1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright IBM Corporation 2001, 2005, 2006
4 * Copyright Dave Engebretsen & Todd Inglett 2001
5 * Copyright Linas Vepstas 2005, 2006
6 * Copyright 2001-2012 IBM Corporation.
8 * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
11 #include <linux/delay.h>
12 #include <linux/sched.h>
13 #include <linux/init.h>
14 #include <linux/list.h>
15 #include <linux/pci.h>
16 #include <linux/iommu.h>
17 #include <linux/proc_fs.h>
18 #include <linux/rbtree.h>
19 #include <linux/reboot.h>
20 #include <linux/seq_file.h>
21 #include <linux/spinlock.h>
22 #include <linux/export.h>
24 #include <linux/debugfs.h>
26 #include <linux/atomic.h>
28 #include <asm/eeh_event.h>
30 #include <asm/iommu.h>
31 #include <asm/machdep.h>
32 #include <asm/ppc-pci.h>
34 #include <asm/pte-walk.h>
38 * EEH, or "Enhanced Error Handling" is a PCI bridge technology for
39 * dealing with PCI bus errors that can't be dealt with within the
40 * usual PCI framework, except by check-stopping the CPU. Systems
41 * that are designed for high-availability/reliability cannot afford
42 * to crash due to a "mere" PCI error, thus the need for EEH.
43 * An EEH-capable bridge operates by converting a detected error
44 * into a "slot freeze", taking the PCI adapter off-line, making
45 * the slot behave, from the OS'es point of view, as if the slot
46 * were "empty": all reads return 0xff's and all writes are silently
47 * ignored. EEH slot isolation events can be triggered by parity
48 * errors on the address or data busses (e.g. during posted writes),
49 * which in turn might be caused by low voltage on the bus, dust,
50 * vibration, humidity, radioactivity or plain-old failed hardware.
52 * Note, however, that one of the leading causes of EEH slot
53 * freeze events are buggy device drivers, buggy device microcode,
54 * or buggy device hardware. This is because any attempt by the
55 * device to bus-master data to a memory address that is not
56 * assigned to the device will trigger a slot freeze. (The idea
57 * is to prevent devices-gone-wild from corrupting system memory).
58 * Buggy hardware/drivers will have a miserable time co-existing
61 * Ideally, a PCI device driver, when suspecting that an isolation
62 * event has occurred (e.g. by reading 0xff's), will then ask EEH
63 * whether this is the case, and then take appropriate steps to
64 * reset the PCI slot, the PCI device, and then resume operations.
65 * However, until that day, the checking is done here, with the
66 * eeh_check_failure() routine embedded in the MMIO macros. If
67 * the slot is found to be isolated, an "EEH Event" is synthesized
68 * and sent out for processing.
71 /* If a device driver keeps reading an MMIO register in an interrupt
72 * handler after a slot isolation event, it might be broken.
73 * This sets the threshold for how many read attempts we allow
74 * before printing an error message.
76 #define EEH_MAX_FAILS 2100000
78 /* Time to wait for a PCI slot to report status, in milliseconds */
79 #define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
82 * EEH probe mode support, which is part of the flags,
83 * is to support multiple platforms for EEH. Some platforms
84 * like pSeries do PCI emunation based on device tree.
85 * However, other platforms like powernv probe PCI devices
86 * from hardware. The flag is used to distinguish that.
87 * In addition, struct eeh_ops::probe would be invoked for
88 * particular OF node or PCI device so that the corresponding
89 * PE would be created there.
91 int eeh_subsystem_flags
;
92 EXPORT_SYMBOL(eeh_subsystem_flags
);
95 * EEH allowed maximal frozen times. If one particular PE's
96 * frozen count in last hour exceeds this limit, the PE will
97 * be forced to be offline permanently.
99 u32 eeh_max_freezes
= 5;
102 * Controls whether a recovery event should be scheduled when an
103 * isolated device is discovered. This is only really useful for
104 * debugging problems with the EEH core.
106 bool eeh_debugfs_no_recover
;
108 /* Platform dependent EEH operations */
109 struct eeh_ops
*eeh_ops
= NULL
;
111 /* Lock to avoid races due to multiple reports of an error */
112 DEFINE_RAW_SPINLOCK(confirm_error_lock
);
113 EXPORT_SYMBOL_GPL(confirm_error_lock
);
115 /* Lock to protect passed flags */
116 static DEFINE_MUTEX(eeh_dev_mutex
);
118 /* Buffer for reporting pci register dumps. Its here in BSS, and
119 * not dynamically alloced, so that it ends up in RMO where RTAS
122 #define EEH_PCI_REGS_LOG_LEN 8192
123 static unsigned char pci_regs_buf
[EEH_PCI_REGS_LOG_LEN
];
126 * The struct is used to maintain the EEH global statistic
127 * information. Besides, the EEH global statistics will be
128 * exported to user space through procfs
131 u64 no_device
; /* PCI device not found */
132 u64 no_dn
; /* OF node not found */
133 u64 no_cfg_addr
; /* Config address not found */
134 u64 ignored_check
; /* EEH check skipped */
135 u64 total_mmio_ffs
; /* Total EEH checks */
136 u64 false_positives
; /* Unnecessary EEH checks */
137 u64 slot_resets
; /* PE reset */
140 static struct eeh_stats eeh_stats
;
142 static int __init
eeh_setup(char *str
)
144 if (!strcmp(str
, "off"))
145 eeh_add_flag(EEH_FORCE_DISABLED
);
146 else if (!strcmp(str
, "early_log"))
147 eeh_add_flag(EEH_EARLY_DUMP_LOG
);
151 __setup("eeh=", eeh_setup
);
153 void eeh_show_enabled(void)
155 if (eeh_has_flag(EEH_FORCE_DISABLED
))
156 pr_info("EEH: Recovery disabled by kernel parameter.\n");
157 else if (eeh_has_flag(EEH_ENABLED
))
158 pr_info("EEH: Capable adapter found: recovery enabled.\n");
160 pr_info("EEH: No capable adapters found: recovery disabled.\n");
164 * This routine captures assorted PCI configuration space data
165 * for the indicated PCI device, and puts them into a buffer
166 * for RTAS error logging.
