the device and initialize all of its memory. The device is only
245 * opened once, but can be "queried" by multiple processes that know its
246 * file descriptor.
248 static int perf_open(struct inode *inode, struct file *file)
250 spin_lock(&perf_lock);
251 if (perf_enabled) {
252 spin_unlock(&perf_lock);
253 return -EBUSY;
255 perf_enabled = 1;
256 spin_unlock(&perf_lock);
258 return 0;
262 * Close the device.
264 static int perf_release(struct inode *inode, struct file *file)
266 spin_lock(&perf_lock);
267 perf_enabled = 0;
268 spin_unlock(&perf_lock);
270 return 0;
274 * Read does nothing for this driver
276 static ssize_t perf_read(struct file *file, char __user *buf, size_t cnt, loff_t *ppos)
278 return 0;
282 * write:
284 * This routine downloads the image to the chip. It must be
285 * called on the processor that the download should happen
286 * on.
288 static ssize_t perf_write(struct file *file, const char __user *buf,
289 size_t count, loff_t *ppos)
291 size_t image_size __maybe_unused;
292 uint32_t image_type;
293 uint32_t interface_type;
294 uint32_t test;
296 if (perf_processor_interface == ONYX_INTF)
297 image_size = PCXU_IMAGE_SIZE;
298 else if (perf_processor_interface == CUDA_INTF)
299 image_size = PCXW_IMAGE_SIZE;
300 else
301 return -EFAULT;
303 if (!perfmon_capable())
304 return -EACCES;
306 if (count != sizeof(uint32_t))
307 return -EIO;
309 if (copy_from_user(&image_type, buf, sizeof(uint32_t)))
310 return -EFAULT;
312 /* Get the interface type and test type */
313 interface_type = (image_type >> 16) & 0xffff;
314 test = (image_type & 0xffff);
316 /* Make sure everything makes sense */
318 /* First check the machine type is correct for
319 the requested image */
320 if (((perf_processor_interface == CUDA_INTF) &&
321 (interface_type != CUDA_INTF)) ||
322 ((perf_processor_interface == ONYX_INTF) &&
323 (interface_type != ONYX_INTF)))
324 return -EINVAL;
326 /* Next check to make sure the requested image
327 is valid */
328 if (((interface_type == CUDA_INTF) &&
329 (test >= MAX_CUDA_IMAGES)) ||
330 ((interface_type == ONYX_INTF) &&
331 (test >= MAX_ONYX_IMAGES)))
332 return -EINVAL;
334 /* Copy the image into the processor */
335 if (interface_type == CUDA_INTF)
336 return perf_config(cuda_images[test]);
337 else
338 return perf_config(onyx_images[test]);
340 return count;
344 * Patch the images that need to know the IVA addresses.
346 static void perf_patch_images(void)
348 #if 0 /* FIXME!! */
350 * NOTE: this routine is VERY specific to the current TLB image.
351 * If the image is changed, this routine might also need to be changed.
353 extern void $i_itlb_miss_2_0();
354 extern void $i_dtlb_miss_2_0();
355 extern void PA2_0_iva();
358 * We can only use the lower 32-bits, the upper 32-bits should be 0
359 * anyway given this is in the kernel
361 uint32_t itlb_addr = (uint32_t)&($i_itlb_miss_2_0);
362 uint32_t dtlb_addr = (uint32_t)&($i_dtlb_miss_2_0);
363 uint32_t IVAaddress = (uint32_t)&PA2_0_iva;
365 if (perf_processor_interface == ONYX_INTF) {
366 /* clear last 2 bytes */
367 onyx_images[TLBMISS][15] &= 0xffffff00;
368 /* set 2 bytes */
369 onyx_images[TLBMISS][15] |= (0x000000ff&((dtlb_addr) >> 24));
370 onyx_images[TLBMISS][16] = (dtlb_addr << 8)&0xffffff00;
371 onyx_images[TLBMISS][17] = itlb_addr;
373 /* clear last 2 bytes */
374 onyx_images[TLBHANDMISS][15] &= 0xffffff00;
375 /* set 2 bytes */
376 onyx_images[TLBHANDMISS][15] |= (0x000000ff&((dtlb_addr) >> 24));
377 onyx_images[TLBHANDMISS][16] = (dtlb_addr << 8)&0xffffff00;
378 onyx_images[TLBHANDMISS][17] = itlb_addr;
380 /* clear last 2 bytes */
381 onyx_images[BIG_CPI][15] &= 0xffffff00;
382 /* set 2 bytes */
383 onyx_images[BIG_CPI][15] |= (0x000000ff&((dtlb_addr) >> 24));
384 onyx_images[BIG_CPI][16] = (dtlb_addr << 8)&0xffffff00;
385 onyx_images[BIG_CPI][17] = itlb_addr;