168 static size_t eeh_dump_dev_log(struct eeh_dev
*edev
, char *buf
, size_t len
)
175 n
+= scnprintf(buf
+n
, len
-n
, "%04x:%02x:%02x.%01x\n",
176 edev
->pe
->phb
->global_number
, edev
->bdfn
>> 8,
177 PCI_SLOT(edev
->bdfn
), PCI_FUNC(edev
->bdfn
));
178 pr_warn("EEH: of node=%04x:%02x:%02x.%01x\n",
179 edev
->pe
->phb
->global_number
, edev
->bdfn
>> 8,
180 PCI_SLOT(edev
->bdfn
), PCI_FUNC(edev
->bdfn
));
182 eeh_ops
->read_config(edev
, PCI_VENDOR_ID
, 4, &cfg
);
183 n
+= scnprintf(buf
+n
, len
-n
, "dev/vend:%08x\n", cfg
);
184 pr_warn("EEH: PCI device/vendor: %08x\n", cfg
);
186 eeh_ops
->read_config(edev
, PCI_COMMAND
, 4, &cfg
);
187 n
+= scnprintf(buf
+n
, len
-n
, "cmd/stat:%x\n", cfg
);
188 pr_warn("EEH: PCI cmd/status register: %08x\n", cfg
);
190 /* Gather bridge-specific registers */
191 if (edev
->mode
& EEH_DEV_BRIDGE
) {
192 eeh_ops
->read_config(edev
, PCI_SEC_STATUS
, 2, &cfg
);
193 n
+= scnprintf(buf
+n
, len
-n
, "sec stat:%x\n", cfg
);
194 pr_warn("EEH: Bridge secondary status: %04x\n", cfg
);
196 eeh_ops
->read_config(edev
, PCI_BRIDGE_CONTROL
, 2, &cfg
);
197 n
+= scnprintf(buf
+n
, len
-n
, "brdg ctl:%x\n", cfg
);
198 pr_warn("EEH: Bridge control: %04x\n", cfg
);
201 /* Dump out the PCI-X command and status regs */
202 cap
= edev
->pcix_cap
;
204 eeh_ops
->read_config(edev
, cap
, 4, &cfg
);
205 n
+= scnprintf(buf
+n
, len
-n
, "pcix-cmd:%x\n", cfg
);
206 pr_warn("EEH: PCI-X cmd: %08x\n", cfg
);
208 eeh_ops
->read_config(edev
, cap
+4, 4, &cfg
);
209 n
+= scnprintf(buf
+n
, len
-n
, "pcix-stat:%x\n", cfg
);
210 pr_warn("EEH: PCI-X status: %08x\n", cfg
);
213 /* If PCI-E capable, dump PCI-E cap 10 */
214 cap
= edev
->pcie_cap
;
216 n
+= scnprintf(buf
+n
, len
-n
, "pci-e cap10:\n");
217 pr_warn("EEH: PCI-E capabilities and status follow:\n");
219 for (i
=0; i
<=8; i
++) {
220 eeh_ops
->read_config(edev
, cap
+4*i
, 4, &cfg
);
221 n
+= scnprintf(buf
+n
, len
-n
, "%02x:%x\n", 4*i
, cfg
);
225 pr_warn("%s\n", buffer
);
227 l
= scnprintf(buffer
, sizeof(buffer
),
228 "EEH: PCI-E %02x: %08x ",
231 l
+= scnprintf(buffer
+l
, sizeof(buffer
)-l
,
237 pr_warn("%s\n", buffer
);
240 /* If AER capable, dump it */
243 n
+= scnprintf(buf
+n
, len
-n
, "pci-e AER:\n");
244 pr_warn("EEH: PCI-E AER capability register set follows:\n");
246 for (i
=0; i
<=13; i
++) {
247 eeh_ops
->read_config(edev
, cap
+4*i
, 4, &cfg
);
248 n
+= scnprintf(buf
+n
, len
-n
, "%02x:%x\n", 4*i
, cfg
);
252 pr_warn("%s\n", buffer
);
254 l
= scnprintf(buffer
, sizeof(buffer
),
255 "EEH: PCI-E AER %02x: %08x ",
258 l
+= scnprintf(buffer
+l
, sizeof(buffer
)-l
,
263 pr_warn("%s\n", buffer
);
269 static void *eeh_dump_pe_log(struct eeh_pe
*pe
, void *flag
)
271 struct eeh_dev
*edev
, *tmp
;
274 eeh_pe_for_each_dev(pe
, edev
, tmp
)
275 *plen
+= eeh_dump_dev_log(edev
, pci_regs_buf
+ *plen
,
276 EEH_PCI_REGS_LOG_LEN
- *plen
);
282 * eeh_slot_error_detail - Generate combined log including driver log and error log
284 * @severity: temporary or permanent error log
286 * This routine should be called to generate the combined log, which
287 * is comprised of driver log and error log. The driver log is figured
288 * out from the config space of the corresponding PCI device, while
289 * the error log is fetched through platform dependent function call.
291 void eeh_slot_error_detail(struct eeh_pe
*pe
, int severity
)
296 * When the PHB is fenced or dead, it's pointless to collect
297 * the data from PCI config space because it should return
298 * 0xFF's. For ER, we still retrieve the data from the PCI
301 * For pHyp, we have to enable IO for log retrieval. Otherwise,
302 * 0xFF's is always returned from PCI config space.
304 * When the @severity is EEH_LOG_PERM, the PE is going to be
305 * removed. Prior to that, the drivers for devices included in
306 * the PE will be closed. The drivers rely on working IO path
307 * to bring the devices to quiet state. Otherwise, PCI traffic
308 * from those devices after they are removed is like to cause
309 * another unexpected EEH error.
311 if (!(pe
->type
& EEH_PE_PHB
)) {
312 if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG
) ||
313 severity
== EEH_LOG_PERM
)
314 eeh_pci_enable(pe
, EEH_OPT_THAW_MMIO
);
317 * The config space of some PCI devices can't be accessed
318 * when their PEs are in frozen state. Otherwise, fenced
319 * PHB might be seen. Those PEs are identified with flag
320 * EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED
321 * is set automatically when the PE is put to EEH_PE_ISOLATED.
323 * Restoring BARs possibly triggers PCI config access in
324 * (OPAL) firmware and then causes fenced PHB. If the
325 * PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's
326 * pointless to restore BARs and dump config space.
328 eeh_ops
->configure_bridge(pe
);
329 if (!(pe
->state
& EEH_PE_CFG_BLOCKED
)) {
330 eeh_pe_restore_bars(pe
);
333 eeh_pe_traverse(pe
, eeh_dump_pe_log
, &loglen
);
337 eeh_ops
->get_log(pe
, severity
, pci_regs_buf
, loglen
);
341 * eeh_token_to_phys - Convert EEH address token to phys address
342 * @token: I/O token, should be address in the form 0xA....
344 * This routine should be called to convert virtual I/O address
347 static inline unsigned long eeh_token_to_phys(unsigned long token
)
349 return ppc_find_vmap_phys(token
);
353 * On PowerNV platform, we might already have fenced PHB there.
354 * For that case, it's meaningless to recover frozen PE. Intead,
355 * We have to handle fenced PHB firstly.
357 static int eeh_phb_check_failure(struct eeh_pe
*pe
)
359 struct eeh_pe
*phb_pe
;
363 if (!eeh_has_flag(EEH_PROBE_MODE_DEV
))
366 /* Find the PHB PE */
367 phb_pe
= eeh_phb_pe_get(pe
->phb
);
369 pr_warn("%s Can't find PE for PHB#%x\n",
370 __func__
, pe
->phb
->global_number
);
374 /* If the PHB has been in problematic state */
375 eeh_serialize_lock(&flags
);
376 if (phb_pe
->state
& EEH_PE_ISOLATED
) {
381 /* Check PHB state */
382 ret
= eeh_ops
->get_state(phb_pe
, NULL
);
384 (ret
== EEH_STATE_NOT_SUPPORT
) || eeh_state_active(ret
)) {
389 /* Isolate the PHB and send event */
390 eeh_pe_mark_isolated(phb_pe
);
391 eeh_serialize_unlock(flags
);
393 pr_debug("EEH: PHB#%x failure detected, location: %s\n",
394 phb_pe
->phb
->global_number
, eeh_pe_loc_get(phb_pe
));
395 eeh_send_failure_event(phb_pe
);
398 eeh_serialize_unlock(flags
);
402 static inline const char *eeh_driver_name(struct pci_dev
*pdev
)
405 return dev_driver_string(&pdev
->dev
);
411 * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
414 * Check for an EEH failure for the given device node. Call this
415 * routine if the result of a read was all 0xff's and you want to
416 * find out if this is due to an EEH slot freeze. This routine
417 * will query firmware for the EEH status.