387 onyx_images[PANIC][15] &= 0xffffff00; /* clear last 2 bytes */
388 onyx_images[PANIC][15] |= (0x000000ff&((IVAaddress) >> 24)); /* set 2 bytes */
389 onyx_images[PANIC][16] = (IVAaddress << 8)&0xffffff00;
392 } else if (perf_processor_interface == CUDA_INTF) {
393 /* Cuda interface */
394 cuda_images[TLBMISS][16] =
395 (cuda_images[TLBMISS][16]&0xffff0000) |
396 ((dtlb_addr >> 8)&0x0000ffff);
397 cuda_images[TLBMISS][17] =
398 ((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff);
399 cuda_images[TLBMISS][18] = (itlb_addr << 16)&0xffff0000;
401 cuda_images[TLBHANDMISS][16] =
402 (cuda_images[TLBHANDMISS][16]&0xffff0000) |
403 ((dtlb_addr >> 8)&0x0000ffff);
404 cuda_images[TLBHANDMISS][17] =
405 ((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff);
406 cuda_images[TLBHANDMISS][18] = (itlb_addr << 16)&0xffff0000;
408 cuda_images[BIG_CPI][16] =
409 (cuda_images[BIG_CPI][16]&0xffff0000) |
410 ((dtlb_addr >> 8)&0x0000ffff);
411 cuda_images[BIG_CPI][17] =
412 ((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff);
413 cuda_images[BIG_CPI][18] = (itlb_addr << 16)&0xffff0000;
414 } else {
415 /* Unknown type */
417 #endif
422 * ioctl routine
423 * All routines effect the processor that they are executed on. Thus you
424 * must be running on the processor that you wish to change.
427 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
429 long error_start;
430 uint32_t raddr[4];
431 int error = 0;
433 switch (cmd) {
435 case PA_PERF_ON:
436 /* Start the counters */
437 perf_start_counters();
438 break;
440 case PA_PERF_OFF:
441 error_start = perf_stop_counters(raddr);
442 if (error_start != 0) {
443 printk(KERN_ERR "perf_off: perf_stop_counters = %ld\n", error_start);
444 error = -EFAULT;
445 break;
448 /* copy out the Counters */
449 if (copy_to_user((void __user *)arg, raddr,
450 sizeof (raddr)) != 0) {
451 error = -EFAULT;
452 break;
454 break;
456 case PA_PERF_VERSION:
457 /* Return the version # */
458 error = put_user(PERF_VERSION, (int *)arg);
459 break;
461 default:
462 error = -ENOTTY;
465 return error;
468 static const struct file_operations perf_fops = {
469 .read = perf_read,
470 .write = perf_write,
471 .unlocked_ioctl = perf_ioctl,
472 .compat_ioctl = perf_ioctl,
473 .open = perf_open,
474 .release = perf_release
477 static struct miscdevice perf_dev = {
478 MISC_DYNAMIC_MINOR,
479 PA_PERF_DEV,
480 &perf_fops
484 * Initialize the module
486 static int __init perf_init(void)
488 int ret;
490 /* Determine correct processor interface to use */
491 bitmask_array = perf_bitmasks;
493 if (boot_cpu_data.cpu_type == pcxu ||
494 boot_cpu_data.cpu_type == pcxu_) {
495 perf_processor_interface = ONYX_INTF;
496 } else if (boot_cpu_data.cpu_type == pcxw ||
497 boot_cpu_data.cpu_type == pcxw_ ||
498 boot_cpu_data.cpu_type == pcxw2 ||
499 boot_cpu_data.cpu_type == mako ||
500 boot_cpu_data.cpu_type == mako2) {
501 perf_processor_interface = CUDA_INTF;
502 if (boot_cpu_data.cpu_type == pcxw2 ||
503 boot_cpu_data.cpu_type == mako ||
504 boot_cpu_data.cpu_type == mako2)
505 bitmask_array = perf_bitmasks_piranha;
506 } else {
507 perf_processor_interface = UNKNOWN_INTF;
508 printk("Performance monitoring counters not supported on this processor\n");
509 return -ENODEV;
512 ret = misc_register(&perf_dev);
513 if (ret) {
514 printk(KERN_ERR "Performance monitoring counters: "
515 "cannot register misc device.\n");
516 return ret;
519 /* Patch the images to match the system */
520 perf_patch_images();
522 /* TODO: this only lets us access the first cpu.. what to do for SMP? */
523 cpu_device = per_cpu(cpu_data, 0).dev;
524 printk("Performance monitoring counters enabled for %s\n",
525 per_cpu(cpu_data, 0).dev->name);
527 return 0;
529 device_initcall(perf_init);
532 * perf_start_counters(void)
534 * Start the counters.
536 static void perf_start_counters(void)
538 /* Enable performance monitor counters */
539 perf_intrigue_enable_perf_counters();
543 * perf_stop_counters
545 * Stop the performance counters and save counts
546 * in a per_processor array.
548 static int perf_stop_counters(uint32_t *raddr)
550 uint64_t userbuf[MAX_RDR_WORDS];
552 /* Disable performance counters */
553 perf_intrigue_disable_perf_counters();
555 if (perf_processor_interface == ONYX_INTF) {
556 uint64_t tmp64;
558 * Read the counters
560 if (!perf_rdr_read_ubuf(16, userbuf))
561 return -13;
563 /* Counter0 is bits 1398 to 1429 */
564 tmp64 = (userbuf[21] << 22) & 0x00000000ffc00000;
565 tmp64 |= (userbuf[22] >> 42) & 0x00000000003fffff;
566 /* OR sticky0 (bit 1430) to counter0 bit 32 */
567 tmp64 |= (userbuf[22] >> 10) & 0x0000000080000000;
568 raddr[0] = (uint32_t)tmp64;
570 /* Counter1 is bits 1431 to 1462 */
571 tmp64 = (userbuf[22] >> 9) & 0x00000000ffffffff;
572 /* OR sticky1 (bit 1463) to counter1 bit 32 */
573 tmp64 |= (userbuf[22] << 23) & 0x0000000080000000;
574 raddr[1] = (uint32_t)tmp64;
576 /* Counter2 is bits 1464 to 1495 */
577 tmp64 = (userbuf[22] << 24) & 0x00000000ff000000;
578 tmp64 |= (userbuf[23] >> 40) & 0x0000000000ffffff;
579 /* OR sticky2 (bit 1496) to counter2 bit 32 */
580 tmp64 |= (userbuf[23] >> 8) & 0x0000000080000000;
581 raddr[2] = (uint32_t)tmp64;
583 /* Counter3 is bits 1497 to 1528 */
584 tmp64 = (userbuf[23] >> 7) & 0x00000000ffffffff;
585 /* OR sticky3 (bit 1529) to counter3 bit 32 */
586 tmp64 |= (userbuf[23] << 25) & 0x0000000080000000;
587 raddr[3] = (uint32_t)tmp64;
590 * Zero out the counters
594 * The counters and sticky-bits comprise the last 132 bits
595 * (1398 - 1529) of RDR16 on a U chip. We'll zero these
596 * out the easy way: zero out last 10 bits of dword 21,
597 * all of dword 22 and 58 bits (plus 6 don't care bits) of
598 * dword 23.
600 userbuf[21] &= 0xfffffffffffffc00ul; /* 0 to last 10 bits */
601 userbuf[22] = 0;
602 userbuf[23] = 0;
605 * Write back the zeroed bytes + the image given
606 * the read was destructive.
608 perf_rdr_write(16, userbuf);
609 } else {
612 * Read RDR-15 which contains the counters and sticky bits
614 if (!perf_rdr_read_ubuf(15, userbuf)) {
615 return -13;
619 * Clear out the counters
621 perf_rdr_clear(15);
624 * Copy the counters
626 raddr[0] = (uint32_t)((userbuf[0] >> 32) & 0x00000000ffffffffUL);
627 raddr[1] = (uint32_t)(userbuf[0] & 0x00000000ffffffffUL);
628 raddr[2] = (uint32_t)((userbuf[1] >> 32) & 0x00000000ffffffffUL);
629 raddr[3] = (uint32_t)(userbuf[1] & 0x00000000ffffffffUL);
632 return 0;
636 * perf_rdr_get_entry
638 * Retrieve a pointer to the description of what this
639 * RDR contains.
641 static const struct rdr_tbl_ent * perf_rdr_get_entry(uint32_t rdr_num)
643 if (perf_processor_interface == ONYX_INTF) {
644 return &perf_rdr_tbl_U[rdr_num];
645 } else {
646 return &perf_rdr_tbl_W[rdr_num];
651 * perf_rdr_read_ubuf
653 * Read the RDR value into the buffer specified.