419 * Returns 0 if there has not been an EEH error; otherwise returns
420 * a non-zero value and queues up a slot isolation event notification.
422 * It is safe to call this routine in an interrupt context.
424 int eeh_dev_check_failure(struct eeh_dev
*edev
)
428 struct device_node
*dn
;
430 struct eeh_pe
*pe
, *parent_pe
;
432 const char *location
= NULL
;
434 eeh_stats
.total_mmio_ffs
++;
443 dev
= eeh_dev_to_pci_dev(edev
);
444 pe
= eeh_dev_to_pe(edev
);
446 /* Access to IO BARs might get this far and still not want checking. */
448 eeh_stats
.ignored_check
++;
449 eeh_edev_dbg(edev
, "Ignored check\n");
454 * On PowerNV platform, we might already have fenced PHB
455 * there and we need take care of that firstly.
457 ret
= eeh_phb_check_failure(pe
);
462 * If the PE isn't owned by us, we shouldn't check the
463 * state. Instead, let the owner handle it if the PE has
466 if (eeh_pe_passed(pe
))
469 /* If we already have a pending isolation event for this
470 * slot, we know it's bad already, we don't need to check.
471 * Do this checking under a lock; as multiple PCI devices
472 * in one slot might report errors simultaneously, and we
473 * only want one error recovery routine running.
475 eeh_serialize_lock(&flags
);
477 if (pe
->state
& EEH_PE_ISOLATED
) {
479 if (pe
->check_count
== EEH_MAX_FAILS
) {
480 dn
= pci_device_to_OF_node(dev
);
482 location
= of_get_property(dn
, "ibm,loc-code",
484 eeh_edev_err(edev
, "%d reads ignored for recovering device at location=%s driver=%s\n",
486 location
? location
: "unknown",
487 eeh_driver_name(dev
));
488 eeh_edev_err(edev
, "Might be infinite loop in %s driver\n",
489 eeh_driver_name(dev
));
496 * Now test for an EEH failure. This is VERY expensive.
497 * Note that the eeh_config_addr may be a parent device
498 * in the case of a device behind a bridge, or it may be
499 * function zero of a multi-function device.
500 * In any case they must share a common PHB.
502 ret
= eeh_ops
->get_state(pe
, NULL
);
504 /* Note that config-io to empty slots may fail;
505 * they are empty when they don't have children.
506 * We will punt with the following conditions: Failure to get
507 * PE's state, EEH not support and Permanently unavailable
508 * state, PE is in good state.
510 * On the pSeries, after reaching the threshold, get_state might
511 * return EEH_STATE_NOT_SUPPORT. However, it's possible that the
512 * device state remains uncleared if the device is not marked
513 * pci_channel_io_perm_failure. Therefore, consider logging the
514 * event to let device removal happen.
518 (ret
== EEH_STATE_NOT_SUPPORT
&&
519 dev
->error_state
== pci_channel_io_perm_failure
) ||
520 eeh_state_active(ret
)) {
521 eeh_stats
.false_positives
++;
522 pe
->false_positives
++;
528 * It should be corner case that the parent PE has been
529 * put into frozen state as well. We should take care
532 parent_pe
= pe
->parent
;
534 /* Hit the ceiling ? */
535 if (parent_pe
->type
& EEH_PE_PHB
)
538 /* Frozen parent PE ? */
539 ret
= eeh_ops
->get_state(parent_pe
, NULL
);
540 if (ret
> 0 && !eeh_state_active(ret
)) {
542 pr_err("EEH: Failure of PHB#%x-PE#%x will be handled at parent PHB#%x-PE#%x.\n",
543 pe
->phb
->global_number
, pe
->addr
,
544 pe
->phb
->global_number
, parent_pe
->addr
);
547 /* Next parent level */
548 parent_pe
= parent_pe
->parent
;
551 eeh_stats
.slot_resets
++;
553 /* Avoid repeated reports of this failure, including problems
554 * with other functions on this device, and functions under
557 eeh_pe_mark_isolated(pe
);
558 eeh_serialize_unlock(flags
);
560 /* Most EEH events are due to device driver bugs. Having
561 * a stack trace will help the device-driver authors figure
562 * out what happened. So print that out.
564 pr_debug("EEH: %s: Frozen PHB#%x-PE#%x detected\n",
565 __func__
, pe
->phb
->global_number
, pe
->addr
);
566 eeh_send_failure_event(pe
);
571 eeh_serialize_unlock(flags
);
575 EXPORT_SYMBOL_GPL(eeh_dev_check_failure
);
578 * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
579 * @token: I/O address
581 * Check for an EEH failure at the given I/O address. Call this
582 * routine if the result of a read was all 0xff's and you want to
583 * find out if this is due to an EEH slot freeze event. This routine
584 * will query firmware for the EEH status.
586 * Note this routine is safe to call in an interrupt context.
588 int eeh_check_failure(const volatile void __iomem
*token
)
591 struct eeh_dev
*edev
;
593 /* Finding the phys addr + pci device; this is pretty quick. */
594 addr
= eeh_token_to_phys((unsigned long __force
) token
);
595 edev
= eeh_addr_cache_get_dev(addr
);
597 eeh_stats
.no_device
++;
601 return eeh_dev_check_failure(edev
);
603 EXPORT_SYMBOL(eeh_check_failure
);
607 * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
609 * @function: EEH option
611 * This routine should be called to reenable frozen MMIO or DMA
612 * so that it would work correctly again. It's useful while doing
613 * recovery or log collection on the indicated device.
615 int eeh_pci_enable(struct eeh_pe
*pe
, int function
)
620 * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
621 * Also, it's pointless to enable them on unfrozen PE. So
622 * we have to check before enabling IO or DMA.
625 case EEH_OPT_THAW_MMIO
:
626 active_flag
= EEH_STATE_MMIO_ACTIVE
| EEH_STATE_MMIO_ENABLED
;
628 case EEH_OPT_THAW_DMA
:
629 active_flag
= EEH_STATE_DMA_ACTIVE
;
631 case EEH_OPT_DISABLE
:
633 case EEH_OPT_FREEZE_PE
:
637 pr_warn("%s: Invalid function %d\n",
643 * Check if IO or DMA has been enabled before
647 rc
= eeh_ops
->get_state(pe
, NULL
);
651 /* Needn't enable it at all */
652 if (rc
== EEH_STATE_NOT_SUPPORT
)
655 /* It's already enabled */
656 if (rc
& active_flag
)
661 /* Issue the request */
662 rc
= eeh_ops
->set_option(pe
, function
);
664 pr_warn("%s: Unexpected state change %d on "
665 "PHB#%x-PE#%x, err=%d\n",
666 __func__
, function
, pe
->phb
->global_number
,
669 /* Check if the request is finished successfully */
671 rc
= eeh_wait_state(pe
, PCI_BUS_RESET_WAIT_MSEC
);
675 if (rc
& active_flag
)
684 static void eeh_disable_and_save_dev_state(struct eeh_dev
*edev
,
687 struct pci_dev
*pdev
= eeh_dev_to_pci_dev(edev
);
688 struct pci_dev
*dev
= userdata
;
691 * The caller should have disabled and saved the
692 * state for the specified device
694 if (!pdev
|| pdev
== dev
)
697 /* Ensure we have D0 power state */
698 pci_set_power_state(pdev
, PCI_D0
);
700 /* Save device state */
701 pci_save_state(pdev
);
704 * Disable device to avoid any DMA traffic and
705 * interrupt from the device
707 pci_write_config_word(pdev
, PCI_COMMAND
, PCI_COMMAND_INTX_DISABLE
);
710 static void eeh_restore_dev_state(struct eeh_dev
*edev
, void *userdata
)
712 struct pci_dev
*pdev
= eeh_dev_to_pci_dev(edev
);
713 struct pci_dev
*dev
= userdata
;
718 /* Apply customization from firmware */
719 if (eeh_ops
->restore_config
)
720 eeh_ops
->restore_config(edev
);
722 /* The caller should restore state for the specified device */
724 pci_restore_state(pdev
);
728 * pcibios_set_pcie_reset_state - Set PCI-E reset state
729 * @dev: pci device struct
730 * @state: reset state to enter
735 int pcibios_set_pcie_reset_state(struct pci_dev
*dev
, enum pcie_reset_state state
)
737 struct eeh_dev
*edev
= pci_dev_to_eeh_dev(dev
);
738 struct eeh_pe
*pe
= eeh_dev_to_pe(edev
);
741 pr_err("%s: No PE found on PCI device %s\n",
742 __func__
, pci_name(dev
));
747 case pcie_deassert_reset
:
748 eeh_ops
->reset(pe
, EEH_RESET_DEACTIVATE
);
750 if (!(pe
->type
& EEH_PE_VF
))
751 eeh_pe_state_clear(pe
, EEH_PE_CFG_BLOCKED
, true);
752 eeh_pe_dev_traverse(pe
, eeh_restore_dev_state
, dev
);
753 eeh_pe_state_clear(pe
, EEH_PE_ISOLATED
, true);
756 eeh_pe_mark_isolated(pe
);
757 eeh_pe_state_clear(pe
, EEH_PE_CFG_BLOCKED
, true);
758 eeh_ops
->set_option(pe
, EEH_OPT_FREEZE_PE
);
759 eeh_pe_dev_traverse(pe
, eeh_disable_and_save_dev_state
, dev
);
760 if (!(pe
->type
& EEH_PE_VF
))
761 eeh_pe_state_mark(pe
, EEH_PE_CFG_BLOCKED
);
762 eeh_ops
->reset(pe
, EEH_RESET_HOT
);
764 case pcie_warm_reset
:
765 eeh_pe_mark_isolated(pe
);
766 eeh_pe_state_clear(pe
, EEH_PE_CFG_BLOCKED
, true);
767 eeh_ops
->set_option(pe
, EEH_OPT_FREEZE_PE
);
768 eeh_pe_dev_traverse(pe
, eeh_disable_and_save_dev_state
, dev
);
769 if (!(pe
->type
& EEH_PE_VF
))
770 eeh_pe_state_mark(pe
, EEH_PE_CFG_BLOCKED
);
771 eeh_ops
->reset(pe
, EEH_RESET_FUNDAMENTAL
);
774 eeh_pe_state_clear(pe
, EEH_PE_ISOLATED
| EEH_PE_CFG_BLOCKED
, true);
782 * eeh_set_dev_freset - Check the required reset for the indicated device
784 * @flag: return value
786 * Each device might have its preferred reset type: fundamental or
787 * hot reset. The routine is used to collected the information for
788 * the indicated device and its children so that the bunch of the
789 * devices could be reset properly.
791 static void eeh_set_dev_freset(struct eeh_dev
*edev
, void *flag
)
794 unsigned int *freset
= (unsigned int *)flag
;
796 dev
= eeh_dev_to_pci_dev(edev
);
798 *freset
|= dev
->needs_freset
;
801 static void eeh_pe_refreeze_passed(struct eeh_pe
*root
)
806 eeh_for_each_pe(root
, pe
) {
807 if (eeh_pe_passed(pe
)) {
808 state
= eeh_ops
->get_state(pe
, NULL
);
810 (EEH_STATE_MMIO_ACTIVE
| EEH_STATE_MMIO_ENABLED
)) {
811 pr_info("EEH: Passed-through PE PHB#%x-PE#%x was thawed by reset, re-freezing for safety.\n",
812 pe
->phb
->global_number
, pe
->addr
);
813 eeh_pe_set_option(pe
, EEH_OPT_FREEZE_PE
);
820 * eeh_pe_reset_full - Complete a full reset process on the indicated PE
822 * @include_passed: include passed-through devices?
824 * This function executes a full reset procedure on a PE, including setting
825 * the appropriate flags, performing a fundamental or hot reset, and then
826 * deactivating the reset status. It is designed to be used within the EEH
827 * subsystem, as opposed to eeh_pe_reset which is exported to drivers and
828 * only performs a single operation at a time.
830 * This function will attempt to reset a PE three times before failing.
832 int eeh_pe_reset_full(struct eeh_pe
*pe
, bool include_passed
)
834 int reset_state
= (EEH_PE_RESET
| EEH_PE_CFG_BLOCKED
);
835 int type
= EEH_RESET_HOT
;
836 unsigned int freset
= 0;
837 int i
, state
= 0, ret
;
840 * Determine the type of reset to perform - hot or fundamental.
841 * Hot reset is the default operation, unless any device under the
842 * PE requires a fundamental reset.
844 eeh_pe_dev_traverse(pe
, eeh_set_dev_freset
, &freset
);
847 type
= EEH_RESET_FUNDAMENTAL
;
849 /* Mark the PE as in reset state and block config space accesses */
850 eeh_pe_state_mark(pe
, reset_state
);
852 /* Make three attempts at resetting the bus */
853 for (i
= 0; i
< 3; i
++) {
854 ret
= eeh_pe_reset(pe
, type
, include_passed
);
856 ret
= eeh_pe_reset(pe
, EEH_RESET_DEACTIVATE
,
860 pr_warn("EEH: Failure %d resetting PHB#%x-PE#%x (attempt %d)\n\n",
861 state
, pe
->phb
->global_number
, pe
->addr
, i
+ 1);
865 pr_warn("EEH: PHB#%x-PE#%x: Successful reset (attempt %d)\n",
866 pe
->phb
->global_number
, pe
->addr
, i
+ 1);
868 /* Wait until the PE is in a functioning state */
869 state
= eeh_wait_state(pe
, PCI_BUS_RESET_WAIT_MSEC
);
871 pr_warn("EEH: Unrecoverable slot failure on PHB#%x-PE#%x",
872 pe
->phb
->global_number
, pe
->addr
);
873 ret
= -ENOTRECOVERABLE
;
876 if (eeh_state_active(state
))
879 pr_warn("EEH: PHB#%x-PE#%x: Slot inactive after reset: 0x%x (attempt %d)\n",
880 pe
->phb
->global_number
, pe
->addr
, state
, i
+ 1);
883 /* Resetting the PE may have unfrozen child PEs. If those PEs have been
884 * (potentially) passed through to a guest, re-freeze them:
887 eeh_pe_refreeze_passed(pe
);
889 eeh_pe_state_clear(pe
, reset_state
, true);
894 * eeh_save_bars - Save device bars
895 * @edev: PCI device associated EEH device
897 * Save the values of the device bars. Unlike the restore
898 * routine, this routine is *not* recursive. This is because
899 * PCI devices are added individually; but, for the restore,
900 * an entire slot is reset at a time.
902 void eeh_save_bars(struct eeh_dev
*edev
)
909 for (i
= 0; i
< 16; i
++)
910 eeh_ops
->read_config(edev
, i
* 4, 4, &edev
->config_space
[i
]);
913 * For PCI bridges including root port, we need enable bus
914 * master explicitly. Otherwise, it can't fetch IODA table
915 * entries correctly. So we cache the bit in advance so that
916 * we can restore it after reset, either PHB range or PE range.