655 static int perf_rdr_read_ubuf(uint32_t rdr_num, uint64_t *buffer)
657 uint64_t data, data_mask = 0;
658 uint32_t width, xbits, i;
659 const struct rdr_tbl_ent *tentry;
661 tentry = perf_rdr_get_entry(rdr_num);
662 if ((width = tentry->width) == 0)
663 return 0;
665 /* Clear out buffer */
666 i = tentry->num_words;
667 while (i--) {
668 buffer[i] = 0;
671 /* Check for bits an even number of 64 */
672 if ((xbits = width & 0x03f) != 0) {
673 data_mask = 1;
674 data_mask <<= (64 - xbits);
675 data_mask--;
678 /* Grab all of the data */
679 i = tentry->num_words;
680 while (i--) {
682 if (perf_processor_interface == ONYX_INTF) {
683 data = perf_rdr_shift_in_U(rdr_num, width);
684 } else {
685 data = perf_rdr_shift_in_W(rdr_num, width);
687 if (xbits) {
688 buffer[i] |= (data << (64 - xbits));
689 if (i) {
690 buffer[i-1] |= ((data >> xbits) & data_mask);
692 } else {
693 buffer[i] = data;
697 return 1;
701 * perf_rdr_clear
703 * Zero out the given RDR register
705 static int perf_rdr_clear(uint32_t rdr_num)
707 const struct rdr_tbl_ent *tentry;
708 int32_t i;
710 tentry = perf_rdr_get_entry(rdr_num);
712 if (tentry->width == 0) {
713 return -1;
716 i = tentry->num_words;
717 while (i--) {
718 if (perf_processor_interface == ONYX_INTF) {
719 perf_rdr_shift_out_U(rdr_num, 0UL);
720 } else {
721 perf_rdr_shift_out_W(rdr_num, 0UL);
725 return 0;
730 * perf_write_image
732 * Write the given image out to the processor
734 static int perf_write_image(uint64_t *memaddr)
736 uint64_t buffer[MAX_RDR_WORDS];
737 uint64_t *bptr;
738 uint32_t dwords;
739 const uint32_t *intrigue_rdr;
740 const uint64_t *intrigue_bitmask;
741 uint64_t tmp64;
742 void __iomem *runway;
743 const struct rdr_tbl_ent *tentry;
744 int i;
746 /* Clear out counters */
747 if (perf_processor_interface == ONYX_INTF) {
749 perf_rdr_clear(16);
751 /* Toggle performance monitor */
752 perf_intrigue_enable_perf_counters();
753 perf_intrigue_disable_perf_counters();
755 intrigue_rdr = perf_rdrs_U;
756 } else {
757 perf_rdr_clear(15);
758 intrigue_rdr = perf_rdrs_W;
761 /* Write all RDRs */
762 while (*intrigue_rdr != -1) {
763 tentry = perf_rdr_get_entry(*intrigue_rdr);
764 perf_rdr_read_ubuf(*intrigue_rdr, buffer);
765 bptr = &buffer[0];
766 dwords = tentry->num_words;
767 if (tentry->write_control) {
768 intrigue_bitmask = &bitmask_array[tentry->write_control >> 3];
769 while (dwords--) {
770 tmp64 = *intrigue_bitmask & *memaddr++;
771 tmp64 |= (~(*intrigue_bitmask++)) & *bptr;
772 *bptr++ = tmp64;
774 } else {
775 while (dwords--) {
776 *bptr++ = *memaddr++;
780 perf_rdr_write(*intrigue_rdr, buffer);
781 intrigue_rdr++;
785 * Now copy out the Runway stuff which is not in RDRs
788 if (cpu_device == NULL)
790 printk(KERN_ERR "write_image: cpu_device not yet initialized!\n");
791 return -1;
794 runway = ioremap(cpu_device->hpa.start, 4096);
795 if (!runway) {
796 pr_err("perf_write_image: ioremap failed!\n");
797 return -ENOMEM;
800 /* Merge intrigue bits into Runway STATUS 0 */
801 tmp64 = __raw_readq(runway + RUNWAY_STATUS) & 0xffecfffffffffffful;
802 __raw_writeq(tmp64 | (*memaddr++ & 0x0013000000000000ul),
803 runway + RUNWAY_STATUS);
805 /* Write RUNWAY DEBUG registers */
806 for (i = 0; i < 8; i++) {
807 __raw_writeq(*memaddr++, runway + RUNWAY_DEBUG);
810 return 0;
814 * perf_rdr_write
816 * Write the given RDR register with the contents
817 * of the given buffer.
819 static void perf_rdr_write(uint32_t rdr_num, uint64_t *buffer)
821 const struct rdr_tbl_ent *tentry;
822 int32_t i;
824 printk("perf_rdr_write\n");
825 tentry = perf_rdr_get_entry(rdr_num);
826 if (tentry->width == 0) { return; }
828 i = tentry->num_words;
829 while (i--) {
830 if (perf_processor_interface == ONYX_INTF) {
831 perf_rdr_shift_out_U(rdr_num, buffer[i]);
832 } else {
833 perf_rdr_shift_out_W(rdr_num, buffer[i]);
836 printk("perf_rdr_write done\n");