918 if (edev
->mode
& EEH_DEV_BRIDGE
)
919 edev
->config_space
[1] |= PCI_COMMAND_MASTER
;
922 static int eeh_reboot_notifier(struct notifier_block
*nb
,
923 unsigned long action
, void *unused
)
925 eeh_clear_flag(EEH_ENABLED
);
929 static struct notifier_block eeh_reboot_nb
= {
930 .notifier_call
= eeh_reboot_notifier
,
933 static int eeh_device_notifier(struct notifier_block
*nb
,
934 unsigned long action
, void *data
)
936 struct device
*dev
= data
;
940 * Note: It's not possible to perform EEH device addition (i.e.
941 * {pseries,pnv}_pcibios_bus_add_device()) here because it depends on
942 * the device's resources, which have not yet been set up.
944 case BUS_NOTIFY_DEL_DEVICE
:
945 eeh_remove_device(to_pci_dev(dev
));
953 static struct notifier_block eeh_device_nb
= {
954 .notifier_call
= eeh_device_notifier
,
958 * eeh_init - System wide EEH initialization
959 * @ops: struct to trace EEH operation callback functions
961 * It's the platform's job to call this from an arch_initcall().
963 int eeh_init(struct eeh_ops
*ops
)
965 struct pci_controller
*hose
, *tmp
;
968 /* the platform should only initialise EEH once */
969 if (WARN_ON(eeh_ops
))
975 /* Register reboot notifier */
976 ret
= register_reboot_notifier(&eeh_reboot_nb
);
978 pr_warn("%s: Failed to register reboot notifier (%d)\n",
983 ret
= bus_register_notifier(&pci_bus_type
, &eeh_device_nb
);
985 pr_warn("%s: Failed to register bus notifier (%d)\n",
990 /* Initialize PHB PEs */
991 list_for_each_entry_safe(hose
, tmp
, &hose_list
, list_node
)
992 eeh_phb_pe_create(hose
);
994 eeh_addr_cache_init();
996 /* Initialize EEH event */
997 return eeh_event_init();
1001 * eeh_probe_device() - Perform EEH initialization for the indicated pci device
1002 * @dev: pci device for which to set up EEH
1004 * This routine must be used to complete EEH initialization for PCI
1005 * devices that were added after system boot (e.g. hotplug, dlpar).
1007 void eeh_probe_device(struct pci_dev
*dev
)
1009 struct eeh_dev
*edev
;
1011 pr_debug("EEH: Adding device %s\n", pci_name(dev
));
1014 * pci_dev_to_eeh_dev() can only work if eeh_probe_dev() was
1015 * already called for this device.
1017 if (WARN_ON_ONCE(pci_dev_to_eeh_dev(dev
))) {
1018 pci_dbg(dev
, "Already bound to an eeh_dev!\n");
1022 edev
= eeh_ops
->probe(dev
);
1024 pr_debug("EEH: Adding device failed\n");
1029 * FIXME: We rely on pcibios_release_device() to remove the
1030 * existing EEH state. The release function is only called if
1031 * the pci_dev's refcount drops to zero so if something is
1032 * keeping a ref to a device (e.g. a filesystem) we need to
1033 * remove the old EEH state.
1035 * FIXME: HEY MA, LOOK AT ME, NO LOCKING!
1037 if (edev
->pdev
&& edev
->pdev
!= dev
) {
1038 eeh_pe_tree_remove(edev
);
1039 eeh_addr_cache_rmv_dev(edev
->pdev
);
1040 eeh_sysfs_remove_device(edev
->pdev
);
1043 * We definitely should have the PCI device removed
1044 * though it wasn't correctly. So we needn't call
1045 * into error handler afterwards.
1047 edev
->mode
|= EEH_DEV_NO_HANDLER
;
1050 /* bind the pdev and the edev together */
1052 dev
->dev
.archdata
.edev
= edev
;
1053 eeh_addr_cache_insert_dev(dev
);
1054 eeh_sysfs_add_device(dev
);
1058 * eeh_remove_device - Undo EEH setup for the indicated pci device
1059 * @dev: pci device to be removed
1061 * This routine should be called when a device is removed from
1062 * a running system (e.g. by hotplug or dlpar). It unregisters
1063 * the PCI device from the EEH subsystem. I/O errors affecting
1064 * this device will no longer be detected after this call; thus,
1065 * i/o errors affecting this slot may leave this device unusable.
1067 void eeh_remove_device(struct pci_dev
*dev
)
1069 struct eeh_dev
*edev
;
1071 if (!dev
|| !eeh_enabled())
1073 edev
= pci_dev_to_eeh_dev(dev
);
1075 /* Unregister the device with the EEH/PCI address search system */
1076 dev_dbg(&dev
->dev
, "EEH: Removing device\n");
1078 if (!edev
|| !edev
->pdev
|| !edev
->pe
) {
1079 dev_dbg(&dev
->dev
, "EEH: Device not referenced!\n");
1084 * During the hotplug for EEH error recovery, we need the EEH
1085 * device attached to the parent PE in order for BAR restore
1086 * a bit later. So we keep it for BAR restore and remove it
1087 * from the parent PE during the BAR resotre.
1092 * eeh_sysfs_remove_device() uses pci_dev_to_eeh_dev() so we need to
1093 * remove the sysfs files before clearing dev.archdata.edev
1095 if (edev
->mode
& EEH_DEV_SYSFS
)
1096 eeh_sysfs_remove_device(dev
);
1099 * We're removing from the PCI subsystem, that means
1100 * the PCI device driver can't support EEH or not
1101 * well. So we rely on hotplug completely to do recovery
1102 * for the specific PCI device.
1104 edev
->mode
|= EEH_DEV_NO_HANDLER
;
1106 eeh_addr_cache_rmv_dev(dev
);
1109 * The flag "in_error" is used to trace EEH devices for VFs
1110 * in error state or not. It's set in eeh_report_error(). If
1111 * it's not set, eeh_report_{reset,resume}() won't be called
1112 * for the VF EEH device.
1114 edev
->in_error
= false;
1115 dev
->dev
.archdata
.edev
= NULL
;
1116 if (!(edev
->pe
->state
& EEH_PE_KEEP
))
1117 eeh_pe_tree_remove(edev
);
1119 edev
->mode
|= EEH_DEV_DISCONNECTED
;
1122 int eeh_unfreeze_pe(struct eeh_pe
*pe
)
1126 ret
= eeh_pci_enable(pe
, EEH_OPT_THAW_MMIO
);
1128 pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
1129 __func__
, ret
, pe
->phb
->global_number
, pe
->addr
);
1133 ret
= eeh_pci_enable(pe
, EEH_OPT_THAW_DMA
);
1135 pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
1136 __func__
, ret
, pe
->phb
->global_number
, pe
->addr
);
1144 static struct pci_device_id eeh_reset_ids
[] = {
1145 { PCI_DEVICE(0x19a2, 0x0710) }, /* Emulex, BE */
1146 { PCI_DEVICE(0x10df, 0xe220) }, /* Emulex, Lancer */
1147 { PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
1151 static int eeh_pe_change_owner(struct eeh_pe
*pe
)
1153 struct eeh_dev
*edev
, *tmp
;
1154 struct pci_dev
*pdev
;
1155 struct pci_device_id
*id
;
1158 /* Check PE state */
1159 ret
= eeh_ops
->get_state(pe
, NULL
);
1160 if (ret
< 0 || ret
== EEH_STATE_NOT_SUPPORT
)
1163 /* Unfrozen PE, nothing to do */
1164 if (eeh_state_active(ret
))
1167 /* Frozen PE, check if it needs PE level reset */
1168 eeh_pe_for_each_dev(pe
, edev
, tmp
) {
1169 pdev
= eeh_dev_to_pci_dev(edev
);
1173 for (id
= &eeh_reset_ids
[0]; id
->vendor
!= 0; id
++) {
1174 if (id
->vendor
!= PCI_ANY_ID
&&
1175 id
->vendor
!= pdev
->vendor
)
1177 if (id
->device
!= PCI_ANY_ID
&&
1178 id
->device
!= pdev
->device
)
1180 if (id
->subvendor
!= PCI_ANY_ID
&&
1181 id
->subvendor
!= pdev
->subsystem_vendor
)
1183 if (id
->subdevice
!= PCI_ANY_ID
&&
1184 id
->subdevice
!= pdev
->subsystem_device
)
1187 return eeh_pe_reset_and_recover(pe
);
1191 ret
= eeh_unfreeze_pe(pe
);
1193 eeh_pe_state_clear(pe
, EEH_PE_ISOLATED
, true);
1198 * eeh_dev_open - Increase count of pass through devices for PE
1201 * Increase count of passed through devices for the indicated
1202 * PE. In the result, the EEH errors detected on the PE won't be
1203 * reported. The PE owner will be responsible for detection
1206 int eeh_dev_open(struct pci_dev
*pdev
)
1208 struct eeh_dev
*edev
;
1211 mutex_lock(&eeh_dev_mutex
);
1213 /* No PCI device ? */
1217 /* No EEH device or PE ? */
1218 edev
= pci_dev_to_eeh_dev(pdev
);
1219 if (!edev
|| !edev
->pe
)
1223 * The PE might have been put into frozen state, but we
1224 * didn't detect that yet. The passed through PCI devices
1225 * in frozen PE won't work properly. Clear the frozen state
1228 ret
= eeh_pe_change_owner(edev
->pe
);
1232 /* Increase PE's pass through count */
1233 atomic_inc(&edev
->pe
->pass_dev_cnt
);
1234 mutex_unlock(&eeh_dev_mutex
);
1238 mutex_unlock(&eeh_dev_mutex
);
1241 EXPORT_SYMBOL_GPL(eeh_dev_open
);
1244 * eeh_dev_release - Decrease count of pass through devices for PE
1247 * Decrease count of pass through devices for the indicated PE. If
1248 * there is no passed through device in PE, the EEH errors detected
1249 * on the PE will be reported and handled as usual.
1251 void eeh_dev_release(struct pci_dev
*pdev
)
1253 struct eeh_dev
*edev
;
1255 mutex_lock(&eeh_dev_mutex
);
1257 /* No PCI device ? */
1261 /* No EEH device ? */
1262 edev
= pci_dev_to_eeh_dev(pdev
);
1263 if (!edev
|| !edev
->pe
|| !eeh_pe_passed(edev
->pe
))
1266 /* Decrease PE's pass through count */
1267 WARN_ON(atomic_dec_if_positive(&edev
->pe
->pass_dev_cnt
) < 0);
1268 eeh_pe_change_owner(edev
->pe
);
1270 mutex_unlock(&eeh_dev_mutex
);
1272 EXPORT_SYMBOL(eeh_dev_release
);
1274 #ifdef CONFIG_IOMMU_API
1277 * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
1278 * @group: IOMMU group
1280 * The routine is called to convert IOMMU group to EEH PE.
1282 struct eeh_pe
*eeh_iommu_group_to_pe(struct iommu_group
*group
)
1284 struct pci_dev
*pdev
= NULL
;
1285 struct eeh_dev
*edev
;
1288 /* No IOMMU group ? */
1292 ret
= iommu_group_for_each_dev(group
, &pdev
, dev_has_iommu_table
);
1296 /* No EEH device or PE ? */
1297 edev
= pci_dev_to_eeh_dev(pdev
);
1298 if (!edev
|| !edev
->pe
)
1303 EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe
);
1305 #endif /* CONFIG_IOMMU_API */
1308 * eeh_pe_set_option - Set options for the indicated PE
1310 * @option: requested option
1312 * The routine is called to enable or disable EEH functionality
1313 * on the indicated PE, to enable IO or DMA for the frozen PE.
1315 int eeh_pe_set_option(struct eeh_pe
*pe
, int option
)
1324 * EEH functionality could possibly be disabled, just
1325 * return error for the case. And the EEH functionality
1326 * isn't expected to be disabled on one specific PE.
1329 case EEH_OPT_ENABLE
:
1330 if (eeh_enabled()) {
1331 ret
= eeh_pe_change_owner(pe
);
1336 case EEH_OPT_DISABLE
:
1338 case EEH_OPT_THAW_MMIO
:
1339 case EEH_OPT_THAW_DMA
:
1340 case EEH_OPT_FREEZE_PE
:
1341 if (!eeh_ops
|| !eeh_ops
->set_option
) {
1346 ret
= eeh_pci_enable(pe
, option
);
1349 pr_debug("%s: Option %d out of range (%d, %d)\n",
1350 __func__
, option
, EEH_OPT_DISABLE
, EEH_OPT_THAW_DMA
);
1356 EXPORT_SYMBOL_GPL(eeh_pe_set_option
);
1359 * eeh_pe_get_state - Retrieve PE's state
1362 * Retrieve the PE's state, which includes 3 aspects: enabled
1363 * DMA, enabled IO and asserted reset.
1365 int eeh_pe_get_state(struct eeh_pe
*pe
)
1367 int result
, ret
= 0;
1368 bool rst_active
, dma_en
, mmio_en
;
1374 if (!eeh_ops
|| !eeh_ops
->get_state
)
1378 * If the parent PE is owned by the host kernel and is undergoing
1379 * error recovery, we should return the PE state as temporarily
1380 * unavailable so that the error recovery on the guest is suspended
1381 * until the recovery completes on the host.
1384 !(pe
->state
& EEH_PE_REMOVED
) &&
1385 (pe
->parent
->state
& (EEH_PE_ISOLATED
| EEH_PE_RECOVERING
)))
1386 return EEH_PE_STATE_UNAVAIL
;
1388 result
= eeh_ops
->get_state(pe
, NULL
);
1389 rst_active
= !!(result
& EEH_STATE_RESET_ACTIVE
);
1390 dma_en
= !!(result
& EEH_STATE_DMA_ENABLED
);
1391 mmio_en
= !!(result
& EEH_STATE_MMIO_ENABLED
);
1394 ret
= EEH_PE_STATE_RESET
;
1395 else if (dma_en
&& mmio_en
)
1396 ret
= EEH_PE_STATE_NORMAL
;
1397 else if (!dma_en
&& !mmio_en
)
1398 ret
= EEH_PE_STATE_STOPPED_IO_DMA
;
1399 else if (!dma_en
&& mmio_en
)
1400 ret
= EEH_PE_STATE_STOPPED_DMA
;
1402 ret
= EEH_PE_STATE_UNAVAIL
;
1406 EXPORT_SYMBOL_GPL(eeh_pe_get_state
);
1408 static int eeh_pe_reenable_devices(struct eeh_pe
*pe
, bool include_passed
)
1410 struct eeh_dev
*edev
, *tmp
;
1411 struct pci_dev
*pdev
;
1414 eeh_pe_restore_bars(pe
);
1417 * Reenable PCI devices as the devices passed
1418 * through are always enabled before the reset.
1420 eeh_pe_for_each_dev(pe
, edev
, tmp
) {
1421 pdev
= eeh_dev_to_pci_dev(edev
);
1425 ret
= pci_reenable_device(pdev
);
1427 pr_warn("%s: Failure %d reenabling %s\n",
1428 __func__
, ret
, pci_name(pdev
));
1433 /* The PE is still in frozen state */
1434 if (include_passed
|| !eeh_pe_passed(pe
)) {
1435 ret
= eeh_unfreeze_pe(pe
);
1437 pr_info("EEH: Note: Leaving passthrough PHB#%x-PE#%x frozen.\n",
1438 pe
->phb
->global_number
, pe
->addr
);
1440 eeh_pe_state_clear(pe
, EEH_PE_ISOLATED
, include_passed
);
1446 * eeh_pe_reset - Issue PE reset according to specified type
1448 * @option: reset type
1449 * @include_passed: include passed-through devices?
1451 * The routine is called to reset the specified PE with the
1452 * indicated type, either fundamental reset or hot reset.
1453 * PE reset is the most important part for error recovery.
1455 int eeh_pe_reset(struct eeh_pe
*pe
, int option
, bool include_passed
)
1463 if (!eeh_ops
|| !eeh_ops
->set_option
|| !eeh_ops
->reset
)
1467 case EEH_RESET_DEACTIVATE
:
1468 ret
= eeh_ops
->reset(pe
, option
);
1469 eeh_pe_state_clear(pe
, EEH_PE_CFG_BLOCKED
, include_passed
);
1473 ret
= eeh_pe_reenable_devices(pe
, include_passed
);
1476 case EEH_RESET_FUNDAMENTAL
:
1478 * Proactively freeze the PE to drop all MMIO access
1479 * during reset, which should be banned as it's always
1480 * cause recursive EEH error.
1482 eeh_ops
->set_option(pe
, EEH_OPT_FREEZE_PE
);
1484 eeh_pe_state_mark(pe
, EEH_PE_CFG_BLOCKED
);
1485 ret
= eeh_ops
->reset(pe
, option
);
1488 pr_debug("%s: Unsupported option %d\n",
1495 EXPORT_SYMBOL_GPL(eeh_pe_reset
);
1498 * eeh_pe_configure - Configure PCI bridges after PE reset
1501 * The routine is called to restore the PCI config space for
1502 * those PCI devices, especially PCI bridges affected by PE
1503 * reset issued previously.
1505 int eeh_pe_configure(struct eeh_pe
*pe
)
1515 EXPORT_SYMBOL_GPL(eeh_pe_configure
);
1518 * eeh_pe_inject_err - Injecting the specified PCI error to the indicated PE
1519 * @pe: the indicated PE
1521 * @func: error function
1523 * @mask: address mask
1525 * The routine is called to inject the specified PCI error, which
1526 * is determined by @type and @func, to the indicated PE for
1529 int eeh_pe_inject_err(struct eeh_pe
*pe
, int type
, int func
,
1530 unsigned long addr
, unsigned long mask
)
1536 /* Unsupported operation ? */
1537 if (!eeh_ops
|| !eeh_ops
->err_inject
)
1540 /* Check on PCI error function */
1541 if (func
< EEH_ERR_FUNC_MIN
|| func
> EEH_ERR_FUNC_MAX
)
1544 return eeh_ops
->err_inject(pe
, type
, func
, addr
, mask
);
1546 EXPORT_SYMBOL_GPL(eeh_pe_inject_err
);
1548 #ifdef CONFIG_PROC_FS
1549 static int proc_eeh_show(struct seq_file
*m
, void *v
)
1551 if (!eeh_enabled()) {
1552 seq_printf(m
, "EEH Subsystem is globally disabled\n");
1553 seq_printf(m
, "eeh_total_mmio_ffs=%llu\n", eeh_stats
.total_mmio_ffs
);
1555 seq_printf(m
, "EEH Subsystem is enabled\n");
1558 "no device node=%llu\n"
1559 "no config address=%llu\n"
1560 "check not wanted=%llu\n"
1561 "eeh_total_mmio_ffs=%llu\n"
1562 "eeh_false_positives=%llu\n"
1563 "eeh_slot_resets=%llu\n",
1564 eeh_stats
.no_device
,
1566 eeh_stats
.no_cfg_addr
,
1567 eeh_stats
.ignored_check
,
1568 eeh_stats
.total_mmio_ffs
,
1569 eeh_stats
.false_positives
,
1570 eeh_stats
.slot_resets
);
1575 #endif /* CONFIG_PROC_FS */
1577 static int eeh_break_device(struct pci_dev
*pdev
)
1579 struct resource
*bar
= NULL
;
1580 void __iomem
*mapped
;
1584 /* Do we have an MMIO BAR to disable? */
1585 for (i
= 0; i
<= PCI_STD_RESOURCE_END
; i
++) {
1586 struct resource
*r
= &pdev
->resource
[i
];
1588 if (!r
->flags
|| !r
->start
)
1590 if (r
->flags
& IORESOURCE_IO
)
1592 if (r
->flags
& IORESOURCE_UNSET
)
1600 pci_err(pdev
, "Unable to find Memory BAR to cause EEH with\n");
1604 pci_err(pdev
, "Going to break: %pR\n", bar
);
1606 if (pdev
->is_virtfn
) {
1607 #ifndef CONFIG_PCI_IOV
1611 * VFs don't have a per-function COMMAND register, so the best
1612 * we can do is clear the Memory Space Enable bit in the PF's
1613 * SRIOV control reg.
1615 * Unfortunately, this requires that we have a PF (i.e doesn't
1616 * work for a passed-through VF) and it has the potential side
1617 * effect of also causing an EEH on every other VF under the
1620 pdev
= pdev
->physfn
;
1622 return -ENXIO
; /* passed through VFs have no PF */
1624 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_SRIOV
);
1625 pos
+= PCI_SRIOV_CTRL
;
1626 bit
= PCI_SRIOV_CTRL_MSE
;
1627 #endif /* !CONFIG_PCI_IOV */
1629 bit
= PCI_COMMAND_MEMORY
;
1636 * 1. Disable Memory space.
1638 * 2. Perform an MMIO to the device. This should result in an error
1639 * (CA / UR) being raised by the device which results in an EEH
1640 * PE freeze. Using the in_8() accessor skips the eeh detection hook
1641 * so the freeze hook so the EEH Detection machinery won't be
1642 * triggered here. This is to match the usual behaviour of EEH
1643 * where the HW will asynchronously freeze a PE and it's up to
1644 * the kernel to notice and deal with it.
1646 * 3. Turn Memory space back on. This is more important for VFs
1647 * since recovery will probably fail if we don't. For normal
1648 * the COMMAND register is reset as a part of re-initialising
1651 * Breaking stuff is the point so who cares if it's racy ;)
1653 pci_read_config_word(pdev
, pos
, &old
);
1655 mapped
= ioremap(bar
->start
, PAGE_SIZE
);
1657 pci_err(pdev
, "Unable to map MMIO BAR %pR\n", bar
);
1661 pci_write_config_word(pdev
, pos
, old
& ~bit
);
1663 pci_write_config_word(pdev
, pos
, old
);
1670 int eeh_pe_inject_mmio_error(struct pci_dev
*pdev
)
1672 return eeh_break_device(pdev
);
1675 #ifdef CONFIG_DEBUG_FS
1678 static struct pci_dev
*eeh_debug_lookup_pdev(struct file
*filp
,
1679 const char __user
*user_buf
,
1680 size_t count
, loff_t
*ppos
)
1682 uint32_t domain
, bus
, dev
, fn
;
1683 struct pci_dev
*pdev
;
1687 memset(buf
, 0, sizeof(buf
));
1688 ret
= simple_write_to_buffer(buf
, sizeof(buf
)-1, ppos
, user_buf
, count
);
1690 return ERR_PTR(-EFAULT
);
1692 ret
= sscanf(buf
, "%x:%x:%x.%x", &domain
, &bus
, &dev
, &fn
);
1694 pr_err("%s: expected 4 args, got %d\n", __func__
, ret
);
1695 return ERR_PTR(-EINVAL
);
1698 pdev
= pci_get_domain_bus_and_slot(domain
, bus
, (dev
<< 3) | fn
);
1700 return ERR_PTR(-ENODEV
);
1705 static int eeh_enable_dbgfs_set(void *data
, u64 val
)
1708 eeh_clear_flag(EEH_FORCE_DISABLED
);
1710 eeh_add_flag(EEH_FORCE_DISABLED
);
1715 static int eeh_enable_dbgfs_get(void *data
, u64
*val
)
1724 DEFINE_DEBUGFS_ATTRIBUTE(eeh_enable_dbgfs_ops
, eeh_enable_dbgfs_get
,
1725 eeh_enable_dbgfs_set
, "0x%llx\n");
1727 static ssize_t
eeh_force_recover_write(struct file
*filp
,
1728 const char __user
*user_buf
,
1729 size_t count
, loff_t
*ppos
)
1731 struct pci_controller
*hose
;
1732 uint32_t phbid
, pe_no
;
1737 ret
= simple_write_to_buffer(buf
, sizeof(buf
), ppos
, user_buf
, count
);
1742 * When PE is NULL the event is a "special" event. Rather than
1743 * recovering a specific PE it forces the EEH core to scan for failed
1744 * PHBs and recovers each. This needs to be done before any device
1745 * recoveries can occur.
1747 if (!strncmp(buf
, "hwcheck", 7)) {
1748 __eeh_send_failure_event(NULL
);
1752 ret
= sscanf(buf
, "%x:%x", &phbid
, &pe_no
);
1756 hose
= pci_find_controller_for_domain(phbid
);
1761 pe
= eeh_pe_get(hose
, pe_no
);
1766 * We don't do any state checking here since the detection
1767 * process is async to the recovery process. The recovery
1768 * thread *should* not break even if we schedule a recovery
1769 * from an odd state (e.g. PE removed, or recovery of a
1772 __eeh_send_failure_event(pe
);
1774 return ret
< 0 ? ret
: count
;
1777 static const struct file_operations eeh_force_recover_fops
= {
1778 .open
= simple_open
,
1779 .write
= eeh_force_recover_write
,
1782 static ssize_t
eeh_debugfs_dev_usage(struct file
*filp
,
1783 char __user
*user_buf
,
1784 size_t count
, loff_t
*ppos
)
1786 static const char usage
[] = "input format: <domain>:<bus>:<dev>.<fn>\n";
1788 return simple_read_from_buffer(user_buf
, count
, ppos
,
1789 usage
, sizeof(usage
) - 1);
1792 static ssize_t
eeh_dev_check_write(struct file
*filp
,
1793 const char __user
*user_buf
,
1794 size_t count
, loff_t
*ppos
)
1796 struct pci_dev
*pdev
;
1797 struct eeh_dev
*edev
;
1800 pdev
= eeh_debug_lookup_pdev(filp
, user_buf
, count
, ppos
);
1802 return PTR_ERR(pdev
);
1804 edev
= pci_dev_to_eeh_dev(pdev
);
1806 pci_err(pdev
, "No eeh_dev for this device!\n");
1811 ret
= eeh_dev_check_failure(edev
);
1812 pci_info(pdev
, "eeh_dev_check_failure(%s) = %d\n",
1813 pci_name(pdev
), ret
);
1820 static const struct file_operations eeh_dev_check_fops
= {
1821 .open
= simple_open
,
1822 .write
= eeh_dev_check_write
,
1823 .read
= eeh_debugfs_dev_usage
,
1826 static ssize_t
eeh_dev_break_write(struct file
*filp
,
1827 const char __user
*user_buf
,
1828 size_t count
, loff_t
*ppos
)
1830 struct pci_dev
*pdev
;
1833 pdev
= eeh_debug_lookup_pdev(filp
, user_buf
, count
, ppos
);
1835 return PTR_ERR(pdev
);
1837 ret
= eeh_break_device(pdev
);
1846 static const struct file_operations eeh_dev_break_fops
= {
1847 .open
= simple_open
,
1848 .write
= eeh_dev_break_write
,
1849 .read
= eeh_debugfs_dev_usage
,
1852 static ssize_t
eeh_dev_can_recover(struct file
*filp
,
1853 const char __user
*user_buf
,
1854 size_t count
, loff_t
*ppos
)
1856 struct pci_driver
*drv
;
1857 struct pci_dev
*pdev
;
1860 pdev
= eeh_debug_lookup_pdev(filp
, user_buf
, count
, ppos
);
1862 return PTR_ERR(pdev
);
1865 * In order for error recovery to work the driver needs to implement
1866 * .error_detected(), so it can quiesce IO to the device, and
1867 * .slot_reset() so it can re-initialise the device after a reset.
1869 * Ideally they'd implement .resume() too, but some drivers which
1870 * we need to support (notably IPR) don't so I guess we can tolerate
1873 * .mmio_enabled() is mostly there as a work-around for devices which
1874 * take forever to re-init after a hot reset. Implementing that is
1875 * strictly optional.
1877 drv
= pci_dev_driver(pdev
);
1880 drv
->err_handler
->error_detected
&&
1881 drv
->err_handler
->slot_reset
) {
1892 static const struct file_operations eeh_dev_can_recover_fops
= {
1893 .open
= simple_open
,
1894 .write
= eeh_dev_can_recover
,
1895 .read
= eeh_debugfs_dev_usage
,
1900 static int __init
eeh_init_proc(void)
1902 if (machine_is(pseries
) || machine_is(powernv
)) {
1903 proc_create_single("powerpc/eeh", 0, NULL
, proc_eeh_show
);
1904 #ifdef CONFIG_DEBUG_FS
1905 debugfs_create_file_unsafe("eeh_enable", 0600,
1906 arch_debugfs_dir
, NULL
,
1907 &eeh_enable_dbgfs_ops
);
1908 debugfs_create_u32("eeh_max_freezes", 0600,
1909 arch_debugfs_dir
, &eeh_max_freezes
);
1910 debugfs_create_bool("eeh_disable_recovery", 0600,
1912 &eeh_debugfs_no_recover
);
1913 debugfs_create_file_unsafe("eeh_dev_check", 0600,
1914 arch_debugfs_dir
, NULL
,
1915 &eeh_dev_check_fops
);
1916 debugfs_create_file_unsafe("eeh_dev_break", 0600,
1917 arch_debugfs_dir
, NULL
,
1918 &eeh_dev_break_fops
);
1919 debugfs_create_file_unsafe("eeh_force_recover", 0600,
1920 arch_debugfs_dir
, NULL
,
1921 &eeh_force_recover_fops
);
1922 debugfs_create_file_unsafe("eeh_dev_can_recover", 0600,
1923 arch_debugfs_dir
, NULL
,
1924 &eeh_dev_can_recover_fops
);
1925 eeh_cache_debugfs_init();
1931 __initcall(eeh_init_proc
);